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ABSTRACT Depth-image-based rendering is widely used to support 3-D interactive graphics on low-end
mobile devices. Although it reduces the rendering cost on a mobile device, it essentially turns such a
cost into depth image transmission cost or bandwidth consumption, inducing performance bottleneck to
a remote rendering system. To address this problem, we design a scalable remote rendering framework
based on synthesized image quality assessment. Especially, we design an efficient synthesized image quality
metric based on just noticeable distortion (JND), properly measuring human-perceived geometric distortions
in synthesized images. Based on this, we predict quality-aware reference viewpoints, with viewpoint
intervals optimized by the JND-based metric. An adaptive transmission scheme is also developed to control
depth image transmission based on perceived quality and network bandwidth availability. Experimental
results show that our approach effectively reduces the transmission frequency and the network bandwidth
consumption with perceived quality on mobile devices maintained. A prototype system is implemented to
demonstrate the scalability of our proposed framework to multiple clients.

INDEX TERMS Depth-image-based rendering, remote rendering, synthesized image quality assessment,
system scalability, transmission scheme.

I. INTRODUCTION
With the advances in mobile devices and wireless trans-
mission technologies, remote rendering using depth-image-
based rendering (DIBR) becomes popular for supporting
interactive 3D graphics on low-end mobile devices. Good
examples include 3D model display [1]–[3], volume data
visualization [4], and 3D scene navigation or virtual environ-
ment walkthrough [5], [6]. Instead of sending clients explicit
geometric data for local rendering, DIBR-based remote
rendering occasionally sends clients reference depth images,
where each comprises a texture image of a rendered view and
its associated depthmap, forming inputs for a client to synthe-
size required virtual views through 3D warping [1] without
collecting such views from the server continuously. This
significantly reduces rendering cost and storage consumption
at low-end mobile devices, while supporting flexible and
interactive user interactions.

Typical DIBR-based remote rendering framework
has three main components, namely depth image

compression/decompression, depth image transmission and
virtual view synthesis. The focus of depth image compres-
sion/decompression is to reduce redundancy from depth
map to ensure coding efficiency [7]–[15]. Virtual view
synthesis uses pre-received reference depth images to
generate proper virtual views (synthesized images) by mini-
mizing geometric distortions, particularly holes around disoc-
cluded regions [16]–[23]. Depth image transmission predicts
an optimal number of reference viewpoints based on user
interaction and sends users corresponding reference depth
images. However, due to transmission cost, system scalability
becomes problematic when supporting multiple clients.

Current depth image transmission techniques can be
categorized into two types. One is time-interval-based,
which transmits reference depth image with a fixed
time interval [1], [5], [6] by predicting reference viewpoints
according to the velocity of user viewpoint movement,
thereby inducing an excessively high transmission frequency.
The other one is content-based, where reference viewpoints
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are pre-determined by pixel errors of synthesized images [3].
No extra depth image transmission is required unless user
viewpoint moves outside the interval of the current refer-
ence viewpoint. Despite the method can reduce transmis-
sion frequency, the Mean Squared Error (MSE) metric used
in determining viewpoint interval may under-estimate the
human perceived quality of a synthesized image, as unno-
ticeable geometric distortions are not taken into account.
This leads to non-optimal viewpoint interval prediction. The
method also does not support network bandwidth adaptation,
which is important for serving clients with varying network
bandwidth.

To effectively reduce transmission cost, we design a novel
depth image transmission strategy by enlarging the view-
point interval with respect to the perceived quality of synthe-
sized images. A Just Noticeable Distortion (JND) based
synthesized image quality assessment is proposed to prop-
erly measure geometric distortions in a synthesized image.
According to assessment results, reference viewpoints are
predicted with an optimized viewpoint interval. Particularly,
we predict reference viewpoints in a multi-scale way to adapt
different available network bandwidth. Also, an adaptive
transmission scheme is integrated to fetch a reference view-
point from the predicted reference viewpoint set according
to user interaction. The transmission scheme additionally
accounts for the rendering resolution of a depth image, further
reducing rendering and bandwidth consumption. Our major
contributions are as follows:
• We propose an efficient synthesized image quality
metric based on JND cues, where the geometric distor-
tions in synthesized image are properly measured with
respect to human perception.

• We predict a multi-scale reference viewpoint set under
different bandwidth constraints, where the viewpoint
interval of reference viewpoint is determined by our
proposed JND-based metric.

• An adaptive transmission scheme is proposed to synthet-
ically determine customized transmission timing and
rendering resolution of reference depth image for each
client.

• We implement a prototype system by integrating our
scalable remote rendering framework, demonstrating
system scalability toward multiple clients through simu-
lations with interactive 3D graphics scenarios.

The rest of this paper is organized as follows. Related
works are reviewed in Section II. Section III presents
our design of the JND-based synthesized image quality
metric. Our proposed scalable remote rendering framework
is depicted in Section IV. Experimental results and prototype
system evaluation are provided in Section V and Section VI,
respectively. Finally, Section VII concludes our work.

II. RELATED WORK
Remote rendering framework can be categorized into
model-based rendering (MBR) [24] and image-based
rendering (IBR) [25]. With the increase in geometry

complexity, MBR becomes very challenging for a client to
carry out rendering interactively, particularly for low-end
mobile devices. In contrast, IBR relies the server to perform
rendering and send a client rendered views with optional
auxiliary information. This essentially trades image data
transmission for reduction in resource consumption at clients,
making interactive 3D graphics be possible to low-endmobile
devices.

FIGURE 1. Basic workflow of typical DIBR-based remote rendering.

Derived from IBR, many DIBR-based remote rendering
frameworks have been proposed [1], [3]–[6]. As illustrated
in Fig. 1, a typical DIBR-based remote rendering frame-
work comprises depth image compression/de-compression,
depth image transmission and virtual view synthesis. Our
proposed work focuses on optimizing depth image trans-
mission, while many research efforts in the literature were
on depth image compression/de-compression [8]–[15] and
virtual view synthesis [16]–[23], [26]. All these works do
not impose explicit control on depth image transmission.
Our work is rather complementary to [3] since we focus on
optimizing the reference viewpoint prediction, learning to
optimal reference depth image transmission. In the following,
we only discuss most relevant existing works.

Current depth image transmission strategies can be catego-
rized into time-interval and content-based transmission:

A. TIME-INTERVAL-BASED TRANSMISSION
It transmits reference depth images by predicting reference
viewpoint with a pre-defined time interval according to user
interaction [1], [4]–[6]. Since a predicted reference view-
point may easily deviate from the actual user viewpoint
movement, inducing serious distortions to synthesized image,
high-frequency reference viewpoint prediction is necessary.
For instance, [1] set a fixed time interval of 200ms for
prediction. Bao and Gourlay [5], [6] inherited this transmis-
sion strategy and additionally reduced the amount of data
transmission by sending image differences between reference
depth images instead of the original forms of those images.
Zellmann et al. [4] also maintain a fixed time interval for
reference viewpoint prediction, but resorting efficient orga-
nization of depth information on top to facilitate volume
rendering. Frequent reference viewpoint predictionwith fixed
time intervals can effectively support arbitrary user interac-
tion as the predicted reference viewpoints can usually well
match user viewpoint movements. However, the induced
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rendering cost and network bandwidth consumption become
critical concerns.

B. CONTENT-BASED TRANSMISSION
Content-based transmission only transmits reference depth
images when the synthesized image quality becomes unac-
ceptable. Shi et al. [3] proposed a reference viewpoint
prediction based on pixel errors of synthesized image.
Transmission occurs when user viewpoint moves outside
the coverage of current reference viewpoint. Transmis-
sion frequency is thereby relied on the predicted view-
point interval. Comparing with time-interval-based methods,
it effectively reduces redundant depth image transmission.
Similar reference viewpoint prediction is also adopted in
other IBR framework [30], [31].

Despite content-based transmission is meant to reduce
transmission frequency, saving rendering cost and network
bandwidth consumption, a proper image quality metric is
required to facilitate this. Recent work [3] resorted image
pixel errors, which are measured by MSE, to support refer-
ence viewpoint prediction. It under-estimated synthesized
image quality as unnoticeable geometric distortions were not
considered. In addition, most existing works were not scal-
able since they did not handle the increase in network band-
width consumption causing by multiple concurrent clients.

Despite synthesized image quality assessment is important
for reference viewpoint prediction, current 2D image quality
metrics [32]–[35], including MSE, cannot properly measure
geometric distortions in synthesized image toward human
perception [36]. Recently, novel synthesized image quality
metrics are proposed [36]–[41]. However, most of them are
time-consuming, prohibiting real-time remote rendering.

III. JND-BASED SYNTHESIZED IMAGE
QUALITY ASSESSMENT
Effectiveness of synthesized image quality assessment
is critical to depth image transmission efficiency (See
Section IV-A), because this affects reference viewpoint
prediction as discussed in Section II. This section depicts
how we derive such a metric. We first discuss geometric
distortions in DIBR synthesized images. We then elabo-
rate the design of a full-reference (FR) synthesized image
quality metric based on JND cues. We finally present the
no-reference (NR) version of our JND-based metric and the
computation complexity. Table 1 summarizes the main nota-
tions used in the following.

Given a reference viewpoint vref , its associated depth
image < I (vref ),D(vref ) > is obtained by directly rendering
from the source 3D scene. The synthesized virtual view <

I ′(u),D′(u) > of a current user viewpoint u can then be
generated by 3D warping using the reference depth image:

< I ′(u),D′(u) >

= warping(< I (vref ),D(vref ) >, vref → u) (1)

where the synthesized image I ′(u) is perceived by the user.
Details of 3D warping can be found in [1] and [26].

TABLE 1. Main notations.

FIGURE 2. Example of a synthesized image and its undistorted version.
(a) undistorted image, (b) Synthesized image.

Fig. 2(b) shows an example of a synthesized image.
By comparing with its undistorted version (Fig. 2(a)),
geometric distortions, like holes and cracks, are found in
various regions of the image, highlighted by color boxes.
As illustrated in Fig. 2(b), geometric distortions are sensitive
to human perception when they are located around bright
regions (highlighted in red box) but can hardly be observed
when locating at dark regions (highlighted in blue box).
Besides, distortions around simple texture regions (high-
lighted in yellow box) are much easily perceived than that
around complex regions (highlighted in green box). These
refer as non-structure and locality of geometric distortions.
Such local distortions cannot be correctly quantified by
conventional 2D image metrics, such as MSE, which only
globally measures image pixel errors [36].

To address the problem, we incorporate JND cues into
synthesized image quality assessment. JND leverages biolog-
ical and physiological cues to measure human sensi-
tivity to visual signal difference [42]. It helps quantify
local pixel errors under different types of surroundings
(image sub-regions) based on human perception, while MSE
only provides a global measure of image distortion. In a
JND-based metric, the amount of distortions are quantized
into JND levels, with each representing a certain level of
acceptable distortion [43].
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According to observations, we choose local luminance
adaptation and local texture contrast masking [42] for synthe-
sized image quality assessment. The per-pixel JND level is
formulated as follows:

JND(x, y) = LA(x, y)+ CM (x, y)

− λ×min{LA(x, y),CM (x, y)}, (2)

where LA and CM denote local luminance adaptation and
local texture contrast masking, respectively. (x, y) denotes
a pixel position, and λ is a constant indicating competition
effect between luminance adaptation and texture contrast
masking. A larger λ represents more significant overlapping
effect. In our work, we experimentally set λ = 0.3. The local
luminance adaptation is formulated as follows:

LA(x, y) =

17× (1−

√
Ī (x, y)
127

)+ 3, Ī (x, y) ≤ 127
3
128
× (Ī (x, y)− 127)+ 3, otherwise

(3)

In Eq. (3), Ī (x, y) computes the mean intensity of the
5×5 local region centered at (x, y). The local texture contrast
masking is denoted as:

CM (x, y) = G(x, y)W (x, y) (4)

where G(x, y) is the mean gradient of the same 5× 5 region:

G(x, y) = max
k=1,2,3,4

{gradk (x, y)} (5)

with

gradk (x, y) =
1
16

2∑
i=−2

2∑
j=−2

I (x + i, y+ j)gk (i, j), (6)

where gk (i, j) are four directional high-pass filters for texture
contrast detection. More details can be found in [44] and [45].

Specifically, we use W (x, y) to measure the locality effect
of geometric distortions. Different weights are assigned to
image edge pixels according to their surroundings:

W (x, y) =


0.1, (x, y) ∈ �dis,

0.3, (x, y) ∈ �con,

1.0, otherwise.

(7)

where �dis indicates pixels belonging to the edges of disoc-
clusion regions, and �con denotes other edges. The edges
of disocclusion regions are detected from the depth map,
i.e., depth discontinuous in the depth map. While other edges
are detected from the synthesized image. It fits for the obser-
vation that edges belonging to disocclusion regions have low
local texture contrast masking effect, thereby being easily
noticeable in general.

We design a FR synthesized image quality metric,
which requires an undistorted image generated directly
from rendering the 3D content at a user viewpoint I (u)
as the ground truth. Quality evaluation of a synthesized
image I ′(u) is started with calculating per-pixel JND levels

through Eq. 2. We then compare the difference between I (u)
and I ′(u), judging whether each pixel error falls below the
corresponding JND level. It is intuitive that a pixel differing
from its ground truth with a distortion smaller than the
corresponding JND level, such distortion is not noticeable
to human perception. We then mark those pixels with 1, and
mark others with 0:

f (x, y) =

{
1, if |I ′(x, y)− I (x, y)| ≤ JND(x, y),
0, otherwise.

(8)

Finally, we utilize the ratio of pixels being below their
associated JND levels, to measure the perceived quality of
a synthesized image:

Qsyn(I ′(u)) =

∑m
1

∑n
1 f (x, y)

m× n
, (9)

where m× n denotes the image size.
Comparing with MSE, our metric matches better with

human perception. First, our metric has a limited scale
ranging from 0 to 1, representing a range from worst to best
perceived quality. However, MSE ranges from 0 to +∞,
hardly representing quantifiable human subjective scores.
Second, our metric indicates the user perception level
monotonously, while MSE may yield different values to
the same perception level [32]. Finally, our metric properly
measures distortions against their surroundings, while MSE
is a global measurement being insensitive to local distortions.

FIGURE 3. The differential map depicts pixel errors of Fig. 2(b) against
Fig. 2(a), and the JND map calculated with Eq. (2) contains high intensity
pixels denoting noticeable distortions. (a) Diffrential map. (b) JND map.

Fig. 3(a) shows the differential map of Fig. 2(b) against
Fig. 2(a), while Fig. 3(b) depicts the JND map being able to
highlight pixels exceeding their JND levels. The JND map
can well reflect how human perceive local distortions, while
the differential map comprises too much signals which do not
contribute to human perceived distortions but accumulated
pixel errors.

We also design a NR JND-based metric for the client-side
at which the undistorted ground truth image of the current
view is unlikely available. The metric is constructed as above
but replacing undistorted ground truth image with reference
texture image. To further reduce user interaction latency,
we implement our metrics on GPUs, where per-pixel oper-
ations are handled with OpenGL Shader.
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FIGURE 4. Overview of our proposed remote rendering framework, with our contributions highlighting in orange boxes.

IV. SCALABLE REMOTE RENDERING FRAMEWORK
With the proposed JND-based synthesized image quality
metric, we propose a scalable remote rendering framework
for 3D interactive graphics on mobile devices, as illustrated
in Fig. 4. In this section, we first describe the proposed frame-
work, and then present our quality-aware reference viewpoint
prediction and adaptive transmission scheme accordingly.

The primary task of the server-side is to perform the refer-
ence viewpoint prediction based on our proposed JND-based
synthesized image quality metric, generating a multi-scale
reference viewpoint set accordingly to support bandwidth
adaptation (see Section IV-A). The rendering and transmis-
sion of reference depth images are controlled by Transfer
Adaptor (TA), which is part of the proposed adaptive trans-
mission scheme (see Section IV-B). It receives feedback
information from the client-side and fetches a proper refer-
ence viewpoint from the constructed reference viewpoint
set. It also decides the timing for depth image transmission.
Another server-side task is depth image compression, where
the texture image and depth map are separately compressed.

For the client-side, user interaction is transformed into
user viewpoint movement, which is synchronized to the
server-side through Scalability Controller (SC) as part of the
adaptive transmission scheme (see Section IV-B). SC also
monitors the perceived quality of a synthesized image on
mobile device as well as available network bandwidth, with
which to dynamically negotiate with TA as feedback signal
about the required scale of reference viewpoint set and
rendering resolution of next reference depth image. When the
required reference depth image is received, the corresponding
texture image and depth map are separately decompressed,
caching into a buffer. A relevant virtual view can then be
synthesized by 3D warping.

A. REFERENCE VIEWPOINT PREDICTION
Suppose the parameters, e.g., field of view, of all reference
viewpoints are uniform. The key factor affecting geometric

FIGURE 5. Illustration of viewpoint coverage: Reference viewpoints v1
and v2 are located very close with viewpoint coverage overlapped, while
a significant gap is found between the coverage of v ′1 and v ′2. Synthesized
image at u cannot be properly generated without quality degradation due
to the increase in viewpoint interval.

distortions is the coverage of a reference viewpoint, which
can be transformed into the viewpoint interval between two
adjacent reference viewpoints. Fig. 5 illustrates the coverage
of reference viewpoints. As shown in the figure, v1 and v2
provide an overlapped viewpoint coverage H (v1) ∪ H (v2).
Any synthesized image in between can be reconstructed with
the two reference viewpoints without quality degradation.
However, v′1 and v′2 separate quite apart, and that cannot
provide complete information to properly reconstruct synthe-
sized images between them. For instance, the synthesized
image at u as in Fig. 5 contains disocclusion regions from
the two reference viewpoints, inducing geometric distortions.
Note that the perceived quality is related to the viewpoint
interval, e.g., d or d ′.

Maximizing such an interval sacrifices acceptable quality
but reducing depth image transmission when user view-
point moves within the interval. Shi et al. [3] decides the
viewpoint interval based on MSE of synthesized image.
The predicted reference viewpoint is hence non-optimal,
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since MSE cannot properly reflect human perception, and
usually under-estimates the perceived quality of a synthesized
image. In contrast, we determine viewpoint intervals with
our proposed JND-based metric, which can properly measure
geometric distortions as described in Section III. Essentially,
our metric can tolerate pixel errors below a required JND
level, generating a sparser reference viewpoint set.

FIGURE 6. Illustration of predicted reference viewpoint set: Red triangle
simulates user viewpoint moving along a circular orbit. Blue triangles
depict reference viewpoints.

As shown in Fig. 6, the viewpoint interval between two
adjacent viewpoints v0 and vi can logically be quantified by
i×1d , where1d denotes the unit displacement of user inter-
action, e.g. the unit length for viewpoint translation, or the
unit angle for viewpoint rotation, and i denotes the number of
interaction steps involved. A synthesized image of u with v0
as the reference viewpoint, is generated by:

I ′(u) = warping(< I (v0),D(v0)) >, v0→ u), (10)

and the optimal viewpoint interval can be formulated as:

d = argmax
d
|Qsyn(I ′(u))− QJND| (11)

where Qsyn(I ′(u)) is the synthesized image quality, and QJND
is a preset quality threshold, both of them are related to the
proposed JND-based metric. If a lower quality threshold is
set, more image pixels will exceed the JND level and that a
larger viewpoint intervals view will be resulted.

To solve Eq. (11), a naive way is to explore all possible
viewpoints in a 3D scene measuring the quality of each
synthesized image and deducing the result. However, this is
extremely computationally expensive and is not favorable to
perform during runtime. We instead pre-compute the refer-
ence viewpoint set in polynomial time. To allow feasible
implementation, we confine the reference viewpoint predic-
tion to only all possible paths of user viewpoint movement P.
For each path, we also perform a discrete number of opera-
tions instead of infinite ones.

Accordingly, we propose a full-search algorithm to
construct the reference viewpoint set, as listed in Algorithm 1.
The search starts with a randomly selected viewpoint v0.
For each candidate viewpoint vi×1d , we warp v0 to it,

Algorithm 1 Full-Search Algorithm for Reference Viewpoint
Prediction
Require: v0,QJND,1d, dmax ,P,V

for p ∈ P do
vref = v0,V = 8
for |vref − v0| ≤ dMAX do
i = 1
if Qsyn(I ′(vi×1d )) ≥ QJND then

Warping I ′(vi×1d ) with vref
i++

end if
vref = vi×1d with d = i×1d
V = V ∪ vref
v0 = vref

end for
end for

and then evaluate the perceived quality of I ′(vi×1d ) with
proposed JND-based metric, judging whether the perceived
quality is below the preset quality threshold QJND. The
search terminates with two conditions. One is finding the
optimal viewpoint interval i × 1d where the synthesized
image quality is falling below the preset quality threshold.
We then select vi×1d a new reference viewpoint and repeat
the search accordingly. The other one is that the search
reaches a maximal distance dMAX according to the 3D scene
boundary. A reference viewpoint set V is constructed when
all possible paths are searched.

To make our method scalable to different network band-
width conditions, we extend the reference viewpoint set to
a multi-scale one, allowing various scales to be constructed
based on different available network bandwidth require-
ments. Such that in each scale, viewpoint intervals are deter-
mined by different quality thresholds. In practice, three
quality thresholds, i.e., QJND = 0.990, 0.985, 0.980, are
used. The predicted reference viewpoints become sparser
when quality threshold decreases. Consequently, less refer-
ence depth images are required to transmit, providing
network bandwidth adaptation.

The computational complexity of the proposed full-search
algorithm is no larger than O(dmax |P|), where |P| is the
number of possible paths. As the value of |P| increases,
the complexity of the full-search algorithm becomes larger
but the flexibility of user interaction improves. In addition,
the value of dmax probably increases with the size of a
3D scenes. The unit distance 1d in this case can be resized
to maintain the time efficiency.

B. ADAPTIVE TRANSMISSION SCHEME
With the predicted multi-scale reference viewpoint set,
we design an adaptive transmission scheme for real-time
DIBR-based remote rendering. Our depth image transmission
strategy is user-centric [43], i.e., pro-actively maintaining
the perceived quality of synthesized images according to
user interactions on each connected client, while preventing
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redundant depth image transmission. The transmission
scheme comprises a TA and a SC, where a transmission
adaptation algorithm and a dynamic negotiation mechanism
cooperate to optimize depth image transmission against user
perceived quality and different network bandwidth.

1) TRANSMISSION ADAPTOR
The main task of TA is fetching reference depth images
according to user interactions, which are transformed into
user viewpoint movement and synchronized by SC. As illus-
trated in Fig. 7, v1 is current reference viewpoint whose
reference depth image has already been transmitted to the
client-side. When user viewpoint moves within the viewpoint
interval of v1, i.e., [v1, v2] or [v1, v0], no redundant reference
depth image is required to transmit, while the perceived
quality of synthesized images is maintained according to the
quality threshold.

FIGURE 7. Example of transmission adaptor operations: Blue triangles
indicate predicted reference viewpoints. u (red triangle) indicates user
viewpoint. (a) and (b) illustrate the situation that user viewpoint moves
across the middle line of two adjacent references, which is the timing for
new reference depth image transmission. The reference depth images of
v2 and v0 are then transmitted in the situation of (a) and (b), respectively.

In contrast, when user viewpoint is moving outside
the viewpoint interval of the current reference viewpoint,
TA fetches a new reference viewpoint from the predicted
reference viewpoint set which is the nearest. We partic-
ularly preserve a time interval for depth image rendering
and compressing. Hence, the fetching of reference viewpoint
occurs when user viewpoint is moving across the middle line
of current reference viewpoint interval, as illustrated in Fig. 7.
To reduce possible bias of user viewpoint, a Kalman filter
is additionally integrated to reinforce the prediction of user
viewpoint movement, formulated as follows:

u[t + 1] = u[t]+ Ev(u[t]), (12)

where u[t+1] denotes the predicted user viewpoint for a near
future, u[t] is the historic user viewpoint and Ev(u[t]) indicates
its current velocity. The overall work of TA is depicted in
Algorithm 2.

Different from previous work, which ignore the existence
of varying network bandwidth, our proposed transmission
scheme is scalable to different network bandwidths. Specif-
ically, TA adaptively changes the scale of reference view-
point set according to the feedback from SC. For instance,
it changes to a larger scale reference viewpoint set when
SC notifies that the available network bandwidth is insuf-
ficient. By doing so, the fetched reference viewpoint has a

Algorithm 2 Transmission Adaptation Algorithm
Require: V = {· · · , vi−1, vi, vi+1, · · · }
Require: vref = vi
Require: u[t], Ev(u[t])
u[t + 1]← u[t]+ Ev(u[t])
if (u[t + 1]− vi) ≥ (vi+1 − u[t + 1]) then
vref = vi+1

else if (vi − u[t + 1]) ≥ (u[t + 1]− vi−1) then
vref = vi−1

end if
Rendering and compressing < I (vref ),D(vref ) >
Transmitting < I (vref ),D(vref ) >

larger viewpoint interval, extending the transmission timing.
Suppose Tstart and Tend are the start and end time, and user
viewpoint moves along a virtual path with constant velocity.
The depth image transmission timings are indicated with
triangles as in Fig. 8.

FIGURE 8. Illustration of transmission adaptation with multi-scale
reference viewpoint set: Movement of user viewpoint between time Tstart
and Tend is illustrated. Green circles and blue circles indicate reference
viewpoints from large- and small-scale reference viewpoint set,
respectively. Green and blue triangles indicate the transmission timings.

Note that the blue reference viewpoints are fetched from a
small-scale reference viewpoint set, and the green ones are
fetched from a large-scale one. We can see in Fig. 8 that
five depth image transmission occurs with respect to the blue
reference viewpoints, while only three transmission occurs
with respect to the green ones. The transmission frequency
is reduced by 40% with the scale adaptation. The perceived
quality of synthesized image is degraded due to the enlarged
viewpoint interval, but still being consistent with the preset
quality threshold.

2) SCALABILITY CONTROLLER
SC mainly monitors the perceived quality of synthesized
images at the client-side, as well as the runtime available
network bandwidth, with which to suggest TA the scale of
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FIGURE 9. Visual quality of synthesized images warped under the same reference viewpoint but with reference depth images of different
resolutions. (a) The undistored image with 768 × 1024 pixel. (b) Synthesized by reference depth image with 768 times 1024 pixel. (c) Synthesized
by reference depth image with 600 times 800 pixel. (d) (b) Synthesized by reference depth image with 540 times 720 pixel.

reference viewpoint set. Our proposed NR JND-based metric
is used to assist such a monitoring, and that transmitting
undistorted ground truth images for quality assessment is
avoided. To further reduce rendering cost and network band-
width consumption, SC takes into account depth image reso-
lution, notifying TA with an appropriate the proper rendering
resolution of next reference depth image with perceived
quality maintained.

As depicted in Fig. 9, geometric distortions are tolerable
even if reference depth image resolution is changed. Images
from Fig. 9(b) to Fig. 9(d) are synthesized from the same
reference depth image but with different resolutions. The
perceived quality of them are hardly distinguishable, espe-
cially for images of Fig. 9(b) and Fig. 9(c). Both of them
exhibit similar geometric distortions.

Consequently, with the perceived quality of synthesized
images being retained, there is still room for reducing the
reference depth image resolution. SC is responsible to request
for receiving lower-resolution reference depth images to
reduce network bandwidth consumption. Algorithm 3 depicts
how such a dynamic negotiation process works.

Algorithm 3 Dynamic Negotiation Algorithm
Initialize the rendering resolution resdisplay;
Initialize the smallest scale of reference viewpoint set;
for run time do
if BW ≥ BWavailable then

if Qsyn(I ′(u)) ≥ Qallow then
Decrease the rendering resolution

else
Increase the rendering resolution

end if
else if BW < BWavailable then

Increase the scale of reference viewpoint set
end if

end for

Dynamic negotiation is initiated by SC. When a mobile
device connects to the system, SC informs TA to transmit
the first reference depth image with a display resolution of
resdisplay, meanwhile the reference viewpoint set with the
smallest scale is suggested. During runtime, SC measures
the perceived quality of synthesized images with our NR
JND-based metric, comparing it with a preset quality
threshold Qallow. A low rendering resolution is suggested in
case if the perceived quality is maintained above Qallow.
Scalability is controlled by two ways. First, SC informs TA

for changing the scale of reference viewpoint set according
to network bandwidth conditions, e.g., a larger-scale refer-
ence viewpoint set is preferred when the available band-
width becomes insufficient. Second, SC can lower its quality
threshold Qallow to allow more rendering resolution reduc-
tion, supporting severe network bandwidth conditions.

The proposed transmission scheme is also adaptive to
multiple clients. It monitors the display resolution, user view-
point movement and available network bandwidth of each
client. The adaptation algorithm and dynamic negotiation
algorithm are involved to ensure the perceived quality on each
mobile is optimized for these criteria.

V. EXPERIMENT RESULTS
We present our simulated settings for supporting interac-
tive 3D graphics on mobile devices. We also study the
performance of our proposed JND-based synthesized image
metric. After that, the performance of our reference viewpoint
prediction and adaptive transmission scheme are evaluated in
Section V-C and Section V-D, respectively.

A. SIMULATION SETTINGS
We simulate the interactive 3D graphics scenarios with three
3D scene models, including City Paris, Fairy Forest and Car,
as shown in Fig. 10. Table 2 lists their geometric complexities.
These models have different characteristics, facilitating us to
evaluate how well our framework performs under different
situations. Specifically, City Paris contains complex object
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FIGURE 10. Three testing 3D scenes: (a) City Paris, (b) Fairy Forest, (c) Car.

TABLE 2. Geometry information of the testing 3D scenes.

structures, easily being occluded from a given reference view-
point. Fairy Forest comprises simple structures but complex
intensity and texture variations.Car comprises highly precise
surface details, which are sensitive to rendering resolution
variations.

The server is simulated on a Dell OptiPlex with an
Intel Core i5-3470 CPU and a NVIDIA GeForce GTX
650 graphics card. The display resolution of synthesized
image is set to 768× 1024. The interaction scenario consid-
ered in our simulations is 3D navigation, where user view-
point moves in a plane with four possible directions, as listed
in Table 9. Without loss of generality, user viewpoint is
assumed to move with a constant velocity.

B. PERFORMANCE OF JND-BASED SYNTHESIZED
IMAGE QUALITY METRIC
Performance of the proposed metric is evaluated on the
IRCCyN/IVC DIBR image database [46], which is the only
available public DIBR image database with subjective scores
at the time of developing this work. It consists of 12 original
images and their corresponding 84 synthesized images, which
are generated using sevenDIBR approaches. A discrete rating
scale from 1 to 5 is adopted in its subjective experiment,
and the subjective scores of these images in the database
are provided in the form of Mean Opinion Score (MOS).
To properly represent human perception, theDifferenceMean
Opinion Score (DMOS) is calculated from MOS values,
which is re-scaled to [0, 1] in terms of our measured results.
For performance evaluation, three recognized criterions,

namely Pearson Linear Correlation Coefficient (PLCC),
Spearman Rank Order Correlation Coefficient (SROCC) and
Root Mean Square Error (RMSE) are adopted. PLCC and
RMSE are used to measure the measurement accuracy and
SROCC is adopted to evaluate the monotonicity. Higher
values of PLCC and SROCC and lower value of RMSE
indicate better performance.

Table 3 shows the experimental results with the
IRCCyN/IVC DIBR database. For comparison, we choose

TABLE 3. Comparison of our and other metrics with IRCCyN/IVC DIBR
image dataset. PLCC, SROCC and RMSE are indicators evaluating metric
performance with subjective values. The best two performers under each
indicator are highlighted.

conventional 2D image metrics, including MSE and
SSIM [32] and DIBR metrics 3DSwIM [36]. MSE is
based on pixel errors, while SSIM is sensitive to struc-
tures. 3DSwIM measures DIBR synthesized image with
multiple Nature Scene Statistics (NSS) priors in wavelet
domain. Despite recent metrics, like MW-PSNR [37] and
MP-PSNR [38], achieve better performance, they intro-
duce time-consuming operations, e.g., wavelet decomposi-
tion, morphological operation, and that are inadequate for
real-time remote rendering.

Observing from Table 3, conventional 2D image quality
metrics are not effective in evaluating the quality of synthe-
sized images. Their best PLCC result is below 0.5 and
maximum SROCC is only 0.4610. These results imply
both pixel errors (MSE) and structure distortions (SSIM)
are not suitable for measuring geometric distortions in
synthesized image. Comparatively, 3DSwIM produces much
better values in PLCC and SROCC. In contrast, our FR
metric achieves the best performance on RMSE, meanwhile
our NR metric achieves comparable performance. More
recent DIBR-related metrics [37]–[41] follow the design
of 3DSwIM, integrating more complex NSS priors with
wavelet transformation, multi-scale representations or auto-
regression. Despite they offer better performance than our
metrics, the domain transformations or multi-scale repre-
sentations are time-consuming for real-time computation on
mobile devices, which is critical for supporting interactive
user interactions.

To verify the computational efficiency of our work,
we compare time spent on assessing the quality of a depth
image with different methods, as shown in Table 4. Note that
the CPU time cost is tested with MATLAB, while the GPU
time cost is obtained with C++.

TABLE 4. Time efficiency of our JND-based metric on PC with 768× 1024
depth image resolution.

We can see from Table 4 that our metric achieves compa-
rable time efficiency with MSE and SSIM, performing
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10 times faster than 3DSwIM. The efficiency bottleneck
of 3DSwIM is wavelet transform, while our metric can be
easily paralleled on GPUs.

We additionally evaluate our FR and NR metric on
40 synthesized images from our three tested 3D scenemodels.
The scatter plots between the FR metric predicted quality
scores and those of the NR metric are shown in Fig. 11.
It is observed that the NR metric predicted results are highly
correlated with the FR metric predicted ones, having a corre-
lation coefficient R2 = 0.8903. This implies it is appro-
priate to use NR JND-based metric as an alternative assessing
synthesized image quality.

FIGURE 11. Correlation between NR and FR versions of our proposed
JND-based synthesized image metric.

C. PERFORMANCE OF REFERENCE
VIEWPOINT PREDICTION
We simulate reference viewpoint prediction on the three
testing 3D scene models. The simulated results on City Paris
are depicted in details as follows. We start the full-search
algorithm with a random initial viewpoint. User viewpoint
is restricted to the horizontal path movement for conve-
nience. Without loss of generality, we repeat the experi-
ment five times with different initial viewpoints, denoting as
{v(1)0 , v

(2)
0 , v

(3)
0 , v

(4)
0 , v

(5)
0 }. We preset QJND to 0.990 and the

maximal distance dMAX to 100. Table 5 shows the number
of predicted reference viewpoints.

TABLE 5. The number of predicted reference viewpoints. The full-search
algorithm uses the quality threshold QJND = 0.990, where Shi et al. [3]
with QMSE = 224.0 is used for comparison.

As a comparison, we simulate the above experiment using
QMSE = 224.0, which is used in [3]. Since MSE ranges

from 0 to +∞, it is hardly comparable with our JND-based
metric.We have tested 30 synthesized images fromCityParis,
obtaining their MSE results and our measured results. It is
observed that MSE with values between 172.0 to 224.0 are
corresponding to QJND = 0.990. We thereby choose
QMSE = 224.0, for it is the maximal value that produces
the sparsest reference viewpoints. As shown in Table 5, our
predicted reference viewpoints are still less redundant than
that produced by MSE, i.e., the average viewpoint interval
with our proposed JND-based metric is larger than that with
Shi et al. [3].

For the convenience of analysis, we denote candidate
viewpoints according to their distances to the initial view-
point, e.g., v46 is the viewpoint with a distance of 46 × 1d
from v0. The subscript difference hence indicates the view-
point interval.

FIGURE 12. Visual quality of synthesized images (Blank pixels indicate
geometric distortions): (a) is the undistorted image of viewpoint v54.
(b) and (c) are synthesized images of v54 constructed from reference
depth images v52 and v46, respectively. Although the two synthesized
images have different pixel errors, their perceived qualities are
consistent.

Fig. 12 shows the synthesized image of v54 from City
Pariswith reference viewpoint v52 predicted by MSE and v46
predicted by our JND-based metric. In Fig. 12, the perceived
quality of the two synthesized images is hardly distin-
guished. The image quality assessment results further vali-
date our perception, where the two synthesized images
have the same results measured by our JND-based metric.
However, the MSE results vary significantly, increasing from
172.0 to 224.0. Therefore, our predicted reference viewpoint
v46 has a 8 × 1d viewpoint interval, which is larger than of
MSE predicted reference viewpoint v52, which is only 2×1d .
More results are shown in Fig. 13(b) and Fig. 13(c). The target
viewpoint and the predicted reference viewpoints by MSE
and our JND-based metric in Fig. 13 are listed in Table 6.
From Fig. 13 and Table 6, we can see that our JND-based
metric predicts the reference viewpoint with larger viewpoint
intervals in general, while well maintaining perceived quality.

We further explore the perceived quality of synthesized
images on different scales of reference viewpoint set. A three-
scale reference viewpoint set is constructed for each testing
3D scene model with QJND = 0.990, 0.985 and 0.980,
respectively. Fig. 13 depicts synthesized images with refer-
ence viewpoints under different scales. Take City Paris as an
example, user viewpoint is v54, where the predicted reference
viewpoints are v46, v45 and v43 in terms of different scales.
We can conclude from the figure that the perceived quality of
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FIGURE 13. Synthesized images with different reference viewpoints predicted by MSE and our JND-based metric. (a) The undistored image.
(b) Synthesized with MSE predicted reference view point. (c) Synthesized with our predicted reference view point (Qthres = 0.990). (d) Synthesized
with our predicted reference view point (Qthres = 0.985). (e) Synthesized with our predicted reference view point (Qthres = 0.980).

TABLE 6. The target viewpoint u and predicted reference viewpoints vref
by MSE and our JND-based metric (with different quality thresholds),
in corresponding to Fig. 13. The number in each bracket indicates the
viewpoint interval.

the synthesized images slightly degrades by reducing QJND.
However, the viewpoint interval is then enlarged, reducing the
transmission frequency as depicted in Fig. 8.

D. PERFORMANCE OF ADAPTIVE TRANSMISSION
MECHANISM
We further demonstrate the performance of our adaptive
transmission mechanism. We still simulate the virtual view-
point moving along the horizontal path with a constant
velocity. Transmission of a reference depth image occurs
when user viewpoint moves across the middle line of

TABLE 7. Comparison of transmission frequency.

current reference viewpoint interval, as illustrated in Fig. 7.
Table 7 lists the total transmitted reference depth images
within 10 seconds. To evaluate the efficiency of our trans-
mission adaptation algorithm, we examine three typical
DIBR-based remote rendering framework, including [1], [6],
and [3], analyzing their transmission frequency against our
method. Observing from Table 7, our method transmits the
least number of reference depth images during the same
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TABLE 8. Rendering resolutions of reference depth images transferred to client-side with the proposed dynamic negotiation algorithm, where different
Qallow are also evaluated.

time interval. As mentioned before, [1] transmits one
reference depth image for every 200ms, thereby inducing
50 transmitted frames in total. Reference [6] follows the same
transmission strategy but reduces data size of each frame to
some extent. [3] implements a similar transmission strategy
as ours, but predicts reference viewpoint by MSE. Its average
viewpoint interval is shorter than ours, inducing redundant
depth image transmission. Moreover, [3] transmits n refer-
ence depth images each time, where n indicates all possible
paths of user viewpoint movement.We however transmit only
one reference depth image each time, where the prediction
bias of user viewpoint is reduced by the Kalman filter.

We additionally evaluate the effect of our dynamical nego-
tiation algorithm by setting Qallow = 0.90 and resdisplay =
1024 × 768, recording the rendering resolution of the trans-
mitted reference depth images (withQJND = 0.985). An ideal
network bandwidth is assumed. As seen from Table 8,
the rendering resolution varies among different reference
depth images, thereby reducing transmitted data by at least
32.0% (with Qallow = 0.90). The transmission reduction
further benefits from decreased Qallow. We can see from
Table 8 that the total transmitted data is reduced by 55.0%
and 61.7%, respectively.

VI. PROTOTYPE AND SYSTEM EVALUATION
We now study the performance of our scalable remote
rendering framework with the scenarios of interactive
3D graphics on mobile devices. A prototype system is
presented in Section VI-A. System scalability in terms of
multiple clients is evaluated in Section VI-B.

A. PROTOTYPE IMPLEMENTATION
The server-side is implemented on a Dell OptiPlex with
an Intel Core i5-3470 CPU and a NVIDIA GeForce GTX
650 graphics card. The client-side are running on several
low-end mobile devices, with configures of LG Nexus 4 with
a Qualcomm Adreno 320 Graphics card and 1280 × 768
screen resolution, and HTC One (M8) with a Qualcomm
Adreno 330Graphics card and 1920×1080 screen resolution.
A Wi-Fi connection with 11Mbps maximum bandwidth is
served for depth image transmission.

1) SERVER-SIDE
TA is running on the server-side. Note that the multi-scale
reference viewpoint set is pre-determined in terms of
3D contents. Besides, the server-side contains a rendering
engine and a depth image encoder. For the rendering

engine, we choose an open-source C++ library OpenScene-
Graph (OSG). The 3D source contents are organized and
rendered independently for different clients. Given a refer-
ence viewpoint, the texture image is directly rendered, with
the Z-buffer transformed into the depthmap. Our depth image
encoder is depth-independent. We simply encode the texture
image with an open-source library JPEG2000, while for the
depthmap, we adapt the down-sampling framework proposed
in [14]. Particularly, the depth map is down-sampled with a
guidance of mesh saliency, forming a sparse representation.
The compressed texture image and depth map are finally
streamed to the client concurrently.

2) CLIENT-SIDE
SC is running on the client-side. A local renderer and a
depth image decoder is also implemented in corresponding
to the server-side. Since the most complex rendering task is
handled on server-side, we just design a lightweight local
renderer with OpenGL ES. It renders synthesized images
using 3D warping, which is a double warping strategy [1].
It first warps two reference depth images to a user view-
point, and then blends the two produced synthesized images
into one, which can reduce most geometric distortions.
Besides, we maintain a depth buffer on the client-side,
restoring the recently used reference depth images. When the
network is blocked or the predicted user viewpoint is wrong,
we can use the standby reference depth images instead. The
depth image decoder decompresses the texture image with
JPEG2000, while reconstructing depth map by an edge diffu-
sion algorithm [14].

3) USER INTERACTION INTERFACE
We support finger touch on the screen of a mobile device. The
touch actions are continuously monitored and transformed
into user viewpoint movement in the world coordinates of the
3D scene model. Specifically, our manipulator supports three
interactive 3D graphics scenarios, includingModel browsing,
3D Navigation and Virtual Environment. In the scenarios of
model browsing, user can watch a 3D scene model from
different viewpoints distributing on a trackball. 3D navi-
gation simulates user observation of a city with the bird-
eye. User viewpoint travels in a plane and looks down from
above. For virtual environment walkthrough, a first-person
walking action is supported, where user viewpoint movement
is driven by virtual head motion. Table 9 lists the details of
supported user viewpoint movements of different interaction
patterns.
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TABLE 9. Supported interaction patterns and the corresponding user
viewpoint movements in our prototype.

B. SYSTEM EVALUATION
With the prototype system, we evaluate our proposed scal-
able remote rendering framework from two aspects. First,
we study the performance of system scalability with multiple
clients, and then analyze its time efficiency in terms of user
interaction.

1) SYSTEM SCALABILITY
To evaluate system scalability, we run the prototype system
on the server-side, testing its maximum supported concur-
rent mobile devices. We separately choose Nexus 4 and
HTC One (M8) as client-sides. Three interactive scenarios,
including model browsing of Car, 3D navigation of City
Paris and virtual environment walkthrough of City Paris,
are tested on each mobile device, respectively. Without loss
of generality, each scenario is tested five times. Finally,
we average the transmission frequency, actual consumed
network bandwidth and the maximum supported clients,
as shown in Table 10. The three quality thresholds QJND
correspond to the three scales of reference viewpoint set.
BWava is the allocated bandwidth for each mobile device.
ftran is the average depth transmission frequency, and BWavg
is the actual consumed network bandwidth. Clients indi-
cates the maximum supported clients under Wi-Fi bandwidth
constraint.

TABLE 10. Scalability performance of our prototype system running on
different mobile devices. LG Nexus 4 has the display resolution of
768× 1024, and that of HTC One (M8) is 1080× 1920.

From Table 10, we can see that our prototype system keeps
a low depth image transmission frequency and network band-
width consumption. Even for HTC One (M8) that requires a
1080 × 1920 display resolution, its transmission frequency
is less than 10 fps, while the average consumed bandwidth
is less than 1.5 Mbps. We can also conclude from Table 10
that our proposed multi-scale reference viewpoint predic-
tion is efficient for improving system scalability. As shown
in Table 10, the depth image transmission frequency on

Nexus 4 is reduced from 8 fps to 5 fps with QJND decreasing
from 0.990 to 0.985, thereby reducing actual consumed band-
width by 35.6%. It is also shown in Table 10 that our adaptive
transmission scheme effectively reduces data transmission
within the same reference viewpoint set. Take Nexus 4 again
as an example, the average consumed bandwidth is reduced
from 786 Kbps to 733 Kbps with the same reference view-
points (with QJND = 0.985 is maintained).

In summary, our prototype system is scalable to multiple
concurrent mobile devices. The proposed reference view-
point prediction and transmission scheme make the remote
rendering adaptive to available network bandwidth, while the
proposed JND-based metric ensures the perceived quality on
the client-side. Screen shots of the three interactive scenarios
on a HTC One (M8) are shown in Fig. 14, respectively.

2) TIME EFFICIENCY
We further evaluate the time efficiency by showing a detailed
breakdown of procedure timing on a Nexus 4, as depicted
in Table 11. Given the next reference viewpoint is deter-
mined, the server will then render the associated depth
image. The rendering time Tren is related to the server’s
computation power, e.g., costs 30ms on our server. After
rendering, the texture image and depth map are compressed
concurrently. Specifically, the texture image is encoded
within 20ms, while the depth map is down-sampled with
141.0 to 206.0ms, based on different resolutions. We main-
tain two threads that separately handling the texture image
and the depth map. Therefore, the compression time Tenc is
determined by depth down-sampling. The total time cost on
server-side is then denoted as:

Tserver = Tren + Tenc, (13)

ranging from 171.0 to 236.0ms.

TABLE 11. Time efficiency of the remote rendering system under
different display resolutions on a Nexus 4 device. The average timings of
each step are measured in millisecond. Tren, Tenc , Tdec , Twarp, Teval and
Trtt denote time cost of reference depth image rendering, depth image
compression, depth image de-compression, 3D warping, synthesized
image quality evaluation and transmission latency, respectively. The
resolution XGA, SVGA and XGA are abbreviations of 640× 480, 800× 600,
1024× 768, respectively.

The procedures running on client-side include depth image
de-compression, 3D warping and synthesized image quality
assessment. De-compression of texture image and depth
map are parallelized. Decoding of texture image costs about
30ms, while decoding of depth map needs 20.5 to 41.0ms,
since the edge diffusion algorithm is accelerated on mobile
GPUs. Therefore, the de-compression time Tdec ranges from
30ms to 41.0ms. For low reference depth image resolu-
tion, the total de-compression time is determined by texture
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FIGURE 14. Screen shots of interactive scenarios on a HTC One (M8). (a) Model browsing car. (b) 3D navigation city paris. (c) Virtual environment
walkthrough city paris.

image decoding. With increasing in resolution, depth map
reconstruction becomes dominate. 3D warping Twarp costs
17.7 to 28.9ms. Our NR JND-based synthesized image
quality assessment Teval takes 10.0 to 27.0ms. However,
the time cost of image quality assessment is excluded when
counting interaction latency, since it is running in parallel
with 3Dwarping and separately handled by SC. The total time
cost on client-side can then be formulated as:

Tclient = Tdec + Twarp, (14)

ranging from 47.7 to 69.9ms. The interaction latency also
includes round-trip time Trtt , which is around 14.7-24.6ms
in our evaluation environment. The total interaction latency
therefore ranges from 225.7 to 328.6ms.

The interaction latency is further optimized by two means.
First, we render the reference depth image in advance,
i.e., when user viewpoint is moving across the middle line
of current reference viewpoint interval, as addressed in
Section IV-B.1. Second, historical reference depth images are
cached on client-side, which can be used for synthesizing
in case that new reference depth image are not available.
In practice, our prototype system achieves about 200ms inter-
action latency, being adequate for interactive 3D graphics
applications.

VII. CONCLUSION
In this paper, we have presented a scalable DIBR-based
remote rendering framework based on synthesized image
quality assessment. Our work puts efforts on improving depth
image transmission while maintaining perceived quality on
concurrent multiple clients running onmobile devices. To our
knowledge, we are the first to propose a JND-based synthe-
sized image quality metric, adopting it to reference viewpoint
prediction and transmission control. Our method accounts
for both perceived quality and network bandwidth adapta-
tion. It surpasses previous works by three aspects. First,
we measure the perceived quality of synthesized images
with a JND-based metric, which is more consistent with

human perception than pixel errors used in previous methods.
Second, we predict a multi-scale reference viewpoint set to
prevent redundant depth image transmission, better adapting
available network bandwidth. Finally, we design an adaptive
transmission schemewhich is aware of both perceived quality
and network bandwidth. We further consider the rendering
resolution of reference depth image for saving bandwidth
consumption.

The proposed remote rendering framework is still improv-
able. We mainly focus on depth image transmission in this
paper, but leaving optimizations for other components in a
remote rendering framework. Take depth map compression
as an example, saliency-guided down-sampling preserves
geometric details in synthesized images, but consumes too
much time. Besides, we would like to adopt user interaction
habits assisting user viewpoint prediction, in order to provide
more smooth quality of experience for user interaction.
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