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Abstract
In the classical binary search in a path the aim is to detect an unknown target by asking
as few queries as possible, where each query reveals the direction to the target. This
binary search algorithm has been recently extended by Emamjomeh-Zadeh et al. (in:
Proceedings of the 48th annual ACM SIGACT symposium on theory of computing,
STOC 2016, Cambridge, pp. 519–532, 2016) to the problem of detecting a target
in an arbitrary graph. Similarly to the classical case in the path, the algorithm of
Emamjomeh-Zadeh et al. maintains a candidates’ set for the target, while each query
asks an appropriately chosen vertex—the “median”—which minimises a potential Φ
among the vertices of the candidates’ set. In this paper we address three open questions
posed by Emamjomeh-Zadeh et al., namely (a) detecting a target when the query
response is a direction to an approximately shortest path to the target, (b) detecting a
target when querying a vertex that is an approximate median of the current candidates’
set (instead of an exact one), and (c) detecting multiple targets, for which to the best
of our knowledge no progress has been made so far. We resolve questions (a) and
(b) by providing appropriate upper and lower bounds, as well as a new potential Γ

that guarantees efficient target detection even by querying an approximate median
each time. With respect to (c), we initiate a systematic study for detecting two targets
in graphs and we identify sufficient conditions on the queries that allow for strong
(linear) lower bounds and strong (polylogarithmic) upper bounds for the number of
queries. All of our positive results can be derived using our new potentialΓ that allows
querying approximate medians.
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1 Introduction

The classical binary search algorithm detects an unknown target (or “treasure”) t on a
path with n vertices by asking at most log n queries to an oracle which always returns
the direction from the queried vertex to t . To achieve this upper bound on the number of
queries, the algorithmmaintains a set of candidates for the place of t ; this set is always
a sub-path, and initially it is the whole path. Then, at every iteration, the algorithm
queries the middle vertex (“median”) of this candidates’ set and, using the response of
the query, it excludes either the left or the right half of the set. This way of searching
for a target in a path can be naturally extended to the case where t lies on an n-vertex
tree, again by asking at most log n queries that reveal the direction in the (unique) path
to t [25]. The principle of the binary search algorithm on trees is based on the same
idea as in the case of a path: for every tree there exists a separator vertex such that
each of its subtrees contains at most half of the vertices of the tree [17], which can be
also efficiently computed.

Due to its prevalent nature in numerous applications, the problem of detecting
an unknown target in an arbitrary graph or, more generally in a search space, has
attracted many research attempts from different viewpoints. Only recently the binary
search algorithm with log n direction queries has been extended to arbitrary graphs
by Emamjomeh-Zadeh et al. [13]. In this case there may exist multiple paths, or even
multiple shortest paths form the queried vertex to t . The direction query considered
in [13] either returns that the queried vertex q is the sought target t , or it returns an
arbitrary direction from q to t , i.e. an arbitrary edge incident to q which lies on a
shortest path from q to t . The main idea of this algorithm follows again the same
principle as for paths and trees: it always queries a vertex that is the “median” of the
current candidates’ set and any response to the query is enough to shrink the size of
the candidates’ set by a factor of at least 2. Defining what the “median” is in the case
of general graphs now becomes more tricky: Emamjomeh-Zadeh et al. [13] define the
median of a set S as the vertex q that minimizes a potential function Φ, namely the
sum of the distances from q to all vertices of S.

Apart from searching for upper bounds on the number of queries needed to detect a
target t in graphs, another point of interest is to derive algorithms which, given a graph
G, compute the optimal number of queries needed to detect an unknown target inG (in
the worst case). This line of research was initiated in [21] where the authors studied
directed acyclic graphs (DAGs). Although computing a query-optimal algorithm is
known to be NP-hard on general graphs [5,8,19], there exist efficient algorithms for
trees; after a sequence of papers [1,16,20,22,29], linear time algorithms were found
in [22,25]. Different models with queries of non-uniform costs or with a probability
distribution over the target locations were studied in [6,7,9,18].

A different line of research is to search for upper bounds and information-theoretic
bounds on the number of queries needed to detect a target t , assuming that the queries
incorporate some degree of “noise”. In one of the variations of this model [2,13,14],
each query independently returns with probability p > 1

2 a direction to a shortest
path from the queried vertex q to the target, and with probability 1 − p an arbitrary
edge (possibly adversarially chosen) incident to q. The study of this problem was
initiated in [14], where Ω(log n) and O(log n) bounds on the number of queries were
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established for a path with n vertices. This information-theoretic lower bound of [14]
was matched by an improved upper bound in [2]. The same matching bound was
extended to general graphs in [13].

In a further “noisy” variation of binary search, every vertex v of the graph is assigned
a fixed edge incident to v (also called the “advice” at v). Then, for a fraction p > 1

2
of the vertices, the advice directs to a shortest path towards t , while for the rest of the
vertices the advice is arbitrary, i.e. potentially misleading or adversarially chosen [3,
4]. This problem setting is motivated by the situation of a tourist driving a car in
an unknown country that was hit by a hurricane which resulted in some fraction
of road-signs being turned in an arbitrary and unrecognizable way. The question now
becomeswhether it is still possible to navigate through such a disturbed andmisleading
environment and to detect the unknown target by asking only few queries (i.e. taking
advice only from a few road-signs). It turns out that, apart from its obvious relevance
to data structure search, this problem also appears in artificial intelligence as it can
model searching using unreliable heuristics [4,23,26]. Moreover this problem also
finds applications outside computer science, such as in navigation issues in the context
of collaborative transport by ants [15].

Another way of incorporating some “noise” in the query responses, while trying to
detect a target, is to have multiple targets hidden in the graph. Even if there exist only
two unknown targets t1 and t2, the response of each query is potentially confusing
even if every query correctly directs to a shortest path from the queried vertex to one
of the targets. The reason of confusion is that now a detecting algorithm does not know
to which of the hidden targets each query directs. In the context of the above example
of a tourist driving a car in an unknown country, imagine there are two main football
teams, each having its own stadium. A fraction 0 < p1 < 1 of the population supports
the first team and a fraction p2 = 1− p1 the second one, while the supporters of each
team are evenly distributed across the country. The driver can now ask questions of
the type “where is the football stadium?” to random local people along the way, in an
attempt to visit both stadiums. Although every response will be honest, the driver can
never be sure which of the two stadiums the local person meant. Can the tourist still
detect both stadiums quickly enough? To the best of our knowledge the problem of
detecting multiple targets in graphs has not been studied so far; this is one of the main
topics of the present paper.

The problem of detecting a target within a graph can be seen as a special case of a
two-player game introduced by Renyi [28] and rediscovered by Ulam [30]. This game
does not necessarily involve graphs: the first player seeks to detect an element known
to the second player in some search space with n elements. To this end, the first player
may ask arbitrary yes/no questions and the second player replies to them honestly
or not (according to the details of each specific model). Pelc [27] gives a detailed
taxonomy for this kind of games. Group testing is a sub-category of these games,
where the aim is to detect all unknown objects in a search space (not necessarily a
graph) [10]. Thus, group testing is related to the problem of detecting multiple targets
in graphs, which we study in this paper.

It is worth noting that techniques similar to [13] were used to derive frameworks
for robust interactive learning [11] and for adaptive hierarchical clustering [12].
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1.1 Our Contribution

In this paper we systematically investigate the problem of detecting one or multiple
hidden targets in a graph. Our work is driven by the open questions posed by the recent
paper of Emamjomeh-Zadeh et al. [13] which dealt with the detection of a single target
with and without “noise”. More specifically, Emamjomeh-Zadeh et al. [13] asked for
further fundamental generalizations of the model which would be of interest, namely
(a) detecting a single target when the query response is a direction to an approximately
shortest path, (b) detecting a single targetwhenquerying avertex that is anapproximate
median of the current candidates’ set S (instead of an exact one), and (c) detecting
multiple targets, for which to the best of our knowledge no progress has been made
so far.

We resolve question (a) in Sect. 2.1 by proving that any algorithm requires Ω(n)

queries to detect a single target t , assuming that a query directs to a path with an
approximately shortest length to t . Our results hold essentially for any approximation
guarantee, i.e. for 1-additive and for (1 + ε)-multiplicative approximations.

Regarding question (b), we first prove in Sect. 2.2 that, for any constant 0 < ε < 1,
the algorithm of [13] requires at least Ω(

√
n) queries when we query each time an

(1 + ε)-approximate median (i.e. an (1 + ε)-approximate minimizer of the potential
Φ over the candidates’ set S). Second, to resolve this lower bound, we introduce in
Sect. 2.3 a new potential Γ . This new potential can be efficiently computed and, in
addition, guarantees that, for any constant 0 ≤ ε < 1, the target t can be detected in
O(log n) queries even when an (1 + ε)-approximate median (with respect to Γ ) is
queried each time.

Regarding question (c), we initiate in Sect. 3 the study for detecting multiple targets
on graphs by focusingmainly to the case of two targets t1 and t2.We assume throughout
that every query provides a correct answer, in the sense that it always returns a direction
to a shortest path from the queried vertex either to t1 or to t2. The “noise” in this case
is that the algorithm does not know whether a query is returning a direction to t1 or
to t2. Initially we observe in Sect. 3 that any algorithm requires n

2 − 1 (resp. n − 2)
queries in the worst case to detect one target (resp. both targets) if each query directs
adversarially to one of the two targets. Hence, in the remainder of Sect. 3, we consider
the case where each query independently directs to the first target t1 with a constant
probability p1 and to the second target t2 with probability p2 = 1 − p1. For the case
of trees, we prove in Sect. 3 that both targets can be detected with high probability
within O(log2 n) queries.

For general graphs, we distinguish between biased queries (p1 > p2) in Sect. 3.1
and unbiased queries (p1 = p2 = 1

2 ) in Sect. 3.2. For biased queries we prove positive
results,while for unbiased querieswederive strong negative results. For biased queries,
first we observe that we can utilize the algorithm of Emamjomeh-Zadeh et al. [13] to
detect the first target t1 with high probability in O(log n) queries; this can be done
by considering the queries that direct to t2 as “noise”. Thus our objective becomes to
detect the target t2 in a polylogarithmic number of queries. Notice here that we cannot
apply the “noisy” framework of [13] to detect the second target t2 , since now the
“noise” is larger than 1

2 . We prove our positive results for biased queries by making
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the additional assumption that, once a query at a vertex v has chosen which target
among {t1, t2} it directs to, it returns any of the possible correct answers (i.e. any of
the neighbors u of v such that there exists a shortest path from v to the chosen target
using the edge vu) equiprobably and independently from all other queries.We derive a
probabilistic algorithm that overcomes this problem and detects the target t2 with high
probability in O(Δ log2 n) queries, where Δ is the maximum degree of a vertex in
the graph. Thus, whenever Δ = O(poly log n), a polylogarithmic number of queries
suffices to detect t2.

In contrast, we prove in Sect. 3.2 that, for unbiased queries, any deterministic
(possibly adaptive) algorithm that detects at least one of the targets requires at least
n
2 − 1 queries, even in an unweighted cycle. Extending this lower bound for two
targets, we prove that, assuming 2c ≥ 2 different targets and unbiased queries, any
deterministic (possibly adaptive) algorithm requires at least n

2 − c queries to detect
one of the targets.

Departing from the fact that our best upper bound on the number of biased queries in
Sect. 3.1 is not polylogarithmic when the maximum degree Δ is not polylogarithmic,
we investigate in Sect. 4 several variations of queries that provide more informative
responses. In Sect. 4.1 we turn our attention to “direction-distance” biased queries
which return with probability pi both the direction to a shortest path to ti and the
distance between the queried vertex and ti . In Sect. 4.2 we consider another type of a
biased query which combines the classical “direction” query and an edge-variation of
it. For both query types of Sects. 4.1 and 4.2 we prove that the second target t2 can be
detected with high probability in O(log3 n) queries. Furthermore, in Sects. 4.3 and 4.4
we investigate two further generalizations of the “direction” query which make the
target detection problem trivially hard and trivially easy to solve, respectively.

1.2 Our Model and Notation

We consider connected, simple, and undirected graphs. A graph G = (V , E), where
|V | = n, is given along with a weight function w : E → R

+ on its edges; if w(e) = 1
for every e ∈ E then G is unweighted. An edge between two vertices v and u of G is
denoted by vu, and in this case v and u are said to be adjacent. The distance d(v, u)

between vertices v and u is the length of a shortest path between v and u with respect to
the weight functionw. Since the graphs we consider are undirected, d(u, v) = d(v, u)

for every pair of vertices v, u. Unless specified otherwise, all logarithms are taken with
base 2. Whenever an event happens with probability at least 1 − 1

nα for some α > 0,
we say that it happens with high probability.

The neighborhood of a vertex v ∈ V is the set N (v) = {u ∈ V : vu ∈ E} of its
adjacent vertices. The cardinality of N (v) is the degree deg(v) of v. The maximum
degree among all vertices inG is denoted byΔ(G), i.e.Δ(G) = max{deg(v) : v ∈ V }.
For two vertices v and u ∈ N (v) we denote by N (v, u) = {x ∈ V : d(v, x) =
w(vu) + d(u, x)} the set of vertices x ∈ V for which there exists a shortest path
from v to x , starting with the edge vu. Note that, in general, N (u, v) �= N (v, u).
Let T = {t1, t2, . . . , t|T |} ⊆ V be a set of (initially unknown) target vertices. A
direction query (or simply query) at vertex v ∈ V returns with probability pi a
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neighbor u ∈ N (v) such that ti ∈ N (u, v), where
∑|T |

i=1 pi = 1. If there exist more
than one such vertices u ∈ N (v) leading to ti via a shortest path, the direction query
returns an arbitrary one among them, i.e. possibly chosen adversarially, unless specified
otherwise. Moreover, if the queried vertex v is equal to one of the targets ti ∈ T , this
is revealed by the query with probability pi .

2 Detecting a Unique Target

In this section we consider the case where there is only one unknown target t = t1,
i.e. T = {t}. In this case the direction query at vertex v always returns a neighbor
u ∈ N (v) such that t ∈ N (v, u). For this problem setting, Emamjomeh-Zadeh et
al. [13] provided a polynomial-time algorithmwhich detects the target t in atmost log n
direction queries. During its execution, the algorithm of [13] maintains a “candidates’
set” S ⊆ V such that always t ∈ S, where initially S = V . At every iteration the
algorithm computes in polynomial time a vertex v (called the median of S) which
minimizes a potential ΦS(v) among all vertices of the current set S. Then it queries a
median v of S and it reduces the candidates’ set S to S∩N (v, u), where u is the vertex
returned by the direction query at v. The upper bound log n of the number of queries
in this algorithm follows by the fact that always |S ∩ N (v, u)| ≤ |S|

2 , whenever v is
the median of S.

2.1 Bounds for Approximately Shortest Paths

We provide lower bounds for both additive and multiplicative approximation queries.
A c-additive approximation query at vertex v ∈ V returns a neighbor u ∈ N (v) such
thatw(vu)+d(u, t) ≤ d(v, t)+c. Similarly, an (1+ε)-multiplicative approximation
query at vertex v ∈ V returns a neighbor u ∈ N (v) such that w(vu) + d(u, t) ≤
(1 + ε) · d(v, t).

It is not hard to see that in the unweighted clique with n vertices any algorithm
requires in worst case n − 1 1-additive approximation queries to detect the target t .
Indeed, in this case d(v, t) = 1 for every vertex v �= t , while every vertex u /∈ {v, t}
is a valid response of an 1-additive approximation query at v. Since in the case of
the unweighted clique an additive 1-approximation is the same as a multiplicative
2-approximation of the shortest path, it remains unclear whether 1-additive approxi-
mation queries allow more efficient algorithms for graphs with large diameter. In the
next theorem we strengthen this result to graphs with unbounded diameter.

Theorem 1 Assuming 1-additive approximation queries, any algorithm requires at
least n − 1 queries to detect the target t , even in graphs with unbounded diameter.

Proof To prove the theorem we will construct a graph and a strategy for the
adversary such that any algorithm will need n − 1 queries to locate the target t .
Consider a horizontal 2 × n

2 grid graph where we add the two diagonals in every
cell of the grid. Formally, the graph has n

2 “top” vertices v1, . . . , v n
2
and n

2 “bot-
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tom” vertices u1, . . . , u n
2
. For every i ∈ {1, 2, . . . , n

2 − 1} we have the edges
vivi+1, uiui+1, vi ui , vi+1ui+1, vi ui+1, vi+1ui .

The strategy of the adversary is as follows. If the algorithm queries a top vertex
vi , then the query returns the bottom vertex ui . Similarly, if the algorithm queries a
bottom vertex ui , then the query returns the top vertex vi . Observe that, in every case,
the query answer lies on a path of length at most one more than a shortest path from
the queried vertex and the target t . To see this assume that the algorithm queries a top
vertex vi ; the case where the queried vertex is a bottom vertex ui is symmetric.

If t = ui , then the edge vi ui clearly lies on the shortest path between vi and t . If
t = u j , where j �= i , then the shortest path uses one of the diagonal edges incident
to vi . In this case the edge vi ui leads to a path with length one more than the shortest
one. Finally, if t = v j , where j �= i , then the shortest path has length | j − i | and uses
either the edge vivi−1 or the edge vivi+1 . In both cases the edge vi ui lies on the path
from vi to T with length | j − i | + 1 which uses the edge vi ui and one of the diagonal
edges ui+1vi−1 and ui+1vi+1.

Hence, after each query at a vertex different than t , the algorithm can not obtain
any information about the position of t (except the fact that it is not the queried node).
Thus, in the worst case the algorithm needs to make n − 1 queries to detect t . 
�

In the next theoremwe extend Theorem 1 by showing a lower bound of n · ε
4 queries

when we assume (1 + ε)-multiplicative approximation queries.

Theorem 2 Let ε > 0. Assuming (1 + ε)-multiplicative approximation queries, any
algorithm requires at least at least n · ε

4 queries to detect the target t .

Proof For the proof we use the same construction from Theorem 1, however the
adversary we use here is slightly modified. Assume that the distance between the
queried vertex and the target t is d. If d + 1 ≤ (1 + ε) · d, or equivalently, if d ≥ 1

ε
,

the adversary can respond in the same way as in Theorem 1.
Overall, the adversary proceeds as follows. Initially all vertices are unmarked.

Whenever the algorithm queries a vertex vi (resp. ui ), the adversary marks the vertices
{v j , u j : | j−i | < 1

ε
} in order to determine the query response. If at least one unmarked

vertex remains in the graph, then the query returns (similarly to Theorem 1) vertex ui
(resp. vi ). In this case the adversary can place the target t at any currently unmarked
vertex. By doing so, the adversary ensures that the distance between t and any of the
previously queried vertices is at least 1

ε
. If all vertices of the graph have been marked,

then the adversary places the target t at one of the last marked vertices and in this case
the query returns a vertex on the shortest path between t and the queried vertex.

With the above strategy, any algorithm needs to continue querying vertices until
there is no unmarked vertex left. Thus, since at every query the adversary marks at
most 2/ε new vertices, any algorithm needs to perform at least n/2

2/ε = n · ε
4 queries.


�

2.2 Lower Bound for Querying the Approximate Median

The potential ΦS : V → R
+ of [13], where S ⊆ V , is defined as follows. For any set

S ⊆ V and any vertex v ∈ V , the potential of v is ΦS(v) = ∑
u∈S d(v, u). A vertex
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x ∈ V is an (1 + ε)-approximate minimizer for the potential Φ over a set S (i.e. an
(1 + ε)-median of S) if ΦS(x) ≤ (1 + ε)minv∈V ΦS(v), where ε > 0. We prove
that an algorithm querying at each iteration always an (1 + ε)-median of the current
candidates’ set S needs Ω(

√
n) queries.

Theorem 3 Let ε > 0. If the algorithm of [13] queries at each iteration an (1 + ε)-
median for the potential functionΦ, then at leastΩ(

√
n) queries are required to detect

the target t in a graph G with n vertices, even if the graph G is a tree.

Proof We will construct a graph G = (V , E) with n + 1 vertices such that Ω(
√
n)

queries are needed to locate the target. The graph G will be a tree with a unique
vertex of degree greater than 2, i.e. G is a tree that resembles the structure of a star.
Formally, G consists of

√
n paths of length

√
n each, where all these paths have a

vertex v0 as a common endpoint. Let Pi = (v0, vi,1, vi,2, . . . , vi,
√
n−1, vi,

√
n) be the

i th path of G. For every i ≤ √
n denote by Qi = {vi,2, vi,3, . . . , vi,√n} be the set of

vertices of Pi without v0 and vi,1. Furthermore, for every k ∈ {0, 1, . . . ,√n} define
V−k = V \ (

⋃
1≤i≤k Qi ) to be the set of vertices left in the graph by keeping only the

first edge from each path Pi , where i ≤ k. Note by definition that V−0 = V .
Now recall that the algorithm of [13] queries at each step an arbitrary median for

the potential function Φ. To prove the theorem, it suffices to show that, in the graph
G that we constructed above, the slight modification of the algorithm of [13] in which
we query at each step an arbitrary (1 + ε)-median for the potential function Φ, we
need at least Ω(

√
n) queries to detect the target in worst case. To this end, consider

the target being vertex v0. The main idea for the remainder of the proof is as follows.
At every iteration the central vertex v0 and all its neighbors, who have not yet been
queried, are (1+ ε)-medians, while v0 is the exact median for the potential Φ of [13].
For every k ∈ {0, 1, . . . ,√n} we have

ΦV−k (v0) = k + (
√
n − k)

√
n∑

j=1

j

= k + 1

2
(
√
n − k)(n + √

n). (1)

Next we computeΦV−k (vp,1) for every p > k. Note that d(vp,1, vi,1) = 2 for every
i ≤ k, and thus

∑k
i=1 d(vp,1, vi,1) = 2k. Furthermore, for the vertices on the path Pp

we have √
n∑

i=2

d(vp,1, vp,i ) =
√
n−1∑

i=1

i = 1

2
(n − √

n).

Finally, denote by R = V−k \ {vp,1, vp,2, . . . , vp,
√
n} the remaining of the vertices in

V−k . Then we have
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∑

u∈R

d(vp,1, u) = 1 + (
√
n − k − 1) ·

√
n+1∑

j=2

j

= 1 + 1

2
(
√
n − k − 1)(n + 3

√
n).

Therefore, it follows that

ΦV−k (vp,1) = 2k + 1

2
(n − √

n) + 1 + 1

2
(
√
n − k − 1)(n + 3

√
n). (2)

Now note that, due to symmetry, v0 is the exact median of the vertex set V
(with respect to the potential Φ of [13]), that is, ΦV (v0) = minx∈V {ΦV (x)}. Fur-
thermore note by (1) and (2) that ΦV−k (vp,1) ≥ ΦV−k (v0) for every k <

√
n.

Moreover, due to symmetry this monotonicity of ΦV−k (·) is extended to all vertices
vp,2, vp,3, . . . , vp,

√
n , that is, ΦV−k (vp, j ) ≥ ΦV−k (v0) for every 1 ≤ j ≤ √

n. There-
fore v0 remains the exact median of each of the vertex sets V−k , where 0 ≤ k <

√
n.

Let ε > 0. Then (1) and (2) imply that ΦV−k (vp,1) ≤ (1 + ε)ΦV−k (v0) for every
k <

√
n and for large enough n. Now assume that the algorithm of [13] queries always

an (1+ε)-median of the candidates’ set S , where initially S = V . Then the algorithm
may query always a different neighbor of v0. Due to symmetry, we may assume
without loss of generality that the algorithm queries the vertices v1,1, v2,1, . . . , v

√
n,1

in this order. Note that these vertices are (1 + ε)-medians of the candidates’ sets
V−0, V−1, . . . , V−(

√
n−1), respectively. Therefore the algorithm makes at least

√
n

queries, where the total number of vertices in the graph is n − √
n + 1.


�

2.3 Upper Bound for Querying the Approximate Median

In this section we introduce a new potential function ΓS : V → N for every S ⊆ V ,
which overcomes the problem occurred in Sect. 2.2. This new potential guarantees
efficient detection of t in at most O(log n) queries, even when we always query an
(1+ ε)-median of the current candidates’ set S (with respect to the new potential Γ ),
for any constant 0 < ε < 1. Our algorithm is based on the approach of [13], however
we now query an approximate median of the current set S with respect to Γ (instead
of an exact median with respect to Φ of [13]).

Definition 4 (Potential Γ ) Let S ⊆ V and v ∈ V . Then ΓS(v) = max{|N (v, u)∩ S| :
u ∈ N (v)}.
Theorem 5 Let 0 ≤ ε < 1. There exists an efficient adaptive algorithm which detects
the target t in at most log n

1−log(1+ε)
queries, by querying at each iteration an (1 + ε)-

median for the potential function Γ .

Proof Our proof closely follows the proof of Theorem 3 of [13]. Let S ⊆ V be an
arbitrary set of vertices of G such that t ∈ S. We will show that there exists a vertex

123



Algorithmica

v ∈ V such that ΓS(v) ≤ |S|
2 . First recall the potential ΦS(v) = ∑

x∈S d(v, x) .
Let now v0 ∈ V be a vertex such that ΦS(v0) is minimized, i.e. ΦS(v0) ≤ ΦS(v)

for every v ∈ V . Let u ∈ N (v0) be an arbitrary vertex adjacent to v0. We will
prove that |N (v0, u) ∩ S| ≤ |S|

2 . Denote S+ = N (v0, u) ∩ S and S− = S \ S+.
By definition, for every x ∈ S+, the edge v0u lies on a shortest path from v0 to
x , and thus d(u, x) = d(v0, x) − w(v0u). On the other hand, trivially d(u, x) ≤
d(v0, x)+w(v0u) for every x ∈ S, and thus in particular for every x ∈ S−. Therefore
ΦS(v0) ≤ ΦS(u) ≤ ΦS(v0) + (|S−| − |S+|) · w(v0u), and thus |S+| ≤ |S−|. That is,
|N (v0, u) ∩ S| = |S+| ≤ |S|

2 , since S− = S \ S+. Therefore which then implies that

ΓS(v0) ≤ |S|
2 as the choice of the vertex u ∈ N (v0) is arbitrary.

Let vm ∈ V be an exact median of S with respect to Γ . That is, ΓS(vm) ≤ ΓS(v) for
every v ∈ V . Note that ΓS(vm) ≤ ΓS(v0) ≤ |S|

2 . Now let 0 ≤ ε < 1 and let va ∈ V be
an (1 + ε)-median of S with respect to Γ . Then ΓS(va) ≤ (1 + ε)ΓS(vm) ≤ 1+ε

2 |S|.
Our adaptive algorithm proceeds as follows. Similarly to the algorithm of [13] (see
Theorem 3 of [13]), our adaptive algorithm maintains a candidates’ set S, where
initially S = V . At every iteration our algorithm queries an arbitrary (1 + ε)-median
vm ∈ V of the current set S with respect to the potential Γ . Let u ∈ N (vm) be the
vertex returned by this query; the algorithm updates S with the set N (v, u) ∩ S. Since
ΓS(va) ≤ 1+ε

2 |S| as we proved above, it follows that the updated candidates’ set has
cardinality at most 1+ε

2 |S|. Thus, since initially |S| = n, our algorithm detects the

target t after at most log(
2

1+ε

) n = log n
1−log(1+ε)

queries. 
�

Notice in the statement of Theorem 5 that for ε = 0 (i.e. when we always query an
exact median) we get an upper bound of log n queries, as in this case the size of the
candidates’ set decreases by a factor of at least 2. Furthermore notice that the reason
that the algorithm of [13] is not query-efficient when querying an (1 + ε)-median is
that the potential ΦS(v) of [13] can become quadratic in |S|, while on the other hand
the value of our potential ΓS(v) can be at most |S| by Definition 4, for every S ⊆ V
and every v ∈ V . Furthermore notice that, knowing only the value ΦS(v) for some
vertex v ∈ V is not sufficient to provide a guarantee for the proportional reduction of
the set S when querying v. In contrast, just knowing the value ΓS(v) directly provides
a guarantee that, if we query vertex v the set S will be reduced by a proportion of
ΓS(v)
|S| , regardless of the response of the query. Therefore, in practical applications, we

may not need to necessarily compute an (exact or approximate) median of S to make
significant progress.

3 Detecting Two Targets

In this section we consider the case where there are two unknown targets t1 and t2,
i.e. T = {t1, t2}. In this case the direction query at vertex v returns with probability
p1 (resp. with probability p2 = 1 − p1) a neighbor u ∈ N (v) such that t1 ∈ N (v, u)

(resp. t2 ∈ N (v, u)). Detecting more than one unknown targets has been raised as an
open question by Emamjomeh-Zadeh et al. [13], while to the best of our knowledge
no progress has been made so far in this direction. Here we deal with both problems
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of detecting at least one of the targets and detecting both targets. We study several
different settings and derive both positive and negative results for them. Each setting
differs from the other ones on the “freedom” the adversary has on responding to
queries, or on the power of the queries themselves. We will say that the response to
a query directs to ti , where i ∈ {1, 2}, if the vertex returned by the query lies on a
shortest path between the queried vertex and ti .

It is worth mentioning here that, if an adversary would be free to arbitrarily choose
which ti each query directs to (i.e. instead of directing to ti with probability pi ), then
any algorithm would require at least � n

2 
 (resp. n − 2) queries to detect at least one
of the targets (resp. both targets), even when the graph is a path. Indeed, consider a
path v1, . . . , vn where t1 ∈ {v1, . . . , v� n

2 
} and t2 ∈ {v� n
2 
+1, . . . , vn}. Then, for every

i ∈ {1, . . . , � n
2 
}, the query at vi would return vi+1, i.e. it would direct to t2. Similarly,

for every i ∈ {� n
2 
 + 1, . . . , n}, the query at vi would return vi−1, i.e. it would direct

to t1. It is not hard to verify that in this case the adversary could “hide” the target t1
at any of the first � n

2 
 vertices which is not queried by the algorithm and the target t2
on any of the last n − � n

2 
 vertices which is not queried. Hence, at least � n
2 
 queries

(resp. n − 2 queries) would be required to detect one of the targets (resp. both targets)
in the worst case.

As a warm-up, we provide in the next theorem an efficient algorithm that detects
with high probability both targets in a tree using O(log2 n) queries.

Theorem 6 For any constant 0 < p1 < 1, we can detect with probability at least
(
1 − log n

n

)2
both targets in a tree with n vertices using O(log2 n) queries.

Proof Let G = (V , E) be a tree on n vertices and let T = {t1, t2} be the two targets.
The algorithm runs in two phases. In each phase it maintains a candidates’ set S ⊆ V
such that, with high probability, S contains at least one of the yet undiscovered targets.
At the beginning of each phase S = V . Let without loss of generality p1 ≥ p2.
Furthermore let α = − 1

log p1
; note that α ≥ 1.

The first phase of the algorithm proceeds in log n iterations, as follows. At the
beginning of the i th iteration, where 1 ≤ i ≤ log n , the candidates’ set is Si ; note that
S1 = V at the beginning of the first iteration. Let vi be a median of Si (with respect to
the potential Γ of Sect. 2.3). In the first iteration we query the median v1 of V once;
let u1 be the response of this query. Then we know that one of the two targets belongs
to the set N (v1, u1), thus we compute the updated candidates’ set S2 = N (v1, u1).
Furthermore, since v1 was chosen to be a median of S1, it follows that |S2| ≤ |S1|

2 = n
2 .

For each i ≥ 2, the i th iteration proceeds as follows. We query the median vi of
the set Si for α log n times. First assume that at least one of these α log n queries at
vi directs to a subtree of vi (within Si ) that does not contain the first median v1 of
S1 = V , and let u′

i be the response of that query. Then we know that the subtree of
vi (within Si ) which is rooted at u′

i contains at least one of the targets that belong to
Si . Thus we compute the updated candidates’ set Si+1 = Si ∩ N (vi , u′

i ), where again

|Si+1| ≤ |Si |
2 .

Now assume that all of the α log n queries at vi direct to the subtree of vi that
contains the median v1 of the initial candidates’ set S1 = V . Let u′′

i be the (unique)
neighbor of vi in that subtree, that is, all α log n queries at vi return the vertex u′′

i .
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Then we compute the updated candidates’ set Si+1 = Si ∩ N (vi , u′′
i ), where again

|Si+1| ≤ |Si |
2 . In this case, the probability that at least one of the targets of Si does

not belong to the subtree of vi (within Si ) which is rooted at u′′
i is upper bounded

by the probability pα log n
1 that each of the α log n queries at vi directs to a target that

does not belong to Si . That is, with probability at least 1 − pα log n
1 , at least one of

the targets of Si (which we are looking for) belongs to the subtree of vi (within Si )
rooted at u′′

i . Since at each iteration the size of the candidates’ set decreases by a factor
of 2, it follows that |Slog n| = 1. The probability that at each of the log n iterations
we maintained a target from the previous candidates’ set to the next one is at least
(
1 − pα log n

1

)log n = (
1 − 1

n

)log n ≥ 1 − log n
n by Bernoulli’s inequality. That is, with

probability at least 1 − log n
n we detect during the first phase one of the two targets in

log n iterations, i.e. in α log2 n queries in total.
Let t0 be the target that we detected during the first phase. In the second phase we

are searching for the other target t ′0 ∈ T \ {t0}. The second phase of the algorithm
proceeds again in log n iterations, as follows. Similarly to the first phase, we maintain
at the beginning of the i th iteration, where 1 ≤ i ≤ log n, a candidates’ set Si with
median vi , where S1 = V at the beginning of the first iteration.

For each i ≥ 1, in the i th iteration of the second phase we query α log n times the
median vi of the set Si . First assume that at least one of these α log n queries at vi
directs to a subtree of vi (within Si ) that does not contain the target t0 that we detected
in the first phase, and let u′

i be the response of that query. Thenwe can conclude that the
other target t ′0 belongs to the set N (vi , u′

i ), thus we compute the updated candidates’

set Si+1 = Si ∩ N (vi , u′
i ), where |Si+1| ≤ |Si |

2 .
Now assume that all of the α log n queries at vi direct to the subtree of vi that

contains the target t0. Let u′′
i be the (unique) neighbor of vi in that subtree, that is, all

α log n queries at vi return the vertex u′′
i . Then we compute the updated candidates’

set Si+1 = Si ∩ N (vi , u′′
i ), where again |Si+1| ≤ |Si |

2 . In this case, the probability
that the undiscovered target t ′0 does not belong to the subtree of vi (within Si ) which

is rooted at u′′
i is upper bounded by the probability pα log n

1 that each of the α log n

queries at vi directs to t0. That is, with probability at least 1 − pα log n
1 , the target t ′0

belongs to the subtree of vi (within Si ) rooted at u′′
i . Since at each iteration the size

of the candidates’ set decreases by a factor of at least 2, it follows that |Slog n| = 1.
The probability that at each of the log n iterations we maintained the target t ′0 in the

candidates’ set is at least
(
1 − pα log n

1

)log n ≥ 1 − log n
n . That is, with probability at

least 1− log n
n we detect in α log2 n queries during the second phase the second target

t ′0, given that we detected the other target t0 in the first phase.

Summarizing, with probability at least
(
1 − log n

n

)2
we detect both targets in

2α log2 n queries. 
�

Since in a tree both targets t1, t2 can be detected with high probability in O(log2 n)

queries by Theorem 6, we consider in the remainder of the section arbitrary graphs
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instead of trees. First we consider in Sect. 3.1 biased queries, i.e. queries with p1 > 1
2 .

Second we consider in Sect. 3.2 unbiased queries, i.e. queries with p1 = p2 = 1
2 .

3.1 Upper Bounds for Biased Queries

In this section we consider biased queries which direct to t1 with probability p1 > 1
2

and to t2 with probability p2 = 1− p1 < 1
2 . As we can detect in this case the first target

t1 with high probability in O(log n) queries by using the “noisy” framework of [13],
our aim becomes to detect the second target t2 with the fewest possible queries, once
we have already detected t1.

For every vertex v and every i ∈ {1, 2}, denote by Eti (v) = {u ∈ N (v) : ti ∈
N (v, u)} the set of neighbors of v such that the edge uv lies on a shortest path from v to
ti . Note that the sets Et1(v) and Et2(v) can be computed in polynomial time, e.g. using
Dijkstra’s algorithm.We assume that, once a query at vertex v has chosen which target
ti it directs to, it returns each vertex of Eti (v) equiprobably and independently from all
other queries. Therefore, each of the vertices of Et1(v)\Et2(v) is returned by the query
at v with probability p1

|Et1 (v)| , each vertex of Et2(v)\Et1(v) is returned with probability
1−p1

|Et2 (v)| , and each vertex of Et1(v)∩Et2(v) is returnedwith probability p1
|Et1 (v)| + 1−p1

|Et2 (v)| .
We will show in Theorem 8 that, under these assumptions, we detect the second target
t2 with high probability in O(Δ log2 n) queries where Δ is the maximum degree of
the graph.

The high level description of our algorithm (Algorithm 1) is as follows. Throughout
the algorithm we maintain a candidates’ set S of vertices in which t2 belongs with
high probability. Initially S = V . In each iteration we first compute an (exact or
approximate) median v of S with respect to the potential Γ (see Sect. 2.3). Then we
compute the set Et1(v) (this can be done as t1 has already been detected) and we

query cΔ log n times vertex v, where c = 7(1+p1)2

p1(1−p1)2
is a constant. Denote by Q(v)

the multiset of size cΔ log n that contains the vertices returned by these queries at v.
If at least one of these O(Δ log n) queries at v returns a vertex u /∈ Et1(v), then we
can conclude that u ∈ Et2(v), and thus we update the set S by S ∩ N (v, u). Assume
otherwise that all O(Δ log n) queries at v return vertices of Et1(v). Then we pick
a vertex u0 ∈ N (v) that has been returned most frequently among the O(Δ log n)

queries at v, and we update the set S by S ∩ N (v, u0). As it turns out, u0 ∈ Et2(v)

with high probability. Since we always query an (exact or approximate) median v of
the current candidates’ set S with respect to the potential Γ , the size of S decreases
by a constant factor each time. Therefore, after O(log n) updates we obtain |S| = 1.
It turns out that, with high probability, each update of the candidates’ set was correct,
i.e. S = {t2}. Since for each update of S we perform O(Δ log n) queries, we detect t2
with high probability in O(Δ log2 n) queries in total.

Recall that every query at v returns a vertex u ∈ Et1(v) with probability p1 and a
vertex u ∈ Et2(v) with probability 1 − p1. Therefore, for every v ∈ V the multiset

Q(v) contains at least one vertex u ∈ Et2(v) with probability at least 1 − p|Q(v)|
1 =

1− p|cΔ log n|
1 . In the next lemma we prove that, every time we update S using Step 8,

the updated set contains t2 with high probability.
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Algorithm 1 Given t1, detect t2 with high probability with O(Δ log2 n) queries

1: S ← V ; c ← 7(1+p1)
2

p1(1−p1)2

2: while |S| > 1 do
3: Compute an (approximate) median v of S with respect to potential Γ ; Compute Et1 (v)

4: Query cΔ log n times vertex v; Compute the multiset Q(v) of these query responses
5: if Q(v) \ Et1 (v) �= ∅ then
6: Pick a vertex u ∈ Q(v) \ Et1 (v) and set S ← S ∩ N (v, u)

7: else
8: Pick a most frequent vertex u ∈ Q(v) and set S ← S ∩ N (v, u)

9: return the unique vertex in S

Lemma 7 Let S ⊆ V such that t2 ∈ S and let S′ = S ∩ N (v, u) be the updated set at
Step 8 of Algorithm 1. Then t2 ∈ S′ with probability at least 1 − 2

n .

Proof First we define the vertex subset Êt2(v) = Et2(v)∩ Et1(v). Assume that Step 8
of Algorithm 1 is executed; then note that Q(v) ⊆ Et1(v), i.e. the query always returns
either a vertex of Et1(v) \ Et2(v) or a vertex of Êt2(v). Given the fact that Step 8 of
Algorithm 1 is executed, note that each of the vertices of Et1(v) \ Et2(v) is returned
by a query with probability p1

|Et1 (v)| and each of the vertices of Êt2(v) is returned

with probability p1
|Et1 (v)| + 1−p1

|Êt2 (v)| . Observe that these probabilities are the expected

frequencies for these vertices in Q(v), given the fact that Q(v) ⊆ Et1(v). To prove the
lemma it suffices to show that, whenever Q(v) ⊆ Et1(v), the most frequent element
of Q(v) belongs to Et1(v) ∩ Et2(v) with high probability. To this end, let δ = 1−p1

1+p1

and c = 7(1+p1)2

p1(1−p1)2
be two constants. Note that, for the chosen value of δ, the inequality

|Êt2(v)| ≤ |Et(v)| is equivalent to

(1 + δ)
p1

|Et1(v)| ≤ (1 − δ)

(
p1

|Et1(v)| + 1 − p1
|Êt2(v)|

)

(3)

Let u ∈ Et1(v) \ Et2(v), i.e. the query at v directs to t1 but not to t2. We define
the random variable Zi (u), such that Zi (u) = 1 if u is returned by the i-th query
at v and Zi (u) = 0 otherwise. Furthermore define Z(u) = ∑cΔ log n

i=1 Zi (u). Since
Pr(Zi (u) = 1) = p1

|Et1 (v)| , it follows that E(Z(u)) = cΔ log n p1
|Et1 (v)| by the linearity

of expectation. Then, using Chernoff’s bounds it follows that

Pr(Z(u) ≥ (1 + δ)E(Z(u))) ≤ exp

(

−δ2

3

p1
|Et1(v)|cΔ log n

)

≤ exp

(

−2δ2
(1 + p1)2

(1 − p1)2
log n

)

= exp (−2 log n) = 1

n2
. (4)
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Thus (4) implies that the probability that there exists at least one u ∈ Et1(v)\Et2(v)

such that Z(u) ≥ (1 + δ)E(Z(u)) is

Pr

(

∃u ∈ Et1(v) \ Et2(v) : Z(u) ≥ (1 + δ)
p1

|Et1(v)|
)

≤ (Δ − 1)
1

n2
≤ 1

n
. (5)

Now let u′ ∈ Êt2(v). Similarly to the above we define the random variable
Z ′
i (u

′), such that Z ′
i (u

′) = 1 if u′ is returned by the i th query at v and Z ′
i (u

′) =
0 otherwise. Furthermore define Z ′(u′) = ∑cΔ log n

i=1 Z ′
i (u

′). Since Pr(Z ′
i (u

′) =
1) = p1

|Et1 (v)| + 1−p1
|Êt2 (v)| , by the linearity of expectation it follows that E(Z(u)) =

cΔ log n

(
p1

|Et1 (v)| + 1−p1
|Êt2 (v)|

)

. Then we obtain similarly to (4) that

Pr(Z ′(u′) ≤ (1 − δ)E(Z ′(u′))) ≤ exp

(

−δ2

2

(
p1

|Et1(v)| + 1 − p1
|Êt2(v)|

)

cΔ log n

)

≤ exp

(

−3δ2
(1 + p1)2

p1(1 − p1)2
log n

)

≤ exp (−3 log n) ≤ 1

n2
. (6)

Thus, it follows by the union bound and by (3), (5), and (6) that

Pr(∃u ∈ Et1(v) \ Et2(v) : Z(u) ≥ Z ′(u′)) ≤ 2

n
. (7)

That is, the most frequent element of Q(v) belongs to Êt2(v) with probability at
least 1 − 2

n . This completes the proof of the lemma. 
�
With Lemma 7 in hand we can now prove the main theorem of the section.

Theorem 8 Assume that every query at a vertex v directs to t1 and to t2 with probability
p1 > 1

2 and p2 = 1 − p1, respectively. Furthermore, once a query at a vertex v

has chosen which target it directs to, it returns any of the possible correct answers
equiprobably and independently from all other queries. Then, given t1, Algorithm 1
detects t2 in O(Δ log2 n) queries with probability at least (1 − 2

n )O(log n).

Proof Since we query at each iteration an (1 + ε)-median for the potential function
Γ , recall by Theorem 5 that after at most log n

1−log(1+ε)
= O(log n) iterations we will

obtain |S| = 1. Furthermore, in every iteration the algorithmqueries cΔ log n times the
(1+ε)-median of the current set, and thus the algorithmmakes O(Δ log2 n) queries in
total. Whenever the algorithm updates S in Step 6 the target t2 belongs to the updated
set with probability 1. Moreover, whenever the algorithm updates S in Step 8, Lemma
7 implies that the target t2 belongs to the updated set with probability at least (1− 2

n )

. Thus, the probability all the O(log n) updates of S were correct, i.e. t2 belongs to S
after each of the O(log n) updates, is at least (1 − 2

n )O(log n). 
�
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Note by Theorem 8 that, wheneverΔ = O(poly log n)we can detect both targets t1
and t2 in O(poly log n) queries. However, for graphs with larger maximum degree Δ,
the value of the maximum degree dominates any polylogarithmic factor in the number
of queries. The intuitive reason behind this is that, for an (exact or approximate)median
v of the current set S, whenever deg(v) and Et1(v) are large and Et2(v) ⊆ Et1(v), we
can not discriminate with a polylogarithmic number of queries between the vertices
of Et2(v) and the vertices of Et1(v) \ Et2(v) with large enough probability. Although
this argument does not give any lower bound for the number of queries in the general
case (i.e. when Δ is unbounded), it seems that more informative queries are needed to
detect both targets with polylogarithmic queries in general graphs. We explore such
more informative queries in Sect. 4.

3.2 Lower Bounds for Unbiased Queries

In this section we consider unbiased queries, i.e. queries which direct to each of the
targets t1, t2 with equal probability p1 = p2 = 1

2 . In this setting every query is
indifferent between the two targets, and thus the “noisy” framework of [13] cannot be
applied for detecting any of the two targets. In particular, in this section we generalize
our study to the case of 2c ≥ 2 different targets T = {t1, t2, . . . , t2c}, where the query
to any vertex v /∈ T is unbiased. That is, pi = 1

2c for every i ∈ {1, 2, . . . , 2c}. In the
next theorem we prove that any deterministic (possibly adaptive) algorithm needs at
least n

2 − c queries to detect one of the 2c targets.

Theorem 9 Suppose that there are 2c targets in the graph and let pi = 1
2c for every

i ∈ {1, 2, . . . , 2c}. Then, any deterministic (possibly adaptive) algorithm requires at
least n

2 − c queries to locate at least one target, even in an unweighted cycle.

Proof Let T = {t1, t2, . . . , t2c} be the set of targets. Again, let G be the unweighted
cycle with n = 2k vertices v0, v1, . . . , v2k−1. For each i ∈ {1, 2, . . . , c} the targets
{ti , ti+c} are placed by the adversary on two anti-diametrical vertices of the cycle,
i.e. ti = v j and ti+c = v j+k , for some j ∈ {0, 1, . . . , 2k − 1}. Thus, for any vertex
vx /∈ T , the unbiased query at vx returns vx−1 with probability 1

2 and vx+1 with
probability 1

2 . That is, for each vertex vx /∈ T the response of the query at vx is exactly
the same. Let A be a deterministic algorithm that queries at most k − c − 1 different
vertices. Then there exist at least c+ 1 pairs {vi1 , vi1+k}, {vi2 , vi2+k}, . . . , {vic , vic+k}
of anti-diametrical vertices such that none of these vertices is queried by the algorithm.
Then the adversary can place the 2c targets any c of these c+1 pairs of anti-diametrical
vertices, without affecting the validity of the previous answers. Thus the algorithmA
needs to query at least k − c = n

2 − c different vertices to detect a target. 
�

Corollary 10 Let p1 = p2 = 1
2 . Then any deterministic (possibly adaptive) algorithm

needs at least n
2 − 1 queries to detect one of the two targets, even in an unweighted

cycle.
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4 More Informative Queries for Two Targets

A natural alternative to obtain query-efficient algorithms for multiple targets, instead
of restricting the maximum degree Δ of the graph (see Sect. 3.1), is to consider
queries that providemore informative responses in general graphs. As we have already
observed in Sect. 3.1, it is not clear whether it is possible to detect multiple targets with
O(poly log n) direction queries in an arbitrary graph. In this section we investigate
natural variations and extensions of the direction query for multiple targets which we
studied in Sect. 3.

4.1 Direction-Distance Biased Queries

In this section we strengthen the direction query in a way that it also returns the value
of the distance between the queried vertex and one of the targets. More formally, a
direction-distance query at vertex v ∈ V returns with probability pi a pair (u, 	),
where u ∈ N (v) such that ti ∈ N (u, v) and d(v, ti ) = 	. Note that here we impose
again that all pi ’s are constant and that

∑|T |
i=1 pi = 1, where T = {t1, t2, . . . , t|T |} is

the set of targets. We will say that the response (u, 	) to a direction-distance query at
vertex v directs to ti if ti ∈ N (v, u) and 	 = d(v, ti ). Similarly to our assumptions
on the direction query, whenever there exist more than one such vertices u ∈ N (v)

leading to ti via a shortest path, the direction-distance query returns an arbitrary vertex
u among them (possibly chosen adversarially). Moreover, if the queried vertex v is
equal to one of the targets ti ∈ T , this is revealed by the query with probability pi .
These direction-distance queries have also been used in [13] for detecting one single
target in directed graphs.

Here we consider the case of two targets and biased queries, i.e. T = {t1, t2}where
p1 > p2. Similarly to Sect. 3.1, initially we can detect the first target t1 with high
probability in O(log n) queries using the “noisy” model of [13]. Thus, in what follows
we assume that t1 has already been detected.Wewill show that the second target t2 can
be detected with high probability with O(log3 n) additional direction-distance queries
using Algorithm 2. The high level description of our algorithm is the following. We
maintain a candidates’ set S such that at every iteration t2 ∈ S with high probability.
Each time we update the set S, its size decreases by a constant factor. Thus we need to
shrink the set S at most log n times. In order to shrink S one time, we first compute an
(1 + ε) -median v of the current set S and we query log n times this vertex v. Denote
by Q(v) the set of all different responses of these log n direction-distance queries at
v. As it turns out, the responses in Q(v) might not always be enough to shrink S such
that it still contains t2 with high probability. For this reason we also query log n times
each of the log n neighbors u ∈ N (v), such that (u, 	) ∈ Q(v) for some 	 ∈ N. After
these log2 n queries at v and its neighbors, we can safely shrink S by a constant factor,
thus detecting the target t2 with high probability in log3 n queries.

For the description of our algorithm (see Algorithm 2) recall that, for every vertex
v, the set Et1(v) = {u ∈ N (v) : t1 ∈ N (v, u)} contains all neighbors of v such that
the edge uv lies on a shortest path from v to t1.

In the next theorem we prove the correctness and the running time of Algorithm 2.
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Algorithm 2 Given t1, detect t2 with high probability with O(log3 n) direction-
distance queries
1: S ← V
2: while |S| > 1 do
3: Compute an (approximate) median v of S with respect to potential Γ ; Compute Et1 (v)

4: Query log n times vertex v; Compute the set Q(v) of different query responses
5: if there exists a pair (u, 	) ∈ Q(v) such that u /∈ Et1 (v) or 	 �= d(v, t1) then
6: S ← S ∩ N (v, u)

7: else
8: for every (u, 	) ∈ Q(v) do
9: Query log n times vertex u; Compute the set Q(u) of different query responses
10: if for every (z, 	′) ∈ Q(u) we have 	′ = 	 − w(vu) then
11: S ← S ∩ N (v, u); Goto line 2

12: return the unique vertex of S

Theorem 11 Given t1, Algorithm 2 detects t2 in at most O(log3 n) queries with prob-

ability at least 1 − O
(
log n · plog n1

)
.

Proof Throughout its execution, Algorithm 2 maintains a vertex set S that contains
the second target t2 with high probability. Initially S = V . Let v be an (1+ ε)-median
of the set S (with respect to the potential Γ of Sect. 2.3) at some iteration of the
algorithm, and assume that t2 ∈ S. We query log n times vertex v; let Q(v) be the set
of all different query responses. Since each query directs to t1 with probability p1 and
to t2 with probability p2, it follows that at least one of the queries at v directs to t2
with probability at least 1 − plog n1 .

Consider a response-pair (u, 	) ∈ Q(v). If this query directs to t1, then u ∈ Et1(v)

and 	 = d(v, t1). Hence, if we detect at least one response pair (u, 	) ∈ Q(v) such that
u /∈ Et1(v) or 	 �= d(v, t1), we can safely conclude that this query directs to t2 (lines 5,
6 of Algorithm 2). Therefore, in this case, u ∈ Et2(v) = {u ∈ N (v) : t2 ∈ N (v, u)},
and thus we safely compute the updated set S ∩ N (v, u) at line 6.

Assume now that u ∈ Et1(v) and 	 = d(v, t1) for every response-pair (u, 	) ∈
Q(v) (see lines 8–11 of the algorithm). Then every query at v directs to t1. However,
as we proved above, at least one of these queries (u, 	) ∈ Q(v) also directs to t2
(i.e. u ∈ Et2(v)) with probability at least 1− plog n1 . Therefore 	 = d(v, t1) = d(v, t2)

with probability at least 1 − plog n1 . Note that, in this case, we can not use only the
response-pairs of Q(v) to distinguish which query directs to t2.

In our attempt to detect at least one vertex u ∈ Et2(v), we query log n times each of
vertices u such that (u, 	) ∈ Q(v). For each such vertex u denote by Q(u) the set of all
different response-pairs from these log n queries at u. Similarly to the above, at least
one of these log n queries at u directs to t2 with probability at least 1 − plog n1 . Recall
that d(v, t2) = 	 and let (z, 	′) ∈ Q(u). If u ∈ Et2(v) then d(u, t2) = 	 − w(vu),
otherwise d(u, t2) > 	 − w(vu). Furthermore note that d(u, t1) = 	 − w(vu), since
u ∈ Et1(v). Therefore, if we detect at least one response-pair (z, 	′) ∈ Q(u) such
that 	′ > 	 − w(vu), then we can safely conclude that u /∈ Et2(v). Otherwise, if for
every response-pair (z, 	′) ∈ Q(u) we have that 	′ = 	 − w(vu), then u ∈ Et2(v)

(i.e. t2 ∈ N (v, u)) with probability at least 1 − plog n1 .
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Recall that there exists at least one query at v that directs to t2 with probability
at least 1 − plog n1 , as we proved above. That is, among all response-pairs (u, 	) ∈
Q(v) there exists at least one vertex u ∈ Et2(v) with probability at least 1 − plog n1 .
Therefore, we will correctly detect a vertex u ∈ Et2(v) at lines 10, 11 of the algorithm

with probability at least
(
1 − plog n1

)2
, i.e. with at least this probability the updated

candidates’ set at line 11 still contains t2. Thus, since we shrink the candidates’ set
log n

1−log(1+ε)
= O(log n) times, we eventually detect t2 as the unique vertex in the final

candidates’ set with probability at least
(
1 − plog n1

)O(log n) ≥ 1−O(log n · plog n1 ) by

Bernoulli’s inequality. Finally, it is easy to verify from the above that the algorithmwill
terminate after at most O(log3 n) queries with probability at least 1−O(log n · plog n1 ).


�

4.2 Vertex-Direction and Edge-Direction Biased Queries

An alternative natural variation of the direction query is to query an edge instead
of querying a vertex. More specifically, the direction query (as defined in Sect. 1.2)
queries a vertex v ∈ V and returns with probability pi a neighbor u ∈ N (v) such
that ti ∈ N (u, v). Thus, as this query always queries a vertex, it can be also referred
to as a vertex-direction query. Now we define the edge-direction query as follows:
it queries an ordered pair of adjacent vertices (v, u) and it returns with probability
pi YES (resp. NO) if ti ∈ N (v, u) (resp. if ti /∈ N (v, u)). Similarly to our notation
in the case of vertex-direction queries, we will say that the response YES (resp. NO)
to an edge-direction query at the vertex pair (v, u) refers to ti if ti ∈ N (v, u) (resp.
if ti /∈ N (v, u)). Similar but different edge queries for detecting one single target on
trees have been investigated in [13,16,24,29].

Here we consider the case where both vertex-direction and edge-direction queries
are available to the algorithm, and we focus again to the case of two targets and biased
queries, i.e. T = {t1, t2} where p1 > p2. Similarly to Sects. 3.1 and 4.1, we initially
detect t1 with high probability in O(log n) vertex-direction queries using the “noisy”
model of [13]. Thus, in the following we assume that t1 has already been detected.
We will show that Algorithm 3 detects the second target t2 with high probability using
O(log2 n) additional vertex-direction queries and O(log3 n) edge-direction queries,
i.e. in total O(log3 n) queries.

In the next theorem we prove the correctness and the running time of Algorithm 3.

Theorem 12 Given t1, Algorithm 3 detects t2 in at most O(log2 n) vertex-direction
queries and O(log3 n) edge-direction queries with probability at least 1 − O(log n ·
plog n1 ).

Proof The proof follows a similar approach as the proof of Theorem 11. Throughout
its execution, Algorithm 3 maintains a vertex set S that contains the second target t2
with high probability. Initially S = V . Let v be an (1 + ε)-median of the set S (with
respect to the potential Γ of Sect. 2.3) at some iteration of the algorithm, and assume
that t2 ∈ S. We query log n times vertex v; let Q(v) be the set of all different query
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Algorithm 3Given t1, detect t2 with high probability with O(log3 n) vertex-direction
and edge-direction queries
1: S ← V
2: while |S| > 1 do
3: Compute an (approximate) median v of S with respect to potential Γ ; Compute Et1 (v)

4: Apply log n vertex-direction queries at vertex v; Compute the set Q(v) of different query responses
5: if there exists a vertex u ∈ Q(v) such that u /∈ Et1 (v) then
6: S ← S ∩ N (v, u)

7: else
8: for every u ∈ Q(v) do
9: Apply log n edge-direction queries at (v, u); Compute the set Q(v, u) of different query

responses
10: if Q(v, u) = {YES} then
11: S ← S ∩ N (v, u); Goto line 2

12: return the unique vertex of S

responses. Similarly to the analysis of Algorithm 2 in the proof of Theorem 11, at least
one of the queries at v directs to t2 with probability at least 1 − plog n1 .

Consider a response-vertex u ∈ Q(v). If this query directs to t1, then u ∈ Et1(v).
Hence, if we detect at least one u ∈ Q(v) such that u /∈ Et1(v), we can safely
conclude that this query directs to t2 (lines 5, 6 of Algorithm 3). Therefore, in this
case, u ∈ Et2(v) = {u ∈ N (v) : t2 ∈ N (v, u)}, and thus we safely compute the
updated set S ∩ N (v, u) at line 6.

Assume now that u ∈ Et1(v) for every response u ∈ Q(v) (see lines 8–11 of the
algorithm). Then every query at v directs to t1, although at least one of them also
directs to t2 (i.e. Q(v)∩ Et2(v) �= ∅) with probability at least 1− plog n1 , as we proved
above. Note that, in this case, we can not use only the vertices of Q(v) to distinguish
which query directs to t2.

In our attempt to detect at least one vertex u ∈ Et2(v), we apply log n edge-direction
queries at each of the ordered pairs (v, u), where u ∈ Q(v). For each such pair (v, u)

denote by Q(v, u) the set of all different YES/NO responses from these log n queries
at (v, u). Similarly to the above, at least one of these log n queries at (v, u) refers
to t2 with probability at least 1 − plog n1 . Therefore, if NO∈ Q(v, u), then we can
safely conclude that u /∈ Et2(v). Otherwise, if Q(v, u) = {YES}, then u ∈ Et2(v)

(i.e. t2 ∈ N (v, u)) with probability at least 1 − plog n1 .
Recall that there exists at least one query at v that directs to t2 with probability

at least 1 − plog n1 . That is, among all responses in Q(v) there exists at least one

vertex u ∈ Et2(v) with probability at least 1 − plog n1 . Therefore, we will correctly
detect a vertex u ∈ Et2(v) at lines 10, 11 of the algorithm with probability at least
(
1 − plog n1

)2
, i.e.with at least this probability the updated candidates’ set at line 11 still

contains t2. Thus, similarly to the proof of Theorem 11, we eventually detect t2 as the
unique vertex in the final candidates’ set with probability at least 1−O(log n · plog n1 ).
Finally, it is easy to verify from the above that the algorithmwill terminate after at most
O(log2 n) vertex-direction queries and log3 n edge-direction queries with probability
at least 1 − O(log n · plog n1 ). 
�
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4.3 Two-Direction Queries

In this section we consider another variation of the direction query that was defined in
Sect. 1.2 (or “vertex-direction query” in the terminology of Sect. 4.2), which we call
two-direction query. Formally, a two-direction query at vertex v returns an unordered
pair of (not necessarily distinct) vertices {u, u′} such that t1 ∈ N (v, u) and t2 ∈
N (v, u′). Note here that, as {u, u′} is an unordered pair, the response of the two-
direction query does not clarify which of the two targets belongs to N (v, u) and
which to N (v, u′).

Although this type of query may seem at first to be more informative than the stan-
dard direction query studied in Sect. 3, we show that this is not the case. Intuitively,
this type of query resembles the unbiased direction query of Sect. 3.2. To see this, con-
sider e.g. the unweighted cycle where the two targets are placed at two anti-diametrical
vertices; then, applying many times the unbiased direction query of Sect. 3.2 at any
specific vertex v reveals with high probability the same information as applying a
single two-direction query at v. Based on this intuition the next theorem can be proved
with exactly the same arguments as Theorem 9 of Sect. 3.2.

Theorem 13 Any deterministic (possibly adaptive) algorithm needs at least n
2 − 1

two-direction queries to detect one of the two targets, even in an unweighted cycle.

4.4 Restricted Set Queries

The last type of queries we consider is when the query is applied not only to a vertex v

of the graph, but also to a subset S ⊆ V of the vertices, and the response of the query
is a vertex u ∈ N (v) such that t ∈ N (v, u) for at least one of the targets t that belong
to the set S. Formally, let T be the set of targets. The restricted-set query at the pair
(v, S), where v ∈ V and S ⊆ V such that T ∩ S �= ∅, returns a vertex u ∈ N (v)

such that t ∈ N (v, u) for at least one target t ∈ T ∩ S. If there exist multiple such
vertices u ∈ N (v), the query returns one of them adversarially. Finally, if we query
a pair (v, S) such that T ∩ S = ∅, then the query returns adversarially an arbitrary
vertex u ∈ N (v), regardless of whether the edge vu leads to a shortest path from v

to any target in T . That is, the response of the query can be considered in this case as
“noise”.

In the next theoremwe prove that this query is very powerful, as |T |·log n restricted-
set queries suffice to detect all targets of the set T .

Theorem 14 Let T be the set of targets. There exists an adaptive deterministic algo-
rithm that detects all targets of T with at most |T | · log n restricted-set queries.

Proof To detect the first target we simply apply binary search on graphs. At every
iteration we maintain a candidates’ set S (initially S = V ). We compute a median v

of S (with respect to the potential Γ of Sect. 2.3) and we query the pair (v, S). If the
response of the query at (v, S) is vertex u ∈ N (v) then we update the candidates’ set
as S ∩ N (v, u). We know that there is at least one target in the updated set S and that
the size of the candidates’ set decreased by a factor of at least 2 (cf. Theorem 5). Thus,
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after at most log n restricted-set queries we end up with a candidates’ set of size 1 that
contains one target.

We repeat this procedure for another |T | − 1 times to detect all remaining targets
of T ,as follows. Assume that we have already detected the targets t1, t2, . . . , ti ∈ T .
To detect the next target of T we initially set S = V \ {t1, t2, . . . , ti } and we apply
the above procedure. Then, after at most log n restricted-set queries we detect the next
target ti+1. Thus, after at most |T | · log n restricted-set queries in total we detect all
targets of T . 
�

5 Conclusions

This paper resolves some of the open questions raised byEmamjomeh-Zadeh et al. [13]
and makes a first step towards understanding the query complexity of detecting two
targets on graphs. Our results provide evidence that different types of queries can
significantly change the difficulty of the problem and make it from almost trivial
impossible to solve.

The potential Γ we introduced in this paper has several interesting properties that
have not yet been fully explored. As wementioned in the paper, just knowing the value
ΓS(v) for a vertex v directly provides enough information to quantify the “progress”
a direction query can make by querying vertex v, without the need to know the values
ΓS(u) for any other vertex u �= v. This property of Γ may be exploited to provide
computationally more efficient algorithms for detecting one target; an algorithmmight
only need to compute ΓS(v) for all vertices v lying within a wisely chosen subset such
that one of these vertices is an approximate median. Of course, this approach cannot
break the log n lower bound on the number of queries needed to detect the target
(e.g. in the path of n vertices), but it could potentially improve the computational
complexity of the detection algorithm. Furthermore, the potential Γ might be a useful
tool for deriving an optimal number of queries for classes of graphs other than trees,
since every exact median of Γ separates the graph into roughly equal subgraphs. By
resolving an open question of [13] we proved that, assuming that a query directs to a
path with an approximately shortest path to the (single) target t , any algorithm requires
Ω(n) queries to detect t . It remains open to specify appropriate special graph classes
(or other special conditions) that allow the detection of t using a polylogarithmic
number of such approximate-path queries.

For the setting where two, or more, targets need to be detected there is a plethora
of interesting questions. We believe that the most prominent one is to derive lower
bounds on the number of queries needed to detect both targets in the biased setting.
Can the number of queries be improved to O(log n), or O(log n · poly log log(n))?
We have preliminary results that suggest a lower bound of log n log log n bound for
a special type of algorithms, however a general lower bound seems to require new
techniques. Another intriguing question is to find the minimal requirements a query
has to satisfy in order to detect even one target in the unbiased setting. Furthermore,
in the biased setting, it is not completely clear whether all our assumptions in the
statement of Theorem 8 are necessary to prove its correctness; however we believe
they are. In particular, can we get in Theorem 8 an upper bound of O(Δ log2 n) biased
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queries for detecting the second target, if we assume that, whenever a query has chosen
to direct to a specific target (with a biased probability), it directs to an adversarially
chosen correct answer? Is the dependence on Δ necessary, even if we assume (as in
Theorem 8) that a query randomly chooses among the correct answers?

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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