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Flavor models typically rely on flavons—scalars that break the family symmetry by acquiring vacuum
expectation values in specific directions. We develop the idea of effective alignments, i.e., cases where the
contractions of multiple flavons give rise to directions that are hard or impossible to obtain directly by
breaking the family symmetry. Focusing on the example where the symmetry is S4, we list the effective
alignments that can be obtained from flavons vacuum expectation values that arise naturally from S4. Using
those effective alignments as building blocks, it is possible to construct flavor models, for example by using
the effective alignments in constrained sequential dominance models. We illustrate how to obtain several of
the mixing schemes in the literature, and explicitly construct renormalizable models for three viable cases,
two of which lead to trimaximal mixing scenarios.
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I. INTRODUCTION

For decades, non-Abelian discrete flavor symmetries have
been widely used in models of lepton flavor mixing (see
some reviews, e.g., [1–3]). The basic idea is to assume a non-
Abelian discrete symmetry in flavor space and introduce
scalars, called flavons, which obtain nontrivial vacuum
expectation values (VEVs) that break this flavor symmetry
such that specific flavor structures in the lepton mass
matrices, and thus also in the mixing matrix, are realized.
One great achievement of flavor symmetries is the

prediction of mixing patterns where the mixing matrix is
completely fixed by the symmetry (up to permutations of
rows and columns), e.g., predicting tri-bimaximal mixing
[4–7] in A4 [8,9] and S4 [10] and democratic mixing
[11,12] in S4 [13] and bimaximal mixing [14,15] in S4 [16],
or the mixing in [17]. Usually, these patterns are realized in
the so-called direct or semidirect approaches [18], where in
semidirect approaches the mixing matrix is determined up
to a rotation left unfixed by the symmetry. In these
approaches, some residual symmetries, e.g., Zn in the

charged lepton sector, Z2 or Z2 × Z0
2 in the neutrino sector

(if neutrinos are Majorana particles), are preserved after the
breaking of the full symmetry, and the mixing mainly
results from the misalignment of the different residual
symmetries in charged lepton and neutrino sectors. One
advantage of these approaches is a connection between the
flavor mixing structure and group structure: one can in
principle predict the mixing matrix based on the assumed
flavor symmetry without going into the details of flavor
models. The semidirect approach has also been combined
with general CP symmetries, resulting in the prediction of
all mixing parameters (either constant or dependent upon
one single free parameter) [16,19]. However, constructing
flavor models with respect to residual symmetries is not
straightforward. In order to preserve a residual symmetry,
one has to carefully construct the flavon potential (or
superpotential in the framework of supersymmetry) to
include the desired couplings and avoid unnecessary
couplings in the Lagrangian. In order to explain the
observed large reactor angle and the hinted-at maximal
Dirac-type CP violation, corrections with special directions
or nontrivial phases are required in the flavon VEVs. These
requirements increase the complexity of models.
The so-called indirect approach provides an alternative

way of attempting to understand flavor mixing. In this
approach, the underlying flavor symmetry is completely
broken by flavon VEVs and the flavor mixing is directly
generated by flavon VEVs, in a way which will be
explained in the following. A typical example is con-
strained sequential dominance (CSD), which provides a
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framework which allows the mixing angles and phases to
be accurately predicted in terms of relatively few input
parameters (see [20] and, e.g., [21–25]). One important but
quite generic assumption of CSD is that right-handed (RH)
neutrinos Ni (for i ¼ 1, 2, 3) are assumed to be flavor
singlets with masses MN1

;MN2
;MN3

,1 and that through
flavon VEVs the Yukawa couplings lead to the Dirac
neutrino mass term MD ≈ fY1; Y2; Y3g, and the active
neutrino mass matrix is given by

Mν ≈
X
i

v2

MNi

YiYT
i : ð1Þ

Here, each Yi is a 3 × 1 (column) vector and v is the
standard model (SM)-Higgs VEV. In CSDn models [22],
Y1 ∝ ð0; 1;−1ÞT and Y2 ∝ ð1; n; 2 − nÞT are, respectively,
responsible for atmospheric angle θ23 and solar angle θ12
(note that the placement of the signs in these directions is
convention dependent). The littlest seesaw model [27], i.e.,
CSD3 with N3 decoupled, introduces only three real
parameters, but can fit three mixing angles and two mass-
square differences. Although it is predictive, the theoretical
justification of Y2 ∝ ð1; 3;−1ÞT from symmetry has only
been obtained through relatively complicated alignment
mechanisms relying on superpotential terms [23,24]. For
the CSD2 model, the directions (1,0,2) or (1,2,0) have been
realized through slightly simpler alignments [21].
The main aim of this paper is to explore models of

neutrino masses in which in higher-order operators flavon
VEVs combine to new, effective alignments (EAs), the
latter giving rise to fermion mass terms. For this we
consider how EAs arise and how they can be used in
models. By EAs we refer to directions that are obtained
from starting with the simple flavon VEV directions that
are obtained from the spontaneous breaking of the sym-
metry and then contracting multiples of the simple direc-
tions according to the rules of the symmetry group. We use
the group S4 as an example, although the strategies and
conclusions generalize for other groups.
We start by listing the possible VEV alignments that are

allowed by the potential of one scalar triplet of the flavor
group (which coincide with the results of [28–30]) and
which serve as the building blocks of EAs.
We then consider multiple flavons and discuss how in

higher-order operators, two or more flavons can be com-
bined to form EAs, and how these can be implemented to
account for leptonic mixing, particularly using sequential
dominance [31–34] in CSD models (see, e.g., [21–25] for
recent examples, and references therein). In addition, we
extend the discussion from previous CSD models by not
specifying the hierarchy between M1, M2, and M3.
Although the idea of EAs is not new [35], it remains

unexplored as implementation at the nonrenormalizable
level leads to difficulties where typically a desired EA
cannot be separated from other undesired EAs which at best
reduce the predictivity and at worst spoil the fermionmasses
and mixing. Here we demonstrate specific UV completions
that forbid most contractions of the VEVs that are in
principle allowed at the effective level (and which would
lead to undesirable contributions). The idea of using fermion
messengers was originally used in the Froggatt-Nielsen
mechanism [36]. It has been widely used in non-Abelian
discrete flavor models, many of which implement specific
UV completions to make the models more predictive (see,
e.g., [37–40]). In our work this is also the case, as by
assuming right-handed neutrinos to be singlets in the flavor
space, we obtain a simple one-to-one correspondence
between the UV completion and a single flavon contraction.
Assuming the single triplet alignments of S4 for multiple

flavons, we present a list of possible EAs for S4 obtained by
combining up to three flavon directions. We then demon-
strate the EA strategy by using some of the EAs of S4 to
build three phenomenologically viable UV complete mod-
els, which include one EA that arises from the combination
of three distinct VEVs in a specific ordering. These models
lead to specific neutrino mass matrix structures that had not
been studied so far, and we briefly discuss their phenom-
enology with respect to the leptonic mass and mixing
parameters (including their respective prediction for the
Dirac CP phase, and for neutrinoless double beta decay).
The outline of the paper is as follows. In Sec. II we

consider the S4 symmetry and list the directions of the
VEVs in two bases of interest. In Sec. III we establish the
building block for constructing models: the effective
couplings arising from UV completions are described in
a general, model-independent way in Sec. III A, the EAs
obtained from the VEVs (illustrated with the S4 VEVs)
in Sec. III B, and the lepton mixing in CSD models in
Sec. III C. In Sec. IV we combine these aspects and build
three example models with the EAs of S4 in the CSD
framework, as well as present their phenomenology in
terms of the respective masses and mixing parameters. In
Sec. V we discuss cross-couplings between flavons and
how they may affect the previous results.

II. FLAVON VACUUM ALIGNMENTS

Consider the potential of a complex triplet flavon φ ¼
ðφ1;φ2;φ3ÞT transforming as a 3 or 30 of S4. To simplify the
calculation, we work in the first basis listed in Appendix A.
In this basis, φ† ¼ φ̃ ¼ ðφ�

1;φ
�
2;φ

�
3ÞT is also a triplet 3 (30)

of S4.
2 To forbid unnecessary couplings such as φ3 or φ4,

we introduce a global Uð1ÞF symmetry, which makes the

1MN1
, MN2

, and MN3
are denoted as Matm, Msol, and Mdec,

respectively [26], although we do not follow this notation here as
we leave the ordering of the masses general.

2In our notation, φ̃ means that φ̃ is also a triplet of S4. H̃α
(which appears below) is also an SUð2Þ doublet, whereas H†α

does not transform exactly as a doublet, so one uses ϵαβ.
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potential analogous to the potential of a S4 triplet which is
also an SUð2ÞL doublet [28,29]. Also due to the additional
Uð1ÞF symmetry, we have the same expression for the
potential for both φ being a 3 or a 3’ of S4. In fact, as this
Uð1ÞF is broken by the flavonVEVs, themodels would have
a massless Goldstone boson, in conflict with phenomenol-
ogy. To avoid this, one can either gauge the continuous
symmetry and have it broken at a sufficiently high scale to
avoid experimental bounds or consider a discrete subgroup
ZF
N with sufficiently highN to avoid accidental terms up to a

certain order, but in that caseN should also not be too large to
prevent an accidental global Uð1Þ symmetry (in which case
the Goldstone boson again arises). There are five Kronecker
products involving one triplet under S4 with an additional
Uð1ÞF charge that produce singlets, and adding those up
produces the potential

VðφÞ ¼ μ2φðφ̃φÞ1 þ f1ððφ̃φÞ1Þ2 þ f2ððφ̃φÞ2ðφ̃φÞ2Þ1
þ f3ððφ̃φÞ3ðφ̃φÞ3Þ1 þ f4ððφ̃φÞ30 ðφ̃φÞ30 Þ1; ð2Þ

where all the coefficients μφ and fi are real. However, these
invariants are not independent,3 and the potential can be
simplified to the following form:

VðφÞ ¼ μ2φI1 þ g1I21 þ g2I2 þ
1

2
g3ðI3 þ H:c:Þ ð3Þ

with

I1 ¼ jφ1j2 þ jφ2j2 þ jφ3j2;
I2 ¼ jφ1φ2j2 þ jφ2φ3j2 þ jφ3φ1j2;
I3 ¼ ðφ�

1φ2Þ2 þ ðφ�
2φ3Þ2 þ ðφ�

3φ1Þ2; ð4Þ
and

g1 ¼ f1 þ f2;

g2 ¼ f3 þ f4 − 3f2;

g3 ¼ f3 þ f4: ð5Þ
In order to achieve a nontrivial and stable vacuum,we require
the quadratic term to be negative definite and the quartic
terms to be positive definite, which lead to μ2φ < 0, and
g1 > 0, 3g1 þ g2 > jg3j, respectively.
The flavor symmetry is spontaneously broken after the

flavon φ gets a VEV hφii ¼ vieiαi=
ffiffiffi
2

p
, where v and α are

real, v > 0, and 0 ≤ α < 360°. The VEVs are well known
in the literature and have been presented in, e.g., [28,29],
with their CP properties analyzed in [30]. The classical
minimization is given for completeness in Appendix B.
In total, there are four classes of candidates of the φ

VEV, and they are given by

hφiI ¼
8<
:
0
B@

1

0

0

1
CA;

0
B@

0

1

0

1
CA;

0
B@

0

0

1

1
CA
9=
;vI;

hφiII ¼
8<
:
0
B@

0

eþiπ=4

e−iπ=4

1
CA;

0
B@

0

e−iπ=4

eþiπ=4

1
CA;

0
B@

e−iπ=4

0

eþiπ=4

1
CA;

0
B@

eþiπ=4

0

e−iπ=4

1
CA;

0
B@

eþiπ=4

e−iπ=4

0

1
CA;

0
B@

e−iπ=4

eþiπ=4

0

1
CA
9=
; vIIffiffiffi

2
p ;

hφiIII ¼
8<
:
0
B@

1

1

1

1
CA;

0
B@

−1
1

1

1
CA;

0
B@

1

−1
1

1
CA;

0
B@

1

1

−1

1
CA
9=
; vIIIffiffiffi

3
p ;

hφiIII0 ¼
8<
:
0
B@

1

ω

ω2

1
CA;

0
B@

1

ω2

ω

1
CA;

0
B@

1

−ω
−ω2

1
CA;

0
B@

1

−ω2

−ω

1
CA;

0
B@

1

−ω
ω2

1
CA;

0
B@

1

−ω2

ω

1
CA;

0
B@

1

ω

−ω2

1
CA;

0
B@

1

ω2

−ω

1
CA
9=
; vIII0ffiffiffi

3
p : ð6Þ

where vI;II;III;III0 can always be chosen to be real and positive
parameters through a phase redefinition of the flavon φ.
Which VEV φ achieves depends on the relations of
coefficients gi, which are also summarized in Appendix B.
The basis we used so far is particularly useful to study

the potential and VEVs, and was the basis used throughout
in [28,29]. Now we reexpress these VEVs in a second basis,

which is particularly convenient for building lepton flavor
models. For the models presented in Sec. III C, this second
basis corresponds to the basis where the charged lepton
mass matrix is diagonal. The triplet representation in the
second basis is obtained through the transformation
φ → Uωφ, where ω ¼ ei2π=3 and

Uω ¼ 1ffiffiffi
3

p

0
B@

1 1 1

1 ω2 ω

1 ω ω2

1
CA: ð7Þ3The potentials have an additional symmetry under the

exchange of the positions of φ with itself and similarly under
φ̃, so-called plethysms [41].
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In this basis, if we have a triplet, we can build another triplet,

φ ¼ ðφ1;φ2;φ3ÞT ∼ 3 → φ̃ ¼ ðφ�
1;φ

�
3;φ

�
2Þ ∼ 3 ð8Þ

(note the swap in the component position), and conversely, if φ is a 30, then the corresponding φ̃ is also a 30. The classes of
flavon VEV candidates are given in the second basis by

hφiI ¼

8>><
>>:

0
BB@

1

1

1

1
CCA;

0
BB@

1

ω2

ω

1
CCA;

0
BB@

1

ω

ω2

1
CCA
9>>=
>>;

vIffiffiffi
3

p ;

hφiII ¼

8>><
>>:

0
BB@

1ffiffi
3

p

1

3þ ffiffi
3

p

−1
3−
ffiffi
3

p

1
CCA;

0
BB@

1ffiffi
3

p

−1
3−
ffiffi
3

p

1

3þ ffiffi
3

p

1
CCA;

0
BB@

1ffiffi
3

p

ω2

3þ ffiffi
3

p
−ω

3−
ffiffi
3

p

1
CCA;

0
BB@

1ffiffi
3

p

−ω2

3−
ffiffi
3

p
ω

3þ ffiffi
3

p

1
CCA;

0
BB@

1ffiffi
3

p
ω

3þ ffiffi
3

p

−ω2

3−
ffiffi
3

p

1
CCA;

0
BB@

1ffiffi
3

p
−ω

3−
ffiffi
3

p

ω2

3þ ffiffi
3

p

1
CCA
9>>=
>>;vII;

hφiIII ¼

8>><
>>:

0
BB@

1

0

0

1
CCA;

0
BB@

1
3

− 2
3

− 2
3

1
CCA;

0
BB@

1
3

− 2
3
ω2

− 2
3
ω

1
CCA;

0
BB@

1
3

− 2
3
ω

− 2
3
ω2

1
CCA
9>>=
>>;vIII;

hφiIII0 ¼

8>><
>>:

0
BB@

0

0

1

1
CCA;

0
BB@

0

1

0

1
CCA;

0
BB@

2
3

2
3

− 1
3

1
CCA;

0
BB@

2
3

− 1
3

2
3

1
CCA;

0
BB@

− 2
3
ω

− 2
3
ω2

1
3

1
CCA;

0
BB@

− 2
3
ω2

1
3

− 2
3
ω

1
CCA;

0
BB@

− 2
3
ω2

− 2
3
ω

1
3

1
CCA;

0
BB@

− 2
3
ω

1
3

− 2
3
ω2

1
CCA
9>>=
>>;vIII0 : ð9Þ

III. BUILDING BLOCKS FOR
CONSTRUCTING MODELS

A. From UV completion to effective couplings

There are four classes of VEVs for the flavon triplet after
S4 is spontaneously broken. We will now explain how to
use these VEVs as building blocks for flavor model
building in a general way. In order to connect these
VEVs with flavor mixing, consider first a UV-complete
theory4 with M copies of flavons Φ1;Φ2;…;ΦM and
vectorlike Dirac fermion mediators with heavy masses
F1; F2;…; FM with their respective FI in the usual sense,
F̄I ≡ F†

I γ0 (as for the other fermions). Here ΦI ∼ rΦI
and

FI ∼ rFI
≡ rI. Assume the following renormalizable

Lagrangian terms:

−LUV ¼ yH̃ lL FM þ
XM
I¼2

yIΦIFIFI−1 þ y1Φ1F1N

þ
XM
I¼1

MIðFIFIÞ1 þ H:c: ð10Þ

Here, the notation is such that particle identities are
not specified: FI could be identical with FJ or ΦI0

identical with ΦJ0 for I ≠ J and I0 ≠ J0, respectively. The
important aspect is that couplings exist which allow the
procedure outlined in the remainder of this subsection. We
assume the S4 representations are for the Higgs H ∼ 1,
for the lepton doublet lL ∼ 3, and for the right-handed
neutrino N ∼ 1 or 10. To form an invariant term H̃ðlLFMÞ1
of S4, the representation of FM must be the same as
that of lL, i.e., rM ¼ 3. Due to the property in Eqs. (A7)
and (A8) (in Appendix A), ΦIFIFIþ1 is identical with
ððΦIFIÞrI−1FI−1Þ1, ðΦIðFIFI−1ÞrΦI

Þ1, and ðFIðFI−1ΦIÞrIÞ1.
To form a trivial singlet ðΦ1F̄1Þ1N (if N ∼ 1) or ðΦ1F̄1Þ10N
(if N ∼ 10), the representations of F1 andΦ1 are also related
to each other.
We assume that the mediators are very heavy

MI ≫ hΦJi, decouple from the theory, and result in
higher-dimensional operators

λ

ΛM ðΦ1Φ2…ΦMlLÞH̃N; ð11Þ

where the brackets denote the flavor symmetry contraction
with lL. This is distinct from models using two flavons as
ðΦ1lLÞðΦ2NÞ. To find an explicit expression for Eq. (11)
in terms of the UV-complete theory, we start by assuming
N ∼ 1 and perform the following procedure:4Specific examples are presented in Sec. III C.
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(i) Step 1, consider the terms

y2Φ2F2F1 þ y1Φ1F1N þM1ðF1F1Þ1 ð12Þ

and assume that F1 decouples. Since Φ2F2F1 ¼
ððΦ2F2Þr1F1Þ1, after F1 decouples, we get in the
Lagrangian the effective terms

−
y1y2
M1

ððΦ2F2Þr1Φ1Þ1N ¼ −
y1y2
M1

ððΦ1Φ2Þr2F2Þ1N:

ð13Þ

(ii) Step 2, using Eq. (13) and

y3Φ3F3F2 þM2ðF2F2Þ1
¼ y3ððΦ3F̄3Þr2F2Þ1 þM2ðF2F2Þ1; ð14Þ

we assume that F2 decouples. The resulting effective
couplings amonglL,Φ1,Φ2, andF3 can bewritten as

ð−1Þ2 y1y2y3
i2M1M2

ððΦ1Φ2Þr2ðΦ3F3Þr2Þ1N

¼ ð−1Þ2 y1y2y3
i2M1M2

ððΦ1Φ2Þr2Φ3Þr3F3Þ1N: ð15Þ

(iii) Following the same procedure, Steps 3, …, M − 2.
(iv) Step M − 1, consider the decoupling of FM−1, after

which we have

ð−1ÞM−1 y1y2…yM−1yM
M1M2…MM−1

× ððððΦ1Φ2Þr2…ΦM−1ÞrM−1
ΦMÞrMF̄MÞ1N: ð16Þ

(v) StepM, consider the decoupling ofFM, andwe obtain

ð−1ÞM−1 yy1y2…yM−1yM
M1M2…MM−1MM

× ððððΦ1Φ2Þr2…ΦM−1ÞrM−1
ΦMÞrMlLÞ1H̃N:

ð17Þ

Equation (17) is simply written as ðYNlLÞ1H̃N where

YN ¼ λ

ΛM ðððΦ1Φ2Þr2Φ3Þr3…ΦMÞrM : ð18Þ

The above procedure is summarized in Figs. 1 and 2. From
the Lagrangian in Eq. (10), one can draw a diagram with
vectorlike fermionic mediators FI (for I ¼ 1; 2;…;M) in
Fig. 1. After all vectorlike fermions are integrated out, only
an effective dimension-ðdimðMÞ þ 4Þ operator remains,
which is shown in Fig. 2. Note that the ordering of flavons
in the effective operator will be reversed with respect to
their ordering in the corresponding diagram, as can be seen
in Figs. 1 and 2 (from left to right,ΦM;ΦM−1;…;Φ2;Φ1 in
Fig. 1 and Φ1;Φ2;…ΦM−1;ΦM in Fig. 2).
If N ∼ 10, we follow a similar procedure, and arrive at

ðYNlLÞ10H̃N with

Y 0
N ¼ λ

ΛM ðððΦ1Φ2Þr0
2
Φ3Þr0

3
…ΦMÞr0M ; ð19Þ

where r0 ¼ 10; 1; 2; 30; 3 for r ¼ 1; 10; 2; 3; 30, respectively.
For different right-handed neutrinos Ni, the choice of ΦI
and FI may be different. After including the index i, we
finally arrive at

ðYilLÞ1H̃Ni or ðY 0
ilLÞ10H̃Ni ð20Þ

with

FIG. 1. General diagram of UV completion of the flavon contraction by introducing vectorlike fermion FI (for I ¼ 1; 2;…;M) with
mass MI . The relative renormalizable Lagrangian is given in Eq. (10).

FIG. 2. Effective higher dimension operator from the general
diagram in Fig. 1 after vectorlike fermions are integrated out.
Note that the ordering of flavons in the effective operator is
indeed reversed compared with that in Fig. 1.
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Yi ¼
λi
ΛM ðððΦ1iΦ2iÞr2iΦ3iÞr3i…ΦMiÞ3;

Y 0
i ¼

λi
ΛM ðððΦ1iΦ2iÞr0

2i
Φ3iÞr0

3i
…ΦMiÞ30 ; ð21Þ

where rIi is the representation of FIi, and rMi and r0Mi have
been replaced by 3 and 30, respectively. For charged
leptons, assuming lαR ∼ 1 or 10, for lαR ¼ eR; μR; τR, we
arrive at a similar structure

ðYαlLÞ1H̃lαR or ðY 0
αlLÞ10H̃lαR; ð22Þ

where

Yα ¼
λα
ΛM ðððΦ1αΦ2αÞr2αΦ3αÞr3α…ΦMαÞ3;

Y 0
α ¼

λα
ΛM ðððΦ1αΦ2αÞr0

2α
Φ3αÞr0

3α
…ΦMαÞ30 : ð23Þ

A special feature in this approach is that all these Yukawa
couplings have similar flavor contractions such as
ðððΦ1Φ2Þr2Φ3Þr3Φ4Þr4… after the fermion messengers
have been integrated out. Other flavon contractions such
as ððΦ1Φ2Þr2ðΦ3Φ4Þr3Þr4 are not allowed. With the help of
Eqs. (21) and (23), we can combine different VEVs in
Eq. (9) to derive different structures of Yi, Y 0

i and Yα, Y 0
α,

and thus obtain different structures for the lepton mass
matrices Ml and MD.

B. Flavor structures from effective alignments

We continue considering the flavor symmetry S4 × Uð1ÞF
and introduce fourS4 triplet flavonsΦl ∼ 3,Φl0 ∼ 30,Φν ∼ 3,
and Φν0 ∼ 30. They are complex and have different charges
under the Uð1ÞF symmetry. Following the conclusion in
Sec. II, we can obtain the following VEVs by assuming
different relations of coefficients in the potentials:

hΦνi ¼

0
B@

1

1

1

1
CA vIffiffiffi

3
p ; hΦν0 i ¼

0
BB@

1ffiffi
3

p

1

3þ ffiffi
3

p

−1
3−
ffiffi
3

p

1
CCAvII;

hΦli ¼

0
B@

1

0

0

1
CAvIII; hΦl0 i ¼

0
B@

0

0

1

1
CAvIII0 ; ð24Þ

where these directions are presented already in the second
basis. hΦνi is orthogonal with hΦν0 i and hΦli is orthogonal
with hΦl0 i. As all the VEVs are real in this basis, their CP
conjugates can be directly written out by exchanging their
second and third components. It is obvious that hΦ̃νi and
hΦ̃li take exactly the same form hΦνi and hΦli, respectively,
while the second and third components of the VEVs hΦ̃ν0 i
and hΦ̃l0 i are exchanged from hΦν0 i and hΦl0 i, respectively.
We note that cross-couplings between different flavons exist
in general, and that these flavon cross-couplingsmaymodify
the VEV directions [42]. Here, we assume these couplings
are not allowed and thus do not consider their influence on
the VEVs. A general discussion of how the cross-couplings
modify these VEV directions and how to forbid these
couplings from a top-down approach is included in Sec. V.
The Kronecker products of these VEVs produce further

directions, which is precisely what we refer to as EAs, as
they will appear in effective terms where flavons appear M
times (as in Sec. III A). In Eq. (25), we list all possible
EAs arising from the Kronecker products of up to three of
the VEVs in Eq. (24) up to permutations of the entries of
the EA appearing as the product. Note that we are not
considering here all representatives of the classes that had
been listed in Eq. (9), but just the first representative for
each class,

M ¼ 2∶ hðΦνΦlÞ3i ∝

0
B@

2

−1
−1

1
CA; hðΦνΦlÞ30 i ∝

0
B@

0

1

−1

1
CA;

hðΦν0ΦlÞ3i ∝

0
B@

0

z

−z0

1
CA; hðΦν0ΦlÞ30 i ∝

0
B@

2

−z
−z0

1
CA;

hðΦν0Φl0 Þ3i ∝

0
B@

−z
2z0

−1

1
CA; hðΦν0Φl0 Þ30 i ∝

0
B@

−z
0

1

1
CA;

hðΦν0Φ̃l0 Þ3i ∝

0
B@

−z0

−1
2z

1
CA; hðΦν0Φ̃l0 Þ30 i ∝

0
B@

−z0

1

0

1
CA;
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M ¼ 3∶ hððΦνΦlÞ3ΦlÞ3i ∝

0
B@

4

1

1

1
CA;

hððΦνΦlÞ3Φl0 Þ3i ∝

0
B@

1

0

2

1
CA; hððΦνΦlÞ3Φl0 Þ30 i ∝

0
B@

−1
2

2

1
CA;

hððΦνΦlÞ30ΦlÞ3i ∝

0
B@

0

1

1

1
CA; hððΦν0ΦlÞ3Φl0 Þ30 i ∝

0
B@

z

2z0

0

1
CA;

hððΦν0ΦlÞ3Φ̃l0 Þ30 i ∝

0
B@

z0

0

2z

1
CA; hððΦν0ΦlÞ30ΦlÞ30 i ∝

0
B@

4

z

z0

1
CA;

hððΦν0ΦlÞ30Φl0 Þ3i ∝

0
B@

−z
2z0

2

1
CA; hððΦν0ΦlÞ30Φl0 Þ30 i ∝

0
B@

z

0

2

1
CA;

hððΦν0ΦlÞ30Φ̃l0 Þ3i ∝

0
B@

−z0

2

2z

1
CA; hððΦν0ΦlÞ30Φ̃l0 Þ30 i ∝

0
B@

z0

2

0

1
CA;

hððΦν0Φl0 Þ30ΦlÞ3i ∝

0
B@

2z

2z0

−1

1
CA; hððΦν0Φl0 Þ30ΦlÞ30 i ∝

0
B@

0

2z0

1

1
CA;

hððΦν0Φl0 Þ30Φν0 Þ30 i ∝

0
B@

2z0ffiffiffi
3

p

−1

1
CA; hððΦν0Φl0 Þ30Φν0 Þ30 i ∝

0
B@

−2z0

−2 −
ffiffiffi
3

p

1

1
CA;

hððΦν0Φl0 Þ30Φ̃ν0 Þ30 i ∝

0
B@

−2z
1

4þ ffiffiffi
3

p

1
CA; hððΦν0Φl0 Þ30Φ̃l0 Þ30 i ∝

0
B@

1

z

4z0

1
CA;

hððΦν0Φ̃l0 Þ30ΦlÞ30 i ∝

0
B@

0

1

2z

1
CA; hððΦν0Φ̃l0 Þ30Φl0 Þ30 i ∝

0
B@

1

4z

z0

1
CA;

hððΦν0Φ̃l0 Þ30Φν0 Þ30 i ∝

0
B@

2z

1ffiffiffi
3

p

1
CA; hððΦν0Φ̃l0 Þ30Φ̃ν0 Þ30 i ∝

0
B@

−2z0

4 −
ffiffiffi
3

p

1

1
CA; ð25Þ

where z ¼ 1=ð1þ ffiffiffi
3

p Þ and z0 ¼ 1=ð1 − ffiffiffi
3

p Þ. In any of
the above Kronecker products, replacing all flavons by
their conjugates corresponds to exchanging the second and
third entries [as in Eq. (8)] of the respective EA that results
from those flavons. Since hΦ̃νi and hΦ̃li are identical to
hΦνi and hΦli, respectively, replacing Φν with Φ̃ν or Φl

with Φ̃l will not modify any VEV directions in Eq. (25).

Any other Kronecker product for M ≤ 3 either vanishes or
always takes one of the directions shown in Eqs. (24) and
(25), or one related by permutations of entries. While
several higher order EAs will vanish or repeat lower order
directions, we note that as M → ∞, one obtains infinite
EAs. For example, hð…ððΦνΦlÞ3ΦlÞ3…ΦlÞ3i with n Φl in
the contraction gives the direction proportional to
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ðð−2Þn; 1; 1ÞT , and hð…ððΦν0ΦlÞ30ΦlÞ30…ΦlÞ30 i with n Φl
in the contraction gives the direction proportional to
ðð−2Þn; z; z0ÞT .

C. Lepton mixing in the CSD framework

In the framework of CSD, we can use the flavon VEVs in
Eq. (24) and the EAs derived from them in Eq. (25) to
realize special leptonic mixing. We introduce three right-
handed neutrinos, all of which are singlets of S4: N1, N2,
N3 ∼ 1 or 10. The SM fermions and the Higgs are arranged
as lL ¼ ðle;lμ;lτÞT ∼ 3, eR ∼ τR ∼ 10, and μR ∼H ∼ 1
under S4. Then we write the following Lagrangian terms:

−Ll¼ðY 0
τlLÞ10HτRþðYμlLÞ1HμRþðY 0

elLÞ10HeRþH:c:;

−Lν¼
X

i¼1;2;3

ðYð0Þ
i lLÞ1ð0ÞH̃Niþ

1

2
MiN̄c

i NiþH:c:; ð26Þ

where the choice of 1 or 10 for the combination of Yð0Þ
i lL

depends on the representation ofNi. There are a lot of ways
to arrange the charged lepton Yukawa coupling as

Ye ∝

0
B@

1

0

0

1
CA; Yμ ∝

0
B@

0

1

0

1
CA; Yτ ∝

0
B@

0

0

1

1
CA; ð27Þ

from the flavon VEVs and their EAs. For example,
Ye ∝ hððΦl0Φl0 Þ3Φl0 Þ3;30 i, Yμ ∝ hðΦl0Φl0 Þ3i, Yτ ∝ hΦl0 i.
From these couplings, charged leptons obtain a diagonal
mass matrix, and all flavor mixing comes from the neutrino

Yukawa couplings Yð0Þ
i . The latter can in principle take any

combination of three directions from Eqs. (24) and (25).

We normalize Yð0Þ
i to Vi, respectively, with V†

i Vi ¼ 1

required; therefore Vi now denote the normalized (and
dimensionless) directions of the VEVs. The final active
neutrino mass matrix takes the form

Mν ¼
X

i¼1;2;3

v2

MNi

Yð0Þ
i Yð0ÞT

i ¼
X

μiViVT
i ; ð28Þ

where μi are complex mass parameters, unspecified by
the flavor symmetry. The VEV combinations Vi and the
parameters μi fully determine the mixing. In the original
idea of CSD models, a hierarchy of μ1, μ2, and μ3 is
assumed based on a strong hierarchy of the right-handed
neutrino masses, but here we do not make this assumption
unless mentioned explicitly.
The use of VEV directions in CSD models with two only

right-handed neutrinos (RHNs) is particularly predictive as
it corresponds to one μi being zero, and therefore one of the
active neutrinos having zero mass, by the following argu-
ment. For normal hierarchy (NH), m1 ¼ 0, as with the
first column of the Pontecorvo-Maki-Nakagawa-Sakata

(PMNS) matrix U1 holds that U†
1Mν ¼ m1UT

1 ¼ 0. From
Eq. (28) with μ3 ¼ 0 we get Mν ¼ μ1V1VT

1 þ μ2V2VT
2 .

Multiplying U†
1 from the left of Mν, we obtain

ðμ1U†
1V1ÞVT

1 þ ðμ2U†
1V2ÞVT

2 ¼ 0. If VT
1 is linearly inde-

pendent of VT
2 , we must have vanishing coefficients, i.e.,

U†
1V1 ¼ U†

1V2 ¼ 0. Thus, once we choose two VEV
directions (V1 and V2) from Eqs. (24) and (25), we can
determine the first column of the PMNS matrixU1 directly.
Based on the relation between V1 and V2, we emphasize the
following two cases:

(i) V1 is orthogonal to V2, V
†
1V2 ¼ 0: It directly leads to

the PMNS mixing matrix

UPMNS ¼ ðU1; V1; V2Þ or ðU1; V2; V1Þ; ð29Þ

where we do not show the free Majorana phases
for simplicity. In this case, the mixing matrix
is a constant mixing pattern with three columns
independent of the neutrino masses (also referred
to as mass-independent mixing schemes or form-
diagonalizable schemes [43]). The neutrino mass
eigenvalues are fm1; m2; m3g ¼ f0; jμ1j; jμ2jg or
f0; jμ2j; jμ1jg, respectively. It is very easy to realize
some constant mixing pattern. For example, the tri-
bimaximal (TBM) mixing

UTBM ¼

0
BBB@

2ffiffi
6

p 1ffiffi
3

p 0

−1ffiffi
6

p 1ffiffi
3

p 1ffiffi
2

p

−1ffiffi
6

p 1ffiffi
3

p −1ffiffi
2

p

1
CCCA ð30Þ

is realized by picking from the available directions

V1 ∝ hΦνi; V2 ∝ hðΦlΦνÞ30 i: ð31Þ

Another constant mixing which can be similarly
realized is the Toorop-Feruglio-Hagedorn (TFH)
mixing [17]

UTFH ¼

0
BBB@

−1
3−
ffiffi
3

p 1ffiffi
3

p 1

3þ ffiffi
3

p

1ffiffi
3

p 1ffiffi
3

p 1ffiffi
3

p

1

3þ ffiffi
3

p 1ffiffi
3

p −1
3−
ffiffi
3

p

1
CCCA: ð32Þ

This pattern predicts nonzero θ13 at leading order. It
is obtained by choosing

V1 ∝ hΦνi; V2 ∝ hΦν0 i: ð33Þ

However, these patterns have been experimentally
excluded by current data. To be consistent with
current data, small corrections, δV2 or δV3, would
need to be included (see, e.g., [44,45]).
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(ii) V1 is not orthogonal to V2: The mixing matrix can
be parametrized by a rotation between the second
and third columns,

UPMNS ¼ ðU1; V1; V2Þ

0
B@

1 0 0

0 cos θ sin θe−iγ

0 − sin θeiγ cos θ

1
CA;

ð34Þ

where θ and γ are functions of μ1=μ2, i.e., the neutrino
mass ratio. This is a partially constant mixing, where
the first column is independent of neutrino masses. A
common example is TM1 mixing [46–49], which
arises when V1, V2⊥ð2;−1;−1ÞT and can be ob-
tained adequately with S4 [50] or other groups [35].
Another example is the CSD2 model with two RHNs.
In this model,

V1 ∝ hððΦlΦνÞ3Φ̃l0 Þ3i; V2 ∝ hðΦlΦνÞ30 i: ð35Þ

With these alignments, the neutrino mass matrix is
given by

Mν ¼
μ2
2

0
B@

0 0 0

0 1 −1
0 −1 1

1
CAþ μ1

5

0
B@

1 2 0

2 4 0

0 0 0

1
CA:

ð36Þ

For further discussion of this scenario, please
see [21,22].

On the other hand, for the case of inverted hierarchy (IH)
with two RHNs, since m3 ¼ 0 holds as the third column of
the PMNS matrix U3 follows that U

†
3Mν ¼ m3UT

3 ¼ 0, one
obtains U†

3V1 ¼ U†
3V2 ¼ 0. Thus, similar to the NH case,

once we pick up two VEV directions (V1 and V2) from
Eqs. (24) and (25), we can determine U3 directly. If in
addition V†

2V3 ¼ 0, then the PMNS matrix is given by
UPMNS ¼ ðV1; V2; U3Þ or ðV2; V1; U3Þ, ignoring Majorana
phases. If V†

1V2 ≠ 0, only the third column of the PMNS
is mass independent. As for the first entry of U3,
jU13j ¼ sin θ13, one has to carefully choose V1 and V2

in this scenario. We already showed an example leading to
the TFH mixing in Eq. (32), by selecting V1 ¼ Φν0 and
V2 ¼ Φν. In the sense that it produces a good value for
the reactor angle (but not of the other mixing angles),
another interesting example of U3 being defined by the
choice of V1,V2 with the EAs obtained in S4 is taking V1,
V2 as ðð−2ÞNþ1; 1; 1ÞT and ðð−2ÞN; z; z0ÞT . This choice
determines U3 ∝ ð1; ð−2ÞN; ð−2ÞNÞT , corresponding to a

reactor angle of sin2 θ13 ¼ 1=ð1þ 22Nþ1Þ. For N ¼ 2,
sin2 θ13 ¼ 1=33, close to the central experimental value.
In the three RHNs case, the mixing matrix and mass

eigenvalues are in general functions of just V1;2;3 and μ1;2;3,
and mixing parameters and masses are correlated with each
other. One special case is that V1, V2, V3 are orthogonal
with each other, V†

i Vj ¼ δij. In that case, up to the
Majorana phases which we do not show, the mixing matrix
is directly given by UPMNS ¼ ðV1; V2; V3Þ up to the
permutation of columns, and the mass eigenvalues are
just jμ1j, jμ2j, and jμ3j. Another interesting case is, as
originally proposed in the CSD framework [20–22], that
of hierarchical structures among μ1, μ2, and μ3, e.g.,
jμ3j ≪ jμ1j < jμ2j. There, one may treat the lightest mass
parameter as a small perturbation that produces corrections
at the level of μ3=μ1 or μ3=μ2 to the PMNS matrix derived
with 2RHNs.

IV. CSD2 MODELS

We intend now to build a few specific models using EAs.
In general, without any symmetry distinguishing the
flavons, all different higher order operators can contribute,
such that the full effective Yukawa coupling to right-handed
neutrinos becomes

H½ðl3ðϕ1 þ � � � þ ϕ2
1 þ ϕ1ϕ2 þ � � �

þϕiϕj…ϕn þ � � �Þ3ð0Þ Þ1ð0ÞNi�1: ð37Þ

In front of every contribution in the sum, a coefficient has
been omitted. In order to increase the predictivity of the
model, one should avoid having more than one term
consisting of different flavon combinations in the coupling
to each right-handed neutrino, as more combinations
introduce additional free parameters. We are going to
achieve this by having the flavons be charged under
Uð1ÞF. This still allows multiple orderings of the same
flavon combinations; e.g., if ϕ1ϕ2 is allowed by Uð1ÞF,
then ϕ2ϕ1 is also allowed and may correspond to a different
EA. This in turn will be avoided by constructing UV
complete theories that allow only one of the orderings in the
needed effective operator.
The models will be built in the CSD framework. In

models of this type, two directions are fixed at V1 ¼
ð1; 2; 0ÞT= ffiffiffi

5
p

and V2 ¼ ð0; 1;−1ÞT= ffiffiffi
2

p
; thus we refer to

them as CSD2 models. The only difference is the
third VEV direction, V3 ¼ ð0; 0; 1ÞT , ð1; 1; 1ÞT , and
ð2;−1;−1ÞT , in Models I, II, and III, respectively. The
active neutrino mass matrix in these models are exactly
written out as
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ModelI∶ Mν ¼ μ3

0
B@

0 0 0

0 0 0

0 0 1

1
CAþ μ2

2

0
B@

0 0 0

0 1 −1
0 −1 1

1
CAþ μ1

5

0
B@

1 2 0

2 4 0

0 0 0

1
CA;

ModelII∶ Mν ¼
μ3
3

0
B@

1 1 1

1 1 1

1 1 1

1
CAþ μ2

2

0
B@

0 0 0

0 1 −1
0 −1 1

1
CAþ μ1

5

0
B@

1 2 0

2 4 0

0 0 0

1
CA;

ModelIII∶ Mν ¼
μ3
6

0
B@

4 −2 −2
−2 1 1

−2 1 1

1
CAþ μ2

2

0
B@

0 0 0

0 1 −1
0 −1 1

1
CAþ μ1

5

0
B@

1 2 0

2 4 0

0 0 0

1
CA: ð38Þ

Model I can be understood as the original CSD2 model [21],
but with three right-handed neutrinos, which allows μ3 ≠ 0.
Models II and III preserve TM1 mixing. Note in Model II
that the three VEV directions are not linearly independent of
each other, and thus the lightest neutrino mass in Model II
[corresponding to the eigenvector ð2;−1;−1Þ] vanishes.
A phenomenological analysis corresponding to these mass
matrices is presented in Sec. IVB.

A. Example models

In this section we employ our technique of EAs, obtained
through combining two or more VEVs, in order to build a
model with directions similar to those of CSD models.
Recall that the VEVs or EAs to be used in the models of

Eq. (38) arise, respectively, via

hΦl0 i ∝

0
B@

0

0

1

1
CA; hΦ

ð∼Þ
νi ∝

0
B@

1

1

1

1
CA;

hðΦ
ð∼Þ

νΦ
ð∼Þ

lÞ3i ∝

0
B@

2

−1
−1

1
CA; hðΦ

ð∼Þ
νΦ
ð∼Þ

lÞ30 i ∝

0
B@

0

1

−1

1
CA;

hððΦ
ð∼Þ

νΦ
ð∼Þ

lÞ3Φ̃l0 Þ3i ∝

0
B@

1

2

0

1
CA; ð39Þ

where the tilde refers to the conjugation shown in Eq. (8),
which swaps the second and third directions, which does
not affect the directions shown above. In principle, Model I
should be constructed by selecting the first, fourth, and
fifth directions, while Model II or III is obtained by
replacing the first direction with the second or third
direction, respectively.
At the level of model building, our method runs into an

issue with respect to EAs obtained from combining three
(or more) VEVs—more than one different direction can
arise from combining those three VEVs in a different
ordering. In this case, at the nonrenormalizable level the

symmetries alone cannot forbid the other orderings and two
of the many directions that would arise are the permutations
of the (1,2,0) direction,

hððΦlΦνÞ30Φ̃l0 Þ3i ∝

0
B@

1

0

2

1
CA;

hððΦ̃l0ΦνÞ30ΦlÞ3i ∝

0
B@

2

1

0

1
CA; ð40Þ

corresponding to having a Φ̃0
l [here we omit the optional

conjugations of Eq. (8) onΦν andΦl that do not change the
directions]. In order to preserve the models’ predictivities
and to have them remain viable, we want to have only three
of the EAs in Eq. (39) when constructing the Dirac neutrino
mass matrix. In order to do this, we construct UV complete
models with fermionic messengers such that the renorma-
lizable terms allow only the EAs wanted in that model.

1. Model I

For Model I, we write the following terms:

Lν ¼ lL H̃ Aþ ĀΦlBþ ĀΦ̃l0Cþ C̄Φ̃lDþ D̄Φ̃νN1

þ B̄Φ̃νN2 þ ĀΦl0N3 ð41Þ

þMAĀAþMBB̄BþMCC̄CþMDD̄D

þM1N̄c
1N1 þM2N̄c

2N2 þM3N̄c
3N3 þ H:c: ð42Þ

with messengers A, B, C, and D having generic mass terms
denoted by M, and where we omitted the dimensionless
couplings.
A possible solution for Uð1Þ × Z2 charges that achieves

this without accidental terms is listed in Table I. In order to
avoid Majorana mass terms for the vectorlike fermions,
which we denoted by A, B, C, and D in the model, we
arrange Uð1ÞF charges for all of them. Each flavon also
transforms nontrivially underUð1ÞF to keep their potentials
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even and eliminate cross-couplings between different flavon
fields; cf. Sec. II. In addition we also have the Majorana
terms Nc

i Ni with massesMNi
, and cross terms such asNc

1N2

are forbidden by the assignments under two Z2 symmetries
which we refer to as Za

2 and Zb
2 charges. After the vector-

like fermions are integrated out, we obtain effective higher-
dimensional operators up to dimension seven

1

M3
ððΦ̃νΦ̃lÞ3Φ̃l0 Þ3lL H̃ N1;

1

M2
ðΦ̃νΦlÞ30lL H̃ N2;

1

M
Φl0lL H̃ N3: ð43Þ

Due to the requirement of Uð1ÞF symmetry, all the other
higher-dimensional operators contributing to neutrino
Yukawa couplings appear at dimension ≥ 8. As described
in general in Sec. III A, after integrating out the vectorlike
fermions, the order of the flavons is reversed.
The respective diagrams are shown in Figs. 3–5. We

show also the diagram corresponding to the effective
operator for N1 in Fig. 6, with the reversed ordering of
the flavons (cf. Sec. III A and Figs. 1 and 2).

The charged lepton sector gives rise to a diagonal mass
matrix through the following effective terms, using only
directions obtained from powers of Φl0 [see Eq. (25)]:

Le ¼ HlLðððΦl0Φl0 Þ3Φl0 Þ30eR þ ðΦl0Φl0 Þ3μR þΦl0τRÞ;
ð44Þ

where the charge assignments are that τR and eR are both
Zb
2-odd and 10 under S4 (recall Φl0 is a 30 so this is required

to make the S4 invariant contraction with lL). μR is Zb
2-even

and a 1 of S4. The Uð1ÞF charges are, respectively, −4, −2,
and 0 for eR, μR, and τR.

5 A possible UV completion
for these terms requires its own set of messengers which
have different Uð1ÞY assignments compared to the ones of
the neutrino sector (due to neutrino terms featuring H̃
instead of H).

2. Model II

For Model II, we write the following terms:

Lν ¼ lL H̃ Aþ ĀΦlBþ ĀΦ̃l0Cþ C̄Φ̃lDþ D̄Φ̃νN1

þ B̄Φ̃νN2 þ ĀΦνN3 ð45Þ

þMĀAþMB̄BþMC̄CþMD̄DþM1Nc
1N1

þM2Nc
2N2 þM3Nc

3N3 þ H:c:; ð46Þ

where we again generically denoted messenger masses with
M, and omitted the dimensionless couplings.
A possible solution for Uð1Þ × Z2 charges that achieves

this without accidental terms is listed in Table II. Apart
from the different charges, Model II is similar to Model I,

TABLE I. Fields and charges for Model I.

Field lL H N1 N2 N3 Φl0 Φl Φν A B C D

S4 3 1 1 10 1 30 3 3 3 3 30 3
Uð1ÞF 2 0 0 0 0 2 −1 −3 2 3 4 3
Za
2 0 0 1 1 0 0 1 0 0 1 0 1

Zb
2

0 0 1 0 1 1 0 0 0 0 1 1

FIG. 3. Diagram with UV completion for N1 in Models I, II,
and III.

FIG. 4. Diagram with UV completion for N2 in Models I, II,
and III.

FIG. 5. Diagram with UV completion for N3 in Model I.

FIG. 6. Diagram with the effective diagram for N1 in Models I,
II, and III.

5The contraction HlLðΦ̃lΦ̃lÞ30 ÞτR is allowed but we omit it as
the respective direction vanishes.
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all vectorlike fermions and flavons have Uð1ÞF charges,
and cross terms between the Ni are forbidden by distinct Z2

charges. After the vectorlike fermions are integrated out,
we obtain an effective higher-dimensional operator up to
dimension seven,

1

M3
ððΦ̃νΦ̃lÞ3Φ̃l0 Þ3lL H̃ N1;

1

M2
ðΦ̃νΦlÞ30lL H̃ N2;

1

M
ΦνlL H̃ N3: ð47Þ

Despite the different charges, the model shares two
diagrams with Model I, and thus the respective diagrams
are shown in Figs. 3, 4, and 7.
Similar to Model I, one can arrange the charged lepton

sector to give rise to a diagonal mass matrix through
effective terms using directions obtained from powers of
Φl0 , although the charge assignments need to be altered.
The Z2 and S4 assignments remain, with τR and eR both
Zb
2-odd and 1

0 under S4 and μR being Zb
2-even and a 1 of S4.

The Uð1ÞF charges become, respectively, 13, 9, and 5 for
eR, μR, and τR. This is only one of many possibilities of
obtaining the required diagonal Yukawa terms from our set
of flavon VEVs, which we choose despite the relatively
high Uð1ÞF charges because it uses the same terms as
Model I, which automatically incorporate a suppression of
the masses for the lighter generations (which appear only as
higher-dimensional operators).

3. Model III

Model III is obtained by rearranging the Za
2 charge of N3

as 1. Then, the coupling ĀΦνN3 is forbidden, but the
coupling B̄Φ̃νN3 is allowed. The rest of the Lagrangian is

not modified. With this rearrangement, the effective higher-
dimensional operator for generating the N3 Yukawa struc-
ture is altered to

1

M2
ðΦ̃νΦlÞ3lL H̃ N3: ð48Þ

Model III shares two diagrams with Models I and II,
with the respective diagrams shown in Figs. 3, 4, and 8.
Similarly, Model III has the same charged lepton sector as
Model II above.

B. Phenomenology of the CSD2 models

The mixing parameters of Models I, II, and III depend on
their respective fixed EAs and on the μi parameters. In this
section we present results from a numerical exploration
of the three models, comparing with a global fit with the
following 3σ ranges for the three mixing angles and mass-
square differences [51] in NH:

θ12 ∈ ½31.38°; 35.99°�;
θ23 ∈ ½38.4°; 52.8°�;
θ13 ∈ ½7.99°; 8.90°�;

Δm2
21 ∈ ½7.03; 8.09� × 10−5 eV2;

Δm2
31 ∈ ½2.407; 2.643� × 10−3 eV2: ð49Þ

The aim was to generate a sufficient number of points in the
space of input parameters of each of the models such that
possible correlations that are not easy to see analytically
become apparent. For each of those random points in
parameter space, the mixing angles, masses, δCP, and
jmeej ¼ jðMνÞ11j (relevant for neutrinoless double-beta
decay; cf. [52], Sec. 14.4) had been calculated and a point
would be kept if the calculated observables were within
their respective three-sigma ranges from the global fit. All
other points were discarded. The input parameters of each
model were expressed as μi ¼ jμijeiArgðμiÞ. Furthermore, the
overall scale of neutrino masses cannot be constrained by
above data, which is why an overall factor μ0 was pulled
out of every μi, which for valid points was set such that the
calculated Δm2

31 would attain its central value from the
global fit. This parametrization has the additional effect that
only the ratio of mass splittings ðΔm2

31Þ=ðΔm2
21Þ, in which

μ0 cancels, has to be compared with data.

TABLE II. Fields and charges for Model II.

Field lL H N1 N2 N3 Φl0 Φl Φν A B C D

S4 3 1 1 10 1 30 3 3 3 3 30 3
Uð1ÞF 1 0 0 0 0 −4 2 1 1 −1 −3 −1
Za
2 0 0 1 1 0 0 1 0 0 1 0 1

Zb
2

0 0 1 0 0 1 0 0 0 0 1 1

FIG. 7. Diagram with UV completion for N3 in Model II.

FIG. 8. Diagram with UV completion for N3 in Model III.
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Hence, for each model 107 points were generated with
parameter values jμij ∈ ½0; 1� and ArgðμiÞ ∈ ½0; 2π�. For
each model, every observable was plotted against every
other observable, and the most interesting of these plots
are shown in this section, plotting the valid points of each
model on top of each other to allow for comparison
between the models.
Our numerical results show that more points are allowed

in Models II and III than in Model I.
Analytically, we know that in both Model II and

Model III, the mixing matrix has one constant column
∝ ð2;−1;−1Þ, corresponding to the TM1 mixing scheme,
leading to well defined correlations between θ12 and θ13
(see Fig. 9)

jUe1j2 ¼ cos2 θ12ð1 − sin2 θ13Þ ¼
2

3
: ð50Þ

Figure 10 shows the predicted CP-violating phase δ
correlated with θ23. Model I predicts CP violation but

non-maximal-violating value. Models II and III predict
maximal CP violation at θ23 ¼ 45°. For θ23 deviating from
the maximal mixing value, Models II and III give the same
correlation between δ and θ23 because of the TM1 mixing,

jUe2j2 ¼ sin2θ12cos2θ23 þ cos2θ12sin2θ23sin2θ13

þ 1

2
sin 2θ12 sin 2θ23 sin θ13 cos δ ¼

1

6
: ð51Þ

In the remaining figures it is clear from the presence of
some blue circles that Model I is also viable. This does not
contradict the results of [22], where only the case with two
RH neutrinos was excluded. In our parametrization, this
corresponds to Model I, II, or III with μ1 ¼ 0. For μ1 ≠ 0,
Model II still predicts m1 ¼ 0. This is because the three
vectors V1, V2, and V3 are not linearly independent
with each other in Model II, and thus the rank of the mass
matrix is 2. The three vectors V1, V2, and V3 are linearly
independent of each other, and thus predict three nonzero
mass eigenvalues, which can be verified that none of the
viable points for Model I and III have m1 ¼ 0 (see, e.g.,
Figs. 11 and 12).
Figures 13 and 14 give correlations between the effective

neutrinoless double beta decay parametermee and eitherm1

or δ. Figure 13 shows a tight correlation and narrow
allowed region for mee in Model I and for Model II which
cannot be larger than about 0.005 eV (due to the smallness
of m1 in those models), whereas Model III can have mee
going up to 0.020 eV as m1 grows larger.
Figure 14 gives the correlation between Dirac CP

violating phase δ and mee. One can see δ has the same
possible ranges for Models II and III (in accordance with
both leading to TM1 mixing schemes). For Model I δ can
take values of δ outside the ranges allowed by TM1 (when
considering the experimental ranges of the angles).

FIG. 9. Plot of the correlation between θ12 and θ13 in Models I
(blue circles), II (purple squares), and III (brown diamonds).
Models II and III have the same correlation so the points overlap.

FIG. 10. Plot of the correlation between θ23 and δ in Models I
(blue circles), II (purple squares), and III (brown diamonds).

FIG. 11. Plot of the correlation between θ23 andm1 in Models I
(blue circles), II (purple squares), and III (brown diamonds).
Model II has m1 ¼ 0.
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V. FLAVON CROSS-COUPLINGS: THEIR
INFLUENCES AND ABSENCE

The total flavon potential should include not only
potentials of each single flavon but also cross-couplings
between them [42]. By introducing additional Abelian
symmetries, parts of these couplings may be forbidden,
but not all of them. There are always some cross-
couplings left. These couplings may result in shifts of
VEVs deviating from their original directions in
Eq. (24), affecting the results shown in the previous
section. In this section, we will analyze how cross-
couplings modify flavor mixing and provide a generic
way to forbid them.

A. Effects of cross couplings

We take the following example to show how flavon
VEVs are shifted and how the mixing is modified. The new
Abelian symmetries we introduce are

Zl
3∶ ðμR;Φl;Φl0 Þ → ωðμR;Φl;Φl0 Þ; τR → ω2τR;

Zν0
2 ∶ ðN3;Φν0 Þ → −ðN3;Φν0 Þ: ð52Þ

The only cross-couplings that cannot be forbidden between
two flavons ΦA and ΦB are

VðΦA;ΦBÞ ¼
X
r

ϵABr ððΦ̃AΦAÞrðΦ̃BΦBÞrÞ1; ð53Þ

where r¼1;2;3;30 and all coefficients ϵABr are real required
by the Hermitian of the Lagrangian. The whole flavon
potential can be represented as

V ¼
X
A

VðΦAÞ þ
X
A≠B

VðΦA;ΦBÞ ð54Þ

for A, B sum for ν; ν0; l; l0 and A ≠ B. The shifted VEVs
can be analytically obtained when assuming jϵABr j ≪ jgij.
However, since there are too many cross-coupling terms,
the results are very complicated. On the other hand, as we
only care about those that shift the directions of the flavon
VEVs, it is unnecessary to account for all contributions for
cross-couplings. A simpler way to derive the flavon VEV
shifts is to apply the residual symmetries of the VEVs at
leading order.

(i) We first consider the residual symmetries that
the VEVs in Eq. (24) satisfy. hΦνi is invariant
under the actions of S and U, namely satisfying a
Klein symmetry K4 ¼< S;U >. hΦli is invariant
under the actions of T and U, satisfying a S3
symmetry with S3 ¼< T;U >. Both K4 and S3 are
subgroups of S4. hΦν0 i does not satisfy any residual

FIG. 12. Plot of the correlation between θ13 andm1 in Models I
(blue circles), II (purple squares), and III (brown diamonds).
Model II has m1 ¼ 0.

FIG. 13. Plot of the correlation betweenm1 andmee in Models I
(blue circles), II (purple squares), and III (brown diamonds).
Model II has m1 ¼ 0. Note that the current best lower limit on
jmeej is at 0.18 eV [53].

FIG. 14. Plot of the correlation between δ and mee in Models I
(blue circles), II (purple squares), and III (brown diamonds).
Model II has m1 ¼ 0. Note that the current best lower limit on
jmeej is at 0.18 eV [53].
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symmetries, but any products hðΦ̃ν0Φν0 Þri satisfy the
K4 symmetry.6 One can check that7

hðΦ̃ν0Φν0 Þ2i ∼
�
1

1

�
;

hðΦ̃ν0Φν0 Þ3i ∼ 0; hðΦ̃ν0Φν0 Þ30 i ∼

0
B@

1

0

0

1
CA ð55Þ

hΦl0 i does not satisfy any residual symmetries, either,
but its products

hðΦ̃l0Φl0 Þ2i ∼ 0;

hðΦ̃l0Φl0 Þ3i ∼ hðΦ̃l0Φl0 Þ30 i ∼

0
B@

1

1

1

1
CA ð56Þ

satisfy the S3 symmetries.8 Due to the above analysis,
we conclude that all the combinations hðΦ̃AΦAÞri
preserve Z2 ¼< U > symmetry.

(ii) Another residual symmetry that we can use is
the general CP (GCP) symmetry under the trans-
formation

ϕ1 ↔ ϕ�
1; ϕ2 ↔ ϕ�

3: ð57Þ

This is an accidental symmetry that all VEVs in
Eq. (24) satisfy. One can also check that since each
combination ðΦ̃AΦAÞr corresponds to a flavor sym-
metry and the operator ððΦ̃AΦAÞrðΦ̃BΦBÞrÞ1 is
invariant under this transformation, the potential V
is invariant under the CP transformation.

Residual symmetries are powerful in deriving the structure
of the modified flavon VEVs. Considering the correction to
the VEVs hΦνi and hΦli, their VEVs preserve the Z2 and
GCP symmetries at leading order and every cross-coupling
also preserves them; thus

hΦνi ¼

0
B@

1

ϵν1

ϵν1

1
CAvI;

hΦli ¼

0
B@

1þ 2ϵl1

1 − ϵl1

1 − ϵl1

1
CA vIIIffiffiffi

3
p ; ð58Þ

where all parameters are real. To derive the correction to
hΦν0 i and hΦl0 i, one can naively express a CP-preserving
VEV as

hΦν0 i ¼

0
B@

ffiffiffi
2

p
ϵν2

eþiπ=4ð1þ iϵν3Þ
e−iπ=4ð1 − iϵν3Þ

1
CA vIIffiffiffi

2
p ;

hΦl0 i ¼

0
B@

1ð1þ 2ϵl2Þ
ωð1 − ϵl2 þ i

ffiffiffi
3

p
ϵl3Þ

ω2ð1 − ϵl2 − i
ffiffiffi
3

p
ϵl3Þ

1
CA vIII0ffiffiffi

3
p ; ð59Þ

where all parameters are real. Corrections from all the other
cross-couplings will modify the sizes of vI;II;III;III0, we can
redefine them to absorb these effects, and after doing so, we
arrive at the flavon VEVs in the form as in Eqs. (58) and
(60). In the second basis, these VEVs are transformed into

hΦνi ¼

0
B@

1þ 2ϵν1

1 − ϵν1

1 − ϵν1

1
CA vIffiffiffi

3
p ;

hΦν0 i ¼

0
BB@

1ffiffi
3

p þ ϵν2ffiffi
3

p − ϵν3ffiffi
3

p

1

3þ ffiffi
3

p þ ϵν2ffiffi
3

p − −ϵν3
3−
ffiffi
3

p

−1
3−
ffiffi
3

p þ ϵν2ffiffi
3

p − ϵν3
3þ ffiffi

3
p

1
CCAvII;

hΦli ¼

0
B@

1

ϵl1

ϵl1

1
CAvIII;

hΦl0 i ¼

0
B@

ϵl2 − ϵl3

ϵl2 þ ϵl3

1

1
CAvIII0 : ð60Þ

For models with constant mixing patterns at leading
order, we need the cross couplings to introduce next-to-
leading order corrections to pull the mixing angles to the
experimental allowed regimes [42], such as models to
realize TBM or TFH mixing.
As an example of the possible effects of these perturba-

tions on phenomenology, we reconsider the EAs in
Eq. (35), which we then use to generate simplified models
(with two RH neutrinos). These simplified models are
not viable for the unperturbed EAs. The perturbed direc-
tions are

Vϵ
1 ¼

1ffiffiffi
5

p

2
64ð1 − ϵl1Þ

0
B@

1

2

0

1
CAþ

0
B@

−ϵl2 − ϵl3 − ϵν1

þϵl2 − ϵl3 þ 4ϵν1

−3ϵl2 − ϵl3

1
CA
3
75;
ð61Þ

6We note that hΦν0 i preserves a “square-root symmetry of K4.”7Actually, hðΦ̃ν0Φν0 Þ30 i is invariant under the action of −U not
U in the 30 representation, but the “−” sign does not matter since
the 30 representation always appears in pairs in the flavon
potential.

8We regard that hΦl0 i preserves a “square-root symmetry of S3.”
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Vϵ
2 ¼

1ffiffiffi
2

p

2
64ð1 − ϵl1 − ϵν1Þ

0
B@

0

1

−1

1
CA
3
75: ð62Þ

It turns out that one of the EAs remains in the same
direction after perturbations are taken into account, and we
can just reabsorb the perturbation of Vϵ

2 into the overall
proportional coefficient. This can only be done partially to
Vϵ
1, from where we note also that the perturbation propor-

tional to ϵl3 is proportional to the EA (1,1,1) considered in
the viable Model II, which indicates that the perturbed
model with two RH neutrinos may be viable (for ϵl2 ¼
ϵν1 ¼ 0 and sufficiently large ϵl3 we would recover
Model II, although the ϵl3 required may be too large to
be consistent with ϵl3 being a perturbation).
The mass matrix in Eq. (28) then becomes

Mν ¼
X

μiVϵ
iV

ϵT
i ; ð63Þ

and we consider the sum only with two EAs, as the model
becomes viable even without the third RH neutrino.
Figures 15 and 16 show points that are viable for all
observables for this simplified model with two RH neu-
trinos; cf. Figs. 9 and 10. Here, we take ϵl2, ϵl3, and ϵν1 to
vary randomly in the range [0, 0.1] for illustration.
We conclude that allowing for cross-couplings increases

the viability of models, at the potential cost of predictivity.
In the example chosen, the two RH neutrino model
becomes viable and is fairly predictive when compared
with the three RH neutrino models.

B. Avoiding cross-couplings

For some other models, flavon cross-couplings are
unnecessary because they may make the model lose
predictive power. In order to forbid these couplings, we
need some other new physics at high scale.

Supersymmetry provides an option to avoid flavon
cross-couplings, although one should note the supersym-
metry breaking soft terms reintroduce them, and they are
relatively suppressed when compared with nonsupersym-
metric theories. We take the potential of an arbitrary φ ∼ 3
for example. Introducing driving fields φd

1 ∼ 1, φd
2 ∼ 2,

φd
3 ∼ 3, φd

30 ∼ 30, which take aUð1ÞR charge 2, we construct
the following superpotential:

w¼ f01ðφφÞ1φd
1 þ f02ðφφÞ2φd

2 þ f03ðφφÞ3φd
3 þ f04ðφφÞ30φd

30 :

ð64Þ

The scalar potential is VðφÞ þ VðφdÞ, where

VðφÞ ¼
X
φd
i

���� ∂w∂φd
i

����2 þ μ2φðφ̃φÞ1;

VðφdÞ ¼
���� ∂w∂φ

����2 þX
φd
i

μ2
φd
i
jφd

i j2: ð65Þ

Here, μ2φ and μ2
φd
i
are soft term mass parameters, which are

much smaller than the supersymmetry scale. We do not
need to care about VðφdÞ, because the driving fields only
involve quadratic couplings in the potential and the mini-
mum of VðφdÞ is always zero at hφd

i i ¼ 0. Then the
minimization of the total scalar potential is equivalent to
that of VðφÞ, which is exactly in Eq. (2) with f1;2;3;4 as
functions of f01;2;3;4. Introducing less driving fields can
provide additional constraints to the coefficients f1;2;3;4.
Applying this approach to the flavons Φl, Φl0 , Φν, and

Φν0 , we construct the flavon potentials VðΦlÞ, VðΦl0 Þ,
VðΦνÞ, and VðΦν0 Þ from their superpotentials. Once we
avoid introducing cross-couplings in the superpotential, no
cross-coupling in the flavon potential will be constructed in
the flavon potential. In former works, such as in [9], the

FIG. 16. Plot of the correlation between θ23 and δ in a model
with two RH neutrinos, including effects of cross terms per-
turbing one of the EAs.

FIG. 15. Plot of the correlation between θ12 and θ13 in a model
with two RH neutrinos, including effects of cross terms per-
turbing one of the EAs.
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minimization of the flavon potential is always simplified to
solve the following series of equations:

∂w
∂φd

i
¼ 0: ð66Þ

This is valid in the limit of soft terms being much smaller
than the supersymmetry scale, such that we can safely
neglect the soft terms. Here in Eq. (64), however, as we
have introduced redundant degrees of freedom for driving
fields, the only solution for Eq. (66) is hφd

i i ¼ 0. To find
some nontrivial solutions, we have to return to minimize
VðφÞ directly, as we did in Sec. II.
For UV-complete model constructions in the framework

of supersymmetry, the holomorphy requirement does not
allow couplings containing conjugates of any superfields in
the superpotential. As a consequence, the required Yukawa
structures via higher dimensional operators such as
ðΦ̃νΦlÞ3lL H̃ N2 and ððΦ̃νΦlÞ3Φl0 Þ3lL H̃ N3 cannot be
obtained. This situation is easily avoided by introducing
extra flavon superfields which take the opposite Uð1ÞF
charges of Φl and Φν but all the other representation
properties and the VEV directions the same as Φl and Φν,
respectively.

VI. CONCLUSIONS

In this paper we explored the construction of effective
alignments and their use as building blocks for models.
These effective alignments emerge in higher-order oper-
ators from the vacuum expectation values of flavon fields
that arise naturally from the potentials of discrete flavor
symmetries. Fermion mass terms are then built using such
effective alignments and viable flavor models as can
be found.
This method can obtain certain alignments that could not

be obtained otherwise. In certain cases, we obtain the same
alignments obtained via other mechanisms in the literature,
but in a much simpler way than aligning them directly.
Some examples of this are the directions used in order to
obtain the well-known tri-bimaximal mixing, Toorop-
Feruglio-Hagedorn mixing, and in particular some of the
directions of constrained sequential dominance.
Considering potentials with one to four triplets of the

flavor symmetry S4, we classified the directions that are
obtainable from the potential and then set out to construct
models of the leptonic sector. We considered models where
the charged lepton mass matrix is diagonal due to the flavor
symmetry, and in the neutrino sector we employ three
directions that are obtainable (either vacuum expectation
values or effective alignments constructed from multiples
of them).
For these models, we illustrate with renormalizable UV

completions that models with effective alignments can be
made predictive and viable, avoiding the proliferation of
invariants that would have been allowed by the symmetries

at the nonrenormalizable level. We present three new viable
models in the constrained sequential dominance frame-
work, all of which are compatible with neutrino oscillation
data. Models II and III are new models that have not been
considered before; they preserve TM1 mixing and predict
almost maximal CP violation. In addition to this, when
cross terms are allowed in the potential, the simplified
version of the model with only two right-handed neutrinos
becomes viable. Although we used the group S4 explicitly,
similar constructions and conclusions apply to other flavor
symmetries.
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APPENDIX A: GROUP THEORY OF S4

S4 is the permutation group of four objects; see, e.g.,
[54]. The Kronecker products between different irreducible
representations can easily be obtained:

10 ⊗ 10 ¼ 1; 10 ⊗ 2 ¼ 2; 10 ⊗ 3 ¼ 30;

10 ⊗ 30 ¼ 3; 2 ⊗ 2 ¼ 1 ⊕ 10 ⊕ 2;

2 ⊗ 3 ¼ 2 ⊗ 30 ¼ 3 ⊕ 30;

3 ⊗ 3 ¼ 30 ⊗ 30 ¼ 1 ⊕ 2 ⊕ 3 ⊕ 30;

3 ⊗ 30 ¼ 10 ⊕ 2 ⊕ 3 ⊕ 30: ðA1Þ

In the main text, we have used two bases. This first one is
helpful for deriving the full solutions of the flavon vacuum
in the S4 symmetry, and the second one is applied when
calculating flavor mixing. In the first basis, generators of S4
in irreducible representations are given in Table III. In this
basis, the products for two triplets a ¼ ða1; a2; a3ÞT and
b ¼ ðb1; b2; b3ÞT are divided into the following irreducible
representations:
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ðabÞ1i ¼ a1b1 þ a2b2 þ a3b3;

ðabÞ2 ¼ ða1b1 þ ωa2b2 þ ω2a3b3;

a1b1 þ ω2a2b2 þ ωa3b3ÞT;

ðabÞ3i ¼
1ffiffiffi
2

p ða2b3 þ a3b2; a3b1 þ a1b3; a1b2 þ a2b1ÞT;

ðabÞ3j ¼
iffiffiffi
2

p ða2b3 − a3b2; a3b1 − a1b3; a1b2 − a2b1ÞT;

ðA2Þ

where

1i¼1; 3i¼3; 3j¼30 for a∼b∼3;30;

1i¼10; 3i¼30; 3j¼3 for a∼3; b∼30: ðA3Þ

And the products of two doublets a ¼ ða1; a2ÞT and
b ¼ ðb1; b2ÞT are divided into

ðabÞ1 ¼ a1b2 þ a2b1; ðabÞ10 ¼ a1b2 − a2b1;

ðabÞ2 ¼ ða2b2; a1b1ÞT: ðA4Þ

The generators of S4 in the second basis in different
irreducible representations are listed in Table IV. This
basis is widely used in the literature since the charged
lepton mass matrix invariant under T is diagonal in this
basis. The products of 2 three-dimensional irreducible
representations a and b can be expressed as

ðabÞ1i ¼ a1b1 þ a2b3 þ a3b2;

ðabÞ2 ¼ ða3b3 þ a1b2 þ a2b1; a2b2 þ a1b3 þ a3b1ÞT;

ðabÞ3i ¼
1ffiffiffi
6

p ð2a1b1 − a2b3 − a3b2; 2a3b3 − a1b2 − a2b1;

2a2b2 − a3b1 − a1b3ÞT;

ðabÞ3j ¼
1ffiffiffi
2

p ða2b3 − a3b2; a1b2 − a2b1; a3b1 − a1b3ÞT:

ðA5Þ

The products of two doublets stay the same as in Eq. (A4)
in the first basis.
The Kronecker products of multiplets of S4 require the

following properties: if the trilinear combination of three
multiplets a ∼ r, b ∼ r0, and c ∼ r00 is an invariance of S4,
e.g., ððabÞr00cÞ1, then equation

ððabÞrccÞ1 ¼ ððbcÞraaÞ1 ¼ ððcaÞrbbÞ1 ¼ ðaðbcÞraÞ1
¼ ðbðcaÞrbÞ1 ¼ ðcðabÞrcÞ1;

ððabÞr0ccÞ10 ¼ ððbcÞr0aaÞ10 ¼ ððcaÞr0bbÞ10 ¼ ðaðbcÞr0aÞ10
¼ ðbðcaÞr0bÞ10 ¼ ðcðabÞr0cÞ10 ; ðA6Þ

holds, where r0 ¼ 10; 1; 2; 30; 3 for r ¼ 1; 10; 2; 3; 30, respec-
tively. The above equation can be proved by expanding
the Kronecker products explicitly. For example, using the
Clebsch-Gordan coefficients in Eq. (A2), we derive

ððabÞ3cÞ1 ¼
X

i;j;k¼1;2;3

1ffiffiffi
2

p jϵijkjaibjck

¼
X

i;j;k¼1;2;3

1ffiffiffi
2

p jϵjkijbjckai ¼ ððbcÞ3aÞ1; ðA7Þ

for a ∼ b ∼ c ∼ 3, and

ððabÞ30cÞ1 ¼
X

i;j;k¼1;2;3

iffiffiffi
2

p ϵijkaibjck

¼
X

i;j;k¼1;2;3

iffiffiffi
2

p ϵjkibjckai ¼ ððbcÞ3aÞ1; ðA8Þ

for a ∼ b ∼ 3 and c ∼ 30.

TABLE III. The representation matrices for the S4 generators T,
S, and U in the first basis, where ω is the cube root of unit
ω ¼ e2πi=3.

T S U

1 1 1 1
10 1 1 −1
2 �ω 0

0 ω2

� �
1 0

0 1

� �
0 1

1 0

�
3  

0 0 1

1 0 0

0 1 0

!  
1 0 0

0 −1 0

0 0 −1

!  
1 0 0

0 0 1

0 1 0

!

30  
0 0 1

1 0 0

0 1 0

!  
1 0 0

0 −1 0

0 0 −1

!
−
 
1 0 0

0 0 1

0 1 0

!

TABLE IV. The representation matrices for the S4 generators T,
S, and U in the second basis, where ω is the cube root of unit
ω ¼ e2πi=3.

T S U

1 1 1 1
10 1 1 −1
2 �ω 0

0 ω2

� �
1 0

0 1

� �
0 1

1 0

�
3  

1 0 0

0 ω2 0

0 0 ω

!
1
3

 −1 2 2

2 −1 2

2 2 −1

!  
1 0 0

0 0 1

0 1 0

!

30  
1 0 0

0 ω2 0

0 0 ω

!
1
3

 −1 2 2

2 −1 2

2 2 −1

!
−
 
1 0 0

0 0 1

0 1 0

!
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APPENDIX B: MINIMIZATION OF THE
S4 × Uð1ÞF POTENTIAL

To find the possible VEVs of φ, we minimize VðφÞ. One
of the necessary conditions for the minimum of VðφÞ is

φ�
i
∂VðφÞ
∂φ�

i

����
φ¼hφi

¼ v2i
2

�
μ2φ þ g1v2i þ

�
g1 þ

1

2
g2

�
ðv2j þ v2kÞ

þ 1

2
g3ðv2je2iαji þ v2ke

2iαkiÞ
	
¼ 0; ðB1Þ

where αji ¼ αj − αi, and ijk ¼ 123, 231, 312. AVEVmust
be (meta)stable, which requires the second derivative of
VðφÞ to be positive at this value. In other words, the matrix
M2 with entries M2

ij defined through

M2
ij ¼

∂2vðφÞ
∂φ�

i ∂φj

����
φ¼hφi

ðB2Þ

must be positive definite. We distinguish the solutions into
three classes based on whether vi vanishes.

(i) Case I: One of vi is nonzero, while the others are
vanishing. Without loss of generality, we assume v1
is nonzero and v2 ¼ v3 ¼ 0. Equation (B1) is
simplified to μ2φ þ g1v21 ¼ 0, the solution is given
by v21 ¼ −μ2φ=g1, and VðφÞ at this value is given by
VðφÞI ¼ −μ4φ=ð4g1Þ. The phase α1 cannot be deter-
mined. M2 at hφiI is diagonal, with nonvanishing
values

m2
1¼−2μ2φ; m2

2¼m2
3¼

g2þg3
2g1

ð−μ2φÞ: ðB3Þ

To make m2
2 and m2

3 positive, we must require
g2 þ g3 > 0.

(ii) Case II: Two vi are nonzero, while the other one is
vanishing. Without lose of generality, we assume v2
and v3 are nonzero and v1 ¼ 0. Equation (B1) is
simplified to

μ2φ þ g1v22 þ
�
g1 þ

1

2
g2

�
v23 þ

1

2
g3v23e

2iα32 ¼ 0;

μ2φ þ g1v23 þ
�
g1 þ

1

2
g2

�
v22 þ

1

2
g3v22e

2iα23 ¼ 0:

ðB4Þ

Since all the coefficients are real, the imaginary part
of the above equation should be vanishing, which
leads to α32 ¼ nπ=2with n ¼ 0, 1, 2, 3. The real part
of the equation leads to

v22 ¼ v23 ¼
−2μ2φ

4g1 þ g2 þ ηg3
ðB5Þ

with η ¼ þ1 for n ¼ 0, 2 and η ¼ −1 for n ¼ 1, 3,
respectively. VðφÞ at this value is given by

VðφÞII ¼ −
μ4φ

4g1 þ g2 þ ηg3
: ðB6Þ

The eigenvalues of M2 in this case are given by

m2
1 ¼ −2μ2φ; −m2

2 ¼ 2m2
3 ¼

2ðg2 þ g3Þ
4g1 þ g2 þ g3

ð−μ2φÞ;

m2
1 ¼ −2μ2φ; m2

2 ¼
2ðg3 − g2Þ

4g1 þ g2 − g3
ð−μ2φÞ;

m2
3 ¼

g2 þ g3
4g1 þ g2 − g3

ð−μ2φÞ ðB7Þ

for η ¼ �1, respectively. Note that since m2
2 and m2

3

cannot both take positive values for η ¼ 1, the first
class corresponds to a saddle point of VðφÞ and
cannot be a vacuum. Thus, we only keep the other
case, η ¼ −1, or equivalently, n ¼ 1, 3. The require-
ment of positive m2

2 and m2
3 is g3 > 0 and

−g3 < g2 < g3.
(iii) Case III: All vi do not vanish. Equation (B1) is

simplified to

μ2φ þ g1v21 þ
�
g1 þ

1

2
g2

�
ðv22 þ v23Þ

þ 1

2
g3ðv22e2iα21 þ v23e

2iα31Þ ¼ 0;

μ2φ þ g1v22 þ
�
g1 þ

1

2
g2

�
ðv23 þ v21Þ

þ 1

2
g3ðv22e2iα32 þ v23e

2iα12Þ ¼ 0;

μ2φ þ g1v23 þ
�
g1 þ

1

2
g2

�
ðv21 þ v22Þ

þ 1

2
g3ðv22e2iα13 þ v23e

2iα23Þ ¼ 0: ðB8Þ

There are two classes of solutions:

2α12 ¼ 2α13 ¼ 0; v21 ¼ v22 ¼ v23 ¼
−μ2φ

3g1 þ g2 þ g3
;

2α12 ¼ −2α13 ¼
2

3
π;

4

3
π;

v21 ¼ v22 ¼ v23 ¼
−μ2φ

3g1 þ g2 − g3=2
: ðB9Þ

The corresponding value of VðφÞ is
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VðφÞIII ¼ −
3μ4φ

4ð3g1 þ g2 þ g3Þ
;

VðφÞIII0 ¼ −
3μ4φ

4ð3g1 þ g2 − g3=2Þ
: ðB10Þ

The eigenvalues of M2 in this case are given by

m2
1 ¼ −2μ2φ; m2

2 ¼
−ðg2 þ g3Þ

3g1 þ g2 þ g3
ð−μ2φÞ;

m2
2 ¼

−3g3
3g1 þ g2 þ g3

ð−μ2φÞ;

m2
1 ¼ −2μ2φ;

m2
2;3 ¼

2g3 − g2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g22 þ 2g2g3 þ 10g23

p
6g1 þ 2g2 − g3

ð−μ2φÞ

ðB11Þ

for η ¼ �1, respectively. In the case η ¼ þ1, the
requirements of positive eigenvalues are g3 < 0 and

g2 þ g3 < 0. In the other case, the requirements are
g3 > 0 and g2 þ g3 < 0.

In summary, each of these VEVs can be obtained when
the following conditions hold.

(i) If g2 þ g3 > 0 and g2 − g3 > 0, the only possible
VEV for φ is hφiI because VðφÞ at hφiI is the only
local minimum of the potential and thus also the
global minimum.

(ii) If g2 þ g3 > 0 and g2 − g3 < 0, both hφiI and hφiII
could be the vacua of φ. The flavon potential has
two classes of local minimums, at hφiII and hφiIII,
respectively, and that at hφiII is the global one. For
random values of the parameters, φ has a larger
chance to gain a VEV at hφiII.

(iii) If g2 þ g3 < 0 and g3 < 0, VðφÞ at hφiIII is the only
local and thus the global minimum of the flavon
potential. hφiIII is the only choice of the vacuum of φ.

(iv) If g2 þ g3 < 0 and g3 > 0, VðφÞ at hφiIII0 is the only
local and thus the global minimum of the flavon
potential. hφiIII0 is the only choice of the vacuum ofφ.
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