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For this study, we generated thallium (Tl) isotope records from two anoxic basins to track 46 

the earliest changes in global bottom water oxygen contents over the Toarcian Oceanic 47 

Anoxic Event (T-OAE) of the Early Jurassic (~183 Ma). The T-OAE, like other Mesozoic 48 

OAEs, has been interpreted as an expansion of marine oxygen depletion based on indirect 49 

methods such as organic-rich facies, carbon isotope excursions, and biological turnover. Our 50 

Tl isotope data, however, reveal explicit evidence for earlier global marine deoxygenation of 51 

ocean water, some 600 ka before the classically defined T-OAE. This antecedent 52 

deoxygenation occurs at the Pliensbachian/Toarcian boundary and is coeval with the onset 53 

of initial large igneous province (LIP) volcanism and the initiation of a marine mass 54 

extinction. Thallium isotopes are also perturbed during the T-OAE interval, as defined by 55 

carbon isotopes, reflecting a second deoxygenation event that coincides with the acme of 56 

elevated marine mass extinctions and the main phase of LIP volcanism. This suggests that 57 

the duration of widespread anoxic bottom waters was at least one million years in duration 58 

and spanned early to middle Toarcian time. Thus, the Tl data reveal a more nuanced record 59 

of marine oxygen depletion and its links to biological change during a period of climatic 60 

warming in Earth’s past and highlights the role of oxygen depletion on past biological 61 

evolution. 62 
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Significance Statement 69 

Declining oxygen contents in today’s oceans highlight the need to better understand 70 

ancient, natural marine deoxygenation and associated extinctions. In the Early Jurassic, the 71 

Toarcian Oceanic Anoxic Event (T-OAE; ~183 Ma) is associated with significant perturbations to 72 

the Earth system, historically defined by carbon isotopes. We reconstructed global oceanic 73 

(de)oxygenation using thallium isotopes from two ocean basins that suggest a stepwise decline of 74 

oxygen that initiated before and extended well after the classically defined T-OAE interval. This 75 

initial deoxygenation occurs with the start of massive volcanism and marine extinctions while a 76 

later shift corresponds to the traditional T-OAE. This emphasizes the need for more nuanced 77 

records of ancient environmental and biogeochemical feedbacks that lead to and maintain 78 

widespread marine anoxia. 79 

 80 

 81 

Introduction 82 

The amount of oxygen dissolved in the modern ocean is decreasing (1, 2), due in part to 83 

the increasing concentration of greenhouse gases in the atmosphere. Similar scenarios have likely 84 

occurred throughout geologic history. For example, during transient intervals in the Mesozoic—85 

known as oceanic anoxic events (or OAEs)—substantial increases in atmospheric greenhouse 86 

gases are linked to the volcanic emissions of large igneous provinces (LIPs); these changes are 87 

hypothesized as the primary driver of OAEs (3–5). Understanding the mechanisms underlying 88 

intervals of marine deoxygenation in Earth history, such as OAEs, is essential because they are 89 

intimately linked with ecological shifts and specifically marine mass extinctions (6). Additionally, 90 

they provide us with an analog for possible future changes in the long-term oxygen inventory of 91 
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the ocean of our planet (7, 8). 92 

The concept of an OAE was proposed by ref. 9 to explain the multiple ocean basin 93 

occurrences of coeval organic-matter-rich sediments, or black shales, deposited at a wide range of 94 

water depths on the middle Cretaceous ocean floor. OAEs were defined as brief (<1 Ma) episodes 95 

of expansion and intensification of the oxygen minimum layer in the ocean. This expanding layer 96 

encroached on the seafloor of seamounts, submarine plateaus, and continental margins and resulted 97 

in enhanced burial of organic matter in widespread black shales. The broad temporal association 98 

of these black shales with positive excursions in the marine carbon isotope record was 99 

subsequently documented (10). These excursions have been interpreted to reflect the elevated 100 

burial of 13C-depleted organic carbon during the OAE (e.g., 4, 5, 10–16). The concept of an OAE 101 

was later applied to a positive excursion in the carbon isotope record of Tethyan Lower Jurassic 102 

limestones during what is now known as the Toarcian OAE (15). 103 

Subsequent studies of the Toarcian OAE identified an abrupt, large magnitude, negative 104 

carbon isotope excursion (CIE) at ca. 183.1 Ma that interrupts a broader positive CIE noted by ref. 105 

15. Generally, this negative CIE appears to define the onset of major environmental disruption, 106 

the onset of organic-rich deposition, and the main pulse of mass extinction (5, 17–19) (Fig. 1). A 107 

carbon isotope compilation of published work has also shown that the broader early Toarcian 108 

positive CIE actually begins at the Pliensbachian/Toarcian boundary (Fig. 1, SI Fig. 3) (5, 20, 21). 109 

However, this broader positive CIE precedes the onset of organic-rich deposition that defines the 110 

start of the T-OAE at many locations (5, 16, and many others) (Fig. 1, SI Fig. 3, SI Text) (Fig. 1), 111 

thus it has not been generally considered part of the T-OAE. This interval is also intriguing because 112 

it corresponds to the beginning of a mass extinction that later reaches its climax during the T-OAE 113 

(19). 114 
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Although positive CIEs could represent the effects of large-scale oxygen depletion in 115 

seawater, other environmental variables can contribute to the carbon isotope record (22, 23), and 116 

there is no simple relationship between redox conditions and organic matter preservation (24, as 117 

reviewed by ref. 25). Thus, the culmination of a positive CIE does not require global ocean 118 

deoxygenation or even increased organic carbon burial (22, 24–27), as carbon isotopes ultimately 119 

track the balance of all the input and output fluxes and associated isotope fractionations (22). For 120 

this reason, carbon isotope data cannot be used alone as a proxy for the expansion of oceanic 121 

anoxia. Additionally, evidence for decreasing marine oxygen inventories leading to OAEs is 122 

hampered since redox proxies typically constrain the most extreme euxinic (oxygen-free, sulfide-123 

containing waters) end member (28–31). As such, uniquely constraining the global extent of non-124 

sulfidic, anoxic waters has not been possible. This bias highlights the need for a more sensitive 125 

proxy that constrains more subtle changes in oceanic oxygen levels during OAEs and other 126 

oceanographic events in Earth history. 127 

 128 

Using thallium isotopes to track global marine oxygen contents 129 

Thallium isotopes in organic-matter-rich mudstones provide a novel window to secular 130 

variations in the oceanic oxygen inventory over the expanded T-OAE interval from the latest 131 

Pliensbachian to middle Toarcian (see Supplemental Information for Tl isotope nomenclature). 132 

The modern open ocean seawater Tl isotope composition (with a residence time of ca. 20 ka) is 133 

homogenous to within < 0.5 ε-units (32–34), and this seawater value is captured in the sediments 134 

deposited in euxinic settings (34). Thallium is introduced to the ocean by rivers, high-temperature 135 

hydrothermal fluids, volcanic emissions, mineral aerosols, and pore-water fluxes from continental-136 

margin sediments. These sources have essentially identical Tl isotopic compositions of ε205Tl ~-2 137 
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(as reviewed in ref. 35), which reflects minimal isotope fractionation during continental 138 

weathering and high-temperature mobilization of Tl. The major outputs of Tl from the marine 139 

system include adsorption onto manganese (Mn)-oxides and, low-temperature (<100°C) alteration 140 

of oceanic crust (AOC). Sedimentation of organic matter and sulfide minerals in low oxygen 141 

settings also removes Tl from seawater, but the global flux is relatively minor in the modern ocean 142 

(34, 36). Adsorption onto Mn-oxides and AOC are the only known processes that fractionate Tl.  143 

Specifically, Mn oxides are heavier than seawater by ~+13-19 ε-units, which is likely due 144 

to equilibrium isotope fractionation during oxidation of univalent aqueous Tl to trivalent Tl when 145 

permanently sorbed to Mn oxides (35, 37, 38). The uncertainty associated with the Tl isotope 146 

fractionation factor during sorption to Mn oxides relates to Tl isotope variations found in some 147 

pelagic clays with somewhat less positive compositions (39). However, pure Mn oxides as found 148 

in Fe-Mn crusts display relatively constant offsets from seawater of ~+19±2 ε-units (32, 35), which 149 

is the preferred value for Tl isotope fractionation during sorption to Mn oxides.  150 

The mechanism of Tl isotope fractionation during incorporation into AOC is less well 151 

understood but is likely a kinetic process whereby the light isotope is preferentially incorporated 152 

into AOC (35). Although individual samples of AOC can exhibit ε205Tl ~ -15 (40) the average is 153 

more likely closer to ε205Tl ~ -7 because uptake is close to quantitative from the circulating 154 

hydrothermal fluids (35), thus the fractionation from seawater is minimal. 155 

Although the marine Tl residence time is long enough to produce a globally homogenous 156 

Tl isotope composition of the ocean it is still short enough that seawater ε205Tl can respond to rapid 157 

global changes in Mn-oxide burial on glacial-interglacial timescales (35; 41). In contrast, AOC 158 

deposition rates vary on extremely long timescales (>107 years) as it responds primarily to global 159 

average ocean crust production rates (42) and, hence, ε205Tlseawater variations on timescales shorter 160 
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than ~1 million years are most likely driven by changes in Mn-oxide preservation and burial. 161 

Crucially, Mn-oxides are only buried in sediments with O2 present at or near the sediment/water 162 

interface because they are rapidly dissolved under anoxic conditions (43). In turn, global Mn-oxide 163 

burial fluxes are related to the global extent of bottom water anoxia (34). As such, ε205Tlseawater can 164 

be related to relative changes in oceanic oxygenation. Thallium isotopes have been applied to only 165 

one ancient climate perturbation that documents the global relationship between oceanic 166 

oxygenation leading up to the Cenomanian-Turonian event of OAE 2 (41), and it was shown that 167 

changes in carbon isotopes lagged the onset of marine deoxygenation, which underlines the 168 

potential for Tl isotopes to provide unique information about ancient oceanic oxygenation. During 169 

intervals of increased bottom water oxygen extent, ε205Tlseawater values will be more negative, 170 

whereas during intervals of decreased bottom water oxygen extent (increase of bottom water 171 

anoxia), ε205Tlseawater values will be more positive and approach their source value (ε205Tl = ~-2). 172 

 173 

Study site selection 174 

 To reconstruct global ocean oxygen contents (or redox changes) using the Tl isotope 175 

system, it is necessary to constrain local water column redox conditions to be sure to capture the 176 

seawater value, thus avoiding any local Mn-oxide signatures. This is because variations in local 177 

sedimentary redox conditions and basinal restriction can influence the isotopic signals captured in 178 

the sedimentary record and can hamper the use of these records to reconstruct changes in global 179 

marine redox conditions (31, 36, 45, 46). Therefore, it is important to investigate multiple localities 180 

that were well-connected to the open ocean and have independent constraints on local redox 181 

conditions (e.g., 41, 47). Here, we analyzed samples from two Lower Jurassic successions that 182 

contain intervals that were deposited under euxinic conditions—as identified by established, 183 
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independent proxies for local redox, including Fe speciation—before, during, and after the T-OAE 184 

(Fig. 2 and SI Figs. 1, 2). We first investigated three Pliensbachian and Toarcian sections of the 185 

Fernie Formation from the Western Canada Sedimentary Basin, which represent deposition on an 186 

open-ocean margin of northeastern Panthalassa (Fig. 2). These samples were taken from outcrop 187 

(East Tributary) and two cores (1-35-62-20W5, 6-32-75-5W6). The other studied Toarcian 188 

succession, Dotternhausen Quarry, Germany, represents deposition in a semi-restricted structural 189 

basin in the European epeiric sea, which was connected to the Tethys Ocean (48) (Fig. 2). 190 

 191 

Results  192 

Data from the base of the East Tributary section, within the Pliensbachian portion of the 193 

section (Amaltheus margaritatus ammonite Zone in Northwest Europe and Fanninoceras kunae 194 

ammonite Zone in North America) start with a e205Tl of ~-6 (Fig. 3). These values are similar to 195 

the e205Tl of modern seawater (34) and suggest a similar global Tl isotopic mass balance tied to 196 

Mn-oxide burial and similar extents of oxygenated bottom waters. At the Pliensbachian/Toarcian 197 

boundary, e205Tl gradually shifts to less negative values and remains steady until the onset of the 198 

negative Toarcian CIE. We interpret this initial rise in e205Tl as the beginning of the expansion of 199 

oceanic anoxia before the classically defined T-OAE (see Fig. 1) with a date of ~183.65 Ma (± 200 

~0.150 Ma) (49)—approximately 500–600 kyr before the onset of the negative CIE (50, 51) that 201 

traditionally defines the base of the T-OAE. Furthermore, our d13C and e205Tl data from two drill 202 

cores from elsewhere in the Western Canada Sedimentary Basin show similar values and trends 203 

(see SI Figs 1 and 2), suggesting that they capture global signals and that Early Jurassic seawater 204 

e205Tl values are also homogenous. 205 

The German Dotternhausen Quarry section (31, 48), where the Pliensbachian/Toarcian 206 
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boundary is not present, shows time-equivalent e205Tl values (~-4) that are nearly identical, within 207 

analytical error, to results from Canada (~-3.5) for the lower Toarcian Dactylioceras tenuicostatum 208 

(equivalent) ammonite Zone (Fig. 3). The e205Tl values increase at the onset of the negative CIE, 209 

gradually decrease during the minimum of the CIE, and increase during the rising limb of the 210 

carbon isotope data (Fig. 3). A longer-term decrease of Tl isotopes occurs after the end of the 211 

negative CIE to the top of the section (Fig. 3). The similarities among all the study sites support 212 

the interpretation that these Tl isotope records represent primary global ocean signals, even in the 213 

more restricted setting of the German section. 214 

 215 

Discussion 216 

The shift in Tl isotopes from -6 to -4, as observed at the Pliensbachian/Toarcian boundary 217 

(Fig. 3), based on isotope mass balance calculations, requires a ~50 % decrease in the global burial 218 

of Mn-oxides (34). In all likelihood, the decline in marine Mn-oxide burial was linked to an 219 

expansion of bottom water anoxia, which restricted the area of oxic sediment deposition. This 220 

initial deoxygenation is notable because it generally coincides with 1) the interpreted onset of 221 

Karoo-Ferrar LIP activity (52, 53) at the start of the longer-term positive CIE, 3) initiation of a 222 

radiogenic osmium isotope excursion (49, 54), and 4) the beginning of a major marine extinction 223 

event (beginning of Phase 3 of ref. 19) (Fig. 4). These observations are consistent with marine 224 

deoxygenation caused by an increase in organic carbon export linked to enhanced chemical 225 

weathering and nutrient input to the oceans. This sequence led to increased oxygen consumption 226 

in the aphotic zone—driving the expansion of oxygen minima in the ocean that is recorded by Tl 227 

isotopes. The 187Os/188Osi values decline soon after the Pliensbachian/Toarcian boundary (49, 54), 228 

suggesting that the rate of continental weathering declined. Thus, the sustained deoxygenation and 229 
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elevated organic carbon burial (Figs. 3 and 4), evidenced by the thallium and carbon isotope 230 

records, respectively, were mediated by processes internal to the oceans rather than the continued, 231 

elevated supply of nutrients from rivers. Such internal processes could be lower oxygen solubility, 232 

changes in ocean circulation under a warming climate, and/or the enhanced recycling of bio-233 

essential nutrients, such as phosphorus, under more reducing conditions. 234 

The Tl isotope trends during the negative CIE (i.e., the traditional T-OAE interval) also 235 

suggest that global bottom water redox did not remain constant over the event. The shift from -3.5 236 

to -2 and a return to -3.5, observed both in Canada and Germany, indicate another deoxygenation 237 

event and decrease in the global burial of Mn-oxides (Fig. 3). This perturbation likely occurred 238 

over approximately 30 to 50 kyr assuming the timescale of refs. 50 and 55 (the T-OAE negative 239 

CIE has been assigned a duration of ~300 to 500 kyr, which locally is represented in ~4.5m in 240 

Alberta) and linear sedimentation rates in Canada (from 11.345 to 11.84 m in the section) (49). 241 

The continued positive shift in the Tl isotope data during the recovery limb of the negative CIE of 242 

the T-OAE would require further marine deoxygenation and an additional ~25% reduction in 243 

global Mn-oxide burial (34). The dissolution of Mn-oxides could be driven by permanent anoxia 244 

or more realistically, transient deoxygenation that includes seasonal, centennial, and/or longer 245 

timescales depending on local hydrography, water chemistry, and sedimentation rates. Both the 246 

Pliensbachian/Toarcian Boundary and the onset of the traditional T-OAE interval are associated 247 

with increased Mn/Ca values (56, 57), which could be due to the increased dissolved Mn reservoir 248 

associated with the dissolution of Mn-oxides and reduction of Mn-oxide precipitation. 249 

The traditional T-OAE interval (i.e., as defined by the negative CIE) is associated with the 250 

main phase of Karoo-Ferrar LIP magmatism (50, 52, 58). This magmatic pulse would have caused 251 

global warming and enhanced continental weathering, as suggested by numerical modeling and 252 
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geochemical and sedimentological records (49, 54, 59, 60). The net result would have been marine 253 

eutrophication and intensified and more widespread oxygen minima (e.g., 5, 49, 60). The second 254 

e205Tl shift during the rising limb of the T-OAE CIE is roughly coincident with previously 255 

interpreted maximum extents of water-column sulfidic anoxia (i.e., euxinia) during this event (31, 256 

61). This second deoxygenation event corresponds to a further decline in marine diversity (end of 257 

phase 3 in ref. 19)—that is, a continuation and ultimately the acme of the event that started at the 258 

Pliensbachian/Toarcian boundary (17, 18, 62–64) (Fig. 4). Given that these major losses in marine 259 

diversity occur coincidently with changes observed in the Tl isotope record (Fig. 4), ocean 260 

deoxygenation is implied as a significant or even the ultimate driver of extinction during this time. 261 

This interpretation does not, however, preclude a role by other environmental changes that may 262 

have occurred over this time in response to increasing pCO2 (e.g., global warming and ocean 263 

acidification). 264 

Interestingly, the e205Tl data do not immediately return to pre-event values after the peak 265 

of the positive CIE and remain high through the Harpoceras falciferum and lower Hildoceras 266 

bifrons ammonite Zones as d13C declines (Fig. 3). A similar pattern has been observed in the Tl 267 

isotope record of OAE-2 marked by values that remain high well after the end of the positive CIE 268 

(38). The decoupling of the two isotope systems suggests that global Mn-oxide burial remained 269 

low and bottom-water oxygen minima continued well after the termination of globally enhanced 270 

organic carbon burial rates during both OAEs. 271 

One interpretation for this observation could be that while overall organic carbon burial 272 

declined, productivity was sufficiently high to maintain the consumption of deeper water oxygen 273 

renewal (41). This scenario seems to be supported by the Os isotope record, which also remains 274 

elevated above pre-event values over this same interval (49, 54) and indicates continued elevated 275 
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continental weathering rates. Thus, the continued enhanced delivery of nutrients from weathering 276 

on the continents would have fueled elevated primary production that could have maintained the 277 

widespread expanded marine anoxia. Alternatively, large amounts of near-surface organic matter 278 

previously deposited during the event could have continued to drive bottom-water oxygen 279 

consumption and Mn-oxide dissolution during a time when new organic matter burial waned. This 280 

mechanism may also explain the elevated rates of pyrite burial inferred from the carbonate-281 

associated-sulfate sulfur isotope records that persist well after the CIE in both the T-OAE (61) and 282 

OAE-2 (65). Consumption of organic matter in shallowly buried sediments might have fueled 283 

marine anoxia and pyrite burial well after the CIEs, irrespective of the flux of newly exported 284 

organic matter. 285 

 286 

Conclusions 287 

The Tl isotope data presented here reveal a more nuanced and explicit evidence for marine 288 

deoxygenation in the interval that surrounds the T-OAE, which began at the 289 

Pliensbachian/Toarcian boundary and expanded oxygen minima were sustained throughout the 290 

early Toarcian and well after the traditionally defined T-OAE interval. Since the Tl isotope 291 

excursion begins at the Pliensbachian/Toarcian boundary and generally corresponds with 1) the 292 

initiation of massive volcanism, 2) a brief but significant increase in continental weathering, and 293 

3) the start of the protracted early Toarcian mass extinction event (19). Thus, this evidence for 294 

global marine deoxygenation provides a mechanism for the observed extinction record. Further, 295 

the current definition of the beginning of T-OAE, based on the start of the negative CIE and/or 296 

first occurrence of black shales in Europe, represents the nadir of the deterioration of 297 

environmental conditions, but not the onset of global deoxygenation. 298 
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The concept of an OAE was proposed due to the realization that the preservation of organic 299 

matter in marine sediments might not always be the product of local conditions. It followed that 300 

carbon isotope excursions became the signature of enhanced burial of organic carbon on a global 301 

scale. Our study highlights the need to revisit our definition of the temporal OAE and consider 302 

whether for the record of oceanic anoxia might be better defined by other geochemical proxies that 303 

reconstruct specific redox states of the global ocean. Perhaps more importantly, the 304 

acknowledgment that global deoxygenation may expand beyond the traditionally defined OAEs 305 

has important implications for our understanding of the environmental feedbacks that lead to and 306 

maintain these events. Identifying such processes would be key to determining the consequences 307 

and potential endpoints of the recent trend in deoxygenation in the oceans today. 308 
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 482 

 483 

Fig. 1: A) Idealized Pliensbachian and Toarcian carbon isotope stratigraphy (derived from multiple 484 

d13C records from Europe and North America shown in SI Fig. 3). Note the long-term positive 485 

CIE predating the negative CIE associated with the classic T-OAE interval. 486 

 487 

Fig. 2: Global paleogeography of early Toarcian (modified from refs. 21, 49, 66). Black circles 488 

represent the study areas. Dashed extent of the Karoo-Ferrar LIP shown in southern Pangaea. Dark 489 

grey represents landmasses, light blue: shallow seas, and dark blue: open oceans. CPM = Central 490 

Pangaean Mountains. 491 

 492 

Fig. 3: Chemostratigraphy of the Lower Jurassic Fernie Formation from East Tributary of Bighorn 493 

Creek Alberta and of the Lower Jurassic Posidonia Shale from the Dotternhausen Quarry in 494 

Germany. d13Corg = organic carbon isotopic compositions from refs. 21 and 31. FeHR/FeT = amount 495 

of highly reactive iron relative to total iron, and FePy/FeHR = amount of pyrite iron relative to highly 496 

reactive iron (see SI Materials and Methods for discussion of this redox proxy). e205Tl = thallium 497 

isotopic composition of seawater during deposition. Lithostratigraphic members of the Fernie 498 

Formation, Stages of the Jurassic, and ammonite zonations for both northwestern Europe and 499 

western North American shown to the left of the stratigraphic column (refer to ref. Them17a and 500 

SI Text for the details of their placements). Vertical gray line in 205Tl records are the modern 501 

205TlSW composition of ~ -6 (34). Light gray e205Tl values in the German section are from 502 

lithologies that are not ideal for metal isotope studies (low TOC < 0.3%.), and we therefore do not 503 

interpret these as primary oceanographic signals (see SI Text). Gray boxes represent CIE intervals.  504 
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 505 

Fig. 4: Sequence of events culminating in the Early Jurassic T-OAE (as delineated by changes in 506 

the precipitation of manganese oxyhydroxides at the sediment-water interface, documented by 507 

shifts in the e205Tl composition of anoxic sediments) and carbon burial event (as delineated by 508 

changes to the global carbon cycle, documented by changes in the d13C of organic and inorganic 509 

carbon). As the Karoo-Ferrar LIP is emplaced (3, 52, 57), global ocean deoxygenation may occur 510 

concurrently as sea surface temperatures rise (67). Massive injections of greenhouse gases and 511 

cascading biogeochemical feedbacks cause the second decline in biodiversity associated with the 512 

T-OAE negative CIE interval. The extent of anoxic marine bottom waters increases as 513 

bioproductivity increases due to increased continental weathering and delivery of nutrients to the 514 

oceans (49, 54), leading to the increased geographic extent of euxinia (31, 61), culminating in an 515 

interval of maximum organic carbon burial, which causes the positive CIE. Increased oceanic 516 

anoxia occurs concurrently with the onset of the main extinction event at the 517 

Pliensbachian/Toarcian boundary (19, 63), and the greatest extent of anoxia and euxinia occurs 518 

during the large, negative CIE interval (61, this study). White arrows represent “Phase 2” of the 519 

Karoo-Ferrar eruptive scenario (52). Timescale is derived from ref. 51. 520 

 521 
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Supplementary Materials: Methods and Materials, Supplementary Text, Figures S1, S2, S3, 523 

References, Databases S1 to S4. 524 
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Materials and Methods 594 
Sampling Locations and Materials 595 
Published accounts of the collective lithostratigraphy, ammonite biostratigraphy, U-Pb zircon age 596 
dates, and high-resolution carbon isotope chemostratigraphy for the East Tributary and 597 
Dotternhausen Quarry can be found in refs. 1, 2, 3, 4. Here, we discuss and summarize key aspects 598 
of these analyses as they pertain to our study. 599 

Drill cores 1-35-62-20W5 and 6-32-78-5W6 (SI Figs. 1, 2) of the Fernie Formation were 600 
described and sampled for geochemical analyses at the Core Research Centre in Calgary, Alberta, 601 
Canada. They contain the Pliensbachian to lower Toarcian Gordondale and Poker Chip Shale 602 
(PCS) members, and have been correlated by geophysical gamma ray logs, ammonites, and carbon 603 
isotopes to outcrops of Red Deer and PCS, including East Tributary (1, 5, 6). Each core contains 604 
mixed organic-rich calcareous mudstones and siltstones in the Gordondale Member, which are 605 
overlain by organic-rich calcareous mudstones of the PCS (5). 606 
 Core 1-35-62-20W5 contains alternating organic-rich calcareous siltstones and mudstones 607 
(SI Fig. 1) of the Gordondale and PCS members. The Gordondale Member ranges from the base 608 
of the core to 2029 m and contains several bivalve beds (5) and the Pliensbachian (Freboldi Zone) 609 
ammonite Dubariceras cf. silviesi at 2033.3 m. The PCS Member comprises 2029 m to the top of 610 
the core (5) and contains organic-rich calcareous mudstones, displacive and diagenetic carbonate 611 
cements and fans, with abundant bivalves, the cephalopod Actractites, and the Toarcian ammonite 612 
Dactylioceras sp. at 2027.1 m (5). 613 

Core 6-32-78-5W6 contains alternating organic-rich calcareous siltstones and mudstones 614 
(SI Fig. 2) of the Gordondale and PCS members. The Gordondale Member ranges from the base 615 
of the core to ~1219 meters (5) and contains several bivalve beds5, the Pliensbachian ammonite 616 
Amaltheus sp. at 1221.8 m, and Toarcian Kanense to Planulata Zone equivalent Dactylioceras cf. 617 
crosbeyi and Cleviceras exaratum at 1217.9 and 1217.8 meters, respectively. From 1221 to 1219 618 
m, the dominant lithology is an organic-rich mudstone, with a thin, organic-rich, silty mudstone 619 
capped by a displacive carbonate fan around 1220.25 m. From 1219 to 1214.6 m, the dominant 620 
lithology is an organic-rich, laminated, calcareous siltstone, with many bitumen-rich intervals. The 621 
PCS Member comprises 1214.6 m to the top of the core (5) and contains organic-rich calcareous 622 
mudstones, rare bivalves, and often contains intervals that are laminated. 623 

These sections represent an excellent opportunity to use the Toarcian CIE as an intra-624 
basinal and a global chemostratigraphic marker (SI Fig. 3); since these cores represent time-625 
correlative, deeper-water facies to the East Tributary section (5), it is possible to reconstruct 626 
paleoceanographic dynamics across the T-OAE. Specifically, if redox variations change with 627 
paleo-water depth, and potentially temporally, then it should be possible to reconstruct the 628 
temporal and spatial extent of oxygenation within the basin. 629 
 630 
Total organic carbon contents (TOC) and isotope compositions (δ13Corg) 631 

Carbon-isotope and total organic carbon content data of the East Tributary and 632 
Dotternhausen sites were recently reported by refs. 1, 2 and ref. 4, respectively. The new data 633 
presented here are from the 1-35-62-20W5 and 6-32-78-5W6 drill cores and follow the methods 634 
in refs. 1, 2, 4.  635 

Powders were obtained from the drill core and outcrops samples either using a handheld 636 
Dremel tool with a diamond tip drill bit or a ball mill using a silica nitride ceramic vial set. To 637 
remove the carbonate fraction, several milliliters of 2N HCl were added to ~0.1 g of powder and 638 
allowed to react for ~24 hours. The solution was rinsed until a neutral pH was obtained, and then 639 
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the samples were dried in an oven.  640 
δ13Corg and total organic carbon (TOC) values of the carbonate-free sample residues were 641 

conducted on an Isotope Cube elemental analyzer connected to an Isoprime 100 gas source isotope-642 
ratio mass spectrometer (IRMS) in the Sedimentary Geochemistry Isotope Laboratory in the 643 
Department of Geosciences at Virginia Tech. The isotope compositions of the samples were 644 
expressed in the standard delta (δ) notation as per mil deviations (‰) from Vienna Pee Dee 645 
Belemnite (VPDB) and calculated such that: 646 

 647 
d13C=[((13C/12C)sample - (13C/12C)standard) / (13C/12C)standard] x 1000  Eq. 1 648 

 649 
Samples were calibrated to the VPDB scale using international (IAEA-CH-6 and IAEA-650 

CH-7) and commercial standards (Elemental Microanalysis wheat flour, sorghum flour, low 651 
organic soil, and urea). Long-term analytical precision for the δ13C measurements is <0.1‰ based 652 
on replicated analyses on isotope standards: this provided a linear range in δ13C between -48.66‰ 653 
and -10.42‰. Total organic carbon was obtained as part of the isotopic analysis using elemental 654 
standards (i.e., Acetanilide, 71.09% C). Approximately 66% of total samples (n = 86) from core 655 
6-32-78-5W6 were replicated at least once. Approximately 91% of total samples (n = 78) from 656 
core 1-35-62-20W5 were replicated at least once. Average analytical uncertainty for replicated 657 
analyses (n = 128) was 0.07‰. 658 
 659 
Iron speciation analysis 660 
 The amount of iron found in various mineral phases (iron speciation) of fine-grained 661 
siliciclastic units can be used to identify local modern and ancient water column redox conditions 662 
(7-10). Specifically, the amount highly reactive iron-bearing phases (FeHR; see Equation 2) can be 663 
quantified to determine local redox conditions during deposition (11). The FeHR pool represents 664 
available iron that reacts with aqueous sulfide to form pyrite (12). The highly reactive iron pool 665 
(e.g., 10) is defined as: 666 
 667 

FeHR = Fepy + Fecarb + Feox+ Femag  Eq. 2 668 
 669 
where Fepy represents iron bound as pyrite; Fecarb represents iron hosted in carbonate phases 670 
including calcite, siderite, and ankerite; Feox represents iron hosted in the ferrihydrite, 671 
lepidocrocite, goethite, and hematite fractions; and Femag represents iron hosted in the magnetite 672 
fraction. 673 
 Modern and ancient marine siliciclastic sediments deposited under an anoxic water column 674 
have a FeHR/FeT (FeT represents total iron in the sample) value of >0.38, whereas sediments 675 
deposited under an oxic water column are generally below 0.22 (7, 11, 13). Because the amount 676 
of pyrite that can be deposited in anoxic environments during the microbial reduction of sulfate 677 
(e.g., 12) can vary, the amount of Fepy to FeHR in each sample can help discern whether the water 678 
column was ferruginous (pyrite formation limited by available sulfides) or euxinic (pyrite 679 
formation limited by available reactive iron). Fepy/FeHR values > ~0.7-0.8 are indicative of water 680 
column euxinia, whereas Fepy/FeHR values < ~0.7-0.8 are indicative of ferruginous conditions (11, 681 
14, 15). 682 

To determine the relative amount of iron in each iron-bearing phase, the sequential 683 
extraction method of ref. 8 was performed at the Department of Geosciences at Virginia Tech. For 684 
this procedure, approximately 0.1 grams of powder was used. First, Fecarb was liberated by the 685 
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addition of a 10mL solution of 1M sodium acetate and acetic acid, buffered to pH of 4. These 686 
samples were placed on a shaking table for 48 hours at 50° C and then centrifuged. Next, Feox was 687 
liberated from the samples by the addition of a 10mL solution of sodium dithionite and sodium 688 
citrate, buffered to pH of 4. These samples were placed on a shaking table for two hours, and then 689 
centrifuged. Finally, Femag was liberated by the addition of a 10mL solution of ammonium oxalate. 690 
These samples were placed on a shaking table for six hours, and then centrifuged. After each 691 
extraction, 100 µL of the supernatant was transferred to a new tube, followed by the addition of 4 692 
mL of HEPES, ferrozine, and hydroxylamine HCl solution (e.g., 16) and allowed to react 693 
overnight. All of the supernatant was removed in the original sample tubes before the next iron 694 
extraction. Iron concentrations were measured in a spectrophotometer and calculated by a matrix-695 
matched standard curve (e.g., 17). 696 
 Fepy values were determined by chromium reduction methods of ref. 18. For this procedure, 697 
approximately 0.1 grams of powder was added to a three-neck flask for a distillation extraction. 698 
Following the purging of headspace with nitrogen gas a solution of 40 mL of 1M chromous 699 
chloride and 20 mL of 6N HCl was added to the flask, and then allowed to react for two hours 700 
while heating under the nitrogen atmosphere. Any volatized sulfide quantitatively reacted with a 701 
zinc acetate solution to form zinc sulfide. Later, silver nitrate was added to this solution, which 702 
converted the zinc sulfide to silver sulfide. The amount of sulfide in the sample was then 703 
determined by gravimetry after filtration and drying of the silver sulfide. The amount of pyrite iron 704 
hosted in the original sample was then stoichiometrically calculated from the amount of extracted 705 
sulfide. 706 

For the determination of FeT approximately 0.2 grams of powder was ashed at 900° C for 707 
6-8 hours to remove any organic matter and other volatile phases. Approximately 0.1 grams of 708 
powder was partially dissolved using 4 mL of 12M HCl, and then placed in a trace metal clean 709 
Teflon Savillex digestion vessel on a hot plate and boiled for 36-48 hours (19). The sample and 710 
solution were added to centrifuge tubes and centrifuged. After centrifugation, 100 µL of the 711 
supernatant was transferred to a new tube and the same technique was used to measure iron 712 
concentrations using a spectrophotometer as stated previously. 713 

Iron concentrations were calculated by a matrix-matched standard curve. New standard 714 
solutions were prepared for each analysis with iron standard concentrations at 0, 5, 10, 20, 30, 40 715 
75, 150, and 300 ppm. The r2 value of the standard curve was always above 0.999 and many 716 
instances was 1. Multiple analyses of the same solution yielded no error via spectrophotometer 717 
output, and no samples yielded higher iron concentrations than the standards. Sample 718 
reproducibility using this method is often ± 7% when analyzing different aliquots of the same 719 
extracted iron pool (e.g., 17). 720 
 721 
Thallium isotope analysis 722 

The precipitation of manganese oxides is directly controlled by available oxygen, and 723 
therefore ceases in low oxygen environments. As manganese oxide precipitation decreases during 724 
the onset of widespread deoxygenation in the oceans, changes the Tl elemental and isotopic budget 725 
are the first systems to be perturbed (20). To assess the global dynamics of oceanic oxygenation 726 
during the Early Jurassic, this study utilizes a novel isotopic system that is not fractionated by 727 
biological processes in the open ocean (23). Thallium has two naturally occurring isotopes: 203Tl 728 
and 205Tl. The thallium isotopic composition of a sample is compared to the NIST SRM 997 Tl 729 
standard and reported such that: 730 

e205Tl = 10,000 x (205Tl/203Tlsample-205Tl/203TlSRM 997) / (205Tl/203TlSRM 997)              Eq. 3 731 
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To track manganese oxide burial during the Early Jurassic, chemical analysis (21, 22) was 732 
utilized to isolate thallium in a state-of-the-art clean laboratory at the National High Magnetic 733 
Field Laboratory at Florida State University. For this procedure, approximately 0.05 grams of 734 
sample powder (0.1 grams of standard SCO-1) was placed into a trace metal clean teflon savillex 735 
beaker with 3mL of 2M HNO3 was added and placed on a hot plate for approximately 12 hours at 736 
130° C. These samples were then centrifuged, and the supernatant was collected and placed in a 737 
new, clean savillex beaker, and dried. Care was taken to not collect siliciclastic materials, and to 738 
ensure limited siliciclastic Tl contamination HF was avoided. Several high-purity acid treatments 739 
(aqua regia, 50% conc. HCl or HNO3 + H2O2) were added to each beaker to fully oxidize any 740 
organic matter present. These solutions were placed on hot plates at 120-130° C for several days 741 
if necessary. To completely oxidize samples for column chemistry, 1 M HCl and ~100 µL 742 
brominated H2O were added to each beaker the previous night. All acids and reagents were trace 743 
metal grade to ensure low blank levels.  744 

For column chemistry, we followed the method of refs. 23-25 (described below), but this 745 
dataset only used one micro-column procedure, which was shown to work well for high Tl and 746 
low Pb samples (22). For Pb removal, AG1X8 200-400 mesh resin was added to each column. 747 
This was followed by the addition of solutions 0.1 ml and 1.5 ml of each HCl-SO2, 0.1M HCl, and 748 
0.1 M HCl with 1% Br2-H2O. Samples were loaded into the columns, followed by the addition of 749 
0.1 ml and 1.5 ml solutions of 0.5 M HNO3 – 3% Br2-H2O, 2.0 M HNO3 – 3% Br2-H2O, and 0.1 750 
M HCl – 1% Br2-H2O. Thallium was then collected using 0.1 ml and 1.5 ml of 0.1 M HCl-SO2 751 
solution. Importantly, H2SO4 was evaporated at high temperature, and each sample was dissolved 752 
in a 0.1 M HNO3 + 0.1% H2SO4 solution. A 10-µL aliquot of this solution was analyzed with an 753 
Agilent 7500cs ICP-MS to measure Pb and Tl abundances. Using these concentration data, sample 754 
concentrations were matched to within 25% of standard and spiked with an abundance of NIST 755 
SRM 997 Pb standard. Thallium isotope measurements were performed on a Thermo Neptune 756 
MC-ICP-MS at FSU. Approximately 90% of the samples were analyzed at least twice (some 757 
samples were not replicated due to sample limitation). The average 2s standard deviation for all 758 
replicated samples is ± 0.25 epsilon units or better. The long-term average e205Tl value for the 759 
SCo-1 standard is -3.0 ± 0.3 and all of our SCo-1 values were within this range. Samples that had 760 
reproducibility under 0.3 were displayed with an uncertainty of 0.3 (long-term reproducibility of 761 
SCo-1 standard), and samples that had reproducibility above 0.3 are displayed with that specific 762 
uncertainty. 763 

Supplementary Text 764 
Revised placement of Pliensbachian-Toarcian boundary at East Tributary section 765 

The original placement of the Pliensbachian-Toarcian boundary at East Tributary was 766 
placed at ~10.15 m based on the first appearance of the Toarcian ammonites Cleviceras exaratum 767 
and Hildaites cf. murleyi (1). However, the boundary could feasibly occur between ~8.5 m and 768 
10.15 m, as this interval also includes ammonites that are known to span the Pliensbachian-769 
Toarcian boundary in western North America (i.e., Tiltoniceras cf. antiquum and 770 
Protogrammoceras paltum (27, 28). Regardless of boundary placement our interpretations remain 771 
consistent in that water column deoxygenation predated the large negative CIE of the T-OAE, 772 
rather occurring at the Pliensbachian-Toarcian boundary over a time-frame that is coeval with 773 
phase 3 of the multi-phased Pliensbachian-Toarcian mass extinction (29) and supported by 774 
osmium isotope geochemical records (2, 30) and the absolute ages of the Pliensbachian-Toarcian 775 
boundary (2, 31, 32). Therefore, deoxygenation would still be considered as a major driver for the 776 
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main phase of this mass extinction event. 777 
 778 
Positive carbon isotope excursion during the early Toarcian (pre-T-OAE CIE) 779 

In Fig. 1 of the main text, the long-term, globally observed positive carbon isotope 780 
excursion during the early Toarcian is noted. This phenomenon is observed in inorganic and 781 
organic matter of marine and terrestrial carbon in several locations from Europe, Africa, and North 782 
America (1, 33-39) (Fig. S3). The new thallium isotope dataset from western Canada suggest that 783 
increased anoxia and burial of organic carbon were the mechanisms behind the long-term positive 784 
CIE beginning in the basal Toarcian. 785 
 786 
Ammonite zones of new oceanic deoxygenation records 787 

New Tl data from two geographically far removed anoxic basins suggest that the expansion 788 
of early Toarcian anoxic bottom began at the base of the correlative Tenuicostatum (northwest 789 
Europe and South America), Polymorphum (Mediterranean), Antiquum (High-Arctic), and 790 
Kanense (western North America) zones, and continued into the middle Toarcian at a correlative 791 
level with the Bifrons Zone of northwest Europe (see ref. 29). 792 
 793 
Dotternhausen Quarry Tl isotopes 794 

In Fig. 2 of the main text, several Tl isotope data points below the T-OAE CIE were 795 
displayed as light gray. These samples came from carbonate marls with extremely low TOC 796 
contents (0.34 – 0.78%) (4). Therefore, we compared only the two Tl isotope data points from the 797 
organic-rich black shales (pre-T-OAE) with the organic-rich black shales from the OAE and post-798 
OAE interval. Interpreting the Tl-isotopic composition of the low TOC marls as a proxy for relative 799 
global manganese oxide burial is unexplored and could lead to erroneous conclusions as the Tl-800 
isotope proxy (and other metal isotope proxies) have not been developed or tested in such 801 
depositional environments. 802 
 803 
Yorkshire, UK Tl isotopes 804 

The Tl-isotope results from our two new study sites cannot be directly compared with that 805 
of Yorkshire, UK (42). This is because of the interpreted severe basinal restriction that 806 
accompanied the T-OAE interval in the Cleveland Basin (43). The basinal restriction associated 807 
with this interval is demonstrated to have overprinted rhenium, osmium, and molybdenum 808 
systems, which has resulted in isotope stratigraphies that were not indicative of the global record 809 
(2, 4, 30, 43). Furthermore, the larger variations in the Tl-isotopes at Yorkshire (42) compared to 810 
western North America and Germany (this study) suggest the record is related to regional or local 811 
Mn-oxide burial events not well connected with the open ocean. 812 
 813 
 814 
 815 
 816 
 817 
 818 
 819 
 820 
 821 
  822 
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 823 

Fig. S1. 824 
Litho- and Chemo-stratigraphies of the Lower Jurassic Fernie Formation from drill core 1-825 
35-62-20W5, Alberta, Canada. d13Corg = organic carbon isotopic compositions. FeHR/FeT = 826 
amount of highly reactive iron relative to total iron, and FePy/FeHR = amount of pyrite iron relative 827 
to highly reactive iron (see SI Materials and Methods for discussion of this local redox proxy). 828 
e205TlSW = thallium isotopic composition of seawater during deposition. Lithostratigraphic 829 
members of the Fernie Formation, Stages of the Jurassic, and ammonite zonations for both 830 
northwestern Europe and western North American shown to the left of the stratigraphic column. 831 
Gray bar represents approximate expansion of deoxygenated bottom waters near the Pl-To 832 
boundary. 833 
 834 
 835 
 836 
 837 
 838 
 839 
 840 
 841 
 842 
 843 
  844 
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 845 

Fig. S2. 846 
Litho- and Chemo-stratigraphies of the Lower Jurassic Fernie Formation from drill core 6-847 
32-78-5W6, Alberta, Canada. d13Corg = organic carbon isotopic compositions. FeHR/FeT = 848 
amount of highly reactive iron relative to total iron, and FePy/FeHR = amount of pyrite iron relative 849 
to highly reactive iron. e205TlSW = thallium isotopic composition of seawater during deposition. 850 
Lithostratigraphic members of the Fernie Formation, Stages of the Jurassic, and ammonite 851 
zonations for both northwestern Europe and western North American shown to the left of the 852 
stratigraphic column. 853 
 854 
 855 
 856 
 857 
 858 
 859 
 860 
 861 
 862 
 863 
 864 
  865 
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 866 

Fig. S3. 867 
Carbon-isotope chemostratigraphies of the Pliensbachian and Toarcian stages from multiple 868 
locations. d13Corg = organic carbon isotopic compositions; d13Ccarb = inorganic carbon isotopic 869 
compositions; d13Cwood and d13Cphytoclast = organic carbon isotopic compositions of terrestrial plant 870 
wood. These carbon-isotope records all display and long-term positive d13C trend in the early 871 
Toarcian until the pronounced negative CIE associated with the T-OAE (1, 33-39). Dark gray box 872 
represents this long-term positive CIE. Light gray box represents the T-OAE CIE. The Tl isotope 873 
record suggests that the increased geographical extent of anoxia increased and resulted in the burial 874 
of organic carbon (13C-depleted) and ultimately the globally observed trend in higher d13C values 875 
leading up to the T-OAE. 876 
 877 
 878 
 879 
  880 
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Additional Data table S1 (separate file) 881 
Iron speciation and thallium isotope data from the East Tributary section. 882 
 883 

Additional Data table S2 (separate file) 884 
Carbon isotope, total organic carbon (TOC), iron speciation, and thallium isotope data from drill 885 
core 1-35-62-20W5. 886 
 887 

Additional Data table S3 (separate file) 888 
Carbon isotope, total organic carbon (TOC), iron speciation, and thallium isotope data from drill 889 
core 6-32-75-5W6. 890 
 891 

Additional Data table S4 (separate file) 892 
Iron speciation and thallium isotope data from the Dotternhausen section. 893 
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