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Abstract

In most macroeconomic models inflation tends to be harmful. In this paper we show
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“All production is for the purpose of ultimately satisfying a consumer. Time usu-
ally elapses, however—and sometimes much time—between the incurring of costs
by the producer and the purchase of the output by the ultimate consumer. Mean-
while the entrepreneur has to form the best expectations he can as to what the
consumer will be prepared to pay when he is ready to supply them after the elapse
of what may be a lengthy period; and he has no choice but to be guided by these
expectations, if he is to produce at all by processes which occupy time.”

John M. Keynes, The General Theory of Employment, Interest and Money.

1 Introduction

We investigate search-based models of monetary exchange along the lines of Lagos and Wright
(2005), henceforth LW, but in contrast to the majority of papers in this literature, we assume
that sellers produce ex ante, i.e. in advance, rather than ex post, i.e. on demand.

In LW’s model, buyers choose cash holdings first and then sellers produce on demand. Their
economy can then be described as a sequential game. In that economy buyers face a holdup
problem due to their up-front investment in cash, resulting in lower real balances and output
(unless the buyer has all bargaining power). If, in that environment, firms are to produce in
advance, both sides of the market now move simultaneously and independently: firms chose
production at the same time households chose money holdings. This turns the economy into a
simultaneous game, with a double holdup problem due to sellers investing in output and buyers
investing in cash prior to any meeting. An equilibrium is then given by the intersection between
two best-response functions, that of firms taking households’ spending plans as given and that of
households taking firms’ supply decisions as given. This opens the door to strategic interactions
between supply and demand, and to multiple equilibria and thus strategic uncertainty.'

Assuming production in advance, rather than on demand, raises the issue of unsold output.
One avenue, followed in the DSGE literature, is to keep track of inventories over time. Their
effect on the business cycle can be significant (e.g. Bils and Kahn 2000) as was illustrated in
the first few months of the last financial crisis (see "The inventory cycle: Stocking filler", The
Economist, July 8th 2010). Here, firms also hold inventories, but only for a limited time during
which the goods produced depreciate more or less quickly. To do so, we follow Berentsen,
Menzio and Wright (2011) and assume that a fraction of any unsold output can be sold next
period. If that fraction is high, the good is said to be rather durable (e.g. household appliances).
If the fraction is low, the good is said to be rather perishable (e.g. many food items). If the
fraction is zero, then goods are fully perishable, as in LW.

Our main contribution is to show that different timings of production have different impli-

'Production on demand is not specific to money-search models. The canonical New Keynesian model also
has firms producing on demand for instance.



cations for the nature of the equilibrium, the effect of inflation, and optimal monetary policy.
In particular we show that, everything else equal, an economy producing durable goods on
demand does not need the same level of inflation as an economy producing perishable goods in
advance. The former needs the Friedman rule, the later needs some inflation. Moreover, the
more perishable the goods, the higher the optimal inflation rate in that economy.

How can inflation be beneficial? For that to happen, the goods must be produced in advance.
This implies that sellers cannot adjust output according to the amount of money brought by
the buyer. Second, the goods must be perishable. This implies that leftover output cannot
have much resale value to producers. In particular the cost of not meeting a buyer can be fairly
high for the seller since he would then lose most of his output. In this environment sellers play
a mixed strategy randomizing between two levels of output: a small output sold entirely to
the buyer, or a larger output a significant part of which is sold to the buyer. While the seller
is indifferent between the two options (since higher production costs in the second option are
compensated with leftovers he can sell or consume in the next market), the buyer prefers the
second where he consumes more. When inflation goes up in that environment, if the buyer
cannot find a trading partner, he is left with rapidly depreciating money. In LW this translates
into sellers being willing to produce less, which lowers buyers’ demand for real balances. Here,
on the other hand, sellers have already figured out their two optimal levels of output, and the
only way for sellers to prevent buyers from walking away is to increase the probability with
which they pick the high output. It follows that, as inflation rises, both output and welfare
increase in expectation.

Given the rather dramatic effect of a change in the timing of production decisions by firms,
our next step will be to explore its effects quantitatively. In particular, we would like to
know how the figures for the costs of inflation found in LW change when firms shift from
production on demand, as in their model, to production in advance, as in here. To do so, we
calibrate a version of our model with production in advance to the US economy and compute the
welfare effect of 10% inflation relative to 0% inflation. We then reuse the parameters obtained
from this calibration to compute the welfare effect of inflation in Lagos and Wright (2005)’s
economy which only differs with regard to the timing of production decisions. Importantly
we set perishability very high in the production-in-advance economy, at 95%. By doing so
we make sure that the only difference between the two economies is the timing of production
decision since goods are (nearly) fully perishable in the production-in advance economy, thereby
approximating LW where they fully are. While 10% inflation reduces consumption by 2.81% in
LW, consumption increases by 2.49% in the same economy when goods are produced in advance
instead (and using the same parameters).

Our paper is not the first one to find that the Friedman rule is not always optimal. Nominal
rigidities in the New Keynesian framework make price stability preferable to deflation. Inflation
itself can boost GDP by inducing agents to search more (Benabou 1988, 1992, Head and Kumar



2005), by reducing the negative externality coming from one side of the market being to large
(Shi 1997, Rocheteau and Wright 2005), or by forcing buyers to be less choosy—the hot potato
effect as in Li (1994), Ennis (2008) and Nosal (2011). Inflation can also increase welfare by
indirectly taxing monopolies’ rents (Schmitt-Grohe and Uribe 2004, Chugh 2006), a literature
initiated by Phelps (1973), or by providing partial insurance to cash-poor agents (Levine 1991,
Molico 2006). To our knowledge, however, the channel unveiled here has not been studied
before.

The key to unveiling this effect is to re-visit the timing of production decisions by firms.
While production planning has become a field of its own in the business literature (known as
Supply Chain Management), it has received little attention in economics. A small group of pa-
pers in game theory and experimental economics allows suppliers to choose between production
on demand and production in advance (Maskin, 1986, Philips et al., 2001, Tasnadi, 2004), but
they do not consider possible macroeconomic or policy implications of such change. The few
papers that do so, i.e. Jafarey and Masters (2003) and Dutu and Julien (2008), use search-
theoretic models of the second generation with indivisible money as in Shi (1995) and Trejos
and Wright (1995), which limits their applicability. Production in advance was recently studied
by Masters (2013) in a model of (imperfectly) directed search with divisible money where buy-
ers’ preferences are match-specific and private information. He shows in particular that, when
the upper bound on the number of participating sellers binds, moderate levels of inflation can
increase welfare by making buyers less choosy. While production in advance does play a role
in his result, it is not due to strategic interaction but to a more classic 'hot potato’ effect. The
strategic interaction we highlight, which is central to the non-optimality of the Friedman rule,
comes from the random matching and bargaining with prior production environment that we
use. Masters (2013) works with a price posting model where sellers, even though they produce
ahead of the market, can post complete contracts. Having worked out a price posting version
of our model, we find no role for strategic interaction in such environment, and then no role for
inflation.

The paper is organized as follows. In Section 2 we lay out the general production-in-advance
environment. In Section 3 we characterize the equilibria, efficiency and optimal monetary policy.
In Section 4 we calibrate the model to measure the costs and benefits of inflation and contrast
our findings with those in LW using the same parameter values. Section 5 uses lotteries as a
way to circumvent the indivisibility of goods at the trading stage. Section 6 concludes.

2 The Environment

The backbone of this work is the search and matching model of money developed by LW. Time
is discrete. Every period is divided into two trading subperiods, each with its own market: a
frictional market in the first subperiod in which agents trade a first type of good called the



search good, and a Walrasian (centralized) market in the second subperiod where agents trade
a different good called the general good.

There is a [0, 1] continuum of infinitely-lived agents who discount at rate 3 between periods.
In the Walrasian market all agents can produce any quantity & of the general good at cost
¢ (Z) = Z. They can also consume any quantity &, which yields a utility v(Z) with v" > 0
and v” < 0. In the frictional market, some agents called buyers can only consume the search
good, and some agents called sellers can only produce the search good. Consuming § units
yields buyers a utility u(4) > 0 but 0 to sellers, with v’ > 0, v” < 0 and u(0) = 0. Similarly,
producing ¢ units of the search good in the frictional market costs ¢(q) < oo to sellers with
d > 0 and ¢’ > 0, but oo to buyers. The two-subperiod utility function of a buyer is then
Ub = v (&) — Z + Bu(q) and that of a seller is U = v (&) — Z — Bc(q) . We denote #* such that
V(&%) = ¢ (3%) = 1.2

In Walrasian markets production occurs once equilibrium is reached. As for the frictional
market, we assume that production takes place in advance, that is sellers produce at the begin-
ning of the frictional market without knowing whether they will meet a buyer or what demand
will be. We denote a € (0,1) the probability with which a buyer meets a seller and there is a
single coincidence of wants. Similarly we denote o € (0,1) the probability with which a seller
meets a buyer and there is a single coincidence of wants.

As in LW, we assume that the general good does not survive beyond its market, i.e. all
unsold general good output fully perishes at the end of the Walrasian market, which is also
the last market of the period. However, we amend their model by following Berentsen, Menzio
and Wright (2011) and assuming that the search good output produced during the frictional
market is partially durable in the following sense: for every unit of unsold search good at the
end of the frictional market, a fraction 1 — § of it is transformed into the general good and
carried forward to the centralized market. For instance, if a seller produces ¢ of the search
good and sells § < g, he will be able to bring y = (1 — ¢) (§ — ¢) in the form of general good to
the Walrasian market where he can sell it. If § = 1, any unsold search good output is lost. If
d = 0, all unsold search good output is transformed into the general good. Parameter § € (0, 1)
is then meant to capture the durability (or use value) of the output produced by sellers: the
higher §, the more perishable the good.?

?The numbers of buyers and sellers are fixed in this paper. As shown by Rocheteau and Wright (2005),
participation decisions can be important. For instance, in the bargaining model free entry by sellers produces
strategic interaction with money demand from buyers. This translates into multiple equilibria which, interestingly
enough, does not require increasing returns as is the case in most search models going back to Diamond (1982).
Here we consider a different type of strategic interaction: between money demand by buyers and supply decisions
by sellers.

3 Another interpretation of § is possible. Sellers possess a production technology which transforms the search
good into the general good. Such technology f(q) uses the search good as a productive (intermediate) input to
produce the general good, the cost of which is denoted C'(¢q). The cost function is linear with constant marginal
cost d, as is the production technology with a marginal product of 1. In that case § corresponds to the cost
of converting the search good into the general good. More or less general forms of these technology and cost



Money is a perfectly divisible and storable object whose value relies on its use as a medium
of exchange. This comes from the double-coincidence-of-wants problem between buyers and
sellers in the frictional market, which rules out barter. We also assume imperfect commitment
ruling out credit, and imperfect memory ruling out trigger strategies as a way to support
cooperation. These assumptions make money essential for trade (Kocherlakota 1998, Wallace
2001, Lagos and Wright 2007). By analogy with output where ¢ is the quantity produced and
q is the quantity consumed, we denote m the quantity of money held by a buyer when entering
the frictional market and m the quantity spent. Money is available in quantity M; at time ¢t
and each period new money is injected or withdrawn via lump-sum transfers to buyers by the
central bank at rate 7 according to M;y; = (1 + 7) M;. Denoting r the real interest rate, since
B =1/(1+r), the Fisher equation (1+4;) = (14 r) (1 + m;) produces a nominal interest rate
it = (1 — 8+ 7¢) /B where m; = 74 is inflation (fully anticipated) at time ¢. The price of the
general good in the centralized market is normalized to 1 and the clearing price of money in
terms of the general good is denoted by ¢,. In the paper we will focus on steady-state equilibria
where the aggregate real money supply is constant. Thus, M = ¢, (1 +7) M is equivalent
to ¢ = ¢, 1 (1 4+ 7) where the subscript +1 denotes the value of a variable (or value function)
in the next period.

3 Production in Advance

In LW, buyers move first by investing in money holdings. In the second stage of the game
they bargain over terms of trade with a seller if they meet one. Buyers are then able to infer
in the first stage how much sellers will produce in the second stage via the outcome of the
Nash bargaining game. This corresponds to production on demand, or ’'late’ production. Their
economy then corresponds to a two-stage sequential-move game.

Replacing production on demand by production in advance (or early production) changes
the scene. First, it turns the game into a simultaneous-move game since each side of the market
moves without knowing what the other side is up to.* Second, there is now a two-sided holdup
problem between households and firms: buyers invest in money but do not get the full return on
their investment unless they have all the bargaining power; sellers incur production expenses ex
ante that are sunk. Only the former is present in LW. Third, changing the timing of production
brings the seller’s objective back into the picture, in contrast with LW where sellers passively
respond to demand.

functions may alter the equilibrium regions. Some of those changes will be discussed as we expose the model.
4 As will be clear later, it is the commitment inherent in the decision to produce before meeting that matters,
more than simultaneity per se.



3.1 Sellers

With production in advance, sellers produce at the beginning of the frictional market. Denoting
g such output, let V%(q) be the value function of a seller holding output g in the frictional market.
In the following equations (g, m) and (g, m) emphasize that, in general, both the quantity
traded ¢ and the price m depend on the bounds in the Nash bargaining problem. Yet we will
simply use ¢ and 7 when there is no ambiguity.’?
In the Walrasian market a seller’s problem is
W(a,m) = max{v(z) -7 + f[-c (@) + V* (9]}, (1)

st. T=¢m+(1—-0)qg+z.

8l

Substituting out for z yields

W#(q,m) = n%%x{v(@ —&+¢m+(1-0)q+B[—c(@+V* (@]}, (2)
with
Ve(q) = oWy [q — 4(g,m),m(g,m)] + (1 — o) Wi, (¢, 0). (3)

From (3), with probability o, a seller trades with a buyer in which case the seller receives 7
units of money in exchange for providing ¢ units of the search good and proceeds with §—¢ > 0
units of unsold output. With probability 1 — o, the seller does not trade and proceeds with no
money and all her output g.
The seller’s program simplifies into

max &(q) = —c(q) + o (@, m) + (1 -0) (7~ q(g,m)] + (L —0)(1-0)g. (4
When deciding on her output for the frictional market, the seller maximizes the difference
between production costs, which are sunk, and the expected return from selling part of it with
probability o, or selling none of it with probability 1 — ¢. In both cases only a fraction 1 — § of
the leftover is carried forward to the centralized market as inventories.

3.2 Buyers

Let W?(m) be Bellman’s value function for a buyer holding m units of money in the centralized
market. It is given by

Whm) = max {v(@) ~ 2+ 5V (m)} (5)
st. om+z = o(m+7T)+7z. (6)

®We use Nash bargaining all along to faciliate qualitative and quantitative comparison with the seminal Lagos
and Wright (2005) paper. Note that more papers in the literature are now using Kalai/Smorodinsky barganining
(see, e.g. Aruoba, Rocheteau and Waller (2007)).



where V() is Bellman’s value function for a buyer bringing /m units of money into the frictional
market. In other words, a buyer chooses how much to produce and consume of the general good,
Z and T respectively, and how much money to bring to the frictional market, m, in order to buy
the special good. His budget constraint equalizes resources, ¢ (m + T') + &, to demand, ¢m + .
Substituting out for = yields

Wh(m) = max {v(z) = &+ ¢ (m + T) — g + BV () } (7)

x,m

Bellman’s equation for a buyer in the frictional market is given by
Vim) = o {u (@) + Why (m—m) } + (1 - a) Wiy (m). (8)

This equation says that, in this market, a buyer trades with probability «, in which case he
pays m to buy ¢ units of the search good and proceeds with m — m units of money. With
probability 1 — « he does not trade and moves on to the centralized market with the same
amount of money.

To derive the buyer’s choice of money, note that next period’s value function for a buyer
who trades m for ¢ this period is given by

Wy (1= ) = v(&*) = &° + 6y (7 — 0 +T) +max { ~gym + BV ) b, (9)

where m represents the choice of money for the next period given that m was chosen for this
one. Similarly, next period’s value function for a buyer who does not trade this period is given
by

W2 (1) = 0(&") = & + g4 (1 + T) + max { —6. 177 + BV (1) | (10)

Inserting (9) and (10) into (8) one obtains

VP(m) = wv(@*) — 3"+ T +af{u(@) +¢py (m—m)} (11)
+ (1= 0) ¢y ym -+ max { ¢y + BV(m) |

By inserting (11) into (7) and getting rid of constant terms, the buyer’s program simplifies into

max W(m) = ~¢m + 5 {o {ulg (M) + 64— i)} + (1~ ) 6um}.  (12)
When choosing money holdings, buyers maximize the difference between the opportunity cost
of money and the discounted expected return from spending part of it with probability «, or
spending none of it with probability 1 — c.
Assumption: u/(0) > 1—4§ > ¢(0).
The left-hand side, v/ (0) > 1—4, allows for positive gains from trade in the frictional market.
The right-hand side, 1 — 6 > ¢/(0), is due to the convexity of the production function. Because



the marginal cost of producing ahead of the market, ¢/(0), is smaller than the marginal gain
in terms of leftovers, 1 — ¢, sellers enjoy lower general good production costs in the frictional
market than in the Walrasian market, up to a certain point (to be characterized below). A
possible interpretation is that sellers have access to their capital, i.e. plants and machineries,
in the frictional market rather than in the Walrasian market. Outside those producing hours,
sellers do not have any particular cost advantage over other agents, especially buyers. It has an
important implication: under conditions to be characterized later, firms voluntarily accumulate
inventories during the frictional market with the prospect of the Walrasian market, offering
them an outside option in the bargaining game, as in Berentsen, Menzio and Wright (2011).
We discuss later the implications of relaxing this assumption.

3.3 Terms of trade
The generalized Nash solution to the bargaining between a buyer and a seller is

L . L R L s - nq1-0
arg max _ B(q, ) = (@) + Whalm — i) = Wiy ()] [W3, (7 - 4, m) — W (3, 0)]

- (13)
in which Wil (m) and W#, (q,0) are the buyer’s and seller’s disagreement payoffs, respectively.

For the sake of exposition, let us define the following functions:

. (1-5Ha-9) ou' ()
90 = g ra-0a-5"" " wmra-0a-9
W) = (1-6)u(@)+0(1-d)a o

(14)
(15)
gy = o (1-96) (16)
(17)

(1—-0)x

mN = h(QN)/¢+1:9(CIN)/¢+1 17

The functions g and h (derived from the first-order conditions of the bargaining problem
with respect to ¢ and m respectively) settle terms of trade in Nash bargaining. The intersection
of g(q) and h(q) yields (¢n,my), the unconstrained Nash bargaining solution (see Figures 3
and 4 in the Appendix).

Let us first characterize the solutions to the Nash bargaining problem. We denote
(G(g,m), m(q,m)) = arg maxg<gm<m B(q, m). Given (g, m) > 0, the Nash bargaining problem
simplifies into:

s B(g,m) = [u(d) = 64u]” [y~ (1-6)4) "

(18)

We show in the online appendix that the maximization problem is well-defined and that the
Nash axioms are applicable to the problem at hand.

5The online appendix is available at https://sites.google.com /site/econcjs/research.



Lemma 1 Solutions to the Nash bargaining problem:
(4(g,m), (g, m)) = (min{g™"(¢41m), g, 7}, min{h(q)/d 1, mn, }).

Proof. See the Appendix. m

Lemma 1 states that by bringing m units of money to the frictional market, the buyer
can expect to exchange them for g=1(¢1/m) units of good, provided that g=!(¢,,m) does not
exceed the unconstrained Nash bargaining outcome gy and the capacity constraint ¢ set by the
seller. Similarly, by bringing g to the frictional market, the seller can expect to exchange it
for h(q)/¢.1 units of money, provided that h(q)/¢,; does not exceed the unconstrained Nash
bargaining outcome my and the capacity constraint m set by the buyer.

Let us finally define ¢q;, and gy such that

dla) = 1-o0)(1-9), (19)
d(qu) = 1-4. (20)

A second lemma characterizes the seller’s best response:

Lemma 2 The seller’s best response: For any m < mp, in equilibrium the seller’s best
response is either max{qr, h= (¢, 1m)} or qu.

Proof. See the Appendix. m

To understand Lemma 2, fix some m < my and let us denote gy such that ¢(qy) =
oh'(qu)+ (1 — o) (1 —9). If producing the good in the frictional market is very costly such that
h(qu) < ¢,1m, then the seller will produce gi. However, it also implies that the buyer brings
more money than he intends to spend, so g cannot be part of an equilibrium. When producing
the good in the frictional market is not that costly, that is h(qy) > ¢, 1m, the seller weighs two
options: max{qr,h (¢, ,m)} and gy. The first one is the optimal amount of output when the
seller intends to sell it all in exchange for m, and G is the optimal amount of output when
the seller intends to sell only some of it in exchange for m and bring the rest to the centralized
market. Which one is better depends on the amount of money brought by the buyer. For
instance, if the seller expects the buyer to bring a small enough amount of money, which will
presumably be the case when inflation is high, it is best for him to produce a large amount of
output and sell only a fraction to the buyer.

3.4 Equilibria

We start by characterizing the types of equilibria that exist and the corresponding conditions
on the parameters. The two main parameters are durability § and the nominal interest rate i.
In the following, we assume that u/(x)/g’(x) is strictly decreasing on [0, gn].” This assumption
guarantees that the pure-strategy equilibrium is unique, whenever it exists.

"The online appendix provides sufficient conditions for strictly decreasing u’(z)/¢’(z) on [0, gn].
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3.4.1 Non-monetary equilibrium

u'(0)
g'(0)

Proposition 1 (Type I Equilibrium) If <1+ é, then (q*,m*) = (qu,0) is the unique

equilibrium.

Proof. See the Appendix. m

Type I Equilibrium is a pure-strategy non-monetary equilibrium. If marginal utility «'(0)
is small and the nominal interest rate is high, then agents simply do not use money and all
economic activity is limited to the Walrasian market.

3.4.2 Pure-strategy monetary equilibrium

Define m¢ = inf{ m | ®(max{qr, h"1(¢,m)}m) = ®(gy|m)} whenever it exists, otherwise
let mc = my. That is, m¢ is the lowest amount of money that leaves the seller indifferent
between producing max{gr,h (¢, ,m)} and selling it altogether or producing gy and selling
some of it (cf. Lemma 2).

Proposition 2 (Type II Equilibrium) Let ¢ be defined by (21). If % > 1+é and the demand
for real balances g(¢) < ¢ 1mc, then (G, m*) specified below is the unique equilibrium

7 =qu
W m) _ g Gam) Q) g (21)
am*) — g (g e pm*)) — g'(C)

Q=

Proof. See the Appendix. m

Type II Equilibrium is a pure-strategy monetary equilibrium in which the marginal utility
of ¢ is sufficiently high for the buyer, and the demand for real balances g(¢) is smaller than
the ¢, mc threshold. In this equilibrium sellers produce gy and sell ¢ < gy for m* upon a

meeting.

3.4.3 Mixed-strategy monetary equilibria

Let us now consider what happens when marginal utility is high enough but, by contrast to
Proposition 2, the demand for real balances g(¢) is greater than ¢ ;mc. It turns out that a
pure-strategy equilibrium does not exist in this case, and we need to consider agents playing
mixed strategies. To do that, let us formally define p, : Br, — [0,1] as the buyer’s mixed
strategy on money holdings, and p, : Bg, — [0,1] as the seller’s mixed strategy on search
good production, where B, stands for the Borel o—algebra in R . Given a mixed strategy p,
let supp p denote the support of u. Lemma 3 below shows that in equilibrium the seller will
produce at least g7, but no more than gz units of search good, and the buyer will bring at least
9(qr)/ ¢, but no more than g(gr)/¢, | units of money to the frictional market.

11



Lemma 3 Suppose (g, 1) constitutes a Nash equilibrium. Then supp ug C [qr, @r] and supp
t C [9(qL)/ P41, 9(qm)/ D14]-

Proof. First notice that any ¢ < ¢r, will not be chosen by the seller with a positive probability,

as it is strictly dominated by §z.® Hence inf supp p, > gr. Next observe that for any m <

9(qr)/é11, ®(qu) > ®(max{qr,h™'(¢,1m)}). Therefore mc > g(qr)/é11- 9(C)/¢11 > mc
also implies that Z“,% > 1+ é for any ¢ < qr.. Given any output level § > qr,, the buyer’s payoff
at m < g(qr)/ ¢, is strictly lower than that at g(gr)/¢. ;. Hence inf supp p, > ¢r, implies that
inf supp 1y, > g(qr)/d.41-

Next we argue that sup supp p, < gg. Given any m > 0, any q > qp is strictly dominated

by qu, as ®g is always negative for all ¢ > gy (see Lemma 2). Therefore sup supp py < qu.
Given sup supp p, < qu, the buyer will not pick any m > ¢(qu)/¢,1, as any such m is
strictly dominated by g¢(qu)/¢, 1. Consequently sup supp p, < g(qu)/¢41- Given sup supp
ty < 9(qu)/ @41, consider two subcases: (i) h™'(g(qu)) < qu. Fix any m < g(qu)/¢,;. It can
be readily seen that ®5(¢) < 0 for any ¢ > gy. Therefore any ¢ > Gy is strictly dominated by qp,
and we have sup supp p, < g (ii) A1 (g(qu)) > qu. Given any m < g(qu)/¢.41, it can be shown
that ®;(q) < 0 for any ¢ > h™'(g(qu)), and hence any ¢ > h~'(g(qu)) is strictly dominated
by h™1(9(qu)). Therefore sup supp py, < g(qu)/é,, implies sup supp p, < h=(g(qv)). Given
u(Fs) < h~Y(g(qu)), by the same token we have sup supp 1, < g(h~*(9(qv))/$-1. Continuing in
this fashion, we can find a finite sequence of the form {gy, h™*(g(qv)), R~ (g(h 1 (9(qv)))), ---}
in which the last term is no greater than gg. Applying the result in subcase (i) gives us sup
supp fiy < qg- sup supp p, < gy directly implies that sup supp py, < g(qm)/d41-

[

We are now in a position to characterize Type III equilibirum. The main comments and
economic intuition behind this proposition and the following are deferred to Section 3.5. Let m €
(9(qr)/®41,9(qm)/¢41) be the money holding characterized in equation (54) in the Appendix,
where m¢c = m under the conditions of Type III equilibrium below.

Proposition 3 (Type III Equilibrium) Suppose g(¢) > ¢ 1mc and g, > min{h~(g(gm)), h"1(g(¢))}-
Then the pair (g, 1tp) constructed below constitutes a unique equilibrium:

_ 1 m=m
pp(m) = { 0 m+#£m (22)
PRV AR CISU))) -
u (Cj) _ (1 + a’/u'(g=1(py1mh)) 4= 491 (23)
S 1 _ (1 + i)gl(971(¢+1ﬁ1)) 7= 0
o) (g (g 47 9L

Proof. See the Appendix. =

¥See also Claim A1 in the proof of Proposition 2.
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Note that the condition g({)/¢,; > mc automatically implies that Zigg; > 14 a(in), Fur-
thermore, g(¢)/¢q > mc combined with the fact that g(gr)/¢,; < mc implies that ¢ > qr.
As for terms of trade (§,m), using Lemma 1, note that if ¢ = ¢z, then (¢,m) = (Gr,m). And
if § = gy then (¢,7m) = (g*1 (¢+1ﬁ1) ,fh) with m defined by equation (54). Finally, note also
that qr, < g_1 (gﬁ_,_lﬁl) < qH.g

Finally, when g, < min{h~'(g(qr)),h *(g(¢))}, that is when ¢, and gy are sufficiently

apart (by contrast to Type III equilibrium), we have the following proposition.

Proposition 4 (Type IV Equilibrium) Suppose g(¢) > ¢, 1mc and g;, < min{h~*(9(qu)), 1 (g(¢{))}
There are multiple equilibria, all of which satisfy the following properties:

(a) supp ps C [qr, qu] and supp py, C [9(qL)/ ¢ 41, 9(qm)/d11]-
(b) py is at most trinary, and p, is at most quaternary.

Proof. The proof, which contains many repeats from the proof of Proposition 3, can be found
in the Online Appendix. =

In Type III Equilibrium, buyers bring a fixed amount of real balances, regardless of infla-
tion. At the same time, sellers randomize over two levels of output, g, and Gg. In Type IV
equilibrium, on the other hand, the buyer brings multiple amounts of money with positive prob-
abilities and likewise the seller brings multiple amounts of output with positive probabilities.
This implies that with some probability this equilibrium gives rise to the buyer bringing more
money to the frictional market than he hands over to the seller.

The frontiers between each equilibrium are represented on Figure 1. The frontier between
Type II and Type III-IV equilibria is given by the pairs (i,6) such that g({)/¢,; = mc.
The horizontal portion of the frontier between Type III and Type IV equilibrium is given
by the pairs (i,d) such that g, = h~'(g(gg)), which boils down to a unique & denoted by
§ since i enters neither g, nor h~'(g(gx)); and the curved portion of the frontier between
Type III and Type IV equilibrium is given by the pairs (i,d) such that g, = h~1(g()).

YAt 1 the seller is indifferent between max{qr,h '(¢,,m)} and gu. It can be shown that the condition
qr > min{h~"(g(qu)), k' (9(¢))} implies gL > h™"(¢, ). Hence, the seller is indifferent between g1, and gx.

13
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Figure 1: Partition, and comparative statics for a given § < §and 6 < 1.

3.5 Comparative Statics and Welfare

First note that as ¢ decreases the equilibrium shifts from Type I to Type II, and then from
Type II to Type III or IV depending on the value of §. Since Equilibrium I'V features further
multiplicity, we concentrate on the shift from Equilibrium 77 to Equilibrium I71.

Welfare in the production-in-advance economy is given by

Wpra = /{—c(q> +o{ulg (P +(1=9)[g—q (@]} + (1 —0o)(1—08q}dFs(q) +v(E") — 2"
(24)

Proposition 5 (Social Planner’s Solution) Let qn be such that u'(qy) = 1 — 8. A social
planner would pick § = gy and ¢ = qn when qn < Gy, and § = ¢ = qo with gc given by
d(qc) =ou' (Go) + (1 — o) (1 — &) when qn > qx.
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Proof. The central planner solves maxg g x [—¢(q) + o [u(q) + (1 = 0)(¢ — ¢)] + (1 — o) (1 — d)q|+
A (@ — ¢) where A is the Lagrange multiplier on the ¢ < g constraint. m
Equilibrium IIT welfare simplifies into

Wera-rir = pe(qu){—cl@u) +o[uw(@) + (1 —-06)(qu — )]+ (1 —o)(L = d)gu} (25)
+45(qr) {—c(qr) + ou(qr) + (1 —o)(1 = 8)qr} +v(&*) — 7,

where ¢ = g7 (¢,171) and p,(qr) and py(qr) are given by Equation (23).

Proposition 6 (Inflation and Social Welfare) In Type III equilibria, welfare increases as in-
Wpra—r11

flation rises, i.e. ——5—=+ > 0.
Proof. See the Appendix. m

We now explain the intuition behind Equilibrium Type III (Proposition 3) and why inflation
raises welfare (Proposition 6). In order to do so, let us start by tracking the changes in the
economy as the interest rate recedes from high levels and approaches 0.

When the interest rate is high, the demand for money is low and so is buyers’ demand for
the good, (. Sellers produce more than what they expect to sell, g, and wait till the Walrasian
market to sell whatever fraction gy — ¢ remains [Type II equilibrium)].

As inflation recedes, buyers start carrying more money and buying more goods, leaving
sellers with less and less leftovers. At some point, a new strategy emerges for the seller: given
the shrinking utility he derives from the leftover, for the same amount of real balances ¢, 1m
he can now obtain the same payoff by producing a smaller amount of goods, ¢r, and selling
it altogether to the buyer. That is, rather than compensating higher production costs with
leftovers, a seller may simply decide to produce and sell a smaller amount of goods with no
leftovers. Both options (high output gy selling ¢ > q;, and keeping gy — ¢, or low output qr,
with no leftover) yield the same payoff — see Figure 5.

However, the low output option g7, becomes a threat to the buyer. If the seller chooses it,
the buyer strictly prefers bringing less money than m, and therefore the seller is strictly better
off producing the high output gg, sell a fraction that corresponds to the buyer’s money, and
keep the rest. But if the seller chooses this high output option, the buyer strictly prefers to
bring more money than m, which implies that the seller is now strictly better off producing
the low output and sell it altogether. Lower inflation creates strategic uncertainty between
buyers and sellers. In response, sellers randomize between different levels of output and buyers
randomize between different amounts of money. Mixed strategies emerge because low inflation
makes producing for the frictional market only, i.e. ¢z, a viable alternative for sellers. By
contrast, when inflation is high, sellers forecast that demand will be low and produce ¢ which
is always enough to satisfy demand.

What role does goods’ perishability play in this story? When goods are highly perishable
(6 > 6 defined in the last paragraph of Section 3.4), sellers produce very little due to the heavy

15



loss incurred if they cannot find a customer. It follows that qr, and g are not too distant from
each other since both reflect the risk of loosing most of it, if no buyer is found (see Equations
(19) and (20)). Thus, if goods are highly perishable, an equilibrium is characterized by buyers
bringing a unique amount of money mc = m and sellers randomizing between two levels of
output, ¢, and gy [Type III equilibrium|. Importantly, that amount of money is unaffected
by inflation as long as inflation is not too high. However, when inflation rises, because buyers’
outside option deteriorates, bargaining forces sellers to choose the high output gz with higher
probability. And by producing gz more often they also sell ¢ > ¢, more often. As a result, when
inflation increases, buyers buy more goods on average, which increases welfare (Proposition 6).
It follows that when goods are highly perishable, the optimal inflation rate is positive. Note
that in this equilibrium all real variables (qr, g, m,q) are unaffected by inflation. Only the
probabilities with which sellers choose between ¢, and ¢p change as inflation rises or falls.

When goods have intermediate durability (intermediate in the sense that the economy is in
the Type IV region), the difference between ¢, and gp is now too great for buyers to stick to
a unique amount of real balances. As a result, buyers start randomizing which in turn changes
the shape of the seller’s objective function inducing them to enlarge the set of output over
which they randomize themselves (Type IV equilibrium). In this context, multiplicity arises
as a result of the indeterminacy in buyers’ and sellers’ beliefs. Assume for instance that if
sellers believe that buyers will randomize over two amounts of money, their best response is
to randomize over three levels of output. Then, if buyers anticipate sellers to randomize over
three levels of output their best response is to randomize over two levels of real balances. This
is one equilibrium, but there can be others such as Type III equilibrium (buyers bring m and
sellers randomize between ¢y, and @g). Due to non-concave objective functions, it is impossible
to fully characterize Type IV equilibria.!’

Finally, let us denote i* the optimal interest rate. Note from Figure 1 that ¢* is such that
the buyer is indifferent between buying ¢ for sure or receiving ¢; with probability u.(gr) or
G < qg with probability 1 — u,(gr). We have the following Proposition:

Proposition 7 (Optimal Inflation in Type III Equilibria) In Type III equilibria, the optimal
inflation rate increases as goods become more perishable.

Proof. See the Appendix. m

Proposition 7 shows that the more perishable the goods (higher §), the higher the optimal
rate of inflation. As a matter of fact, although sellers still randomize between ¢, and gy, they
tend to choose ¢;, more often now due to the very high perishability of anything they produce
in the frictional market. It then requires a substantial amount of inflation to induce sellers to

Y0Multiplicity in monetary economies can arise due to a variety of reasons, such as the interaction between the
real value of money balances and agents’ choices of search intensity (Johri 1999), between money demand and
entry (Rocheteau and Wright 2005), or coming from coordination (Jean, Rabinovich and Wright 2011).
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opt for the high output frequently enough to make the buyer indifferent between the (G, qm)
lottery (Type III) and purchasing ¢ with certainty (Type II). One should keep in mind, however,
that output (and then welfare) is low when 0 is high since sellers do not produce much. But
this low output is not due to high inflation, only to high perishability.

How important is the ¢/(0) < 1 — § assumption for our results? For instance, what if
d(0) > 1 — 0 as with ¢(q) = ¢? In this case, no monetary equilibrium exists. It indeed implies
that ¢(0) > 1 -6 > (1 —0) (1 —9). From the seller’s best response (Equation (40)) we see
that the seller has then no incentive to produce unless h(q) < ¢, m, in which case he produces
qu- But h(q) < ¢ 1M means that the buyer brings more money ¢, ;m than he intends to
spend h(q), to which the seller reacts by producing less that gyy. This cannot be an equilibrium.
Similarly, no monetary equilibrium exists with production in advance when § = 1, because the
seller’s outside option is zero (note that by contrast such monetary equilibrium exists in LW’s
production-on-demand economy). In both cases economic activity is non monetary and limited
to the Walrasian market.

Another assumption is worth discussing. Note that two distinct kinds of agents are assumed,
along the lines of Rocheteau and Wright (2005). If instead the identity of buyers and sellers are
decided by random matching, as in LW, the strategic interaction between a buyer and seller in
a match will be altered. Since traders are ex-ante identical, all will produce a given quantity
of the search good. Hence, both buyers and sellers may choose to carry inventories over to
the centralized market. This will, of course, change the mixed strategies played by buyers and
sellers.

4 Quantitative Assessment

In this section we measure how a change in the timing of production decisions by firms impacts
on the welfare effect of inflation. To do so, we come back to Lagos and Wright (2005)’s calcu-
lations for the welfare costs of inflation and track how they are impacted when firms shift from
production on demand, as in their model, to production in advance, as in Section 3 above. To
make the two economies comparable on every other dimension, we will use the same functional
forms and parameters across the two economies. We also set goods’ perishability very high in
the production-in-advance economy (6 = 0.95) thereby approximating LW’s full perishability
(i.e. 0 = 1).!' By doing so, we ensure that any difference between our welfare measure and
theirs is (almost) entirely attributable to the difference in the timing of production decisions
by firms.

The calibration procedure closely follows LW. First, we take the production-in-advance
model from Section 3 and normalize o = 1 and set ¢ = 0.5 as in LW. Second, we set ¢(q) = ¢?
to satisfy our ¢/(0) < 1 — § assumption. Third, we calibrate two parameters of the model, the

' As shown previously, there is no monetary equilibrium when § = 1 in the production in advance economy.
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curvature 7 of the utility function ¢'=7/1 — 7 and output on the centralized market B (which is
left undetermined by the model) by fitting the theoretical money demand to the data. Money
demand data are taken and updated from Craig and Rocheteau (2008) where the interest rate
is the short-term commercial paper rate, and money demand is M1. We use L (i) to denote
money demand, i.e. real balances as a function of the nominal interest rate. It is given by %
where M is the nominal stock of money and PY is total nominal output. Denoting z(q) = M /P
this simplifies into

L) =520 (20

Regarding 6, we choose a value that ensures the economy remains within the Type III region
(cf. Figure 1). Finally, denoting © = («, 0,7, B, d,0) we calculate a compensated measure for
10% inflation relative to 0% inflation in the production-in-advance economy and in LW using
the same O, and compare the two. The compensated measure corresponds to the amount of
consumption agents would be willing to give up (or receive) to have 0% inflation instead of
10%.

Results are reported in Table 1 below where a (—) means a welfare loss whereas a (+) means
a welfare gain.

Production in advance (Type IIT with § = 0.95) | +2.49%
Production on demand (LW with § = 1) -2.81%

When goods are close to being fully perishable (6 = 0.95) as in LW, the gain associated with
10% inflation in a production in advance economy is 2.49%. If we use the same functional forms
and parameters as the ones we used for this last calculation but applied to LW’s production-on-
demand economy, in which 6 = 1 by definition, we find that inflation reduces consumption by
2.81%. A change in the timing of production hence dramatically alters the effect of inflation.

5 Lotteries

The emergence of mixed strategies suggests that buyers and sellers should use lotteries. In this
section we introduce lotteries along the lines of Berentsen, Molico and Wright (2002) to see if
the welfare-improving role of money holds. Because output is no longer divisible at the trading
stage, we allow buyers and sellers to bargain over a quantity of money and the probability with
which the good already produced changes hands. This is in contrast with Berentsen, Molico and
Wright (2002) where agents bargain over the quantity of goods and the probability with which
the indivisible unit of money changes hands. The latter model was indeed constructed as an
extension to the so-called "second generation" of monetary search models (Trejos and Wright
1995; Shi 1995) in which money is indivisible by assumption. Here the goods are divisible at
the production stage. But they are not at the trading stage when production takes place ahead
of the market.
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Given (q,m) > 0, the Nash bargaining problem is as follows:

e B(r g, m) = [ru(@) = 6]’ [y~ (1-0)g] . (27)
The domain of (7,7) is restricted to
A =A{(r,m) €0,1] x [0, m]| Tu(q) — ¢117 > 0,¢ 47 — 7 (1 —6) g = 0}. (28)

A is non-empty, compact and B(7,m|q,m) is continuous. Therefore the maximization problem
is well-defined.

If either ¢ = 0 or m = 0, then (7,m) = (0,0) solves the problem uniquely. Consider now
g > 0 and m > 0. Recall from Lemma 1 that ¢ is such that u(q) = (1 —9)q. If ¢ > ¢, then
u(q) < (1 —6)q and the bargaining outcome is (7,72) = (0,0) and there is no trade. Assume
now g < ¢. In this case, u(q) > (1 —J) G and we can always find some (7,7) € A such that
B(1,m|q,m) > 0, and hence the Nash bargaining outcome must give agents strictly positive
trade surplus.

Proposition 8 (Nash Bargaining Outcome with Lottery) The terms of trade are given by
(T(Q7 m)? m((ja m)) = arg maXTSl,ﬁ”LSTTL B(Ta m|Q7 m)
= (min{g~ (¢, 1), 1},min{2§(—+11),m}), where g and h are defined in the proof below.

Proof. We divide the proof of this lemma into three steps: the first-order effect of 7 [Step 1],
the first-order effect of 7 [Step 2], and characterize the solution [Step 3].
Step 1. Taking a derivative of B(7, g, m) w.r.t. 7, we have

0u(q) (P41 — 7 (1 = 6)q) — (1*9)( 0) 4(rul@) — ¢141)

B, (T,m|q,m) =
o [ra(@) — o] [pyai—7 (1) ]9

Therefore B (7,7m|q, m) = 0 iff

N u(a) (1-9)q
¢ = g(7) Ou(q) + (1 —60)(1—0)q

T.

g(7) is strictly increasing in [0, 1]. The first-order effect of 7 for any given 7 can be summarized
as:
sign By (,m) = sign (g~ (¢11m) — 7). (30)

Step 2. Taking a derivative of B(r,m|g, m) w.r.t. m, we have

—9¢+1(¢+1m —7(1=9)q) +(1-0) ¢+1(7'U((7) ¢+1m).
[ru(@) — ¢ am] 7 [pyymm— 7 (1 - 8) ]

Bm(ﬂ mm» m) =
Therefore By, (7, m|q, m) = 0 iff
dpom="h(r)=[(1-0)u(q) +6(1—20)q|r. (32)
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Accordingly, the first-order effect of m can be summarized as:

h(7)

+1

sign By (q,m) = sign ( —m). (33)
Step 3. It is straightforward to show that Bs;(¢,m) = By(¢,m) = 0 iff (7,7m) = (0,0).
However, (7,7) = (0,0) is not a bargaining outcome as the trade surplus is zero. So the
bargaining outcome must be a corner solution: either 7 = 1 or m = m. It is straightforward
to verify that h(7) > g(7) for every 7 > 0. Consider three cases. Case 1 m > Z(—:j Based

on the first-order effects, we conclude that the bargaining outcome is (7,m) = (1, Z(—jl)) Case

2 Z(—jl) >m > 55(7:1)' Based on the first-order effects, we conclude that the bargaining outcome

is (r,m) = (1,m). Case 3 35(—:1) > m. Based on the first-order effects, we conclude that the

bargaining outcome is (7,7m) = (g7 (¢1m), m). =

As anticipated, higher inflation does not raise welfare. As in more standard monetary
models, higher inflation simply decreases real balances and the probability with which goods
change hands (cf. Figure 2).

E r
] —-———————m e e o
i = 07
gi1) h{1)
o]
(T4 SRS o
i : Dy
i i X
] 1 >
g1 h(1)

Figure 2: Lotteries.
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6 Conclusion

We have explored the relationship between the timing of production decisions by firms, the type
of goods produced (durable versus perishable), and inflation. This study was conducted within
the search-theoretic model of money developed by Lagos and Wright (2005), which is explicit
about market transactions and timing. Our main finding is that shifting from production on
demand (the standard assumption in most macroeconomic models) to production in advance is
not without loss of generality. If the economy produces mostly perishable goods, it simply leads
to a reversal of monetary policy recommendations. Production on demand may then increase
tractability, but such assumption is not without consequences as it effectively hides the strategic
interaction between buyers and sellers.

Several extensions to the model look promising. Adding unanticipated real and nominal
shocks is one of them. Also, making § a function of the capital stock & such that ¢’ (k) < 0
would make it possible for buyers to allocate their savings between money and capital, thereby
creating an interesting role for monetary policy in the transition from a developing economy
with a low capital stock producing mostly perishable goods to a developed economy with a
larger stock of capital producing mostly durable goods. This would also address two of the
main weaknesses of the model, namely that money is the only asset and that labour is the only
input to sellers’ production function.
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Appendix

Proof of Lemma 1

We divide the proof of this lemma into four steps: the first-order effect of § [Step 1], the first-
order effect of m [Step 2], characterize the unconstrained solution [Step 3] and the constrained
solution [Step 4]. Figures 3 and 4 illustrate the essential features in the analysis.

m=(1-8)q/m-
m=h{q) /g

m=g(q)/ ¢,
m=u(q)/ ¢

qx q

m
4
m=h{q) /d.,
m m=g(q)/ ¢,
my
@T B2
» q

qn

Figure 4: The bargaining solution.
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Step 1. Taking a derivative of B(¢,m) w.r.t. ¢, we have B;(¢,m) = 0 iff

o 1-9(-0u@ u'(a) (1~ 8)d
P =90 = G T =0 (-9 T (@) + (-6 (1)

Let (g,m) be the unique positive solution of the system of equations u(§) — ¢, = 0 and
¢, 1m — (1 —9) 4. (g,m) is the northeast point of A (See Figure 3). It can be shown that g(q)
is strictly increasing in [0, q]. Thus, the inverse of g(-), g7(-), exists in [0, q]. Accordingly, the
first-order effect of ¢ for any given 1 € (0, g(q)) can be summarized as:

sign By(4,m) = sign (g7 (d1m) — §). (34)
Step 2. Taking a derivative of B(§,m) w.r.t. m, we have By, (q,7) = 0 iff

¢ =h(q) = (1 - 0)u(@) +60(1-9)q. (35)
Accordingly, the first-order effect of m for any given ¢ € (0, ¢) can be summarized as:

hé
sign By, (¢, m) = sign (@ —m). (36)
¢t
Step 3. It is straightforward to show that B;(q,m) = By, (G, m) = 0 if either v/(§) =1 -0
or u(q) = (1 — 9) q. The solutions that solve u(§) = (1 — §) ¢ are ruled out as a maximizer, as

B(G,m) = 0 in this case. The only candidate is then (¢n,my) € A, where
W(gn)=1-19 (37)

and
mn = h(gn)/d41 = 9(an)/d11- (38)

It can be verified that (gy,mpy) is the unique maximizer for the unconstrained Nash bar-
gaining problem.

Step 4. Consider now the constrained Nash bargaining problem. Pick any ¢ > 0 and
m > 0. We first make the following observations: (i) both g(¢)/¢,, and h(§)/¢,, are convex
combinations of u(d)/¢; and (1—0)q/é.,, (i) (@) = h(@) = u(@) = (1—8)d in [0,d] iff
Gg=0or q=gq, (iii) g(4) = h(g) in (0,q) iff § = qn, and (iv) it is straightforward to show that
g(4) < h(q) when g € (0,qn), and g(¢) > h(§) when ¢ € (gn, q). All these features are depicted
in Figure 3.

To determine the bargaining solution, we partition the domain of (¢,m) into four areas
(see Figure 4 for the partition). The arrows in each area indicate the trajectory towards
maximization based on the first-order effects of § and 7 on B(§, ) derived in Steps 1 and 2.
For example, for all (¢,7) € D2, we have B;(¢,m) < 0 and By, (¢,7) > 0. Hence, in order to
maximize B(§,m), one should increase m (whenever possible) and decrease §.

The bargaining solution can be determined as follows:
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Case 1 (g, m) € D1 = {(x1,22) € Ri]wl > qn and x2 > mpy}. As the unconstrained Nash bar-
gaining solution (qn,my) is a feasible option in this case, (4, m) = (qn,mn) is the bargaining
outcome.

Case 2 (¢,m) € Dy = {(z1,22) € R2 |zo < min{g(z1)/d, 1, mn}}. Based on Step 1 and Step
2, it can be shown that (§,m) = (g7 (¢, 1m), M) is the mazimizer.

Case 3 (q,m) € D3 = {(x1,22) € R% |z1 < min{h *(22)/¢,1,qn}}. Based on Step 1 and Step
2, it can be shown that (¢, m) = (q,h(q)/¢p, 1) is the mazimizer.

Case 4 (q,m) € Dy = {(z1,22) € R% |21 < qn, 22 < mn, and h(z1) < x2 < g(x1)}. Based on
Step 1 and Step 2, it can be shown that (§,m) = (q,m) is the mazximizer.

In sum, we have the following result:

(4(g,m),m(g,m)) = arg j o B(g,mm) = (min{g~ (¢, 1m), qn, ¢}, min{h(q) /¢, 1, mn, m}).
(39)

Proof of Lemma 2

First, let us denote gy such that ¢(qy) = oh'(qu) + (1 — o) (1 —0). Clearly q;, < qu-
Furthermore, gy < gu when gy < qn. To see this, note from (35) that ¢/(qu) = oh/(qu) +
(1-0)(1-9) = o[(1 —0)u(qu) +6(1 — )]+ (1 —0)(1—0), which is greater than o[(1 —
O (ax) + 01— )] + (1 — o) (1 - 8) = 1 — 6 = (qu).

Now pick any m < my. By Lemma 1, the seller’s objective function can be written as:

—c(q) +oh(@)+(1—0)(1—-6)g 0<h(q) < ¢y
®(q) = —c(@) +opm+(1—-0)(1-6)q ¢ m < h(q) < hlg™?
olp ym+1=06)(G—9 (¢m)]+ 1A —0)(1—-06)g—cq) h(q) > hlg~ (¢ m)]
and
—(@) + ol (@) +(1—0)(1-9) 0<g<h (o m)
¥ (q) = @)+ (1 -0)(1-9) W liogm)<qg<g Mo m) . (40
—(@) +(1-9) 7> g o m)

Hence ®'(q) = 0 at gy on [0,h "1 (¢1m)], at g, on (R~ (¢ 1), g~ (¢, 1m)], and at gu on
[g7 (¢, 1), 0), where qr, < qu < qu- If qu < h™(¢1m), then it can be readily seen that gy
is the unique maximizer. If gy > h™!(¢, /M), then it can be shown that the maximizer is either
max{qz, i (¢,.1m)} or g
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Proof of Proposition 1

'(0)

First we show that when “/(0) < 1+ %, a buyer has no incentive to bring money to the

frictional market. If § = 0, then it can be readily seen that m = 0 is the best response for the
buyer. Now pick any g > 0, the first order effect of m at m = 0 on ¥(m) is

En (Mo = draBal i) — (14 D)L (41)
where (1 - 8)u/(0)
g(0) = eu/(O) 1-0)(1-0) (42)

Hence W, (m)|m=0 < 0 if = gg) <1 —l— . Moreover, as “,Exg is strictly decreasing on [0, gn],

given any ¢ > 0, U5 (m) < 0. Thus = 0 is the best response for the buyer regardless of the

=

output level q.
Given m = 0, the seller will pick § = gy = ¢ ' (1 —0). Hence (7*,m*) = (g, 0) is the
unique Nash equilibrium.

Proof of Proposition 2

We first establish a sequence of claims regarding the properties and existence of a pure
strategy Nash equilibrium (Claims A1-A8). Then we show that it is the unique Nash equilibrium
(Claim A9).

Let (g*,m*) be a pure strategy Nash equilibrium.

Claim Al. ¢* > gz, where ¢(q) = (1 —0) (1 = 9).

Proof. Given any m > 0, (g, m) and (¢ — ¢(g,m)) are nondecreasing in g. Then for all § € [0,
qr), ®4(q) > —(q) + (1 — o) (1 —§) > 0. Hence ¢ < qr, cannot be chosen by the seller. m

Claim A2. m* < min{g(q*)/¢ 1. mn}, i.e., (7%, m*) € Dy (cf. Figure 4).

Proof. It suffices to show that for any ¢ > 0, m > min{g(q)/¢,;,mn} yields the buyer
strictly lower payoff than min{g(q), my} does. Distinguish two cases: (i) ¢ > gy. In this
case, min{g(q)/¢,1,mn} = my. For any m > min{g(q)/¢,1,mn} = mn, (g,m) € Dy and
by Lemma 1, §(g,m) = qn = ¢(g,my) and m(g,m) = my = m(q,my). Therefore U(my) —

W(m) = —d(my —m) + B4y (my —m) > 0. (i) g < g. For any m > min{g(q)/d1,mx} =
9(q)/#41, (@, m) € D3UDy and by Lemma 1 again, ¢(7,m) = ¢ = 4(q,9(q)/¢41) and (g, m) =
min{7m, h(@)/6.11} > 1(,9(@)/641) = 9(@)/ 6. Therefore (g(@)/6.4) — V() = (B4, —

) (9(D)/p11 —m) — 5a¢+1< (@)/¢41 — min{m, h(q)/¢,1}) > 0. =

Claim A3. (§(g",m*), m(T", ")) = (g~ (64, m%), 7).

Proof. From Claim A2, (¢*,m*) € Do, and (4(g,m), (g, m)) = (g7 (¢,1m),m) for all (q,m)
in Dy by Lemma 1. =

Claim A4. §(q*,m*) = ¢* only if ¢* = qn.
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Proof. Suppose to the contrary that ¢(g*,m*) = g* and ¢* # qn. By Claim A3, g~ (¢, m*) =
g*. Thus, (7*,m*) = (97 (¢, m*),m*) is on the boundary between Dy and Dj. Since ¢* # g,
7" < qn. As §* = g7 (¢, 1m*) maximizes the seller’s payoff given m*, the left hand derivative
®’ at ¢* is non-negative, and the right hand derivative at ¢* is non-positive. The left hand
derivative ®'_ at ¢* = g~ (¢ m*) is

L (Q)lg=q= = —c'(@) + (1 —0)(1-9),
and the right hand derivative ®/, at ¢* = g~ ! (¢, ;m*) is

@ (Q)lg=qz = —(q") + (1= 9).

Obviously @' (q)|g=g= > 0 implies @, ()|g=g~ > 0, a contradiction. Hence we must have
¢F=¢qn. ®
Claim A5. 0 < m* < my.

Proof. By Claim A2, 0 < m* < my. By Claim Al, ¢ > g > 0. Then the condition
u’(0)
g'(0)
contrary that buyer’s equilibrium money holding m* = my. By Claim A2, ¢* > gn. Then the

> 1+ é implies that m* > 0. Next we show m* < my by contradiction. Suppose to the
left derivative on W(m) at m = my is

U () = S41Ba[ NN (1 4 Ly

g'(qn) a
where u/'(qn)/g’(gn) can be calculated as
v (qn) 1
= <1 (43)
! 0(1=0)u" (gn)[(1=0)gn —u(qn)]
gan) 1+ g

Therefore W, (M) |m=m, < 0, a contradiction. Hence we conclude that m* < my. =

Claim A6. ¢(g*,m*) < q*.
Proof. Suppose to the contrary that ¢(¢*,m*) = ¢*. By Claim A4, ¢* = gy. By Claim A3,
g ¢ 1m*) = ¢(q*,m*) = gy, which in turn implies m* = my, contradicting the fact that
m* < my (Claim A5). Hence we must have ¢(¢g*,m*) < ¢*. =
; u(@(grm*) _ W (éam)) _ w(Q) _ g i
Claim AT. G m) = gl Towm) — 7 — LT a
Proof. By Claim A5, as 0 < m* < my is an interior solution that solves the buyer’s maxi-

mization problem, Wy, (m)|m=m+ = 0. By Claims A3 and A6, ¢(7*,m*) = g ' (¢, 1m*) < q* is
not binding. We then have

q,m’)) b
oy (1) (44)
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Hence

) _ ) _wle) 4,8 (45)

[ |
Claim A8. ¢* =gy = (1-4).
Proof. Since ¢* > ¢(g*,m*) maximizes the seller’s payoff, the first-order effect vanishes at g*.

Using Claim A3, we have
P4(q)|g=g» = —'(q") + (1 = 9) = 0. (46)

Hence gp is the unique local maximizer on [(, 00). The condition g(¢)/¢,; < mc guarantees
that gg is indeed a global maximizer given buyer’s money holding m* = g¢({)/¢, ;. Hence
¢ =qu. m

Claim A9. (¢*,m*) = (qu,9(¢)/¢1) is the unique Nash equilibrium.

Proof. Consider two cases: (i) g(¢)/¢,1 < mc. First we observe that the buyer will not
bring more than g(¢)/¢,, of money holding to the frictional market, and hence the seller’s best
response is always to produce qr. Given ¢ = gy, the buyer’s best response is then to bring
9(¢)/¢41 to the market. (ii) g(¢)/¢ 1 = mc. In this case, the seller may randomize between
qr, and qpr, as the seller is indifferent between these two options when m = mg. Suppose there
is a mixed-strategy equilibrium in which the seller randomizes between ¢ and ggy. As the
seller chooses gy with a probability less than one, the buyer’s best response is to bring some
m < g(¢)/¢41 = mc. But given m < mc, the seller will simply bring gm to the market, a
contradiction. Hence (g, g(¢)/¢ 1) is the unique Nash equilibrium. m

Proof of Proposition 3

Given a mixed strategy p : Br, — [0,1], let F(z) = pu([0,z]) denote the distribution
function of u. F is increasing, right continuous, and differentiable almost everywhere. Let {w;}
with w; < w;;+1 be the collection of points in [0,00) at which F is not differentiable. Denote
by f(z) = F'(x) whenever F'(x) exists, and assume sup{f(z)|z € Ry\{wi}} < co. Then F is
absolutely continuous on [0, 00)\{w;}, and F(b) — F(a)= f; f(z)dz for any [a,b] C (wi,wit1)-

Now denote by F : Ry — [0, 1] as the distribution function induced by the buyer’s mixed
strategy 1, and Fs : Ry — [0,1] as the distribution function induced by the seller’s mixed
strategy u,.

Claim B1. p, is degenerate, i.e., ,(m*) = 1 for some m* € [g(qr.)/ ¢4 1, 9(qu)/d41]-
Proof. Recall that supp p, C [qr, @r). Let {w;} with w; < w;+1 be the collection of points in
[Gr, @u) at which F; is not differentiable. Denote by [ f(x)dx = limy, lim1y, f; f(z)dz
= F(wit1—) — F(wi). We show the following:
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(i) W, (¥L when it is not differentiable) is strictly decreasing on 9(qr)/ P41, 9(qm)/ D y1)-
Pick any j € Z. The buyer’s payoff at m € (g(w;)/d 1, 9(wjt1)/d41) is

N I ST u(@)dFe + Y ulwi) [Fa(wi) — Fe(wi—)]
Wiy = —om + 50 O+ [T w0, + (1 - £ Gl Gm)) |
+[1 —alpm

hence

e e )
Wam) = 0y {1~ Fila (opm) S — (1 21

Since Fs is non-decreasing and u'/g’ is strictly decreasing, W is strictly decreasing on
(9(w;)/ i1, 9(wjs1)/¢yq) for every j € Z.'? Furthermore, F is right continuous implies U, is
right continuous. The right derivative of ¥ at g(w;)/¢,; is no greater than the left derivative

of W at g(w;)/dyq :

o) ) i
VB = ppa{li- Al G -0+ D) (")
< onpa{ll-AwNRES -0+ D) (49)
_ ‘m aln— 14 m W' (g~ (¢411m)) i
-, oo {1-AEeam GEE - 0 D) )
)
= U ( oo ). (50)

As this holds for any j € Z, U5, (¥;> when it is not differentiable) is strictly decreasing on
[9(aL)/ b41,9(am)/ P11]-

(ii) ¥(m) is continuous. It suffices to check the continuity at g(w;i1)/¢,; for each j. Pick
any j € Z. Then W(g(wj+1)/¢1)

S T @ S u) P — Flwio)
= —¢g9(wjs1)/d41 + B +[1 = Fo(wjt1)]u(w;t1)
+ (1 —a) ¢ 119(wWit1)/ P41
= g(wg+1)/¢+1 —¢+ Bl — a)g4] | (51)
{ > /wl+1 z)dFs + Z — Fs(wim)]+ 1 - fs(wj+1—)]u(wj+1)}
= lim (m); ) (52)

m— Q(WJ+1)/¢+1

hence ¥(m) is continuous.

2The condition g, > h™* (g (gr)) implies that i = m for any 7 in the supp 1, (Lemma 1).
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Combining (i) and (ii), we conclude that given pu,, the optimal level of money holding is
unique. Therefore 1, is degenerate. m

Claim B2. p, is binary. More specifically, p1,(gr) > 0, pg(gr) > 0, and py(qr)+ps(qm) = 1.
Proof. Recall that the condition g, > h~'(g(gy)) implies that gy < qy. When m =
9(qw) /o1, it can be readily verified that ®(gy) < ®(qr) (as ®g is always negative for all g >
qr)- On the other hand, when m = ¢(qr.)/¢ 1, ®(qu) > ®(qr.). Let m € (9(qr)/d41,9(qm)/d41)
be such that the seller is indifferent between choosing ¢;, and gy when m = m (see Figure 5),
that is, m solves

—c(qr) + o+ (1—0)(1—0)qr (53)
= —c(qm)+o[ppm+ (1—-26)(qu — g H(dyym))] + (1 —0) (1= 6) qu;
consequently .
) 1 _qLH [d(z) = (1—0)(1—9)]dx
Since (1—0) (1 = 96) < d(x) < (1 =) forz € (G, qm), qr < quiLH [d(z)—(1—0) (1 = d)]dx/o (1 —9)
< @u. Therefore m is indeed in (g(qr)/¢41,9(qr)/P41)- The seller’s best response on
9(qr)/d+1,9(qr)/P41] can be summarized as follows:

qH m<m
qg(m) =4 qrorqum m=r1n . (55)
qr m>m

By Claim B1, in equilibrium g, (m*) = 1 for some m* € [g(qr)/d41,9(qm)/¢41). As there
exists no pure strategy equilibria, in equilibrium we must have m* = m, and the seller random-
izes between gy and gy with py(qr) > 0, py(qr) > 0, and puy(qr) + ps(Gr) =1. =

Combining Claims B1 and B2, we can now construct the equilibrium. Based on Claim B2,
the buyer’s objective function for any m € [g(qr)/¢11,9(qm)/ ¢+ 1] can be written as:

U(m) = py(qu) {—om+ B [au(g™ (11m)) + (1 — @)p ym] } (56)
+ig(qr) {—¢m + B [au(qr) + (1 — a)p,m] }
= [B(1 = @)1y — ¢lm + Balp(@m)ulg™ (d11m)) + 1y(qr)u(@r)); (57)
therefore (=N (b0a) .
Hlm) = « gr) g \P+1)) — L .
i) = 0180 ) o ST — (14 1) (59)
As m* = m in equilibrium, we must have ¥ (m) = 0. Accordingly,
. -1 o
o(an) = (14 5 L @) (50)

a’u(g7 (yim))
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To sum up, the pair (pg, 1) constructed below constitutes a unique Nash equilibrium:

(1 m=mn
pp(m) = {0 m # 1 (60)
PAVACERCISUD)) -
(_) _ (1 + a)u’(g—1(¢+1ﬁz)) q9=4d4H (61)
Hs\d 1 (14 )8 omm) - o
I+ v my =0
.
A
m=h(q) /@
m=g(q)/ @
> 4
MO(qm)
O(q’|m)
O(q| my)
> q

qL qu
Figure 5: Type III Equilibrium.

Proof of Proposition 6
First note from (53) that —¢(qgy) + o(1 = 9) (Gg — ¢) + (1 —o)(1 — 0)gy = —c(qr) + (1 —

o)(1 —0)gr. It follows that A = —c(qu) + o [u(@) +(1—0)(Gu —q)] + (1 — o)(1 — 0)gu >
—c(qr) + ou(qr) + (1 — 0)(1 — §)gqr, = B. Second, since neither A or B is a function of ¢ and
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_ _ OWpra_ Ay (d (97 (¢qarm0
s(qr) = 1 — py(qr) we have =——FL=HL — u,a(qu)(A - B)= Oiﬁg,f—m (A-B) > 0.

Proof of Proposition 7

From Propositions 2 and 3 the optimal interest rate i* is such that g [ (i*,d)] = ¢, m, or
equivalently ¢ (i*,8) = g~' (¢, 17h) , where 77 is given by (54) and ( is given by (21). Note that
( is also a function of ¢ via the g function. Multiplying both sides by o (1 — ¢) we have

qH

(=90 =0 (1=d)au— [ )~ (1-0) (1~ dlda.

q

Totally differentiating the equality we extract

di* _ qu—[(1=0)qr+o]— 4 [1—6—c(am)]+ % [(1-0)(1-0) - (@) + 0% (1-9)
as —(1—5)0513

Using (19) and (20) this simplifies into

di* _ qH—[(1—0'>qL—|—O'C]+O'%(1—5)
do —(1—5)0865*

Since gy > [(1 — o) g1, + o(], % >0 and gﬁ < 0, we have % > 0.
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