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On the relevance of chaos for halo stars in the solar neighbourhood II
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ABSTRACT
In a previous paper based on dark matter only simulations we show that, in the approximation
of an analytic and static potential describing the strongly triaxial and cuspy shape of Milky
Way-sized haloes, diffusion due to chaotic mixing in the neighbourhood of the Sun does not
efficiently erase phase space signatures of past accretion events. In this second paper we further
explore the effect of chaotic mixing using multicomponent Galactic potential models and solar
neighbourhood-like volumes extracted from fully cosmological hydrodynamic simulations,
thus naturally accounting for the gravitational potential associated with baryonic components,
such as the bulge and disc. Despite the strong change in the global Galactic potentials with
respect to those obtained in dark matter only simulations, our results confirm that a large
fraction of halo particles evolving on chaotic orbits exhibit their chaotic behaviour after
periods of time significantly larger than a Hubble time. In addition, significant diffusion in
phase space is not observed on those particles that do exhibit chaotic behaviour within a
Hubble time.
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1 IN T RO D U C T I O N

We are crossing the gates into a new era in astronomy research,
the era of multimessenger observations, big data, and extremely
detailed numerical simulations. In this promising scenario, the field
of galactic archaeology is in an extraordinary position thanks to the
arrival of the satellite Gaia (see Perryman et al. 2001; Lindegren
et al. 2008). A first glimpse at the extraordinary quality of the
full six-dimensional phase space catalogue that Gaia will provide
throughout its lifetime has already been publicly released (Michalik,
Lindegren & Hobbs 2015; Lindegren et al. 2016). Several studies
based on these early-stage data have already pushed the boundaries
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on the characterization of the extended solar neighbourhood phase
space structure and its relation to the Galaxy’s formation history
(Bonaca et al. 2017; Bovy 2017; Iorio et al. 2017; Monari et al.
2017; Schönrich & Dehnen 2017).

According to the � cold dark matter (�CDM) cosmological
model, galaxies increase their mass through merger and accretion
of smaller systems. These accretion events are expected to play a
very important role in shaping the present-day chemical distribu-
tion (Matteucci 2014) and morphological and kinematical structure
of the host galaxy (see Bland-Hawthorn & Freeman 2014, for a
complete review on near-field cosmology). Stellar haloes of large
galaxies such as our own are believed to be primarily formed as a
result of the accumulation of tidal debris associated with ancient as
well as recent and ongoing accretion events (Helmi 2008). Galactic
discs are also strongly affected by such interactions. In addition
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to heating and thickening pre-existing discs, satellites can generate
substructure in both chemical abundance and phase space, as well
as induce secular phenomena such as bars, spiral arms, and warps
(see e.g. Quillen et al. 2009; Gómez et al. 2012a,b, 2013a; Minchev
et al. 2014; Widrow & Bonner 2015; Gómez et al. 2016, 2017;
Laporte et al. 2017, 2018).

Signatures of these accretion events can provide strong con-
straints on the formation history of galaxies (see Newberg & Carlin
2016, and references therein, for a recent and comprehensive dis-
cussion on the subject), such as our own Milky Way (MW; Freeman
& Bland-Hawthorn 2002). Thus, much effort has been devoted to
develop methods and tools to efficiently identify and quantify sub-
structure in different Galactic distributions. To first order, the stellar
halo can be approximated as a collisionless component (Binney &
Tremaine 1987) and, thus, retains its dynamical memory providing
an ideal place to search for signatures of accretion events. Studies
based on numerical models have predicted that a few hundred kine-
matically cold stellar streams should be currently crossing our solar
neighbourhood (Helmi & White 1999; Helmi, White & Springel
2003; Helmi 2008). However, due to limitations of studies based on
pre-Gaia astrometric catalogues (e.g. with ESA 1997; York et al.
2000; Skrutskie et al. 2006; Zhao et al. 2006; Zwitter et al. 2008),
only a handful of stellar streams were identified (e.g. Helmi & White
1999; Helmi et al. 1999, 2006). Furthermore, studies based on Gaia
first data release, DR1, have already revealed more substructures
in our stellar halo (e.g. Helmi et al. 2017; Kushniruk, Schirmer &
Bensby 2017), but the number of identified substructures is still far
from the few hundred streams predicted by the models. Only with
the arrival of Gaia second data release, DR2, we will be able to
provide a more robust quantification of the amount of substructure
in the solar neighbourhood.

A valid concern regarding our ability to identify signatures from
old accretion events relates to the longevity of cold kinematical
structures. It is well known that dark matter (DM) haloes of MW-
like galaxies are expected to be triaxial (Jing & Suto 2002; All-
good et al. 2006; Vera-Ciro et al. 2011), and that a fraction of the
orbits hosted by the corresponding triaxial potentials will exhibit
chaotic behaviour (see e.g. Schwarzschild 1993; Merritt & Frid-
man 1996; Merritt & Valluri 1996; Siopis & Kandrup 2000; Voglis,
Kalapotharakos & Stavropoulos 2002; Kandrup & Siopis 2003;
Kalapotharakos, Voglis & Contopoulos 2004; Muzzio, Carpintero
& Wachlin 2005; Efthymiopoulos, Voglis & Kalapotharakos 2007).
As shown by Helmi & White (1999), Vogelsberger et al. (2008),
Gómez et al. (2013b), and Maffione et al. (2015, hereinafter Paper I),
the density of a stellar stream on a chaotic orbit decays exponen-
tially with time, as opposed to the power-law decay associated with
regular orbits. As a consequence, the identification of stellar streams
on chaotic orbits is extremely challenging as they can quickly blend
with the background stellar distribution, even in velocity space.
More importantly, within relevant time-scales, strong chaotic be-
haviour can lead to diffusion in the space of pseudo-integrals of
motion, such as energy and angular momentum (Poveda, Allen &
Schuster 1992; Schuster & Allen 1997; Valluri et al. 2013). As a
result, signatures of stellar streams can be effectively erased, hinder-
ing our hopes of constraining our Galactic accretion history through
the identification and quantification of substructures in phase space
(for a comprehensive review on chaos in galaxies, see the book by
Contopoulos 2002, and references therein).

In Paper I we tackled this problem by characterizing the orbital
distribution of star particles located within solar neighbourhood-
like volumes extracted from stellar halo models based on DM-only
simulations (Springel et al. 2008a,b; Cooper et al. 2010). Our re-

sults showed that ∼70 per cent of these orbits, evolving within
strongly triaxial potentials, could be classified as chaotic. However,
only �20 per cent of these particles revealed their chaotic nature
within a Hubble time. The remaining orbits classified as chaotic
(∼50 per cent of the total) revealed their chaotic behaviour only
after a Hubble time. These orbits, dubbed as ‘sticky’ (see Tsiganis,
Anastasiadis & Varvoglis 2000, and Paper I and references therein
for further details), are particularly important. They have an intrinsi-
cally chaotic nature. However, for halo stars moving on such orbits,
chaotic mixing will not have enough time to act. Furthermore, an
analysis based on first-order expansions of the underlying poten-
tials demonstrated that diffusion in phase space is not significant on
any realistic time-scale (in agreement with previous works, see for
instance: Giordano & Cincotta 2004; Cincotta, Giordano & Pérez
2006; Cincotta et al. 2014), even for those orbits that revealed their
chaotic nature within a Hubble time.

Although chaotic mixing is non-negligible (e.g. Pearson et al.
2015; Hattori, Erkal & Sanders 2016; Erkal, Koposov & Belokurov
2017) and might be strongly relevant for the morphological structure
of very cold streams (see for instance Price-Whelan et al. 2016a,b),
our results suggested that it is not efficient at erasing signatures of ac-
cretion events. However, as mentioned before, this study was based
on stellar halo models extracted from DM-only simulations. Due
to the lack of a baryon component, the overall galactic potentials
were clearly a poor representation of the true Galactic potential, es-
pecially within the inner Galactic regions. The addition of baryons
does not only modify the potential through their additional mass
distribution, but also significantly alters the density profile of the
DM halo within which the baryons are embedded (e.g. Gnedin et al.
2004; Sawala et al. 2016; Zhu et al. 2016). Previous studies based on
cosmological hydrodynamical simulations have shown that, when
baryons are taken into account, DM haloes present a significantly
more oblate distribution in the inner regions (for instance: Dubin-
ski 1994; Gustafsson, Fairbairn & Sommer-Larsen 2006; Debattista
et al. 2008; Abadi et al. 2010), thus enhancing the asymmetry within
the inner and the outer galactic regions.

In this work, we take a step forward on this matter by charac-
terizing the effects of chaotic mixing in solar neighbourhood-like
volumes extracted from fully cosmological hydrodynamical simu-
lations of the formation of MW-like galaxies (Marinacci, Pakmor
& Springel 2014; Grand et al. 2017). These simulations naturally
account for the effects associated with the gravitational potential of
the baryonic components (such as the bulge and disc), and thus can
be used to characterize the efficiency of chaotic mixing in a more
realistic scenario.

The paper is organized as follows. In Section 2 we briefly in-
troduce the simulations, models, and techniques used in this study.
Our results on the actual relevance of chaos in erasing kinematic
signatures of accretion events in the local stellar halo are presented
in Sections 3 and 4 and, finally, we discuss and summarize our
results in Section 5.

2 M E T H O D O L O G Y

In this section we briefly describe the simulations and numerical
tools used to characterize and quantify chaotic behaviour within
solar neighbourhood-like phase space volumes.

2.1 Simulations

In this study we focus on a set of seven fully cosmological hydro-
dynamic zoom-in simulations of MW-like galaxies, extracted from
Marinacci et al. (2014) and Grand et al. (2017).
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The simulations were carried out using the N-body + moving-
mesh, magnetohydrodynamic code AREPO (Springel 2010; Pakmor
et al. 2016). A standard �CDM cosmology was adopted in both
cases. The values chosen for the different cosmological param-
eters are very similar and can be found on the corresponding
papers.

The baryonic physics model implemented in AREPO follows a
number of processes that play a key role in the formation of late-
type galaxies, such as gas cooling/heating, star formation, mass
return and metal enrichment from stellar evolution, the growth of su-
permassive black holes, magnetic fields (Pakmor & Springel 2013;
Pakmor et al. 2017), and feedback both from stellar sources and from
black hole accretion. The parameters that regulate the efficiency of
each physical process were chosen by comparing the results ob-
tained in simulations of cosmologically representative volumes to a
wide range of observations of the galaxy population (Vogelsberger
et al. 2013; Marinacci et al. 2014; Grand et al. 2016).

In order to contrast our results with those presented in Paper I,
first we use a hydrodynamic re-simulation of one of the haloes from
the Aquarius Project (Springel et al. 2008a,b), also run with the
code AREPO. This simulation, namely Aq-C4 (for simulation Aq-C
at the resolution level 4), was first introduced in Marinacci et al.
(2014).

However, most of the simulations used in this work are taken from
the Auriga Project. This suite is composed of 30 high-resolution
cosmological zoom-in simulations of the formation of late-type
galaxies within MW-sized DM haloes. The haloes were selected
from a lower resolution DM-only simulation from the Eagle Project
(Schaye et al. 2015), a periodic box of side 100 Mpc. Each halo was
chosen to have, at z = 0, a virial mass in the range of (1012)–(2 ×
1012) M� and to be more distant than nine times the virial radius
from any other halo of mass more than 3 per cent of its own mass.
The typical DM particle and gas cell mass resolutions for the sim-
ulations used in this work (Aq-C4 and Auriga, also resolution level
4) are ∼3 × 105 and ∼6 × 104 M�, respectively. The gravitational
softening length used for DM and stars grows with a scale factor
up to a maximum of 369 pc, after which it is kept constant in phys-
ical units. The softening length of gas cells scales with the mean
radius of the cell, but is never allowed to drop below the stellar
softening length. A resolution study across three resolution levels
(Grand et al. 2017) shows that many galaxy properties, such as sur-
face density profiles, orbital circularity distributions, star formation
histories, and disc vertical structures, are already well converged
at the resolution level used in this work. We will refer to the Au-
riga simulations as ‘Au-i’, with ‘i’ enumerating the different initial
conditions, as in Grand et al. (2017). The main properties of each
simulation at z = 0 are listed in Table 1. A detailed description of
how these parameters were obtained is given in Marinacci et al.
(2014) and Grand et al. (2017).

Finally, it is important to highlight that, as discussed below, our
analytic Galactic potentials do not account for the effect of Galactic
bars. Thus, the simulations used in this work were chosen so that
they do not present strong Galactic bars at z = 0. Note that, even
though the time varying potential associated with a bar can enhance
the strength of chaotic diffusion in the very inner galactic region
(Fux 2001; Quillen 2003; Chakrabarty 2007; Chakrabarty & Sideris
2008; Shevchenko 2011), it is unlikely to play a significant role in
erasing signatures of past and ongoing Galactic accretion events
within the solar neighbourhood and beyond. Though, we defer the
detailed study of this aspect to future work (Maffione et al., in
preparation).

Table 1. Main properties of the Aq-C4 and the six Auriga simulations
(resolution level 4) at z = 0 from Marinacci et al. (2014) and Grand et al.
(2017), respectively. The first column labels the simulation. From left to
right, the columns give the virial radius, r200; the concentration parameter
cNFW of the underlying DM haloes; the DM mass M200, and the stellar mass
M� inside the virial radius.

Name r200 cNFW M200 M�

(kpc) (1010 M�) (1010 M�)

Aq-C4 234.4 16.03 145.71 5.31
Au-3 239.02 15.6 145.78 7.75
Au-6 213.83 11 104.39 4.75
Au-15 225.4 7.9 122.25 3.93
Au-16 241.48 9.3 150.33 5.41
Au-19 224.57 8.3 120.9 5.32
Au-21 238.65 14.2 145.09 7.72

2.2 The galactic potential

In order to characterize the dynamics of MW-like stellar haloes by
recourse to the chaos indicator (hereinafter CI) used in the present
effort, the high-precision numerical integration of both the equa-
tions of motion and their first variational equations is required (see
Section 2.4 for further details). Indeed, the variational equations
are needed to track the temporal evolution of the separation be-
tween initially nearby orbits in phase space (see the appendix in
Paper I for details). Therefore, as an analytic representation of the
underlying galactic potential is in order, we describe the potential
of each simulated galaxy by a superposition of suitable analytic and
static models representing the different galactic components. Other
approximations, based on series expansion of the underlying po-
tential can be very accurate (i.e. Clutton-Brock 1973; Hernquist &
Ostriker 1992; Weinberg 1999; Kalapotharakos, Efthymiopoulos &
Voglis 2008; Lowing et al. 2011; Vasiliev 2013; Meiron et al. 2014).
However, a rather large number of terms should be considered, thus
rendering unfeasible the derivation of the first variational equations
(for further discussion see Paper I).

Our analytic Galactic potential contains four different contribu-
tions corresponding to the central nuclear region, the bulge, the disc,
and the DM halo:

�MW = �nuc + �bul + �disc + �DM2. (1)

The values of the parameters that describe each Galactic com-
ponent are directly extracted from the numerical simulations, pre-
sented in last section, as described in Marinacci et al. (2014) and
Grand et al. (2017). The concentration and virial radius that de-
scribe each DM halo are obtained by fitting a Navarro, Frenk &
White profile (Navarro, Frenk & White 1996, 1997) to the corre-
sponding DM particle distribution, and are listed in Table 1. For the
stellar component, a decomposition of the surface density profile
into an exponential disc and a Sérsic profile is performed to obtain
disc scale lengths and bulge effective radii, as well as their rela-
tive mass contributions. Masses are slightly re-calibrated by fitting
our analytic models to the total circular velocity curves extracted
from the simulations, as illustrated in Fig. 1. Note that, through this
process, the total stellar mass is kept constant. Resulting values are
listed in Table 2.

We highlight that, as in Paper I, the cosmological simulations
considered in this work are only used to extract the parameters
that characterize the underlying potentials, and to obtain realistic
models of the phase space distributions of solar neighbourhood-
like volumes (see the next section). Our goal is not to accurately
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Figure 1. Total circular velocity curves Vcir as a function of galactocentric
distance R for one of our analytic and static representations of the MW
(red solid line) and its simulated MW-like galaxy counterpart taken from
a cosmological hydrodynamic simulation (blue points). The resemblance,
particularly in the solar neighbourhood-like volume [i.e. 5 � R(kpc) � 11],
is reassuring.

characterize the impact of chaos in the Aq-C4 or Auriga local stellar
haloes themselves. Instead, we aim to obtain reasonable descriptions
of these numerically simulated galaxies to reflect in our results the
expected variations in the galactic potential associated with the
galaxy formation process. Sampling initial conditions from a self-
consistent model and later evolving them in a slightly different
potential should increase the fraction of chaotic orbits in the sample
(Valluri et al. 2012). Thus, under the approximation of our static
potentials, the fraction of chaotic orbits within the phase space
volumes analysed here will likely be overestimated with respect to
that associated with the best possible analytical representation of
the underlying potential.

We acknowledge that, despite the benefits of dealing with an-
alytic and static representations of the galactic potentials, these
models have their own strong limitations. For example, we are not
accounting for how substructure as well as time dependence could
enhance the efficiency of diffusion in phase space (see Peñarrubia
2013, and Section 5 for further discussion). These issues will be
tackled in a forthcoming paper.

In what follows, we describe each galactic component.

2.2.1 The central nuclear region

The presence of a supermassive black hole and a nuclear star cluster
in the inner galactic regions (Launhardt, Zylka & Mezger 2002) can
significantly amplify the amount of chaos as their mass profiles
contribute to a cuspy shape (see for instance Valluri & Merritt
1998; Kandrup & Sideris 2001). In our analysis, this component is
particularly important for box orbits that are currently crossing our
simulated solar neighbourhood-like volumes. Therefore, to model
such a component, which dominates the mass distribution within

the inner ∼30 pc, we use a Plummer sphere (Plummer 1911):

�nuc = − B√
r2 + (

εs
nuc

)2
, (2)

where the constant B is defined as B = G Mnuc, with G the gravi-
tational constant, Mnuc the estimated mass enclosed in the central
region, r =

√
x2 + y2 + z2 the usual galactocentric distance, and

εs
nuc the radial scale length. All the values of the parameters for MW

model C4 are obtained from simulation Aq-C4 (Marinacci et al.
2014), except for εs

nuc which is taken from Launhardt et al. (2002).
The nuclear region has the same values of the parameters for all of
our MW models and it is not included in Table 2 for the sake of
brevity: the mass being Mnuc = 2 × 108 M�, and the scale length
radius, εs

nuc = 0.03 kpc.

2.2.2 The bulge

The stellar bulge is the dominant component within ∼1 kpc (Laun-
hardt et al. 2002). In this case, we use a Hernquist profile (Hernquist
1990) with a scale length, εs

bul:

�bul = − C

r + εs
bul

, (3)

where C is a constant defined as C = G Mbul, with Mbul its total
mass.

2.2.3 The disc

To model a stellar disc with a double exponential density profile
we follow the procedure described by Smith et al. (2015). The idea
behind this method is to approximate an exponential profile by the
superposition of three different Miyamoto & Nagai (MN) profiles
(Miyamoto & Nagai 1975). In our case, the mass distribution of
the resulting models deviates from the radial mass distribution of a
pure exponential disc by <1 per cent out to four disc scale lengths,
and by <6 per cent out to ten disc scale lengths. Smith et al. (2015)
provide a user-friendly online web-form that computes the best-
fitting parameters for an exponential disc,1

ρ(R, z) = ρ0 exp(−R/εs
disc) exp(−|z|/εh

disc), (4)

with ρ(R, z) the axisymmetric density, R = √
r2 − z2 the projected

galactocentric distance, ρ0 the central density and when the desired
total mass Mdisc, scale length εs

disc, and scale height εh
disc are provided.

Let us remind the reader that the potential of a single MN disc
obeys the following expression:

�MN
disc = − D√

R2 +
[
εs MN

disc +
√

z2 + (
εh

disc

)2
]2

, (5)

where εs MN
disc and εh

disc are the scale length and scale height of the MN
disc, respectively (it should be noticed that εh

disc is the same for the
exponential and the three MN discs). Furthermore, D is a constant
defined as D = G MMN

disc with MMN
disc , its mass.

The experiments performed in this work consider the double
exponential approximation described above.

1http://astronomy.swin.edu.au/∼cflynn/expmaker.php
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Table 2. Parameters of the components for the C4 and the six Auriga MW models. The first column labels the model. From left to right, the columns give: the
mass, Mbul, and the scale length radius, εs

bul, of the bulge; the mass, Mdisc, the scale length radius, εs
disc, and the scale height radius, εh

disc, of the disc; the distance
from the Galactic centre where the solar neighbourhood-like sphere is located, Rsph (2.65 × εs

disc); the intermediate-to-major, b/a, and the minor-to-major, c/a,

principal axis ratios in the inner parts as well as b
′
/a

′
and c

′
/a

′
, the corresponding principal axis ratios in the outer parts; the triaxiality parameter for the inner

(Tinner) and the outer (Touter) regions.

Name Mbul εs
bul Mdisc εs

disc εh
disc Rsph b/a c/a b

′
/a

′
c

′
/a

′
Tinner Touter

(1010 M�) (kpc) (1010 M�) (kpc) (kpc) (kpc)

C4 0.47 0.84 5.96 3.12 0.3 8 0.99 0.94 0.92 0.88 0.227 0.681
Au-3 4.10 1.51 4.29 7.50 0.3 19.875 0.998 0.926 0.976 0.935 0.022 0.379
Au-6 1.37 1.30 3.22 4.53 0.3 12.005 0.996 0.922 0.953 0.899 0.055 0.477
Au-15 0.79 0.90 2.74 4 0.3 10.06 0.996 0.93 0.976 0.94 0.057 0.419
Au-16 2.20 1.56 3.57 7.84 0.3 20.776 0.999 0.944 0.999 0.949 0.023 0.021
Au-19 2.02 1.02 2.88 4.31 0.3 11.422 0.989 0.931 0.964 0.907 0.160 0.399
Au-21 3.48 1.36 3.86 4.93 0.3 13.065 0.995 0.943 0.99 0.961 0.083 0.251

2.2.4 The dark matter halo

Navarro et al. (1996, 1997) introduced a universal spherical density
profile (NFW profile) that provides a reasonable fitting to the mass
distribution of DM haloes of galaxies over a very wide range of
mass and redshift. It has been shown since, however, that DM
haloes are not spherical as assumed by this potential. In the absence
of baryons, fully cosmological simulations have shown that DM
haloes are strongly triaxial, with their shape varying as a function
of galactocentric distance (see e.g. Allgood et al. 2006; Vera-Ciro
et al. 2011). To model this behaviour, Paper I uses a triaxial extension
of the NFW profile (introduced in Vogelsberger et al. 2008),

�DM = −A

rp
ln

(
1 + rp

rs

)
, (6)

where A is a constant defined as

A = G M200

ln (1 + cNFW) − cNFW/ (1 + cNFW)
, (7)

with M200 being the virial mass of the DM halo and cNFW the
concentration parameter; rs = r200/cNFW is a scale radius with r200 the
virial radius. The triaxiality of this potential is introduced through
rp,

rp = (rs + r)ri

rs + ri
, (8)

where ri is an ellipsoidal radius for the inner parts defined as

ri =
√(x

a

)2
+

(y

b

)2
+

( z

c

)2
. (9)

The quantities b/a and c/a represent the intermediate-to-major
and minor-to-major principal axis ratios and are defined such that
a2 + b2 + c2 = 3. Note that the potential shape changes from ellip-
soidal in the inner regions to near spherical at the scale radius, rs.
Thus, for r � rs, rp � ri, and for r 	 rs, rp � r (Vogelsberger et al.
2008).

The addition of baryons, however, significantly alters the DM
phase space distribution. As a result of the central accumulation
of baryons, DM haloes in cosmological hydrodynamic simulations
are found to be more oblate than triaxial in the inner parts (e.g.
Marinacci et al. 2014; Grand et al. 2017). To account for this, we
introduce a ‘bi-triaxial’ extension of the NFW profile by defining a
new parameter:

r ′
p = (rs + ro)ri

rs + ri
, (10)

where a second ellipsoidal radius, ro, is defined as

ro =
√( x

a′

)2
+

( y

b′

)2
+

( z

c′

)2
, (11)

with a
′ 2 + b

′ 2 + c
′ 2 = 3, while (b/a, c/a) and (b

′
/a

′
, c

′
/a) denote the

principal
′
axis ratios of the DM halo in the inner and outer regions,

respectively, with a smooth transition taking place at rs. Thus, the
new potential is simply �DM2 = �DM(r ′

p). Fig. 2 shows an example
of isopotentials in the outer and inner parts of �DM2. The transition
from mildly triaxial to a more oblate shape can clearly be seen as the
centre is approached (compare Fig. 2 with fig. 10 of Vogelsberger
et al. 2008). Note, however, that our models have less exaggerated
(and more realistic) axis ratios (see Table 2 in Section 3.1) than those
considered in the example, and the transition is not so evident.

2.3 Cosmologically motivated initial conditions

To investigate the efficiency of chaotic mixing associated with the
galactic potential described in Section 2.2, equation (1), we first
need to model the distribution of tracer particles in phase space.
Rather than stochastically sampling the associated phase space dis-
tribution, we select particles from the different simulated galaxies
as described below.

To characterize how the efficiency of chaotic mixing varies as
a function of galactocentric radius, we first select stellar particles
located within a 15◦ wedge, whose axis coincides with the disc
semimajor axis. For these experiments we will focus only on the
simulation dubbed Aq-C4. To increase the numerical resolutions
we include stellar particles located within diametrically opposed
wedges. Within these wedges, with vertex in the galactic centre,
we consider star particles with 0.5 � r � 50.5 kpc, where r repre-
sents the galactocentric distance. Note that here we consider stellar
particles born both in situ and in accreted satellites.

In addition, and to compare with the results presented in Paper I,
we also select all DM particles that are located within a sphere of
2.5 kpc radius, centred at 8 kpc along the semimajor axis of the DM
halo in the Aq-C4 simulation. Note that the disc scale length in this
simulation is similar to that of the MW. Thus, this region can be
regarded as a solar neighbourhood-like volume. The larger number
of DM particles, with respect to their stellar counterparts, allows
us to characterize more robustly the efficiency of chaotic mixing
within this relatively small volume.

In Section 3.3 we analyse the Auriga simulations to characterize
how the stochasticity inherent to the process of galaxy formation
can affect the fraction of chaotic orbits in solar neighbourhood
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Figure 2. Isopotentials for the outer (top panel) and inner parts (bottom
panel) of our ‘bi-triaxial’ extension of the NFW profile. The potential be-
comes more oblate as the centre is approached.

analogues. Stellar particles located within a sphere of 5 kpc radius
are selected on each simulation. Note that the final scale lengths of
our simulated galactic discs show a great diversity. Thus, in order
to select regions with the same density contrast, the spheres are
centred at galactocentric distances of 2.65 × εs

Au−i, where 2.65 is
the ratio between the Sun’s galactocentric distance (∼8 kpc) and
the scale length of the MW disc (∼3 kpc), and εs

Au−i being the εs
disc

for the simulated galaxy in simulation Au-i.

2.4 Chaos indicator: the Orthogonal Fast Lyapunov Indicator

In this work we use the Orthogonal Fast Lyapunov Indicator, OFLI
(Fouchard et al. 2002), to quantify and characterize the fraction of
chaotic orbits within different phase space volumes. Here we briefly
describe the method and refer the reader to Paper I, and references
therein, for further details.2

2Note that this study is supported by similar results based on other CI, the
MEGNO (see for instance Cincotta & Simó 2000; Cincotta, Giordano &
Simó 2003; Goździewski, Konacki & Wolszczan 2005; Compère, Lemaı̂tre
& Delsate 2012; Cincotta & Giordano 2016). The orbital classification
obtained with the approximate galactic potential, described in Section 2.2,
is thus robust. None the less, for the sake of brevity, the results based on the

The basic idea behind the OFLI is to track the time evolution of
the distortion of an initially infinitesimal local phase space volume
surrounding any given orbital initial condition. The rate at which
this volume expands along the direction of maximum distortion can
be used to identify chaos. In practice, we follow the time evolu-
tion of a unit deviation vector ŵ(t), evolving on a N-dimensional
Hamiltonian H along a given solution of the equations of motion
(i.e. the orbit) γ (t). The vector ŵ(t) is initially chosen normal to
the energy surface (in order to avoid spurious structures; see Barrio
2016) and, as it evolves, we take its orthogonal component to the
flow, ŵ(t)⊥ ∈ R. Its largest value (sup, or minimum upper bound)
between an initial time t0 and a stopping time tf is retained. The
OFLI is then defined as

OFLIγ (tf ) = sup
t0<t<tf

[
ŵ(t)⊥

]
, (12)

for the orbit γ . For both chaotic and non-periodic regular orbits, the
value of the OFLIγ tends to infinity as time increases. However, on
a logarithmic time-scale, the OFLIγ presents an exponential growth
for chaotic orbits, while it is linear for resonant and non-resonant
regular orbits (with different rates). In the case of periodic orbits, it
oscillates around a constant value (for further details, we refer the
reader to Fouchard et al. 2002).

From now on, we integrate the orbits and compute the preferred
CI using the LP-VICODE code (see Carpintero, Maffione & Darriba
2014). The numerical integrator conserves energy to an accuracy
of one part in 10−12 or less for all the experiments throughout the
paper.

2.5 Orbital classification

As discussed in Paper I, the local spatial density of a star moving on
a chaotic orbit decreases exponentially with time. Stellar streams
moving on these orbits experience a rapid phase space mixing pro-
cess, thus eroding signatures of past accretion events. In contrast,
the local density of a star moving on a regular orbit falls with time
as a power law, with an exponent less than or equal to 3 (a signifi-
cantly lower rate; Helmi & White 1999; Vogelsberger et al. 2008;
Gómez et al. 2013b). The chances of finding stellar streams in the
solar neighbourhood are thus higher if they are evolving on regular
orbits.

In Paper I we presented an analysis that highlighted the very
strong connection between the time evolution of the local (stream)
density around a given particle and the time evolution of the corre-
sponding OFLI. More precisely, we showed that if the OFLI grows
linearly (i.e. regular behaviour), then the associated local density
decreases as a power law, with index less than or equal to 3. An
exponential growth of the OFLI, instead, reflects an exponential
decay of the corresponding local density.

To characterize the impact of chaotic mixing on the different local
phase space distributions, we proceed as in Paper I. We examine
two central aspects associated with chaotic mixing efficiency: (i)
the distribution of chaos onset times, i.e. the time at which a given
orbit starts to showcase its chaotic behaviour, and (ii) the chaotic
mixing diffusion rate, a mechanism that can lead to a significant
drift in the integrals of motion space. To tackle (i), we compute

MEGNO are not included. For a thorough discussion on the advantages and
disadvantages of the most popular CIs found in the literature we refer the
reader to Maffione, Giordano & Cincotta (2011a), Maffione et al. (2011b),
Darriba et al. (2012), Maffione et al. (2013), Skokos, Gottwald & Laskar
(2016), and references therein.

MNRAS 478, 4052–4067 (2018)Downloaded from https://academic.oup.com/mnras/article-abstract/478/3/4052/4998876
by University of Durham user
on 12 July 2018



4058 N. P. Maffione et al.

the time evolution of the OFLI of stellar and DM particles located
within different local volumes (see Section 2.3), by integrating the
orbits for a maximum period of 1000 Gyr. We use such a long
timespan to identify very sticky orbits reliably (see below). We
then classify as chaotic orbits those that show chaos onset times
smaller than 10 Gyr, i.e. approximately within a Hubble time. Orbits
that showcase their chaotic behaviour on time-scales larger than a
Hubble time are classified as sticky orbits. Note that the latter should
not be associated with the concept of weakly chaotic orbits. Sticky
orbits are orbits that behave as regular for long periods of time, with
their associated local stream densities evolving as a power law until
they reach the chaotic sea. Instead, weakly chaotic orbits behave like
chaotic orbits right from the beginning, with local stream densities
evolving exponentially, albeit with a very small exponent.

Orbits that never showcase chaotic behaviour are classified as
regular. These threshold-dependent definitions are arbitrary. How-
ever, based on them it is possible to isolate orbits which are likely
to showcase chaotic behaviour within relevant and physical periods
of time from those in which chaos is clearly irrelevant (see Paper I
for further details). To address (ii), we quantify the diffusion of
pseudo-integrals of motion for large ensembles of initially nearby
test particles in phase space.

3 TH E AC T UA L R E L E VA N C E O F C H AO S IN
MULTICOM P ONENT TRIAXIAL POTENTIALS

The OFLI allows us to robustly characterize the time evolution of
the local (stream) density around any stellar particle (as shown in
Paper I). In what follows, we use this tool to quantify the fraction
of particles, located within different volumes, that are moving on
regular, sticky, and chaotic orbits. A large fraction of chaotic orbits
would indicate that substructure in phase space, especially those as-
sociated with the oldest accretion events, may have been efficiently
erased due to chaotic mixing. This is especially relevant for the inner
galactic regions, such as the solar neighbourhood, due to the much
shorter dynamical time-scales associated with the corresponding
orbits.

3.1 The distribution of chaos onset times as a function
of galactocentric distance

In this section we focus on the stellar particles located within 15◦

wedges (see Section 2.3), extracted from the simulation Aq-C4. The
corresponding distribution of initial conditions is dissected in bins of
different galactocentric distances. Each bin covers a different (non-
overlapping) galactocentric distance range of 5 kpc and contains at
least of the order of 500 stellar particles.

In order to compute the OFLI, we integrate the equations of
motion together with the first variational equations (see the appendix
in Paper I), assuming an analytic and static MW potential of the form
given by equation (1), i.e.

�C4
MW = �nuc + �bul + �disc + �DM2, (13)

denoted as model C4 (see Section 2.2 for further descriptions of
each component). The values of the parameters are given in Tables 1
and 2. To describe the shape of this potential, we use the triaxiality
parameter (Franx, Illingworth & de Zeeuw 1991),

T = 1 − (b/a)2

1 − (c/a)2
. (14)

The shape of the DM halo can be characterized as mainly oblate
for values of 0 � T < 0.333, strongly triaxial for 0.333 � T �

Figure 3. Time evolution of the OFLI for 4410 DM particles considered
for the MW model C4 and within an interval of time long enough to identify
very sticky orbits (1000 Gyr). The upper limit used as a threshold for regular
motion is shown with a blue solid line. The 10 Gyr threshold used to isolate
sticky from chaotic orbits is shown with a vertical dashed blue line. The
three orbital components, i.e. regular, sticky, and chaotic, can be clearly
distinguished by using the OFLI with both simple thresholds. Notice the
logarithmic time-scale.

0.666, and mainly prolate for 0.666 < T � 1. The principal axis
ratios in the inner parts (r � rs) of the corresponding DM halo are
computed using DM particles located within the first 10 kpc. Then,
the triaxiality of the Aq-C4 halo in the inner regions is Tinner ∼
0.227 (an oblate shape). For the outer parts (r 	 rs) the principal
axis ratios are computed using DM particles located within 40 and
70 kpc. The triaxiality parameter here is Touter ∼ 0.681 (a mildly
prolate shape).

The orbits of the stellar particles are integrated over a 1000 Gyr
timespan, with a time-step of 1 Myr.3 The orbits of the particles are
then classified according to the shape of their OFLI time evolution
curves following the procedure presented in Paper I and revisited
below.

As an example, and to demonstrate our method, we first show
in Fig. 3 the time evolution of the OFLI for a subset of 4410 DM
particles located within a solar neighbourhood-like volume (the
same subset will be used in the next section).4 It is clear that, for
some orbits, the OFLI quickly diverges exponentially, whereas for
others it continues to grow slowly following a power law in time. For
large samples of orbits, such as those shown in Fig. 3, individually
inspecting each curve to estimate the chaos onset times (time at
which the OFLI starts to diverge exponentially) becomes unfeasible.
We address this by introducing a time evolving threshold value,
which essentially is an upper limit for the typical linear behaviour
of the OFLI seen in regular orbits. This threshold, indicated with a
blue solid line in Fig. 3, evolves linearly with time and envelopes
all the curves that present a linear behaviour. Particles are classified
as either sticky or chaotic as soon as their corresponding OFLI
crosses this threshold. Note that threshold crossings within the first
Gyr of evolution are neglected as this period corresponds to the
typical transient stage of the indicator. Chaotic orbits are defined

3An integration time-step of 10−2 Myr for a total integration time of 10 Gyr
was also used in order to check numerical convergence: no changes were
found in the results.
4We advise the readers affected with the common form of red–green colour
blindness to convert the paper in a grayscale format to distinguish the chaotic
from the sticky components in the figures thorough the manuscript.

MNRAS 478, 4052–4067 (2018)Downloaded from https://academic.oup.com/mnras/article-abstract/478/3/4052/4998876
by University of Durham user
on 12 July 2018



On the relevance of chaos II 4059

Figure 4. Orbital-type distribution as a function of the bin mean galacto-
centric distance value for MW model C4. Stellar particles on chaotic orbits
remain bounded under ∼27.45 per cent at all galactocentric distances and
below ∼17.51 per cent if the innermost bin is removed.

as those which cross the threshold within the first 10 Gyr of their
evolution. This 10 Gyr barrier is depicted in Fig. 3 by a vertical
dashed blue line. In a handful of cases we find that, even though
the OFLI crossed the threshold at an early stage, it later continued
to evolve linearly with time. Thus, the fraction of chaotic orbits
within each volume may be slightly overestimated. In other words,
our procedure provides conservative estimates.

The results of this procedure are presented in Fig. 4, where we
show the fraction of regular (black solid squares), sticky (green
open squares), and chaotic (red open dots) orbits, as a function of
the mean galactocentric distance of the corresponding bin. We find
that the fraction of regular orbits shows a very mild decrease as
we move from the inner to the outer galactic regions, with orbital
fractions in between ∼37 and ∼53 per cent. A more significant
galactocentric distance dependence is shown by sticky and chaotic
orbits, with orbital fractions varying from 20 to 55 per cent and 30
to 5 per cent, respectively. Note that sticky and chaotic orbits show
approximately a specular behaviour. Due to the longer dynamical
time-scales associated with the outer galactic regions, clearly the
fraction of chaotic orbits that exhibit their chaotic behaviour within
a Hubble time becomes progressively smaller.

Mainly, we find that, at all galactocentric distances ≈70–
95 per cent of the orbits show a regular behaviour within a Hubble
time (i.e. regular + sticky orbits by our definitions), with associated
local stream densities that decrease as a power law rather than the
much faster exponential decay associated with chaos. At the loca-
tion of the Sun (bin enclosed between 5.5 and 10.5 kpc, i.e. centred
at 8 kpc), this fraction takes a value of �80 per cent. Compari-
son with the results presented in Paper I (where only �20 per cent
of orbits could experience chaotic mixing) suggests that consider-
ing a multicomponent potential, including a central super massive
black hole, a bulge, an axisymmetric disc, and a double triaxial DM
halo, does not significantly enhance the relevance of chaos within a
Hubble time. We will further explore this in the following sections.

3.2 The relevance of baryons

In the previous section we have shown that, under the particular set-
up used for the multicomponent Galactic potential, the fraction of
orbits exhibiting chaotic behaviour within a Hubble time is small in
a solar neighbourhood-like volume (�20 per cent). In this section

we will explore whether different configurations of the baryonic
components affect this result. To increase the numerical resolution,
in these experiments we will analyse the orbits of the ≈4400 DM
particles enclosed within a 2.5 kpc sphere centred 8 kpc from the
Galactic centre of the C4 model (see Section 2.3)

The orbits of this subset of DM particles are first integrated in a
Galactic potential that only considers the double triaxial DM halo,
i.e.

�C4
MW = �DM2. (15)

We will use this result as a reference to contrast against the results
obtained when the different baryonic components of the potential
are introduced. Recall that, as discussed in Section 2.2, the fraction
of chaotic orbits expected after integrating initial conditions that are
not self-consistent with the Galactic potential are larger than what
would be obtained from the corresponding self-consistent model.5

The fraction of regular, sticky and chaotic orbits in this experiment
are 76, 23.4, and 0.6 per cent, respectively. It is evident that the
fraction of chaotic orbits within a Hubble time is negligible for this
potential.

In Paper I we estimated the fraction of chaotic orbits within solar
neighbourhood-like volumes extracted from the Aquarius DM-only
simulations. In particular, for the DM-only version of the simu-
lation analysed in this section, the fractions of regular, sticky, and
chaotic orbits found were 31.6, 46.6, and 21.8 per cent, respectively.
It is clear that the inclusion of baryons in the Aq-C4 simulation re-
sulted in a significant reduction of the chaotic orbits within solar
neighbourhood-like volumes. As can be seen from Zhu et al. (2016,
fig. 8), where the shape of the main DM halo of the DM-only and
hydro simulations are compared as a function of galactocentric dis-
tance, the addition of baryons strongly reduces the triaxiality within
the inner galactic regions.

We now integrate the same subset of orbits, now including in the
Galactic potential the two main baryonic components, i.e.

�C4
MW = �bul + �disc + �DM2. (16)

The fractions of regular, sticky, and chaotic orbits are 50.5, 34.1,
and 15.4 per cent, respectively. Note that the fraction of chaotic
orbits has significantly increased with the inclusion of these two
components. This result shows that, while the asymmetry of the
DM halo inner parts is the source of chaos for stellar halo particles
in this solar neighbourhood-like volume, the bulge–disc pair plays a
significant role in amplifying the occurrence of chaotic motion. As
we show in what follows, this is due to a significant enhancement
of the asymmetry between the inner and outer Galactic potential.

To study the impact of these chaos amplifiers, we repeat the latter
experiment, now varying the masses of both baryonic components
while keeping the total mass of the pair constant. The results are
shown in Fig. 5, where D/T is the disc to total baryonic mass fraction.

Comparison with the result obtained considering the potential
given by equation (16), shows that associating all the baryonic mass
to the galactic bulge (D/T = 0) results in a reduction of the fraction
of sticky and chaotic orbits; 11.6 and 3.5 per cent, respectively.
The addition of this massive spherical bulge component, which
dominates the potential in the inner Galactic region, reduces the
impact of the inner triaxial shape of the underlying DM halo on the
orbital distribution.

5Note that this holds true as long as the number of isolating integrals of mo-
tion in the non-self-consistent potential is the same as in the self-consistent
case.
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Figure 5. Orbital-type distribution as a function of the disc to total baryonic
mass fraction (D/T). The fraction of DM particles on chaotic orbits is always
smaller than ∼16 per cent.

Interestingly, as the values of D/T increase, both chaotic and,
more strongly, sticky orbital fractions increase. While the fraction
of chaotic orbits reaches a maximum of ∼16 per cent for values of
D/T � 0.3, the fraction of sticky orbits continues to grow to values
of ∼35 per cent at D/T = 1 (all the baryonic mass is associated
with the disc). As opposed to the spherical bulge, the disc strongly
amplifies the effects of this mild oblateness of the inner triaxial DM
halo potential. The minimum fraction of regular orbits is found for
values of D/T = 1, i.e. 50.4 per cent. None the less, it is important
to highlight that, despite the redistribution of the baryonic mass
in the bulge–disc pair, the fraction of orbits that exhibit a chaotic
behaviour within a Hubble time is always smaller than ∼16 per cent.

In the next section we characterize the impact that different galac-
tic formation histories may have on our chaotic orbital fraction
estimates.

3.3 The impact of formation history

In the previous section we showed that, even though the inclusion
of the baryonic component in our simulated Galaxy results in a
reduction of the triaxiality of the inner DM halo, the addition of the
disc enhances the asymmetry between the inner (r � rs) and outer
overall Galactic potential (r > rs). As a consequence, the fraction of
chaotic orbits remains consistent with that obtained from strongly
triaxial DM potentials associated with DM-only simulations.

Our results were based on a single numerical model, namely C4.
Thus, in this section we will explore whether differences in shapes
and masses of the different galactic components, originating as a
consequence of different formation histories, have an effect on our
previous results.

As discussed in Section 2.1, here we consider a subset of six sim-
ulations from the Auriga project. Recall that our analytic Galactic
potentials do not account for the effect of Galactic bars. Thus, these
simulations were selected to not show strong bars at z = 0.

The Galactic potential of each Auriga galaxy is modelled consid-
ering equation (1). The values of the parameters that describe the
potentials are given in Tables 1 and 2. With these parameter sets,
a good agreement between the analytic and the numerical velocity
curves of the models is obtained. Comparison between the triaxial-
ity of the inner and outer DM haloes reveals a significant diversity
in the asymmetric shape of this Galactic component.

 0

 0.2

 0.4

 0.6

 0.8

 1

Au-3 Au-6 Au-15 Au-16 Au-19 Au-21

O
rb

ita
l t

yp
e 

fr
ac

tio
n

Regular
Sticky

Chaotic

Figure 6. Orbital-type distribution for the six Auriga models. The fraction
of accreted stellar particles on chaotic orbits is highest for model Au-19,
∼16.6 per cent.

From each simulated Galaxy, stellar particles located within a
sphere of 5 kpc radius centred at a distance of 2.65 × εs

Au−i are
selected (see Section 2.3). Since we are interested in studying the
efficiency of chaotic mixing in erasing local signatures of accretion
events, in this section we will only consider accreted stellar particles
(i.e. stellar particles that were born within the potential wells of
accreted satellite galaxies). Note however that our results are not
significantly modified when in situ stellar populations are taken
into account. As before, orbits are integrated for 1000 Gyr, with an
integration time-step of 1 Myr.

The results of this analysis are summarized in Fig. 6 where we
show with a normalized histogram and for each Auriga Galaxy
model, the fraction of regular (black), sticky (green), and chaotic
(red) orbits. The model with the smallest fraction of regular orbits is
Au-19 (∼53.2 per cent). Interestingly, this model contains the most
triaxial DM halo among the Auriga galaxies, with inner and outer
triaxiality parameters (defined using the inner and outer principal
axial ratios) of Tinner = 0.160 and Touter = 0.399, respectively. On
the other hand, the Auriga model with clearly the largest fraction
of regular orbits is Au-16. Its associated DM halo potential has a
nearly perfect oblate shape, with triaxiality parameter values in the
inner and outer regions of Tinner ∼ Touter ∼ 0.02.

As expected, the fraction of regular orbits in each potential shows
a dependence on the degree of asymmetry of the corresponding DM
halo. This is more clearly seen in Fig. 7, where we show the fraction
of regular (black solid squares), sticky (green open squares), and
chaotic (red open dots) orbits in each Auriga model, as a function
of an average triaxiality parameter, Tmean = (Tinner + Touter)/2. No-
tice how the fraction of regular orbits steadily decreases as Tmean

increases. This highlights that once the bulge–disc pair is taken into
account, for values of D/T � 0.3, the dominant factor determining
the fraction of regular orbits is the overall triaxiality of the under-
lying DM halo. None the less, in all cases, and independently of
the properties of the analysed potential models, we find that the
fraction of orbits exhibiting a chaotic behaviour within a Hubble
time is smaller than 17 per cent.

4 G LOBA L DYNAMI CS A ND DI FFUSI ON

As shown in the previous section, a small but non-negligible frac-
tion of stellar halo particles in solar neighbourhood-like volumes
could indeed exhibit chaotic mixing. This fraction is comparable to
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Figure 7. Orbital-type distribution as a function of an average triaxiality
parameter (Tmean). The fraction of stellar particles on chaotic orbits is always
smaller than 17 per cent.

the one found in Paper I, but now taking into account the contri-
bution from both the DM and baryonic components to the overall
galactic potentials. In what follows we will discuss the extent to
which such mixing can erase kinematic signatures of early accre-
tion events within galactic regions such as the solar neighbourhood
and physically relevant periods of time. In this direction, we give
a theoretical framework and approximate the potential model as a
near-integrable one, i.e. a fully integrable one plus a ‘small’ pertur-
bation in order to gain some insight on the expected result. Thus, by
chaotic diffusion, roughly speaking, we mean the time variation of
the prime integrals of the integrable potential when it is acted upon
by a small non-integrable perturbation.

4.1 Approximating the galactic potential within solar
neighbourhood-like regions

The potential �DM2 given in equation (6) in terms of the ‘bi-triaxial’
radius defined in equation (10) admits, for r ′

p < rs (both quantities
introduced in Section 2.2.4), the power series expansion:

�DM2 = −A

r ′
s

∞∑
n=1

(−1)n+1

n

(
r ′

p

rs

)n−1

, (17)

so it is analytic everywhere, and the condition r ′
p < rs implies that

r < rs, which holds for local volumes around the Sun.
Under the above assumption, the ratio r ′

p/rs could be expanded
as a power series and, retaining terms up to r2

i /r2
s and ri ro/r

2
s , it

can be written as

r ′
p

rs
≈ ri

rs

(
1 + ro − ri

rs

)
. (18)

Again, the relationship between these radii follows from their defi-
nitions given in Section 2.2.4.

Taking into account the values of the ratios of the principal axes
describing the ellipsoidal inner and outer regions of the DM halo
(MW model C4 in Table 2), we introduce the small parameters:

ε1 = a2

b2
− 1, ε′

1 = a′2

b′2 − 1,

ε2 = a2

c2
− 1, ε′

2 = a′2

c′2 − 1. (19)

Recalling that a
′ ≈ a ≈ 1 (1.07 and 1.02, respectively), intro-

ducing spherical coordinates (r, ϑ , ϕ), retaining terms up to r ′
p/rs

in equation (17) and neglecting those of second order in the pa-
rameters defined in equation (19), the quadrupolar approximation
to equation (17) takes the form:

�DM2 ≈ φ0
DM2(r) + V (r) {α1(r) cos 2ϑ + α2(r)

[ cos 2ϕ − 0.5 cos 2(ϑ + ϕ) − 0.5 cos 2(ϑ − ϕ)]}, (20)

where

�0
DM2(r) = Ar

2r2
s

[
1 + ε1

8
+ ε2

4
+ r

4rs

(
δε1

2
+ δε2

)]
, (21)

V (r) = Ar

8r2
s

, (22)

α1(r) = ε2 − ε1

2
+ r

rs

(
δε2 − δε1

2

)
, (23)

α2(r) = −1

2

(
ε1 + r

rs
δε1

)
, (24)

with δεi = ε′
i − εi , the amplitudes αs are then assumed to be small.

As far as our analysis is concerned, the contribution of the disc
component, equation (5), to the overall potential is essentially spher-
ical due to the smallness of the z-values around the position of the
Sun. Then, neglecting terms of O(z2/r2), it can be well approxi-
mated by the expression

�0
disc(r) = − D√

r2 + (
εs

disc + εh
disc

)2
. (25)

As we have already mentioned (Section 2.2), the exponential disc is
approximated with the superposition of three different MN models,
so the above approximation still holds in case of an exponential
profile.

Summarizing, the central part of the Galactic potential can be
written as

�0
MW = �nuc + �bul + �0

disc + �0
DM2, (26)

which yields the following expression for the total (approximated)
potential:

�MW(r, ϑ, ϕ) ≈ �0
MW(r) + V (r){α1(r) cos 2ϑ + α2(r)

[cos 2ϕ − 0.5 cos 2(ϑ + ϕ) − 0.5 cos 2(ϑ + ϕ)]}.
(27)

In equation (27) the angular dependence of the potential, at this
order, only comes from the DM halo.

In Paper I we have already provided a theoretical background for
chaotic diffusion, so here we restrict the discussion to this model.
The Hamiltonian associated with equation (27) can be written as

H(p, r) = H0(p, r, ϑ) + �̂1(r), (28)

with

H0(p, r, θ ) = p2
r

2
+ p2

ϑ

2r2
+ p2

ϕ

2r2 sin2 ϑ
+ �0

MW(r), (29)

and

�1(r) = V (r){α1(r) cos 2ϑ + α2(r) (30)

[cos 2ϕ − 0.5 cos 2(ϑ + ϕ) − 0.5 cos 2(ϑ + ϕ)]},
where

pr = ṙ , pϑ = r2ϑ̇, pϕ = r2ϕ̇ sin2 ϑ. (31)
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Therefore, H0 is an integrable Hamiltonian, since

H0 = E0, Lz = pϕ, L2 = p2
ϑ + p2

ϕ csc2 ϑ, (32)

are the three global integrals, while �̂1 can be considered as a
small perturbation. The terms in �̂1 that depend on (ϑ , ϕ) break the
spherical symmetry leading to variations in the modulus of the total
angular momentum and its z-component:

dL2

dt
= [L2,H] = −2pϑ

∂�̂1

∂ϑ
− 2pϕ

sin2 ϑ

∂�̂1

∂ϕ
, (33)

dLz

dt
= [Lz,H] = −∂�̂1

∂ϕ
, (34)

which are of the order of αs. These small variations of |L| and
Lz within chaotic domains would lead to chaotic diffusion. For
instance, in those regions where stickiness is strong, the changes
�|L|, �Lz over a given timespan T would be very small and thus,
though the dynamics is chaotic, almost stability can be assumed for
time-scales τ ∼ T. Instead, in other domains of phase space, large
values of �|L| and �Lz could be observed over the same times-
pan, diffusion becoming significantly faster so that chaotic mixing
would be efficient over τ � T. In other words, chaos is a neces-
sary but not sufficient condition for diffusion. Therefore, diffusion
experiments would be required to obtain reliable information about
the stable/unstable character of the motion within chaotic domains,
as shown, for instance, in Paper I and in Martı́, Cincotta & Beaugé
(2016), for the case of planetary dynamics. Notice that the approxi-
mation to the galactic potential given by equation (27) is derived and
used just for the theoretical discussion regarding chaotic diffusion
delivered in the next section.

4.2 The actual relevance of chaotic diffusion

In this direction, we accomplish a global picture of the dynamics in
the angular momentum space by computing a dynamical indicator
for a large set of initial conditions around the position vector of
the Sun x� and on a given energy surface. For this purpose, and
adopting (x�, y�, z�) = (8, 0, 0) kpc, we take the mean value of
the energy distribution of the 1171 stellar particles located within a
15◦ wedge, oriented along the disc semimajor axis and with galac-
tocentric distances between 5.5 and 10.5 kpc (second bin, centred
at 8 kpc in Fig. 4) in the Aq-C4 simulation (see also Section 2.3 for
further details on the initial distribution of the conditions), namely
〈E〉 = h � − 164 803 km2 s−2 (such energy surface is computed
with our analytic and static representation of the galactic potential).
Then we sample a domain in the (|L|, Lz) plane with a grid chosen
such that, in both dimensions, nearly 80 per cent of the correspond-
ing stellar particles are encompassed (notice that actually, for the
sake of symmetry, only the ≈40 per cent in the Lz-direction needs
to be accounted for). Fig. 8 displays in red the region on the (|L|, Lz)
plane considered for the current dynamical study, and also shows, as
black dots, the values corresponding to the Aq-C4 stellar particles.

The left-hand panel of Fig. 9 displays an OFLI map for a grid
of 121 224 equidistant initial conditions in the plane (log (L2), Lz)
which have been integrated over a timespan of 10 Gyr in order
to obtain the concomitant value of the chaos indicator. The solid
black line in the colour bar shows the threshold used to distinguish
regular from chaotic motion. In general, cool colours represent
regular motion whereas warmer ones indicate chaotic motion.

The resulting global dynamical portrait for this time-scale re-
veals the prevailing regular character of the motion in the angular

Figure 8. Ranges in |L| and Lz for the whole set of 1171 stellar particles
(black dots) of the Aq-C4 simulation. In red, we highlight the areas of the
plane considered in the experiments.

momentum space. In fact, just a few invariant manifolds and nar-
row resonances are detected. Let us recall that the most relevant
invariant manifolds separate different orbital families, the large res-
onance domains. Indeed, the region with smaller values of |L| and
Lz corresponds to the box family while the tube orbital family
has |L| � 1750 kpc km s−1, Lz � 1000 kpc km s−1. The light blue
arc arising from |L| ≈ 1750 kpc km s−1, Lz = 0 corresponds to the
separatrix (actually the chaotic layer), which separates both orbital
families. Meanwhile, rather small high-order resonances show up
as thin channels all over the angular momentum space. This web of
resonances is known as the Arnold web.

In sum, notice should be taken that the phase space is mainly cov-
ered by regular orbits for the considered timespan. Consequently,
chaos is almost irrelevant after an evolution of 10 Gyr, even though
the perturbation is not negligible for the C4 MW model, being
α1 ∼ 0.1, α2 ∼ −0.03 for local solar neighbourhood-like volumes.
In this case, as already mentioned, the fraction of phase space corre-
sponding to chaotic motion is small but non-negligible and amounts
to �25.57 per cent.

In order to detect any diffusive phenomena or chaotic mixing in
the present model, a larger time-scale should be considered. There-
fore, though without direct physical significance, we obtained the
OFLI map corresponding to 100 Gyr, which is displayed in the
right-hand panel of Fig. 9. Such a map discloses chaotic motion
that still appeared as regular at 10 Gyr, mainly due to stickiness.
Indeed, the map reveals that the thin chaotic layer separating box
and tube families already discussed, now at 100 Gyr appears wider
with large OFLI values, depicted in red. Moreover, other resonances
also show up as highly chaotic and the Arnold web is seen to oc-
cupy a considerable region in phase space which amounts to almost
60 per cent of the integrated orbits. The presence of a connected
chaotic region of noticeable size would forecast a secular varia-
tion of the unperturbed integrals (|L|, Lz), which would lead to the
uprising of fast diffusion.

Let us say that we are also interested in determining the time-scale
for chaotic diffusion to take place. Therefore, following a similar
approach to that presented in Paper I, we investigate diffusion over
the (|L|, Lz) plane, for a given energy surface, ĥ, within a small
sphere in configuration space, |x − x�| < δ. In this way we reduce
the motion to an almost two-dimensional section defined by

S = {
(|L|, Lz) : |x − x�| < δ, H = ĥ

}
. (35)
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Figure 9. OFLI maps for 10 (left-hand panel) and 100 (right-hand panel) Gyr for the C4 MW model for (x�, y�, z�) = (8, 0, 0) and ĥ � −164 803 km2

s−2. The solid black lines in the colour bars show the threshold used to distinguish regular from chaotic motion. Warm colours indicate chaotic motion while
cool colours represent regular motion. The Arnold web is mostly unveiled and, as we can see from the warm colours on the right-hand panel, it covers a
considerable domain in phase space.

Table 3. Ensembles of 106 initial conditions sampled uniformly in boxes of
size ∼10−6 in both |L| and Lz, whose centres, given in the table, correspond
to chaotic orbits. The units in L and Lz are kpc km s−1.

Ensemble |L| Lz

(i) 562 500
(ii) 1122 900
(iii) 1820 50
(iv) 861 50
(v) 1413 700

For our diffusion studies, we take ensembles of Np = 106 tracer
particles sampled uniformly in boxes of size ∼10−6 in both |L|
and Lz. The centres of these boxes, whose highly chaotic nature
has been revealed by the OFLI indicator, are listed in Table 3. We
integrate the equations of motion for each initial condition taking
into account the full potential given by equation (13) over some
timespan T, and every time the orbits of the ensemble intersectS, we
retain the corresponding values of |L|(t) and Lz(t). For ensembles
located in stable regions both unperturbed integrals slightly vary,
being |�|L|(t)|, |�Lz(t)| � 1, so that practically no evolution in
the angular momentum plane should be observed. In fact, the small
variations in |L|, Lz arise as a consequence of the system being
no longer spherical. For ensembles immersed in chaotic domains
instead, if no barriers to diffusion are present, both unperturbed
integrals are expected to change with time and the trajectory over
S would provide an indication of actual diffusion.

Further, let us remark that the number of intersections of a given
trajectory with S strongly depends on the stability of the motion.
In fact, in the case of stable regular motion, since the orbit lies in a
three-dimensional torus, S is a slice of it and thus many crossings
would occur. On the other hand, in the case of an unstable chaotic
orbit, no tori structure exists and thus only a few intersections with
S are expected. So much that in the considered ensembles, which
correspond to highly chaotic motion, no crossings are observed
during the first 20 Gyr.

Moreover, taking into account the sticky character of most or-
bits, long timespans should be considered. Indeed, such stickiness
could vary for slightly different values of the model parameters,
thus leading to rather different results. Therefore, in order to over-
come the possible effect of sticky phenomena, long-term diffusion
experiments have been carried out, which are described straight
away.

The top left panel of Fig. 10 shows how ensemble (i) evolves
with time in action space. Diffusion is seen to proceed along the
stochastic layer separating box from tube orbits. Let us point out the
geometrical resemblance of the observed diffusion with the one that
would be expected from the Arnold’s theoretical conjecture, which
forecasts that diffusion would proceed through phase space along
the chaotic layers of the full resonance web. However, and since the
perturbation is not sufficiently small, the detected diffusion should
be interpreted as a consequence of the resonances’ overlap. Even
though fast diffusion could take place in such a scenario, this event
does not occur at all, as follows from our numerical experiments.

To stress this fact we turn to the time evolution of ensemble (ii)
shown in the top right panel of the same figure during 40 Gyr.
Therein, we recognize that the unperturbed integrals remain con-
fined to a very small domain, even for a rather large timespan, diffu-
sion neatly spreading over the unperturbed separatrix discriminating
box from tube orbits. This still applies when far larger time-scales
are considered.

The wandering on to the resonance web of the unperturbed ac-
tions, |L| and Lz corresponding to the third ensemble are displayed
in the middle left panel of Fig. 10. In this particular case, only three
intersections with S are observed up to 40 Gyr so that a larger
timespan needs to be covered. Indeed, after 70 Gyr we notice that
diffusion advances along the outermost edge of the stochastic layer,
near the bottom of the figure, and climbs up over the entangled
assemblage of stable/unstable manifolds associated with different
high-order resonances.

For ensemble (iv) instead, already at 40 Gyr some variation of
the unperturbed integrals is seen to occur, as the middle right panel
of Fig. 10 displays. For an even larger time-scale, say 70 Gyr, the
ramble in action space breaks through the innermost region of the
resonance interweave.

The bottom panel of Fig. 10 shows how diffusion proceeds for
the ensemble (v). The successive intersections of the trajectories
with the section S in action space adroitly diffuse along the layer
discriminating box from tube orbits, also after a rather long time-
scale since up to ∼40 Gyr no crossings take place.

We should note that the considered ensembles, except for the
one denoted by (iv), were picked up very close to the main
unstable region, which is the chaotic layer that separates box
from tube families. From the above results, it turns out that the
largest variation of the integrals corresponds to ensemble (v), being
�|L| � 800 kpc km s−1 over τ = 70 Gyr so that a mean rate of
variation could be estimated as �|L|/τ � 11.5 kpc km Gyr−1 s−1,
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Figure 10. Top left panel: diffusion over 40 Gyr for ensemble (i) of initial conditions (depicted in green) superimposed on the Arnold web. Top right panel:
diffusion over 40 Gyr for ensemble (ii) of initial conditions (also depicted in green) superimposed on the Arnold web. The unperturbed integrals remain
confined to a rather small domain, revealing that diffusion turns out to be mostly inefficient. Middle left panel: long-term diffusion over 70 Gyr for ensemble
(iii) of initial conditions (in green) overplotted on the Arnold web. Middle right panel: drift of the unperturbed integrals over 40 Gyr for ensemble (iv) of
initial conditions (in green) superimposed on the Arnold web. Bottom panel: long-term diffusion over 70 Gyr for ensemble (v) of initial conditions (in green)
overplotted on the Arnold web.

which is actually rather small (for instance, on the left-hand panel
of fig. 7 in Gómez et al. 2013b, a resolved stream is shown with a
typical extension of more than 500 kpc km s−1 in Lz).

5 D I S C U S S I O N A N D C O N C L U S I O N S

Stellar streams are the living records of galactic accretion events.
Therefore, their identification as kinematically cold substructures is
of key importance for galactic archaeology. Much effort has been
devoted to locate such fossil signatures in the outer stellar halo,
where typical dynamical time-scales are long enough to preserve
this structure in a spatially coherent fashion. Several streams have in-
deed been identified and studied in great detail within these regions
(Ibata, Gilmore & Irwin 1994; Ibata et al. 2001a,b; Odenkirchen

et al. 2001; Ibata et al. 2003; Majewski et al. 2003; Belokurov et al.
2006a,b, 2007; Martin, Ibata & Irwin 2007).6 On the other hand, in
the inner stellar halo, and particularly around the solar neighbour-
hood (where information about the most ancient accretion events
is expected to be stored; Helmi & de Zeeuw 2000; Johnston et al.
2008; Gómez et al. 2010), identifications of stellar streams are far
less numerous, even though theoretical models predict hundreds of
them (Helmi & White 1999; Helmi et al. 1999, 2003, 2006). Further-
more, the extragalactic origin of some of these substructures has not
been proved conclusively yet (see Smith 2016, for a full discussion
and references therein). The amount of substructure present in the

6For a recent and very complete list of stellar streams in the Galactic halo
we refer the reader to Grillmair & Carlin (2016, table 4.1).
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solar neighbourhood’s phase space distribution is subject to several
factors. It has been often argued that the low identification rate may
be mainly due to the lack of an accurate and large enough full phase
space stellar catalogue. Within 2018 Gaia DR2 will be released and
a robust quantification of substructure within the extended solar
neighbourhood will become feasible for the first time.

In addition to the previous astrometric limitations, another rele-
vant factor playing a role for the quantification of stellar streams is
the active sources of chaos, which can trigger chaotic mixing within
relevant time-scales. As discussed in Paper I, thanks to the asymmet-
ric nature of the underlying gravitational potential, a fraction of the
local stellar streams are expected to be evolving on chaotic orbits.
Chaos, in the Lyapunov sense, indicates exponential divergence of
initially nearby orbits in phase space. Dynamical time-scales in the
inner regions of the Galaxy are relatively short. Thus, a group of
initially close by stars in phase space, evolving on chaotic orbits,
would experience a very rapid mixing. More importantly, regions
filled with chaotic orbits can foster chaotic diffusion, which effec-
tively erases the ‘dynamical memory’ imprinted in all phase space
and results in a smooth distribution function. The detection of stel-
lar streams could be seriously threatened if such chaotic orbits are
indeed very common (Gould 2003; Pearson et al. 2015; Hattori et al.
2016; Price-Whelan et al. 2016a,b; Erkal et al. 2017).

In Paper I we explored whether chaos could indeed be playing a
significant role in eroding substructure in the solar neighbourhood
phase space distribution. The experiments carried out in that work
strongly suggested that this would not be the case. Only a very
small fraction of the orbits within solar neighbourhood-like volumes
exhibit chaotic behaviour within a Hubble time. Diffusion did not
have enough time, even in those cases. However, that study was
based on dark matter only simulations, which completely neglected
the role of the baryonic component.

In this second paper we re-examined the problem using a sig-
nificantly more realistic set-up to model the Galactic stellar halo.
We used a suite of seven state-of-the-art fully cosmological hydro-
dynamic zoom-in simulations of the formation of Milky Way-like
galaxies (Section 2.1), to extract values of the parameters that de-
scribe our analytic potential models and to sample realistic phase
space distributions of different volumes. The Galactic potential was
modelled with a new analytic and static representation: a multicom-
ponent model that accounts for the effect of both the baryonic and
dark matter components (Section 2.2). We integrated the equations
of motion, coupled with the first variational equations, using the
different sets of cosmologically motivated initial conditions (Sec-
tion 2.3) and computed, for each orbit, the Orthogonal Fast Lya-
punov Indicator (Section 2.4). This chaos indicator allowed us to
robustly classify the orbits of our stellar and dark matter particles
into three different components: regular, sticky, and chaotic (Sec-
tion 2.5). Their distinction is of pivotal importance due to the fact
that the time evolution of the rate at which the local (stream) den-
sity around such a given particle decreases is completely different.
In case of regular orbits, they are associated with a rate that fol-
lows a power law in time, while chaotic orbits have an exponential
one (Helmi & White 1999; Vogelsberger et al. 2008; Gómez et al.
2013b, and Paper I). Sticky orbits, on the other hand, are not so
easily defined. They behave as regular orbits for a given period of
time to change their orbital character afterwards. Following Paper I,
we used an arbitrary but physically relevant period of time threshold
to differentiate between sticky and chaotic orbits: 10 Gyr (roughly
a Hubble time).

Our results show that, at all galactocentric distances,
≈70−95 per cent of the orbits considered show a regular behaviour

within a Hubble time. In particular, around the location of the Sun
this fraction takes an average value of �80 per cent (see Section
3.1 for details). This holds true independently of the way the total
baryonic mass is re-distributed within the bulge–disc pair (Section
3.2) and, more importantly, the galactic formation history (Sec-
tion 3.3). The lowest percentages of chaotic orbits are obtained
for models Au-16 and Au-21 (∼2 and ∼9 per cent, respectively),
where the shape of the dark matter haloes is oblate across all their
extension.

We performed a detailed study of the efficiency of chaotic dif-
fusion based on first-order perturbation theory. The numerical ex-
periments presented in Section 4.2 showed that diffusion, the most
critical mixing process, has a time-scale that by far surpasses the
Hubble time. As we find from our most diffusive experiments, the
largest measure of the relative diffusion rate barely amounts to
∼0.01 Gyr−1.

Comparison with the results presented in Paper I suggests that
considering a multicomponent representation of the galactic poten-
tial does not significantly enhance the relevance of chaos or chaotic
diffusion in local halo stars within a Hubble time. Instead, we find
evidence that there is a direct connection between the amount of
chaos found in the local stellar halo and the triaxiality of the under-
lying dark matter halo. It remains to be studied whether an accurate
estimation of the amount of chaotic motion in halo stars could be
used to constrain the shape of the underling dark matter halo poten-
tial.

Our results reinforce the idea that chaotic mixing is not a signif-
icant factor in erasing local signatures of accretion events, which is
in very good agreement with previous theoretical predictions. How-
ever, fundamental caveats still persist and should be addressed in
follow-up works. For instance, our models are a superposition of not
only smooth but also static potentials, and substructure (such as dark
matter subhaloes; Ibata et al. 2002; Carlberg 2009; Yoon, Johnston
& Hogg 2011; Carlberg 2015; Erkal & Belokurov 2015a,b; Erkal
et al. 2016; Ngan et al. 2016; Erkal, Koposov & Belokurov 2017) as
well as time dependence (Manos, Bountis & Skokos 2013; Manos
& Machado 2014; Hattori, Erkal & Sanders 2016; Machado &
Manos 2016; Monari et al. 2016; Price-Whelan et al. 2016b; Erkal,
Koposov & Belokurov 2017; Pearson, Price-Whelan & Johnston
2017, and references therein) could enhance the efficiency of dif-
fusion in phase space (Peñarrubia 2013). It is worth noticing that
sources of noise, such as scattering by short-scale irregularities, or
periodic driving given by external coupling can, indeed, enhance
the diffusion rate of sticky orbits (see Habib, Kandrup & Elaine
Mahon 1997; Kandrup, Pogorelov & Sideris 2000; Siopis & Kan-
drup 2000; Kandrup & Sideris 2003; Kandrup & Siopis 2003, and
references therein). Nevertheless, within the local sphere, previous
studies that focus on evaluating the degree of substructure in so-
lar neighbourhood-like volumes, considering the evolution of the
Galactic potential in a cosmological context, have suggested that
this variation may not be responsible for any major substructure
erosion (e.g. Gómez et al. 2013b). Furthermore, as previously dis-
cussed in Paper I, it is unlikely that the inner parts of the Galactic
potential have changed significantly during the last ∼8 Gyr. The
validity of these assumptions will be explored in detail in our forth-
coming work.
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Gómez F. A., Helmi A., Brown A. G. A., Li Y.-S., 2010, MNRAS, 408, 935
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