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ABSTRACT
Most statistical inference from cosmic large-scale structure relies on two-point statistics, i.e.
on the galaxy–galaxy correlation function (2PCF) or the power spectrum. These statistics
capture the full information encoded in the Fourier amplitudes of the galaxy density field but
do not describe the Fourier phases of the field. Here, we quantify the information contained
in the line correlation function (LCF), a three-point Fourier phase correlation function. Using
cosmological simulations, we estimate the Fisher information (at redshift z = 0) of the
2PCF, LCF, and their combination, regarding the cosmological parameters of the standard
�CDM model, as well as a warm dark matter model and the f(R) and Symmetron-modified
gravity models. The galaxy bias is accounted for at the level of a linear bias. The relative
information of the 2PCF and the LCF depends on the survey volume, sampling density (shot
noise), and the bias uncertainty. For a volume of 1 h−3 Gpc3, sampled with points of mean
density n̄ = 2 × 10−3 h3 Mpc−3, and a bias uncertainty of 13 per cent, the LCF improves the
parameter constraints by about 20 per cent in the �CDM cosmology and potentially even more
in alternative models. Finally, since a linear bias only affects the Fourier amplitudes (2PCF),
but not the phases (LCF), the combination of the 2PCF and the LCF can be used to break the
degeneracy between the linear bias and σ 8, present in two-point statistics.
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1 IN T RO D U C T I O N

Cosmic large-scale structure (LSS) grows from primordial den-
sity fluctuations under the effect of gravity and dark energy. This
structure hence contains useful information on the cosmological
model, whether this is a specific form of the standard �CDM
model or an alternative proposal. Modern galaxy redshift sur-
veys (e.g. Alam et al. 2017; DES Collaboration 2017) decode
the information contained in the LSS using spatial statistics, most
commonly the two-point statistics, that is the isotropic two-point
correlation function (2PCF) or its Fourier counterpart, the power
spectrum.

While the structural information of the early Universe, seen
in the cosmic microwave background (CMB), seems to be fully
described by the two-point statistics, non-linear gravity-driven
evolution causes a flow of information into higher order statis-
tics as the Universe evolves (Scoccimarro 1997). This moti-
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vates the search for efficient statistical estimators to probe the
excess information in the LSS, which lies beyond the two-
point statistics. This quest has gained much momentum with
the prospect of further surveys such as DES (The Dark En-
ergy Survey Collaboration 2005), TAIPAN (da Cunha et al.
2017), EUCLID (Laureijs et al. 2011), and SKA HI surveys
(Dewdney et al. 2009).

Obvious candidates for the statistical estimators beyond the 2PCF
are the three-point and higher order isotropic correlation func-
tions. In fact the family of all N-point correlation functions con-
stitutes a full (albeit highly redundant) description of the statisti-
cal information in the LSS. For instance the bispectrum (Fourier
transform of the three-point correlation function) of the CMB
sets an upper limit on the non-Gaussianity (Planck Collabora-
tion 2016) of the primordial density field, thereby restricting the
range of allowed cosmological models. At late times, the bis-
pectrum provides additional constraints on the standard cosmo-
logical model (Gil-Marı́n et al. 2015). The same estimator, how-
ever, is unable to put stringent constraints on alternate cosmolog-
ical models (Gil-Marı́n et al. 2011), until the effects of redshift
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space distortions are incorporated into the analysis. The informa-
tion pertaining to the redshifted structure allows differentiation be-
tween modified gravity and standard models (Sabiu et al. 2016) at
small scales. Including higher order (>3 point) correlation func-
tions makes it possible to increase the minimum length scales that
need to be considered to differentiate between cosmological models
(Hellwing et al. 2013).

Alternative estimators to the standard N-point correlation func-
tions exist and have previously been used to distinguish between
standard and alternate cosmological models. For instance, halo
shape statistics (Llinares, Mota & Winther 2014), the two-point
function of different types of non-linearly rescaled density fields
(Lombriser, Simpson & Mead 2015; White 2016; Llinares & Mc-
Cullagh 2017) and void count and shape statistics (Cai, Padilla &
Li 2015; Falck et al. 2017; Voivodic et al. 2017) also probe this
non-linear regime and allows us to differentiate between modified
gravity models. However, these alternative estimators, as well as
the standard N-point correlation functions, are strongly correlated
to the 2PCF. This is because these alternative estimators depend on
the amplitudes of the Fourier field, already fully measured by the
2PCF. Therefore, total constraints from the 2PCF and such alter-
native estimators are often smaller than their independent addition
would suggest.

Given the dependence of the 2PCF on the Fourier space ampli-
tudes, it seems promising to introduce a second statistical measure
that only depends on Fourier phases. One such measure is the so-
called line correlation function (LCF, defined in Section 2.1) intro-
duced by Obreschkow et al. (2013). Using a simplistic information
analysis Obreschkow et al. speculated that the LCF is a promising
estimator, especially when probing alternative cosmological mod-
els. Moreover, because the LCF measures the three-point statistics
of the Fourier phases, irrespective of amplitudes, it is independent of
linear bias (Wolstenhulme, Bonvin & Obreschkow 2015), the uncer-
tainty of which plagues all LSS surveys. To study the effectiveness
of the LCF in galaxy surveys, Eggemeier & Smith (2017) studied
its correlation with the two-point estimator on different scales. This
was further expanded upon by Byun et al. (2017), who compared the
effectiveness of the LCF with other three-point estimators, including
the bispectrum and found it to be a promising candidate for future
surveys. Given that all the odd isotropic N-point functions contribute
to the LCF (Wolstenhulme et al. 2015), we expect this estimator to
play a more significant role in cosmological models which affect
the non-linear regime of structure evolution due to gravity. Hence,
it is an interesting avenue to apply the LCF to alternative gravity
models.

In this paper, we investigate the additional information contained
in the LCF, relative to the information in the 2PCF, based on cos-
mological N-body simulations. We account for the difference be-
tween observable galaxies and the underlying total density field
via a linear bias. We start by defining the statistical estimators and
the Fisher information (FI) matrix (FIM). We then set out the al-
gorithm to compute the derivatives and covariances required for
the FIM and investigate the effect of the uncertainty of the lin-
ear bias on the overall covariance matrix. In Section 3, we use
N-body simulations to measure the information in the 2PCF, the
LCF and their combined information in standard (�CDM), Warm
Dark Matter (WDM), f(R), and Symmetron cosmologies and end
by exploring the effect of linear bias uncertainties on parameter
estimation. Throughout this work, we only take into account the
real-space 2PCF and LCF while similar analyses in redshift-space
are left for future work. Section 4 concludes the paper with a brief
discussion.

2 ME T H O D S

This section introduces the tools used for analysing the cosmo-
logical information in N-body simulations. We start by defining
the statistical estimators, i.e. the 2PCF and LCF, and outlining the
method of measuring their relative information. We then describe
the algorithm used to measure the derivatives and covariances of the
2PCF and LCF required for FIM. Finally, we quantify the effect of
linear bias uncertainties on the covariance matrix of the statistical
estimators.

2.1 Estimators

Cosmological N-body simulation boxes with periodic boundary
conditions (see Section 3.1) are used to compute the matter density
field ρ(rrr) at redshift z = 0. It is convenient to define the overdensity
field, δ(rrr), as

δ(rrr) = ρ(rrr) − ρ̄

ρ̄
, (1)

where ρ̄ is the average density within the simulation volume. The
next step is to take the Fourier transform of this quantity, using the
formalism of Obreschkow et al. (2013), and compute the power
spectrum, P (kkk), defined as

〈δkkkδk′k′k′ 〉 = (2π)3δD(kkk + k′k′k′)P (kkk); (2)

where 〈〉 and δD are the ensemble averages and Dirac Delta function,
respectively. The 2PCF is then obtained using

ξ (r) = V

(2π)3

∫
d3k

sin(|kkk|r)

|kkk|r P (|kkk|). (3)

Since the 2PCF and the power spectrum are Fourier counterparts
of one another they contain the same FI. Note that in real surveys
this might not be the case given that the two statistics are computed
using their own approximate estimators.

The LCF measures correlation between the Fourier phases,
ε(kkk) = δ(kkk)/|δ(kkk)|. We here use the LCF definition of
Wolstenhulme et al. (2015)

	(r) = V 3

(2π)9

(
r3

V

)3/2
“

|k1k1k1|,|k2k2k2|,|k3k3k3|≤2π/r

d3k1k1k1d
3k2k2k2d

3k3k3k3 (4)

ei[k1k1k1·sss+k2k2k2·(sss+rrr)+k3k3k3·(sss−rrr)] 〈ε(k1k1k1)ε(k2k2k2)ε(k3k3k3)〉 .

This LCF is computed using the ProCorr package, which follows
the formalism of Obreschkow et al. (2013).

2.2 Fisher information matrix

The main aim of this paper is to measure the available information
in the estimators and thereby constrain a set of parameters. To do
so we use the FIM, which for a given Log-Likelihood function, L,
is defined by

Fij =
〈

∂L(P, θ )

∂θi

∂L(P, θ )

∂θj

〉
, (5)

where θ consists of N model parameters, θ i∀ i ∈ 1,· · · , N, with P
being the estimator we measure. A useful feature of this matrix
is that its inverse is an estimator of the covariance matrix of the
model parameters (see Section 3.1). In the Laplace approximation
(Gaussianity of likelihoods), the FIM simplifies to (Tegmark, Taylor
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& Heavens 1997)

Fij = ∂ P(θ )

∂θi
C(P, θ )−1 ∂ P(θ )

∂θj

+ 1

2
Tr

[
C(P, θ )−1 ∂C(P, θ )

∂θi
C(P, θ )−1 ∂C(P, θ )

∂θj

]
, (6)

where C is the covariance matrix of the likelihood. The variation
of the covariance matrix (trace term in equation 6) turns out to
be subdominant relative to the first term. In the case of the 2PCF,
this was shown by explicit numerical calculations. For instance,
in the particular case of the Symmetron-modified gravity model,
Llinares & McCullagh (2017) found that the covariance matrix of
the power spectrum (hence the 2PCF) does not vary significantly
relative to that of �CDM. For the LCF, Eggemeier & Smith (2017)
show that the trace term vanishes identically at lowest order, since
the Gaussian part of the covariance matrix is independent of the
cosmology. This lowest order solution agrees with full numerical
computations over a wide range of length scales r ≥ 40 h−1 Mpc.
Hence, in subsequent sections, we will ignore the trace term and
evaluate the derivatives of the 2PCF and the LCF relative to the
model parameters at a fiducial cosmology.

An alternative information measure, commonly, used in cosmol-
ogy literature is the cumulative signal to noise of the relevant statistic
(e.g. Sefusatti & Vernizzi 2011; Bonvin, Hui & Gaztanaga 2016).
This metric, defined in terms of the raw estimator instead of its
derivative, i.e. SNR = PC−1 P , quantifies the possibility of mea-
suring the estimator in a given cosmological volume. However, in
general the Fisher methodology provides a more robust way of
estimating the parameters.

2.3 Derivatives

To evaluate the FI of the LCF and the 2PCF, we require the expec-
tation values of their derivatives with respect to the cosmological
parameters θ i under investigation. In practice these expectations of
the derivatives can be computed with a finite difference method
using two simulation boxes per parameter, one centred at a fiducial
cosmology, θ0, and one with the parameter in question varied by a
small difference �θ ,

∂ P(θ0)

∂θ
= P(θ0) − P(θ0 − �θ )

�θ
. (7)

Here, the two simulations (with θ0 and one for θ0 − �θ ) rely on
the same initial random seed to minimize the randomness of the
derivatives. We further reduce this randomness by applying a slight
smoothing filter (two-point running average) to the LCF, which
suffers from the limited number of modes more than the 2PCF. In
Section 3.5, where we fit the bias in �CDM only at large scales
(with only few modes per box), the derivatives are averaged over
50 random realizations.

2.4 Covariance matrix

The second ingredient for the FIM computation is the covariance
matrix of the respective statistical estimator. We use 500 simulation
boxes that are generated using the COmoving Lagrangian Accel-
eration (COLA) method (Tassev, Zaldarriaga & Eisenstein 2013)
implemented in the L-PICOLA code (Howlett, Manera & Percival
2015). The simulations consist of 2563 particles enclosed in a pe-
riodic box of length L = 512 h−1 Mpc with the same background
cosmology as in Howlett et al. (2015). The LSS evolved by the
COLA technique provides an accurate estimate of the covariances

Figure 1. Comparison of the LCF of simulation boxes evolved, by the
two N-body codes L-PICOLA and GADGET-2, from the same initial density
field. L-PICOLA tends to slightly but systematically underestimate the LCF
by ≈3 per cent which needs to be accounted for before computing the
covariance matrix. The shaded region shows the standard deviation of LCF
indicating the significance of the systematic correction at different scales.

of two-point statistics to scales of k ≤ 0.3 h Mpc−1. Hence, in our
regime of interest, r ≥ 10 h−1 Mpc, we can safely use L-PICOLA to
estimate the covariance matrix of the 2PCF.

The three-point statistics on the other hand depend strongly on
the non-linear growth of gravity and, hence, might not be easily re-
producible by the COLA code. To gauge the accuracy of the COLA
solver, we compare a set of simulation boxes which are evolved
from the same initial density field but by two different N-body
codes, GADGET-2 and L-PICOLA. As shown in Fig. 1, L-PICOLA slightly,
but systematically underestimates the LCF by about 3 per cent.
We approximately correct this small inaccuracy by rescaling the L-
PICOLA LCF by 3 per cent in computing the covariance matrix. This
correction is more significant at smaller scales, but the difference
persists even at larger scales and might be due to L-PICOLA being
unable to accurately reproduce the non-linear regime of structure
growth since the LCF depends entirely on the correlation between
Fourier phases, the growth of which is a purely non-linear phe-
nomenon. We here assume that the applied correction also holds
for the covariance matrix estimated through the L-PICOLA simula-
tions. Since, the LCF depends on three-point statistics, the resulting
covariance matrix should depend on four, five, and six-point func-
tions which might differ by a different factor in the COLA method.
We expect these corrections to be small relative to the diagonal
terms in the covariance matrix; hence they do not significantly alter
the FIM.

Given 500 L-PICOLA realizations of the 2PCF and the LCFs, we
estimate the full covariance matrix

Ĉ =
[

Ĉξξ Ĉξ	

Ĉ	ξ Ĉ		

]
, (8)
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where the four sub-matrices are defined by

(Ĉξξ )ij = covNsim

(
ξ (ri), ξ (rj)

)
(9)

(Ĉ		)ij = covNsim

(
	(ri), 	(rj)

)
(Ĉξ	)ij = (Ĉ	ξ )ji = covNsim

(
ξ (ri), 	(rj)

)
.

The operator covNsim is the estimator of the covariance matrix from
Nsim simulation boxes

covNsim (x, y) = 1

Nsim − 1

Nsim∑
k=1

(xk − 〈x〉) (yk − 〈y〉) . (10)

The covariance matrix of cosmological surveys is, in general,
made up of three terms (see Bonvin et al. (2016): a Poisson (or shot
noise) contribution which depends on the density of the observed
galaxies. The second major contribution comes from the fact that
we observe a single realization of the observable Universe. The fi-
nal contribution to the overall covariance matrix is a mixture of the
Poisson and cosmic effect and hence depends on both the galaxy
density and the survey volume. In the absence of a window func-
tion, the covariance matrices of the 2PCF (Meiksin & White 1999;
Scoccimarro, Zaldarriaga & Hui 1999; Howlett & Percival 2017)
and the LCF (Eggemeier & Smith 2017) are inversely proportional
to the survey volume. This allows us to assume that the covariance
matrices of the 2PCF and LCF both scale as the inverse of the survey
volume, i.e. the covariance matrix C̃ for a survey of volume Veff is

C̃ = Vsim

Veff
Ĉ, (11)

where Vsim is the simulation volume in which the raw covariance
matrix Ĉ was evaluated.

To gauge the effect of shot noise in our analysis, we randomly
draw a subset of Nparts particles from the simulation box, such
that the mean expected particle density n̄ = Nparts/Vsim equals 2 ×
10−3 h3 Mpc−3, approximately corresponding to the cumulative
space density of haloes more massive than 1012 M� (Murray, Power
& Robotham 2013) – the dynamical mass of typical M∗-galaxies.
Strictly speaking, this subsampling process mimics shot noise in
the matter field rather than in the galaxy field – a difference, which
we neglect in this work, similarly to others (Eggemeier & Smith
2017). By subsampling the simulation box in this way, we find that
the variance of the 2PCF estimator increases while that of the LCF
decreases. This is because the expectation of the 2PCF is invariant
to random subsampling of the particle field, while that of the LCF
decreases significantly, a behaviour explored by Eggemeier & Smith
(2017). Note that in computing the FIM in the presence of shot noise,
we rescale the derivatives of the full LCF (without shot noise) by a
factor f(r), defined as the ratio between the expectation of the LCF
of the subsampled boxes and the full LCF. This approach neglects
the derivative of f(r) with respect to the cosmological parameters.
Numerically, this simplification has a relatively small (�20 per cent)
effect on the overall FI in the LCF. (An exact computation would
nonetheless require more simulation boxes than available for this
analysis.)

Modern galaxy redshift surveys probe cosmic volumes of a
few h−3 Gpc3. For instance, the CMASS galaxy sample of the
BOSS (Eisenstein et al. 2011) survey covers an effective volume of
3 h−3 Gpc3 (Ntelis et al. 2017) while future surveys might reach up
to 20 h−3 Gpc3 (Duffy 2014). In this work all results are presented
for a reference volume of Veff = 1 h−3 Gpc3.

While the covariance matrix computed via equation (10) is an
unbiased estimator, its inverse required for the FIM is generally
not. To obtain an unbiased estimator, we apply the correction of

Hartlap, Simon & Schneider (2007)

C−1 = Nsim − Ndim − 2

Nsim − 1
C̃

−1
, (12)

where Ndim is the order of C̃.
Fig. 2 shows the covariance matrix C (upper triangle), as well as

its correlation matrix R (lower triangle), defined as

R = D−1C D−1, (13)

where D is the square root of the diagonal matrix of C.
Fig. 2 reveals that the cross-correlation between the 2PCF and

the LCF is small, as expected from the fact that the former esti-
mator measures the Fourier amplitudes while the latter measures
the Fourier phases. Only at scales �20 h−1 Mpc does the cross-
correlation become significant, indicating a strong coupling be-
tween the Fourier phases and amplitudes due to non-linear growth.
Note that the rescaling of equations 11 and 12 has no effect on the
correlation matrix.

2.5 Incorporating bias uncertainty

Most cosmological surveys use galaxies as tracers of the matter
density field δ(rrr). The mapping between the galaxy density δg(rrr)
and δ(rrr) is complicated in detail. However, at large scales, the
asymptotic effect is a uniform rescaling

δg(rrr) = b δ(rrr), (14)

where the scaling factor b is known as linear bias. This bias
only affects the amplitudes, not the phases of the Fourier modes,
i.e. δg(k) = bδ(k). Therefore, only the 2PCF is affected by lin-
ear bias, not the LCF. Explicitly, the galaxy 2PCF at large scales
(�50 h−1Mpc) is

ξg,i = b2 ξi, (15)

where ξ i = ξ (ri) is the estimated dark matter 2PCF at separation
scale ri. On smaller scales, the bias becomes non-linear. The effects
of this non-linearity on the LCF are not yet well understood and will
be neglected in this work, although they might be worth considering
in the future.

The FI of the 2PCF does not depend on the absolute value of b,
since the covariance matrix C scales as b4, while each of the two
derivative terms scales as b2, hence cancelling b in equation (6).
Only the uncertainty of b affects the constraints on the cosmological
parameters. We can account for this effect of linear bias uncertainty
in two ways that correspond to slightly different concepts. The first
approach consists of inferring the cosmological parameters from
the galaxy field, which depends both on these parameters and b.
One then computes the combined FIM of the model parameters
and b, hence constraining them simultaneously. The subtle caveat
of this approach is that a linear bias b only applies to the largest
scales and hence should not be fitted to smaller scales. Ignoring
this would result in significantly inflated constraints on b, although
this problem can be somewhat alleviated by including a non-linear
bias term (Eggemeier & Smith 2017). The alternative approach,
used in this paper, is to assume that we infer the cosmological
parameters from the dark matter field, which is itself inferred by
applying an uncertain bias to the galaxy field. This translates into
an uncertain dark matter 2PCF. In this case, the FIM is computed
only for the cosmological parameters, but the bias uncertainty must
be included in the estimator covariance matrix C. This approach
has the advantage that we can impose a realistic uncertainty for
the linear bias, accounting for the complexity of real surveys. The
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Figure 2. The absolute value of covariance matrix (upper triangle) estimated from 500 L-PICOLA simulations and its associated correlation matrix (lower
triangle) computed by inverting equation (13) as a function of scale length. As we go to larger scales the variance of the LCF increases while that of 2PCF
decreases. The correlation matrix, on the other hand, increases at small scales for all combination of the parameters 2PCF-2PCF (bottom-left), 2PCF-LCF
(bottom-right), and LCF-LCF (top-right). The increase in 2PCF-LCF correlation at r � 20 h−1 Mpc indicates strong coupling between Fourier phases and
amplitudes. This property is absent in the early Universe and results from non-linear growth of structure due to gravity.

downside is that this approach doesn’t guarantee that the assumed
bias uncertainty is consistent with the best estimate of the bias that
one might achieve from combining the 2PCF and LCF at the largest
scales. This consistency therefore needs to be checked in a separate
step, see Section 3.5.

Since the FIM does not depend on the absolute value of the linear
bias, we can assume, without loss of generality, that 〈b2〉 = 1 and
write the variance of b2 as σ 2

b2 . Using linear error propagation, the
variance of the 2PCF with bias uncertainty then depends on σb2 via

σ 2
ξi

(σb2 ) = σ 2
ξi

+ σ 2
b2

(
ξ 2

i + σ 2
ξi

)
, (16)

where σ 2
ξi

are the diagonal elements of Cξξ without bias uncertainty.
Note that this definition of σ 2

ξi
(σb2 ) satisfies the condition σ 2

ξi
(0) =

σ 2
ξi

.
Equation (16) allows us to correct the diagonal elements of the

covariance matrix C in order to account for bias uncertainty. The
remaining question is how to correct the off-diagonal elements.
We found that linear error propagation as in equation (16) is not
the right approach. This is because the bias uncertainty introduces
cross-correlation between different scales ri and rj, which is not
present in the estimations of the derivatives, when based only on
one random realization of the universe (which necessarily can only
have one bias value). To bypass this issue, we instead assume that the
off-diagonal elements of the covariance matrix remain unchanged
under the effect of bias uncertainties. Formally, the bias-corrected
covariance matrix becomes

C(σb2 ) = D(σb2 )R D(σb2 ), (17)

where R is the correlation matrix of C given in equation (13) and
D(σb2 ) is a diagonal matrix defined as

D(σb2 ) =
[

Dξg (σb2 ) 0
0 D	

]
(18)

with the diagonal sub-matrices

(Dξg )ii(σb2 ) = σξg,i (σb2 )

(D	)ii = σ	i .
(19)

Note that this definition of the covariance matrix C(σb2 ) satisfies the
condition C(0) = C, i.e. the original covariance matrix is recovered
if the bias uncertainty vanishes. A consequence of this definition is
the dependence of bias uncertainty on the galaxy survey volume as
1/

√
V . We will use a fiducial survey volume throughout Section 3

and in Section 3.5 quantify the change in combined information of
the estimators due to the bias uncertainty parameter.

3 A PPLI CATI ON TO SI MULATI ONS

We will now evaluate the FIM of the 2PCF and LCF in different
cosmological models using N-body simulations. All FIM compu-
tations are carried out at redshift z = 0 and assume a fiducial
survey volume of Veff = 1 h−3 Gpc3 and a linear bias uncertainty of
13 per cent (standard deviation), that is σb2 ≈ 0.26. The results can
be rescaled to other volumes and bias uncertainties using the covari-
ance scaling relations given in Section 2.5. The smallest length scale
accounted for in the statistical analyses is set at r = 10 h−1 Mpc.
This is a conservative estimate that avoids most effects of (not mod-
elled) non-gravitational baryonic physics, e.g. hydrodynamics and
radiation.
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3.1 Standard �CDM cosmology

The bulk of the cosmological N-body simulations used to compute
the estimator derivatives use 2563 particles in a periodic simula-
tion box of side length L = 512 h−1 Mpc. The particles are initially
placed on a regular cartesian grid, then displaced to obey the power
spectrum generated by CAMB (Lewis & Bridle 2002) and evolved
using second-order Lagrangian perturbation theory (Crocce &
Scoccimarro 2006) to redshift z = 49. We then employ the GADGET-2
(Springel 2005) N-body solver to evolve the particles to redshift z

= 0.
To estimate the derivatives of the �CDM model, we

use equation (7) with a background cosmology given
by Planck Collaboration (2016) following which we
rescale the LCF derivatives. We take the central parame-
ter values of θ0 = {b, M, σ8, ns, H0(km s−1 Mpc−1)} =
{0.048, 0.31, 0.82, 0.97, 68} with a step spacing of
�θ = {0.10, 0.62, 0.86, 0.40, 46} × 10−2. We do not include
the reionization depth parameter in our analysis since the linear
matter power spectrum is independent of this parameter and thus it
cannot be constrained by our methodology.

We then evaluate the FIM using the covariance matrix from the
500 L-PICOLA simulations (Sections 2.4 and 2.5). The covariance
matrix of the model parameters, inferred from the statistical mea-
surement, is then given by

� = F−1. (20)

The order of the matrix � is equal to the number of model pa-
rameters. The FIM can be computed using the 2PCF, the LCF, or
both of them simultaneously. To distinguish between the different
parameter covariances resulting from these three cases, we use the
symbols �ξ , �	, and �ξ	.

Fig. 3 shows the parameter uncertainties implied by this covari-
ance matrix in the Gaussian approximation, i.e. for a probability
distribution p(θ) ∝ exp[−(θ − θ0)†�−1(θ − θ0)/2]. The different
line colours, respectively, show the constraints from the 2PCF, LCF,
and their combination. Interestingly, the uncertainty ellipses of the
2PCF and the LCF often have significantly different orientations.
For instance in the case of the σ 8-M pair, the LCF helps breaking
the classic degeneracy.

Generally, a parameter θ i is better constrained by the 2PCF+LCF
than by the 2PCF alone. We quantify this gain in constraining
power as gi = √

�ξ,ii/�ξ	,ii. For �CDM, we find that subsampling
particles (i.e. mimicking shot noise) within the simulation box in-
creases the contribution of the LCF to the combined constraints,
g = {1.17, 1.19, 1.87, 1.23, 1.26} (for parameters b, M, σ 8, ns,
H0), compared to using the complete set of particles (i.e. no shot
noise) in the analysis gcomplete = {1.04, 1.06, 1.52, 1.13, 1.13} for
the same bias uncertainty. The same is not case when we neglect bias
in the analysis since higher order functions are more susceptible to
Poisson noise. This emphasises the importance of bias uncertainty
in our analysis, and we verify our choice of method in Section 3.5.

Comparing our results with a previous study by Eggemeier &
Smith (2017), we find a good match between the gain values of σ 8

and total matter density, M (with shot noise), i.e. g = {1.25, 1.90}
(for parameters M, σ 8). However, their gains on other parameters
g = {1.02, 1.07, 1.07} (for b, ns, H0) are significantly smaller
than those found by our full analysis. This disagreement might,
primarily, be due to their study using CMB priors which put sharp
constraints on b, ns, and H0 parameters as compared to M and
σ 8. Furthermore, they incorporate the linear and non-linear bias into

the FIM analysis and use N-body simulations at multiple redshifts
to determine the overall parameter constraints.

Fig. 4 (left) depicts the increase in the parameter uncertainty (de-
crease in information) as we increase the smallest length scale r used
in the FIM computation. One finding from this representation is that
the relative constraining power from the LCF slowly increases with
decreasing r and for certain parameters contributes significantly to
the combined constraints. For instance, the LCF provides similar
constraints to the 2PCF for the σ 8 parameter while contributing at
most half as much to the combined constraints of the other standard
parameters. For all parameters, the increase in constraining power
of the LCF at small scales is much steeper than that of the 2PCF
due to the onset of non-linear regime.

3.2 WDM cosmology

As a first alternative cosmological model, we consider the WDM
model, often evoked as a possible solution to potential sub-structure
problems in CDM (Klypin et al. 1999).

Our approach to modelling a WDM universe consists in reducing
the power of the initial CDM density field on small scales to mimic
the free-streaming of the WDM. This is achieved by truncating the
input linear matter power at large k values (small scales), following
Bode, Ostriker & Turok (2001),

P (k)WDM = [
1 + (αk)2ν

]−5ν
P (k)CDM, (21)

where P(k) is the linear CDM power spectrum, ν is a numerical
constant, and α is a non-linear function of the dark matter particle
mass such that limmWDM→∞ α = 0 and we recover the standard cos-
mology. We use the numerically fitted value of ν = 0.5 by Bode
et al. (2001). In the FI analysis, we consider m−1

WDM as the free ad-
ditional cosmological parameter to be constrained. To compute the
estimator derivatives, we use a spacing of �m−1

WDM = (0.2 keV)−1

centred at the a cosmology with m−1
WDM = (0.2 keV)−1 and the same

�CDM parameters as in the previous section.
Fig. 5 (top) shows the diagonal and off-diagonal components of

� determined by inverting the FIM. We find a gain of 3.28 on the
mWDM parameter with a non-noticeable change in constraints on the
�CDM parameters. This is likely the result of the elliptical orien-
tations of the 2PCF and the LCF being vastly different for m−1

WDM

and �CDM parameter pairs. Furthermore, the relative constraining
power of the LCF for the m−1

WDM increases faster when compared to
that of standard parameters as shown in Fig. 4 (right). Since the LCF
is less sensitive to the linear growth, its variation is mostly dictated
by the local gravitational interactions and hence the properties of
the underlying dark matter field. This attribute of the LCF allows it
to contain significantly more information about the m−1

WDM for the
fiducial survey we assume in our analysis.

3.3 f(R) Cosmology

The first modified gravity (MG) analysed in this paper is a specific
realization of the Hu-Sawicki f(R) model (Hu & Sawicki 2007). The
original model was defined as a modification to the Ricci scalar, R,
of the Einstein–Hilbert term, i.e. R → R + f(R), with a free function
f such that the action, S, for this model is given by

S =
∫ √−g

[
R + f (R)

16πG
+ Lm

]
d4x, (22)

where Lm and g are the matter Lagrangian and the Einstein frame
metric, respectively. In this prescription, the free function f is defined
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Figure 3. The constraints provided by the estimated 2PCF (red), LCF (blue), and their combination (black) for the standard cosmology parameters is shown on
the left. The diagonal elements are shown as a 1-D Gaussian while the off-diagonal elements are depicted by their 68 per cent (solid) and 95 per cent (dashed)
contours. The shaded yellow regions indicate combined constraints of the two estimators when all particles are used in the analysis (i.e. no shot noise) and
as expected provide better constraints than the combined information from smaller particle density. A significant portion of the LCF ellipses have different
orientations to those of the 2PCF allowing better constraints on the �CDM parameters. The highest gain in constraining power is placed on σ 8 with a gain of
1.87. For this analysis we assume a fiducial cosmological survey with σ b = 0.13, n̄ = 2 × 10−3 h3 Gpc−3, and Veff = 1 h−3 Gpc3.

as

f (R) = −m2 c1(R/m2)n

c2(R/m2)n + 1
, (23)

where m2 = H 2
0 M. The variables c1, c2, and n are the free param-

eters for this MG model.
The ratio c1/c2 describes the expansion of the universe, and en-

forcing a �CDM-like expansion history reduces the number of free
parameters to two, i.e. n and c1 (or c2). In this case, the derivative
fR = df(R)/dR, at present day (z = 0), becomes

fR0 = −n
c1

c2
2

(
M

3 (M + 4�)

)n+1

. (24)

The geodesic equation of this model takes the form

ẍ̈ẍx + 2H ẋ̇ẋx + ∇�

a2
− 1

2

∇fR

a2
= 0, (25)

where a and � are the scale factor and the scalar perturbation (or
the gravitational potential in the classical sense), respectively. The
final term on left-hand side is the additional ‘fifth’ force beyond the
standard gravity. The range of this force depends on the two free

parameters and at z = 0 can be quantified as

λ0
φ = 3

√
n + 1

M + 4�

√
|fR0 |
10−6

h−1 Mpc, (26)

which is usually expressed in units of h−1 Mpc. As mentioned earlier
we only look at a special case of the Hu-Sawicki model where n = 1.
This allows us to fully define the f(R) model using a single parameter,
|fR0 |. See Llinares et al. (2014) for further details about this model
and the reason for choosing this particular parametrization.

The numerical simulations analysed in this paper are taken from
Llinares et al. (2014), which uses Isis, a derivative of the adap-
tive mesh refinement (AMR) code RAMSES (Teyssier 2002), to fully
evolve density fields sampled from an initial power spectrum gen-
erated by LINGER (Bode & Bertschinger 1995). We evaluate the
derivatives using the fofr6 and �CDM runs under the assumption
that the central cosmology is given by |fR0 | = 10−6 with the same
spacing, i.e. �|fR0 | = 10−6. Since the standard �CDM and the
f(R) runs are both computed by the same codes with the same ran-
dom seeds, the deviation between them purely results from the fifth
force, allowing a robust calculation of the estimator derivative with
respect to |fR0 |. Note that the �CDM parameters of our previous
runs (Sections 3.1 and 3.2) slightly differ from those in (Llinares
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Figure 4. The relative constraints placed on each standard parameter (left) and alternate cosmological parameter (right) as smaller scales are included in the
FIM computation. The largest scales (≥ 50 h3 Mpc−3) suffer from statistical noise due to lack of modes and, hence, have been omitted from the figure. We
find a sharp increase in constraining power of the LCF when compared to the 2PCF across all parameters. For this analysis we assume a fiducial cosmological
survey with σ b = 0.13, n̄ = 2 × 10−3 h3 Gpc−3, and Veff = 1 h−3 Gpc3.

et al. 2014), but we assume that this does not impact the derivatives
with respect to |fR0 |. Another difference is that the �CDM and f(R)
simulations of Llinares et al. (2014) use a higher spatial resolution
(5123 particles in a L = 256 h−1 Mpc box). This higher resolution is
required to properly take into account non-linear effects associated
with the screening mechanism. Despite this increase in resolution,
we restrict the FI computations to correlation scales r ≥ 10 h−1 Mpc
to be consistent with the previous cosmological models.

For the fiducial survey volume of Veff = 1 h−3 Gpc3 and a linear
bias uncertainty of 13 per cent (standard deviation), the gain on
|fR0 | constraints from including the LCF is g = 9.99 as shown in
Fig. 5 (middle). The orientations of the 2PCF and the LCF ellipses
are different for all |fR0 | and �CDM parameter pairs which leads
to the extra constraining power of the combined estimators. For this
MG model, we find a sharp increase in the information content of
the LCF at small scales as compared to that of the 2PCF as shown
in Fig. 4 (right). Hence, the LCF is more susceptible to non-linear
growth in f(R) model and requires us to measure scale down to
10 h−1 Mpc.

3.4 Symmetron

The final cosmological model analysed in this paper is the Sym-
metron model. This MG model, which was originally explored by
Hinterbichler & Khoury (2010), uses a scalar field φ governed by a
potential and s conformal factor equation

V (φ) = −1

2
μ2φ2 + 1

4
λφ4, (27)

A(φ) = 1 + 1

2

φ2

M2
, (28)

where μ and M are mass scales with λ being a positive dimensionless
constant. These three parameters define the simplest Symmetron
model.

In this model, the fluctuations of the scalar field couple to the
matter in regions of low density ρ � ρ̄, where ρ̄ is the average

matter density of the universe. These correspond to cosmic voids.
However, in overdense regions, the coupling becomes negligible –
an effect known as ‘screening’. The vacuum expectation value of
the scalar φ is

φ0 = μ√
λ

(29)

and it determines the coupling strength between the scalar field
and matter. For numerical convenience we rewrite the equations in
terms of a dimensionless scalar field χ = φ/φ0 using the following
parameters

λ0 = 1√
2μ

(30)

β = φ0Mpl

M2

aSSB = ρ0

μ2M2

where Mpl and ρ0 are the Planckian mass and the background density
at z = 0, respectively. The physical interpretation of the parameters
λ0, β, and zSSB are the range of the scalar field, its coupling strength
and the redshift zSSB (or its associated scale factor aSSB) at which the
symmetry is broken (screening) for a given background cosmology,
respectively. Using these parameters, the geodesic equation with
the additional fifth force term becomes

ẍ̈ẍx + 2Hẋ̇ẋx + ∇�

a2
− 6

MH 2
0

a2

β2λ2
0

a3
SSB

χ∇χ = 0. (31)

See Llinares et al. (2014) for full details of this model and the reason
for choosing this parametrization.

We assume the Symmetron parameters are centred at θ0 =
{λ0(h−1 Mpc), zSSB, β} = {1, 1, 1} and use the �CDM box in con-
junction with Symm A-C runs from Llinares et al. (2014) to eval-
uate the derivatives. Fig. 5 (bottom) shows the parameter con-
straints obtained by employing the two estimators in our analy-
sis. The gain of 2PCF + LCF, relative to the 2PCF alone, is about
g = {1.24, 1.48, 1.21}. As with the previous MG model we find
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Figure 5. The 2PCF (red), the LCF (blue), and the combined (black) constraints for each of the alternate cosmological parameters determined by our
analysis. The colour scheme is same as that used in Fig. 3. The top, middle, and bottom rows show the allowable range of WDM, f(R), and Symmetron
parameters, respectively, along with their pairwise constraints with the standard parameters. The elliptical orientations of the standard-alternate parameter pairs
are significantly different for the 2PCF and LCF, which allows a higher gain in constraining power for these models. The strongest constraints are comparable
to that of σ 8 which is the best determined standard parameter following the FI analysis. The analysis assumes a fiducial survey with 13 per cent bias uncertainty,
2 × 10−3 h3 Gpc−3 particle number density, and Veff = 1 h−3 Gpc3.

the orientation of the Symmetron and �CDM pair ellipses having
different orientations for the two estimators. This provides a boost
in the combined constraints.

Fig. 4 (right) indicates the importance of incorporating smaller
scales in our analysis. In the case of Symmetron model, the relative
constraints from the LCF decrease faster than the 2PCF. Although,
the individual constraining power of the 2PCF is better than that of
the LCF, small-scale measurements still provide better combined
constraint than standard parameters with the exception of σ 8.

3.5 Effect of the linear bias uncertainty

The statistical uncertainty of the galaxy (or halo) bias deteriorates
the information extracted from cosmic large-scale structure. At lin-
ear order, this effect only applies to the 2PCF, not to the LCF, since
the latter is insensitive to the linear bias b. Hence, the information
of the LCF relative to the 2PCF increases with the uncertainty of
b. So far, we have accounted for this effect assuming that b has
a fixed normal uncertainty of σ b = 13 per cent. The variation of
the relative FI with this uncertainty is shown in Fig. 6. Since the
relative information in the 2PCF decreases with increasing σ b, the
combined information asymptotes to that of the LCF estimator as

σ b → ∞. In all cosmological models the LCF adds significant extra
constraints to the 2PCF, if σ b = 0.13 (as in Figs 3 and 5) or larger,
whereas, in a scenario where bias is perfectly constrained, the 2PCF
constrains each parameter by up to four times.

The discussion above highlights the power of combining the
two-point statistics with a linear bias-independent estimator for pa-
rameter estimation. In turn, this property of the LCF also allows us
to infer the bias parameter b itself. This can be achieved by consid-
ering b as an additional free parameter (see first approach discussed
in Section 2.5) and computing the full FIM of all cosmological
parameters and b. This requires the derivative of the galaxy 2PCF
with respect to b, whose analytical expression is simply

∂ξg,i

∂b
= 2bξi. (32)

Since we now treat b as an additional model parameter, its uncer-
tainty must not be included in the covariance via equation (18).
Importantly, the linear bias b is only a good approximation of
the full bias on large scales (r ≥ 50 h−1 Mpc). Hence, we restrict
this analysis to these large scales, and maintain the fiducial survey
volume of Veff = 1 h−3 Gpc3. The LCF at these scales is suscep-
tible to statistical noise, hence, we use 50 L-PICOLA to better
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Figure 6. The sensitivity of the �CDM constraints on the bias uncertainty,
σ b. The constraints placed by the LCF are independent of linear bias and,
hence, have been used for normalization. The solid vertical line shows the
13 per cent uncertainty used in this paper. As this parameter increases the
constraints asymptote to that of the LCF. The constraining power of the
2PCF pertaining to the σ 8 parameter has the sharpest decrease since this
parameter is highly correlated with linear bias. The analysis assumes a
fiducial survey volume of Veff = 1 h−3 Gpc3 and a space density of n̄ =
2 × 10−3 h3 Gpc−3.

Figure 7. The bounds placed on the b-σ 8 using the combined information
from the 2PCF and the LCF. The ellipses show the 68 per cent (solid) and
95 per cent (dotted) Gaussian contours inferred by only using length scales
≥ 50 h−1 Mpc. For smaller scales the non-linear correction to bias becomes
significant and hence the constraints become unreliable. If we were to carry
out a full likelihood analysis we expect the constraints to be parallel to
the b-σ 8 curve (solid red line). We assume a fiducial survey volume of
Veff = 1 h−3 Gpc3 to scale the covariance matrix and subsample particles
to a final number density of n̄ = 2 × 10−3 h3 Gpc−3.

estimate the large-scale derivatives of the 2PCF and the LCF for
each standard parameter. The resulting combined constraints on σ 8

and b are shown in Fig. 7. In the Laplace approximation (Gaussian
likelihood), these constraints correspond to elliptical uncertainties.

However, from the collapse theory of haloes, σ 8b is constant if the
other cosmological parameters are fixed. This means that the degen-
eracy between σ 8 and b corresponds to a hyperbola shown as solid
curve in Fig. 7. As expected, the major axis of the ellipses roughly
align with the direction of this hyperbola. Quantitatively, this anal-
ysis finds a linear bias uncertainty of σ b ≈ 13 per cent, which we
use throughout this study. We also compare the constraints found
by the two methods for each of the �CDM parameters and find
similar results with ∼10 per cent difference.

4 C O N C L U S I O N S

In this paper, we have combined two-point statistics and the line
correlation function, three-point Fourier phase estimator, to infer
cosmological parameters in standard and non-standard cosmologi-
cal models. The Fisher information matrix was used to quantify the
information in these estimators and derive parameter posteriors.

In the absence of linear bias uncertainties, the extra informa-
tion provided by the LCF in addition to that already present in the
2PCF is marginal (about 5 per cent on average). However, for a fidu-
cial linear bias uncertainty of 13 per cent and a survey volume of
Veff = 1 h−3 Gpc3, we found that the addition of the LCF improves
the 2PCF-based parameter constraints by a significant factor of
about ∼1.2 (i.e. parameter uncertainties become 1.2-times smaller)
in standard �CDM cosmology and by a factor up to ∼1.2−10 in
MG models and ∼3.3 in WDM cosmology. The relative informa-
tion in the LCF increases with increasing bias uncertainty. However,
to fully gauge the usefulness of the LCF we need to take into ac-
count non-linear bias terms in the computation. The constraints
determined by the LCF in this study are likely an overestimate
however our treatment simplifies the methodology and can be re-
garded as a first step towards more realistic constraints. To opti-
mally benefit from the information in the LCF scales down to about
r = 10 h−1 Mpc should be resolved. The combination of the 2PCF
and the LCF can also be used to infer the linear bias, which is hard
to measure otherwise and consequently to break the degeneracy
between bias and σ 8.

Overall, these results advocate the use of Fourier phase statistics
in addition to standard two-point statistics (2PCF of power spec-
trum) when inferring cosmological parameters from modern galaxy
redshift surveys. The Fourier phase space is an excellent probe of
the local interactions between the dark matter particles and even at
larger scales before the full onset of non-linear gravitational growth
the LCF provides more information about the properties of the un-
derlying dark matter density field than the 2PCF. The gain from
including the LCF is especially important in modified theories of
gravity like in the f(R) and Symmetron models. This reflects the fact
that modified gravity models possess a very rich phenomenology
in the non-linear regime, or more precisely at the transition from
the linear to the non-linear regime, where the screening mecha-
nism takes place. As a consequence the LCF, which probes directly
the emergence of non-linear correlations is very sensitive to these
modifications of gravity and provides stronger constraints than the
2PCF.

The analysis of phase statistics comes with its own caveats. Apart
from being computationally quite expensive, phase statistics such
as the LCF are still difficult to measure in real surveys with irreg-
ularly shaped non-periodic volumes and complex selection func-
tions. Clever methods for extracting such phase statistics, similarly
to those used for the 2PCF (Landy & Szalay 1993), remain yet to be
developed. Furthermore, redshift space distortions have their own

MNRAS 479, 2743–2753 (2018)Downloaded from https://academic.oup.com/mnras/article-abstract/479/2/2743/5046488
by University of Durham user
on 30 August 2018



Phase statistics of non-standard cosmology 2753

perturbing effects (Eggemeier et al. 2015), which, when harvested
carefully, might be used for additional cosmological constraints.
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