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Abstract
Wind energy, together with other renewable energy sources, are expected to grow substan-
tially in the coming decades and play a key role in mitigating climate change and achieving
energy sustainability. One of the main challenges in optimizing the design, operation, con-
trol, and grid integration of wind farms is the prediction of their performance, owing to the
complex multiscale two-way interactions between wind farms and the turbulent atmospheric
boundary layer (ABL). From a fluid mechanical perspective, these interactions are compli-
cated by the high Reynolds number of the ABL flow, its inherent unsteadiness due to the
diurnal cycle and synoptic-forcing variability, the ubiquitous nature of thermal effects, and
the heterogeneity of the terrain. Particularly important is the effect of ABL turbulence on
wind-turbine wake flows and their superposition, as they are responsible for considerable
turbine power losses and fatigue loads in wind farms. These flow interactions affect, in turn,
the structure of the ABL and the turbulent fluxes of momentum and scalars. This review
summarizes recent experimental, computational, and theoretical research efforts that have
contributed to improving our understanding and ability to predict the interactions of ABL
flow with wind turbines and wind farms.

Keywords Atmospheric boundary layer · Turbulence · Wind energy · Wind-farm flow ·
Wind-turbine wake

1 Introduction

Renewable energy is expected to play a major role in meeting future world energy needs
while mitigating climate change and environmental pollution. While world energy demand
continues to increase at an average annual rate of about 2%, most of that demand (around
80%) is being met by fossil fuels (IEA 2018), with the well-known negative impacts on the
environment and climate. This, togetherwith the growing safety concerns surroundingnuclear
energy, has led many countries to set ambitious strategic targets for renewable energies with
low greenhouse gas and pollutant emissions, including wind energy (a summary of those
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renewable energy targets can be found in REN21 (2018)). If those targets are to be met, the
total amount of installed wind-energy capacity should increase substantially in the coming
decades (a review of projections of future global growth of renewable energies is provided by
REN21 (2017)). Achieving that growth will necessarily require the design and installation
of new large wind farms and the upgrade of existing ones in regions of high wind-energy
potential.

Since the seminal works of Betz (1920) and Joukowsky (1920), substantial research efforts
have been made in the field of wind-turbine aerodynamics, and particularly in the opti-
mization of horizontal-axis wind turbine (HAWT) rotors. Glauert (1935) achieved a major
breakthrough when he formulated the blade-element momentum (BEM) theory. This theory,
which was later extended with many ‘engineering rules’, constitutes the basis for all rotor
design optimization codes used in the industry today (see reviews by Sørensen 2011a, 2016,
and references therein). These advances in wind-turbine aerodynamics have led to mod-
ern HAWTs achieving power coefficients (based on aerodynamic efficiency) of around 0.5,
which is fairly close, given the unavoidable aerodynamic losses, to the maximum theoretical
Betz–Joukowsky limit of 0.593 (Betz 1920; Joukowsky 1920). Moreover, reasonably accu-
rate predictions of the performance of those turbines can be achieved using those theories if
the incoming flow is known a priori. In contrast, the prediction ofwind-turbine andwind-farm
performance under real conditions remains an elusive target and one of themain challenges in
optimizing the layout, operation, and control of wind farms. This is due to the complex inter-
actions between wind turbines and the atmospheric boundary layer (ABL), which is highly
turbulent, non-stationary (owing to the effects of the diurnal cycle and synoptic-forcing vari-
ability), modulated by ubiquitous thermal effects, and often heterogeneous (due to the effects
of topography and land-surface heterogeneity). Moreover, inside wind farms, the turbulent
wake flows that form downwind of the turbines are responsible for substantial power losses,
due to the reduced wind speed in the wakes, as well as increased fatigue loads and associated
maintenance costs, due to the augmented turbulence levels (e.g., see reviews by Vermeer
et al. 2003; Sanderse et al. 2011; Stevens and Meneveau 2017, and references therein). Con-
sequently, any improvements in the understanding and prediction of the interaction of the
ABL flow with wind turbines and wind farms can potentially help increase the economic
feasibility of wind-energy projects.

There is a wide range of atmospheric flow scales that affect wind farms, as illustrated in
Fig. 1. Macroscale and mesoscale weather phenomena are responsible for the variability of
flow in the free atmosphere at horizontal length scales larger than about 2000km, and in the
range of 2–2000km, respectively (Orlanski 1975). This variability in large-scale atmospheric
motions, combined with the modulating effects of the Coriolis force, the aerodynamic forces
on land or sea surfaces, plant canopies, buildings, topography, and wind turbines, as well as
atmospheric stability, regulate the structure and evolution of the ABL inside and around wind
farms. The continuous range of turbulence scales in theABL, spanning from the integral scale
(on the order of 1km and 100s) down to the Kolmogorov scale (on the order of 1mm and
1ms), plays a key role in the adjustment of theABLaroundwind turbines and farms (including
turbine wakes) and, ultimately, on their performance. The multi-scale nature of atmospheric
turbulence over such a wide range of scales makes the modelling and measurement of the
ABL flow and its two-way interaction with wind farms particularly challenging.

A variety of analytical, computational, and experimental approaches have been used in
recent years to study the interaction of turbulent ABL flow with wind turbines and wind
farms. Some of the most relevant are briefly introduced below:
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Fig. 1 Schematic illustrating the wide range of flow scales relevant to wind energy: from the turbine blade
scale to the meteorological mesoscale and macroscale

• Analytical modelling: Several simple analytical models have been proposed for the pre-
diction of the average velocity deficit in wind-turbine wakes (e.g., Jensen 1983; Frandsen
et al. 2006; Bastankhah and Porté-Agel 2014b). Even though they are necessarily less
accurate than more sophisticated turbulence-resolving numerical simulation tools, their
simplicity and low computational cost (∼10−3 CPU hours per simulation) makes them
the preferred choice for the purposes of optimizing the layout and control of wind farms
over flat terrain (e.g., offshore). This is because optimization techniques, such as genetic
algorithms, particle swarm optimizationm, or sequential quadratic programming, need
the simulation of thousands of cases encompassing the combination ofmultiplewind con-
ditions (directions and magnitudes), as well as wind-farm configurations and/or control
strategies. Analytical models have also been developed to predict the vertical distribu-
tion of the mean area-averaged wind speed in infinite wind farms (e.g., Frandsen 1992;
Calaf et al. 2010; Yang et al. 2012; Abkar and Porté-Agel 2013) and also to parametrize
the effect of wind farms in weather models (e.g., Baidya Roy et al. 2004; Blahak et al.
2010; Fitch et al. 2012; Abkar and Porté-Agel 2015b). Compared to other simple models
that have a more empirical basis, analytical models have the added value of providing
fundamental insight into the physics, as their derivation relies on the application of the
basic equations governing the conservation of flow properties (e.g., mass, momentum,
and energy).

• Computational fluid dynamics (CFD): The Reynolds-averaged Navier–Stokes (RANS)
technique has been extensively used to study wind-turbine and wind-farm flows (e.g., see
reviews by Vermeer et al. 2003; Sanderse et al. 2011). With the fast growth of compu-
tational power, important progress has been made in the last decade in the development,
validation, and application of turbulence-resolving CFD tools, and particularly large-
eddy simulation (LES) for wind-energy applications (e.g., see the review by Mehta et al.
2014). Unlike RANS and other reduced-order models (e.g., linearized Navier–Stokes
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solvers), where all the scales of the turbulence are parametrized, LES only requires the
parametrization of the smallest (subgrid) scales, while the larger and more energetic
scales are explicitly resolved. Nonetheless, LES of complex turbulent flows is known
to be sensitive to the parametrization of subgrid-scale turbulent fluxes and subgrid-scale
forces, including turbine-induced forces. In spite of this and the relatively high compu-
tational cost of LES (∼103 − 104 CPU hours per simulation), recent validation studies
have demonstrated that, with the appropriate parametrizations, LES can yield accurate
simulations of turbulent boundary-layer flow around wind turbines and wind farms (e.g.,
Wu and Porté-Agel 2011, 2013; Yang et al. 2014c; Xie and Archer 2015; Draper et al.
2016; Stevens et al. 2018).

• Wind-tunnel experiments: Numerous wind-tunnel experiments have been carried out in
the last decades to study airflow around wind turbines in freestream (uniform and nearly
laminar) inflow. An extensive review of this literature is given by Vermeer et al. (2003).
During the last few years, wind-tunnel experiments have also been performed to study
the interaction between turbulent boundary-layer flows and wind turbines or farms (e.g.,
Chamorro and Porté-Agel 2009, 2011; Cal et al. 2010; Lebron et al. 2012; Aubrun et al.
2013; Tian et al. 2013; Hancock and Pascheke 2014; Hamilton et al. 2015; Li et al.
2016; Bastankhah and Porté-Agel 2017c; Hyvärinen et al. 2018). These experiments
have provided valuable information on the flow structure of turbine wakes in boundary-
layer flows, which exhibit important differences with respect to those in freestream flows.
They have also provided unique datasets for the validation of analytical models and CFD
models, such as RANS and LES models.

• Field experiments: Recent work has attempted to overcome the difficulties inherent in
measuring turbulent flow around wind turbines in the field. For example, some early
field experiments were carried out using anemometers mounted on meteorological tow-
ers to characterize wind-turbine wake flows (e.g., Cleijne 1992, 1993; Duckworth and
Barthelmie 2008). More recently, the application of remote sensing technologies, such
as scanning wind lidars (e.g., Käsler et al. 2010; Iungo et al. 2013b; Aitken et al. 2014a;
Aitken and Lundquist 2014; Banta et al. 2015; Vollmer et al. 2015; Machefaux et al.
2015; Bodini et al. 2017; Fuertes et al. 2018) and radars (e.g., Hirth and Schroeder 2013;
Hirth et al. 2015), is providing new insights into the effect of atmospheric turbulence on
the structure and dynamics of the flow around wind turbines and wind farms, as well as
valuable datasets for testing numerical models.

The present article reviews recent theoretical, experimental, and computational research
on wind-turbine and wind-farm flows, with emphasis on turbine wakes and their interaction
with the ABL. It is organized as follows: Sect. 2 focuses on the flow around stand-alone
wind turbines, while the flow within and around wind farms over flat terrain is discussed
in Sect. 3. Two topics that are relatively under-explored, but are receiving increasing levels
of attention, relate to topographical effects and vertical-axis wind turbines (VAWTs), which
are discussed in Sects. 4 and 5, respectively. Finally, a summary and future perspectives are
given in Sects. 6 and 7. Particular emphasis is placed on identifying knowledge gaps and
open scientific questions that present opportunities for future research.

2 Flow Around aWind Turbine

The presence of a wind turbine affects the airflow both upwind and downwind of the turbine
(Wilson et al. 1976; Spera 1994; Burton et al. 1995). The upwind region affected by the
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Fig. 2 Schematic figure showing the flow regions resulting from the interaction of a wind turbine and incoming
turbulent boundary layer. Depicted are the most characteristic instantaneous (top) and time-averaged (bottom)
flow features

turbine is called the induction region. Prior studies (e.g., Medici et al. 2011; Simley et al.
2016) have shown that the main impact of the turbine on that region is a reduction in wind
speed, which can be estimated acceptably with the following simple relationship based on
the vortex sheet theory (Medici et al. 2011),

ū

ū∞
= 1 − a

⎛
⎝1 + 2x

d

(
1 +

(
2x

d

)2)−0.5
⎞
⎠ , (1)

where u is the streamwise velocity component along the rotor axis (the overbar denotes time
averaging), x is the streamwise position (being zero at the turbine and negative upwind), u∞
is the streamwise velocity component far upwind, d is the rotor diameter, and a is the rotor
induction factor.

The region downwind of the turbine is called the wake. The wind-turbine wake itself is
generally divided into two regions (Vermeer et al. 2003): (i) the region immediately downwind
of the turbine with a length of 2–4 rotor diameters, called the near-wake, and (ii) the region
further downstream, called the far-wake. Figure 2 shows a schematic of the different regions
affected by the presence of the wind turbine.

The near-wake is directly influenced by the presence of the wind turbine, so characteristics
of the turbine, such as the blade profile, hub and nacelle geometry, can affect the flow
field in this region (Crespo et al. 1999b). As a result, the near-wake is characterized by
highly complex, three-dimensional (3D), and heterogeneous flow distribution. In contrast,
the far-wake region is less influenced by detailed features of the wind turbine. Instead,
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Fig. 3 a Flow visualizations of the 3D helical vortex structures behind a turbine rotor for different values of
tip-speed ratio λ (figure reprinted from Okulov et al. (2014) with permission of Cambridge University Press),
b phase-averaged contours of the out-of-plane vorticity for the wake of a turbine, obtained with particle-image
velocimetry measurements. Both tip and root vortices can be seen in the figure, and the pairing of tip vortices
is evident as they move downstream (figure reprinted from Sherry et al. (2013a) with permission of AIP
Publishing)

global wind-turbine parameters, such as the thrust and power coefficient, and incoming
flow conditions, are likely enough to predict the mean flow distribution in this region. In the
following, we provide an overview of the aerodynamic research on wakes (both near- and
far-wake regions) of single turbines in horizontally-homogeneous boundary layers.

2.1 Near-Wake

2.1.1 Tip and Root Vortices

The most striking features of turbine near-wakes are perhaps the periodic helicoidal vortex
structures shedding from the tip and the root of the rotor blades (Fig. 2). The presence of
tip and root vortices in the near-wake of wind turbines has been widely demonstrated in the
literature (see Fig. 3, for instance). These vortex structures are caused by the difference in
pressure between the pressure and suction sides of the rotor blade (Andersen et al. 2013).
Consequently, their shedding frequency is three times of the rotor rotational frequency for
a three-bladed HAWT. While the helix pitch (i.e., the streamwise distance between two
consecutive vortices) of tip vortices is evidently greater than the pitch of the root vortices,
both decrease with the increase of tip-speed ratio (i.e., the ratio between the velocity of the
blade tip to that of the unperturbed incoming flow at hub height) (Whale et al. 2000; Hu
et al. 2012; Sherry et al. 2013b). The evolution and stability of tip and root vortices have
received extensive attention in the literature both numerically (e.g., Ivanell et al. 2010; Lu
and Porté-Agel 2011; Sarmast et al. 2014, 2016; Mirocha et al. 2015; Nilsson et al. 2015;
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Premaratne andHu 2017; Tabib et al. 2017) and experimentally (e.g.,Whale et al. 2000;Grant
and Parkin 2000; Zhang et al. 2012, 2013b; Chamorro et al. 2013b; Jin et al. 2014; Lignarolo
et al. 2016; Yang et al. 2016; Wei et al. 2017). The main focus has been given to the study of
tip vortices as they aremore persistent (Sherry et al. 2013b).Moreover, tip vortices can reduce
flow entrainment in the near wake by separating this region from the outer flow (Lignarolo
et al. 2014). Therefore, it is of great interest to understand the underlying mechanisms that
lead to the evolution and breakdown of tip vortices. To this end, several wind-tunnel studies
have been performed based on high-resolution particle-image velocimetry measurements
(both phase-locked and free-run) to visualize the tip vortices at different locations and time
instants. These studies reported that tip vortices have some random fluctuations around their
statistically-averaged positions. These randommotions are referred to as vortex wandering or
vortex jittering (Heyes et al. 2004), and their amplitude increases with the vortex age (Dobrev
et al. 2008; Hu et al. 2012; Sherry et al. 2013a) and the incoming turbulence intensity (Beresh
et al. 2010).

Different mechanisms have been proposed to be responsible for the breakdown of heli-
cal vortex filaments (Widnall 1972; Sørensen 2011b). The mutual inductance instability is,
however, considered as the dominant mode of instability for helical vortex filaments when
the helix pitch decreases beyond a certain limit (Widnall 1972; Felli et al. 2011). The mutual
inductance instability results in the pairing of tip vortices and ultimately their breakdown
(Odemark and Fransson 2013; Sarmast et al. 2014; Eriksen andKrogstad 2017). The decrease
of helix pitch intensifies the mutual inductance instability, so the breakdown of tip vortices
occurs faster at higher tip-speed ratios (Sørensen et al. 2015). It is also important to note that,
under turbulent boundary-layer inflow conditions, the lifetime of tip vortices is significantly
reduced due to the relatively high turbulence intensity and wind shear (Lu and Porté-Agel
2011; Zhang et al. 2012, 2013b; Hong et al. 2014; Khan et al. 2017).

2.1.2 Hub Vortex

The presence of the so-called hub vortex, a vortical structure located at the central part of the
near-wake and elongated in the streamwise direction, has recently received some attention.
Several wind-tunnel and numerical studies (e.g., Felli et al. 2011; Iungo et al. 2013a; Viola
et al. 2014; Ashton et al. 2016) have shown that the hub vortex is characterized by a single-
helix counter-winding instability, which interacts with the tip-vortex layer (e.g., Okulov
and Sørensen 2007; Kang et al. 2014; Howard et al. 2015). This helical vortex structure
induces periodic motions in the central part of the near-wake. Similar periodic motions in
the central part of the near-wake have been also associated to vortex shedding (e.g., Medici
and Alfredsson 2006), commonly seen behind bluff bodies (e.g., cylinders). It is a common
practice to describe the frequency of periodic oscillations by the dimensionless Strouhal
number St , which is given by St = f d/ūh , where f is the oscillation frequency, d is the
rotor diameter, and ūh is the mean incoming wind speed at hub height. A relatively large
discrepancy exists between the values of St reported by different numerical and wind-tunnel
studies, ranging between 0.12 and 0.85 (e.g., Medici and Alfredsson 2006, 2008; Chamorro
and Porté-Agel 2010; España et al. 2012; Iungo et al. 2013a; Chamorro et al. 2013a; Okulov
et al. 2014; Foti et al. 2016; Barlas et al. 2016; Coudou et al. 2017). This emphasizes the
need for further study to elucidate the underlying mechanisms leading to the development of
the hub vortex. It should also be mentioned that all the above studies were performed with
laboratory-scale wind turbines; therefore, it is of interest to investigate if the same periodic
motions can be observed in thewake of utility-scale turbines, for which the ratio of the nacelle
to the rotor is smaller than that of laboratory-scale turbines. Finally, it is also important to
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point out that these periodicmotions observed in the central part of the near-wake are different
from the random oscillations of the turbine far-wakes, often referred to as wake meandering.
Meandering of turbine far-wakes is mainly caused by very large turbulent structures in the
incoming boundary layer, and is discussed in detail in Sect. 2.2.2.

2.1.3 Mean Flow Distribution

Based on the conservation of angular momentum, the near-wake rotates in the opposite
direction from that of the turbine blades (Manwell et al. 2010), and the amount of the rotation
decreases with increasing downstream distance (Zhang et al. 2012). A speed-up region is also
observed in the central part of the near-wake, particularly at higher tip-speed ratios (Krogstad
and Adaramola 2012; Bastankhah and Porté-Agel 2017c). In spite of this complex nature,
for the sake of simplicity, the near-wake has been modelled in some studies (e.g., Vermeulen
1980; Bastankhah and Porté-Agel 2016) with a uniform velocity-deficit distribution in the
central part, and a varying velocity deficit in the side shear layers, as shown in Fig. 2 (dashed
lines). Based on this simplified description, the side shear layers expand downstream until
the central region with the uniform velocity deficit ultimately vanishes. Further downstream,
the far-wake region, characterized by a self-similar Gaussian velocity-deficit distribution,
is found. The length of the near-wake is influenced by a range of parameters such as the
turbulence intensity of the incoming flow (Wu and Porté-Agel 2012), the mechanical shear
generated by the turbine (Vermeulen 1980), and the turbine tip-speed ratio (Sørensen et al.
2015).

Different models have been proposed in the literature (e.g., Vermeulen 1980; Sørensen
et al. 2015) to predict the length of the turbine near-wake. Based on the model proposed by
Sørensen et al. (2015), the normalized near-wake length xn/d is given by

xn
d

= −1

2

[(
16ū3c
NbλCT

)
ln(0.3I ) + 5.5 ln(I )

]
, (2)

where ūc is the mean convective velocity of the tip vortices normalized by the incoming flow
speed (typically within the range of 0.73–0.78), Nb is the number of blades, λ is the tip-speed
ratio, CT is the thrust coefficient, and I is the incoming streamwise turbulence intensity.

2.2 Far-Wake

2.2.1 Mean Flow Distribution

a. Velocity Distribution

In contrast to the near-wake region, the far-wake region has more universal characteristics as
it is less influenced by the detailed features of the rotor (Crespo et al. 1999b; Vermeer et al.
2003). Given the fact that turbine spacing in wind farms usually falls within the range of 3
to 10 rotor diameters, wind turbines commonly operate in the far-wake of upwind turbines.
As a result, understanding turbine far-wakes is essential for improving the prediction and
optimization of wind-turbine power output in wind farms. In recent years, a great deal of
attention has been paid to studying mean flow distribution in turbine far-wakes by means of
fieldmeasurements (e.g., Barthelmie et al. 2004, 2006; Käsler et al. 2010; Trujillo et al. 2011;
Hirth et al. 2012; Iungo et al. 2013b; McKay et al. 2013; Smalikho et al. 2013; Aitken et al.
2014b; Banta et al. 2015; Marathe et al. 2016; Fuertes et al. 2018), laboratory experiments
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(e.g., Medici and Alfredsson 2006; Chamorro and Porté-Agel 2009; Maeda et al. 2011;
Chamorro et al. 2012; Aubrun et al. 2013; Singh et al. 2014; Chu and Chiang 2014; Muller
et al. 2015; Li et al. 2016; Bastankhah and Porté-Agel 2017a, b, c), and numerical simulations
(e.g., Jiménez et al. 2010;Wu and Porté-Agel 2011, 2012; Churchfield et al. 2012b; Lee et al.
2013; Mo et al. 2013; Castellani and Vignaroli 2013; Chatelain et al. 2013; Bastine et al.
2015; Abkar and Porté-Agel 2015a; Foti et al. 2016; Englberger and Dörnbrack 2017).

Due to the entrainment of the outer flow, the wake is found to grow in both lateral and ver-
tical directions as it moves downstream, and the value of the streamwise velocity component
increases until the wake completely recovers far downstream (Barthelmie et al. 2003; Iungo
et al. 2013b; Aitken and Lundquist 2014). Early studies (e.g., Medici and Alfredsson 2006)
of wind-turbine wakes in uniform inflows showed that the streamwise velocity profiles have
an axisymmetric Gaussian distribution in this region. In the case of boundary-layer flows,
although later studies (e.g., Chamorro and Porté-Agel 2009) showed that wake velocity pro-
files lose theGaussian shape due to the incoming shear and the presence of the ground (see the
schematic in Fig. 2), profiles of the velocity deficitΔū (i.e., difference between the incoming
flow speed and that of the wake) still retain the Gaussian distribution, except at the edge
of the wake. The slight disagreement between the velocity-deficit profiles and the Gaussian
distribution seen at the wake edges has also been reported for other types of wake flows
(Pope 2000; Johansson et al. 2003; Okulov et al. 2015). One of the inherent characteristics of
Gaussian profiles is self similarity, implying that the profile of velocity deficit (normalized
by its maximum value) as a function of the distance from the wake centre (normalized by
the wake width σ ) is constant with streamwise position (Tennekes and Lumley 1972; Pope
2000). Far-wake self-similarity facilitates the development of simple analytical models for
the prediction of the mean flow distribution in this region, see Sect. 2.2.3.

Classical theoretical studies on three-dimensional wakes of bluff bodies (e.g., disks) have
shown that the wake velocity deficit Δū decays with x−2/3 along the rotor axis while the
increase of the wake width σ with the streamwise distance is proportional to x1/3. These the-
oretical analyses are based on the assumption that shear-generated turbulence due to the wake
is mainly responsible for the wake recovery, and the effect of the incoming flow turbulence is
negligible. This theoretical result is confirmed by experimental studies of turbine far-wakes
under laminar inflow conditions (e.g., Okulov et al. 2015). In more realistic situations when
the ambient turbulence is present, however, wake recovery deviates considerably from the
aforementioned theory (Wu and Faeth 1994; Bagchi and Balachandar 2004; Johnson et al.
2014). Several LES, wind-tunnel, and field studies of turbine wakes have shown that the wake
width increases approximately linearly with x , and its recovery rate, denoted by k, is larger
for boundary layers with higher turbulence intensity (e.g. Bastankhah and Porté-Agel 2014b;
Fuertes et al. 2018). This is the main reason why turbine wakes in a rough boundary layer
recover more rapidly than those in a smooth boundary layer (Chamorro and Porté-Agel 2009;
Wu and Porté-Agel 2012; Barlas et al. 2016). This is illustrated in Fig. 4, showing contours
of the time-averaged streamwise velocity component for the wake of a wind turbine installed
over flat terrain with different roughness lengths. This effect explains why, in general, the
capacity density of offshore wind farms is smaller than that of their onshore counterparts.

b. Turbulence Distribution

In addition to the far-wake mean velocity distribution, turbulence characteristics of far-wakes
have been extensively studied in the literature. Specifically, the following turbulence quanti-
ties are mostly considered:

• Streamwise turbulence intensity (i.e., I = σu/ūh): wind turbine far-wakes are known to
have a high turbulence intensity with respect to the incoming flow, in particular the upper
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Fig. 4 Contours of the time-averaged streamwise velocity component (in m s−1) in the vertical plane normal
to the rotor plane, at zero span, for different roughness lengths. Figure taken fromWu and Porté-Agel (2012),
in accordance with the Creative Commons Attribution (CC BY) license)

part of the wake. The increased turbulence intensity in far-wakes has received consid-
erable attention in the literature as it can induce harmful unsteady loads on downwind
turbines. The turbulence intensity added by the turbine ΔI is given by (Frandsen 2007),

ΔI =
√
I 2w − I 2, (3)

where Iw is the streamwise turbulence intensity in the wake. Under uniform inflow
conditions, Iw has a double Gaussian profile with the maximum values occurring at the
edge of the wakes (Maeda et al. 2011; Li et al. 2016). In boundary-layer flows, while
the maximum value of the turbulence intensity usually occurs close to the upper edge
of the wake as shown in Fig. 5a, the turbulence is suppressed by the turbine in regions
close to the ground. The value of ΔI reaches its maximum in the range of two to four
rotor diameters downstream at the top-tip level, coinciding with the transition between
the near-wake and the far-wake. The peak of I therefore occurs earlier for incoming
boundary layers with higher turbulence intensity since the near-wake is shorter in this
case (Wu and Porté-Agel 2012). Further downstream, the value of turbulence intensity
monotonically decreases with x in the far-wake. Different empirical and semi-empirical
models have been proposed in the literature to predict the variation ofΔI with x in turbine
far-wakes, see Quarton (1989), Hassan (1993), Crespo and Hernández (1996), Xie and
Archer (2015) and Qian and Ishihara (2018), among others, for more information on this
topic.

• Turbulent momentum flux (i.e., ρu′v′ in the lateral direction and ρu′w′ in the vertical one,
where primes indicate turbulent fluctuations): the spatial distribution of the turbulent
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Fig. 5 Distribution of, a streamwise turbulence intensity I = σu/ūh , and b normalized kinematic vertical
turbulent momentum flux u′w′/ū2h , in a vertical plane at zero span. Figure reprinted from Barlas et al. (2016)
with the permission of Springer Nature

momentum flux in turbine wakes reflects the entrainment of air from the outer flow
towards the wake centre. Akin to the streamwise turbulence intensity, the magnitude of
the momentum flux is greater at the edges of the far-wake, especially close to the upper
edge of the wake where the wind shear is greater, as seen in Fig. 5b.

• Turbulence kinetic energy (TKE) (i.e., e = 1
2 (u

′2 + v′2 + w′2)): the analysis of the TKE
budget provides insights into the production and transportation of turbulence structures
in wind-turbine wakes. Prior studies (e.g., Wu and Porté-Agel 2012; Kang et al. 2014;
Xie and Archer 2015) showed that the TKE production has high values in the near-wake,
particularly in the upper edge of the wake, where mean shear and turbulent fluxes are
significant. The generated TKE at the edge of the turbine wake is then advected by the
mean wind downstream.

2.2.2 Wake Meandering

Wake meandering relates to the random unsteady oscillations of the entire wake with respect
to the time-averaged wake centreline. These random oscillations lead to strong turbulence
generation and consequently harmful unsteady loads on downwind turbines (Ainslie 1988;
Larsen et al. 2008; Churchfield et al. 2012b). There is almost unanimous agreement in the
wind energy community that wake meandering is caused by very large turbulent eddies in the
incoming boundary layer. Ainslie (1988) is perhaps the first study to incorporate the effect
of wake meandering into the wake-flow prediction. Later, Larsen et al. (2008) postulated
that, while the wake recovery is governed by small turbulent eddies, the whole wake is
advected passively by turbulent eddies larger than twice the rotor diameter. Therefore, if the
low frequency variation of the incoming flow is known, one can model random oscillations
of the turbine wake as a passive scalar. This study became the basis of the dynamic wake
meandering (DWM) model that was later validated and used to predict instantaneous wake-
centre position (Trujillo et al. 2011; Keck et al. 2014, 2015) and unsteady loads on downwind
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Fig. 6 Wake temporal oscillations at three rotor diameters downwind of a turbine. Velocity contours obtained
from lidar measurements in the field are shown in greyscale, and the red line indicates the temporal variation of
the wake centre predicted by the DWMmodel. Figure reprinted from Bingöl et al. (2010) with the permission
of John Wiley and Sons, Inc

turbines (Larsen et al. 2013) in field. Instead of the incoming flow speed, Bingöl et al. (2010)
estimated the wake transportation based on the wake model of Jensen (1983). Although
this assumption is not consistent with the passive scalar hypothesis, they reported a better
agreement between DMW predictions and field measurements. The DMW predictions in
comparison with field measurements are shown in Fig. 6.

The connection between the incoming flow characteristics and wake meandering has been
further studied in a series of recent wind-tunnel studies. España et al. (2011) experimentally
confirmed that wake meandering does not occur unless turbulent eddies much larger than
the turbine rotor diameter exist in the incoming flow. Muller et al. (2015) showed a spectral
coherency at large wavelengths between the incoming boundary-layer flow and the instan-
taneous wake-centre position. España et al. (2012) and Bastankhah and Porté-Agel (2017c)
investigated the amplitude of wake meandering under different conditions, and showed that
the amplitude of the wake meandering increases as the wake moves downstream. Moreover,
even though the wake-meandering amplitude is sensitive to the incoming flow conditions
(España et al. 2012), it does not depend on turbine operating conditions (e.g., tip-speed ratio,
yaw angle) (Bastankhah and Porté-Agel 2017c).

One of the commonly reported characteristics of wake meandering is that lateral dis-
placements are much more pronounced than vertical ones. España et al. (2012) argued that
this difference is due to the higher value of σv than σw in turbulent boundary-layer flows.
Bastankhah and Porté-Agel (2017b) hypothesized that this difference is due to the lateral
meandering tendency of very-large-scale motions (VLSMs) present in the incoming bound-
ary layer. VSLMs or superstructures are very long low- and high-momentum structures
observed both in the atmospheric surface layer and the logarithmic region of a laboratory-
scale boundary layer (Hutchins and Marusic 2007; Hutchins et al. 2012). The length scale
of VLSMs can exceed 20δ, where δ is the boundary-layer thickness (Fang and Porté-Agel
2015), and they are very energetic structures since they account for a considerable share of
the TKE and shear stress (Kim and Adrian 1999; Guala et al. 2006; Lee and Sung 2011).
The interaction of VLSMswith wind-turbine wakes might explain another feature of turbine-
wake meandering: namely, the fact that the mean wake cross-section is not stretched laterally
in spite of large meandering motions in the lateral direction.

2.2.3 Analytical Wake Modelling

As discussed in Sect. 1, some applications such as wind-farm-layout optimization require
the prediction of wake flows for many (on the order of thousands or more, depending on
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the optimization technique) scenarios including, but not limited to, multiple layouts and
variations in wind direction, wind speed, and thermal stratification. Such optimization can
only be achieved using simple and computationally inexpensive wake models. These models
can be divided into two main categories: (i) empirical models, and (ii) analytical models.

Empirical models have been used (e.g., Baker and Walker 1984; Högström et al. 1988;
Magnusson and Smedman 1999; Barthelmie et al. 2003; Zhang et al. 2013b; Iungo and
Porté-Agel 2014; Aitken et al. 2014b) to mainly estimate the variation of the wake-centre
velocity deficit with the streamwise distance from the turbine rotor. Based on these models,
the velocity deficit is generally assumed to have a power-law relationship with x , which is
written as

Δū

ū∞
= A

( x
d

)n
, (4)

where A and n are coefficients obtained from experimental and numerical data.
Unlike empirical models, whose model equation is obtained solely by fitting experimental

or numerical data, analytical wake models are derived based on flow governing equations
and, therefore, have a superior ability to capture the physics. The wind-energy literature is
enriched with many studies aimed at developing analytical models for wind-turbine wakes,
see Vermeulen (1980), Jensen (1983), Katić et al. (1986), Ainslie (1988), Larsen (1988),
Frandsen et al. (2006), Ott (2011), Bastankhah and Porté-Agel (2014b), and Tian et al.
(2015). For the sake of brevity, here, we review those that attracted the most attention: Jensen
(1983), Frandsen et al. (2006) and Bastankhah and Porté-Agel (2014b). More information on
analytical wake models can be found in, e.g., Crespo et al. (1999b), Barthelmie et al. (2003),
and Göçmen et al. (2016).

Jensen (1983) developed a pioneering turbine-wake model, which has been extensively
used in the literature and commercial software (e.g., WAsP, WindPRO, WindSim, Wind-
Farmer, and OpenWind). The Jensen model is obtained by applying the conservation of mass
to a control volume downwind of the wind turbine, and then using the so-called Betz theory
to relate the wind speed just behind the rotor to the turbine thrust coefficient CT (Katić et al.
1986). It also assumes a top-hat distribution for the velocity deficit in the wake for the sake
of simplicity. The normalized velocity deficit based on this model is given by

Δū

ū∞
= 1 − √

1 − CT

(1 + 2kt x/d)2
, (5)

where CT is the thrust coefficient of the turbine, ū∞ is the mean incoming flow speed, and
Δū = ū∞ − ū. The wake width is assumed to grow linearly with downwind distance and,
therefore, the wake growth rate, kt , is constant. Jensen (1983) suggested that kt = 0.1,
whereas values of 0.04 or 0.05 for kt in offshore cases and 0.075 for onshore cases are
suggested in the later literature (Barthelmie et al. 2009; Göçmen et al. 2016). Alternatively,
kt can be estimated by the ratio of the friction velocity to the streamwise velocity component
at the hub height for the incoming boundary layer (Frandsen 1992). For a logarithmic wind
profile, this approximately gives

kt ≈ 0.5

ln(zh/z0)
, (6)

where zh and z0 are the turbine hub height and the roughness length, respectively. Peña
and Rathmann (2014) extended the above relationship to account for the effect of thermal
stratifications on the wake growth rate.
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Frandsen et al. (2006) used the conservation of mass and momentum for a control volume
around the turbine, with the same top-hat shape assumed for velocity-deficit profiles in the
wake. Based on this work, the normalized velocity deficit is given by

Δū

ū∞
= 1

2

(
1 −

√
1 − 2CT

β + αx/d

)
, (7)

where α is of order of 10kt and

β = 1 + √
1 − CT

2
√
1 − CT

. (8)

Note that β is meaningful only for values of CT smaller than one.
As a result of the assumption of a top-hat distribution for wake velocity-deficit profiles,

these models tend to underestimate the velocity deficit at the wake centre and overestimate it
at the edges of the wake. Moreover, Bastankhah and Porté-Agel (2014b) showed that top-hat
models make the power predictions of downwind turbines unrealistically sensitive to the lat-
eral position of turbines with respect to each other. Different numerical and experimental data
were used by Bastankhah and Porté-Agel (2014b) to show that self-similar Gaussian distri-
bution can acceptably represent velocity-deficit profiles in turbine far-wakes. The normalized
velocity deficit is therefore given by

Δū

ū∞
= C(x) exp

(
− r2

2σ 2

)
, (9)

where σ is the wake width. A linear wake growth rate is assumed for the wake, since this
is in agreement with wind-tunnel measurements (Chamorro and Porté-Agel 2010) and LES
data (Wu and Porté-Agel 2011). Hence, σ is given by

σ

d
= k

x

d
+ ε, (10)

where k is the wake growth rate, and ε is the initial wake width, equal to 0.2
√

β. The
conservation of mass and momentum in an integral form is expressed by

T = π d2

8
ρCT ū

2∞ = ρ

∫
ū (ū∞ − u) dA, (11)

where T is the turbine thrust force. Inserting Eq. 9 into Eq. 11 yields

Δū

u∞
=
(
1 −

√
1 − CT

8(σ/d)2

)
exp

(
−
{

y2

2σ 2 + (z − zh)2

2σ 2

})
, (12)

where σ is given by Eq. 10.
In order to use this model to predict the wake velocity distribution, the value of the wake

growth rate k has to be estimated for each case. Note that the original version of the model
expressed byEq. 12 assumes that thewake growth rate k is the same in both lateral and vertical
directions. Abkar and Porté-Agel (2015a) and Xie and Archer (2015) showed, however, that
the wake width in the vertical direction can be different from that in the lateral direction due
to the effect of the ground or thermal stratification. Hence, for the sake of generality, the
model can be written as

Δū

u∞
=
(
1 −

√
1 − CT

8
(
σyσz/d2

)
)
exp

(
−0.5

[(
y

σy

)2
+
(
z − zh

σz

)2])
, (13)
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Fig. 7 Lateral (top) and vertical (bottom) profiles of the normalized velocity deficit through the hub level at
different downwind locations. The data obtained fromwind-tunnel measurements (Bastankhah and Porté-Agel
2017b) are shown by black solid lines. The predictions of the analytical models developed by Jensen (1983),
Frandsen et al. (2006) and Bastankhah and Porté-Agel (2014b) are shown by red dashed lines, green dash-dot
lines and blue dashed lines, respectively

where σy and σz are given by

σy

d
= ky

x

d
+ ε, (14a)

σz

d
= kz

x

d
+ ε. (14b)

Here, ky and kz are wake growth rates in the y and z directions, respectively, and asmentioned
earlier, ε = 0.2

√
β.

Figure 7 shows the predictions of the analytical models reviewed above in comparison
with the wind-tunnel data recently reported by Bastankhah and Porté-Agel (2017b). The
model inputs are determined based on the incoming boundary-layer flow conditions as well
as turbine operating conditions reported in the mentioned study. The growth rate of the top-
hat wake kt is calculated according to Eq. 6, while the wake growth rate k for the last model
with a Gaussian velocity deficit profile is estimated to be 0.022 based on the wind-tunnel
data.

A key parameter of this empirical model is the wake growth rate k, which depends on the
turbulence intensity in the incoming flow. Niayifar and Porté-Agel (2016) used LES data to
propose the following empirical linear relation to estimate k as a function of the streamwise
turbulence intensity I (for 0.06 < I < 0.15),
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k ≈ α1 I + α2, (15)

withα1 = 0.38 andα2 = 0.004.A recent field study ofwind-turbinewakes using twonacelle-
mounted lidars (Fuertes et al. 2018) has reported a reasonable fit of the measurements using
Eq. 15 for the growth rate (with α1 = 0.35 and α2 = 0).

It should bementioned that, even though the streamwise turbulence intensity is extensively
used in analytical modelling of wind-turbine wakes (as discussed in Sects. 2, 3), some studies
(e.g., Larsen et al. 2008) have suggested that the spanwise and vertical velocity component
fluctuations play a dominant role on the structure and dynamics of wind-turbine wakes.
Considering this, Cheng and Porté-Agel (2018) proposed a physics-based analytical model
for the wake expansion based on Taylor’s diffusion theory (Taylor 1922).

2.2.4 Yawed Conditions

Power losses due to complex interactions of wind-turbine wakes in wind farms call for the
development of new effectivewakemitigation strategies. A promising approach for achieving
this goal is to intentionally hinder the performance of single wind turbines in order to improve
the whole wind-farm power production. Based on this approach, different techniques have
been described in the literature, such as the active control of the blade pitch, tilt angle or yaw
angle of wind turbines. In particular, yaw angle control is nowadays considered as an effective
strategy for deflecting the wakes away from downwind turbines (Dahlberg and Medici 2003;
Adaramola and Krogstad 2011; Ozbay et al. 2012; Schottler et al. 2017). Several numerical
and experimental studies have recently shown that overall power production inwind farms can
be considerably improved through yaw angle control (e.g., Campagnolo et al. 2016; Park and
Law 2016a,b; Fleming et al. 2018; Bastankhah and Porté-Agel 2019). Although more study
is required to address concerns about turbine structural loads under yawmisalignment, Kragh
andHansen (2014), Gebraad et al. (2014), Bastankhah and Porté-Agel (2014a), Fleming et al.
(2014), amongst others, have shown that, under certain circumstances, yawing turbines may
even lead to the reduction of loads.

The literature on the far-wake of yawed turbines is reviewed below, while regarding the
performance of yawed rotors and their near-wakes, the reader is referred to Burton et al.
(1995), Grant and Parkin (2000), Haans et al. (2005), Haans et al. (2006), Maeda et al.
(2008), Krogstad and Adaramola (2012), McWilliam et al. (2011), Micallef et al. (2013),
Campo et al. (2015), Branlard and Gaunaa (2016), Bastankhah and Porté-Agel (2017c), and
Felli and Falchi (2018), amongst others.

Far-wake flow distribution and the wake deflection under yawed conditions have been the
subject of several studies such as Medici and Alfredsson (2006), Fleming et al. (2014), and
Marathe et al. (2016). These studies have shown that wake deflection increases as the wake
moves downstream. This can be seen in Fig. 8, which shows contours of the normalized
streamwise velocity component on a horizontal plane at hub height for a turbine with a yaw
angle of 20◦, obtained with wind-tunnel experiments reported by Bastankhah and Porté-Agel
(2016). In general, the amount of the wake deflection has been found to increase with: (i)
the increase of yaw angle (Jiménez et al. 2010; Fleming et al. 2014), (ii) the increase of
thrust coefficient (Jiménez et al. 2010), (iii) the decrease in incoming turbulence intensity
(Bastankhah and Porté-Agel 2016), and (iv) the increase of thermal stability (Churchfield
et al. 2016; Vollmer et al. 2016). This suggests that the yaw-angle control of wind turbines is
more plausible for offshore wind farms, or for turbines operating in a stable boundary layer.
Another feature of yawed turbine wakes is that the maximum value of the wake skew angle
does not occur at the wake centre where the velocity deficit is maximum, but occurs in one
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Fig. 8 Contours of the normalized streamwise velocity component on a horizontal plane at hub height for a
yawed turbine with γ = 20◦ obtained with wind-tunnel measurements. The wake centre trajectories based on
wind-tunnel experiments as well as different analytical wake models are also shown

side of the wake where the second derivative of the lateral profiles of the streamwise velocity
component is zero (Bastankhah and Porté-Agel 2016).

While turbine wakes are slightly affected by small yaw angles (e.g., less than 10◦), they
undergo fundamental changes under highly yawed conditions (e.g., greater than 20◦). For
instance, the wake cross-section of a highly-yawed turbine has a kidney shape due to the
presence of a counter-rotating vortex pair (Howland et al. 2016; Bastankhah and Porté-Agel
2016; Churchfield et al. 2016; Wang et al. 2017). Bastankhah and Porté-Agel (2016) showed
that the formation of counter-rotating vortex pairs needed to satisfy continuity in any free
shear flow with a strong variation in the cross-wind velocity component such as turbine
wakes under highly yawed conditions and cross-flow jets. They also employed wind-tunnel
data and a theoretical analysis based on the potential theory to show that, in addition to lateral
displacements, turbine wakes have vertical displacements under highly yawed conditions.
The yaw-angle direction affects both themagnitude and direction of horizontal (Fleming et al.
2014; Gebraad et al. 2014; Schottler et al. 2017) and vertical (Bastankhah and Porté-Agel
2016) wake displacements.

The lateral wake deflection of turbines wakes under yawed conditions can be simply
explained by the conservation of momentum. This raises the possibility of deriving simple
analytical models to predict the magnitude of the far-wake deflection for yawed turbines. In
the pioneering work of Jiménez et al. (2010), a simple relationship for the wake skew angle
is suggested based on conservation of mass and momentum for the wake of a yawed turbine
with top-hat velocity profiles. Gebraad et al. (2014) combined the findings of the above-
mentioned work with the model developed by Jensen (1983) to estimate the wake of a yawed
turbine. Bastankhah and Porté-Agel (2016) later used the budget study of RANS equations
to develop an analytical model that predicts the wake-flow distribution in yawed conditions.
While wake self-similar characteristics (Gaussian distributions for velocity deficit and skew
angle profiles) were used to model flow distribution in the far-wake region, vortex-theory
predictions based on Coleman et al. (1945) were used to estimate the near-wake skew angle.
Recently, Shapiro et al. (2018) developed a model that implements a different approach to

123



F. Porté-Agel et al.

 [ ]z m

/y d

/y d /y d

/y d

 [ ]z m

/x d /x d

/x d /x d

/x d /x d

Mean velocity contour Mean velocity contour

Instantaneous velocity contour

Instantaneous poten�al temp. contour

Instantaneous velocity contour

Instantaneous poten�al temp. contour

Fig. 9 Contour plots of the 10-min average wake velocity (top) and instantaneous velocity (middle) on a
horizontal plane at hub height, as well as the instantaneous potential temperature on a vertical plane at zero
span (bottom). Results are from large-eddy simulations of wake flow under very stable (left) and unstable
(right) atmospheric conditions. Figure reprinted from Machefaux et al. (2016) with the permission of John
Wiley and Sons, Inc

predict the near-wake skew angle. They treated a yawed turbine as a lifting line, with an
elliptic distribution of force, and used Prandtl’s lifting line theory to determine the near-wake
skew angle. Qian and Ishihara (2018) have more recently proposed a wake model for yawed
turbines by assuming a Gaussian distribution for velocity-deficit profiles and a top-hat shape
for those of the wake skew angle. Wake-centre trajectories predicted by the above-mentioned
models are compared in Fig. 8 with wind-tunnel experiments reported in Bastankhah and
Porté-Agel (2016).

2.3 Thermal Effects

Thermal stability of the ABL is known to play a significant role on wind-turbine performance
as well as the structure and dynamics of wind-turbine wake flows. The main effects on stand-
alone turbines are due to the changes in mean shear and turbulence intensity of the incoming
flow, associated with changes in thermal stability, as shown in numerous wind-tunnel exper-
iments (Chamorro and Porté-Agel 2010; Zhang et al. 2013b; Hancock and Pascheke 2014),
field observations (Baker and Walker 1984; Magnusson and Smedman 1999; Iungo and
Porté-Agel 2014; Aitken et al. 2014b; Machefaux et al. 2016), and numerical simulations
(Churchfield et al. 2012b; Keck et al. 2014; Aitken et al. 2014a; Mirocha et al. 2015; Abkar
and Porté-Agel 2015a; Machefaux et al. 2016).

Wind-turbine wakes recover considerably faster and display stronger meandering in the
convective boundary layer (CBL), compared with the neutral ABL and the stable boundary
layer (SBL), as shown in several studies (e.g., Baker and Walker 1984; Ainslie 1988; Mag-
nusson and Smedman 1994; Hancock and Pascheke 2014; Keck et al. 2014; Aitken et al.
2014a; Abkar and Porté-Agel 2015a; Machefaux et al. 2016). Figure 9 clearly illustrates the
effect of thermal stability on the recovery of a wind-turbine wake simulated using LES. This
trend is mainly attributed to the relatively higher turbulence intensity in the CBL (Zhang et al.
2013b; Iungo and Porté-Agel 2014; Abkar and Porté-Agel 2015a), which leads to enhanced
turbulent mixing, flow entrainment, wake meandering and wake recovery, compared to the
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neutral ABL and SBL (Baker and Walker 1984; Ainslie 1988; Zhang et al. 2013b; Iungo and
Porté-Agel 2014; Hancock and Pascheke 2014; Abkar and Porté-Agel 2015a; Machefaux
et al. 2016). It should be noted that, as discussed in Sect. 2.2.3 and in agreement with the
dynamic wake-meandering model of Larsen et al. (2008) and the analytical model of Cheng
and Porté-Agel (2018), the radial (spanwise and vertical) turbulence intensity is expected to
play amore important role than the streamwise turbulence intensity on bothwakemeandering
and wake recovery.

Some efforts towards mathematical modelling of the aforementioned thermal effects have
been made. Ainslie (1988) developed a wake model in which the length and velocity scales
used to define the “eddy diffusivity of momentum” are a function of the thermal stability.
Based on this work, Keck et al. (2014) modified the dynamic wake-meandering model to
take into account the effect of atmospheric stability on wake meandering and wake recovery.
They validated the results of their model (for wake meandering, as well as velocity and
turbulence intensity profiles) against LES and field data. Abkar and Porté-Agel (2015a)
modified the analytical wake model of Bastankhah and Porté-Agel (2014b) in such a way
that it considers different wake recovery rates (and wake widths) in the lateral and vertical
directions.Consequently, the velocity-deficit distribution (in the normal-to-streamwise plane)
is considered to have a 2D elliptical Gaussian shape instead of an axisymmetric one.

Atmospheric stability also has an influence on the fatigue loading of wind-turbine blades,
as discussed in Lavely et al. (2011), Churchfield et al. (2012b), Sathe et al. (2013), and Lee
et al. (2013). For example, increased atmospheric stability has been shown to increase the
fatigue loading associated with mean wind shear, while it decreases the fatigue associated
with turbulence (Sathe et al. 2013). It should be mentioned that the SBL is characterized by
both a large vertical shear, associated with the relatively shallow depth, as well as a large
lateral shear, owing to the change of wind direction with height produced by the Coriolis
force. Abkar et al. (2018) have recently modified the analytical wake model of Bastankhah
and Porté-Agel (2014b) to account for the wake deformation induced by Coriolis effects. In
some cases, the SBL can be so shallow that part of the rotor disk (or even the entire rotor,
as shown in some field data) lies above it; in such cases, although the flow above the SBL
is non-turbulent, the intermittent turbulence and bursting events commonly found at the top
of the SBL can pose hazardous structural threats to wind-turbine blades (Zhou and Chow
2012).

3 Flow Inside and AroundWind Farms

3.1 Flow Regions Inside and Around aWind Farm

As a result of its interaction with a wind farm, the ABL undergoes important changes, which
in turn modify the performance of the wind turbines with respect to that of hypothetical
stand-alone wind turbines placed in the same undisturbed boundary layer. In the case of flat
terrain, several distinct flow regions emerge from that interaction, as illustrated in Fig. 10. A
short description of these flow regions is given below.

• The wind-farm induction zone: immediately upwind of the wind farm, besides the block-
age effect of individual wind turbines described in Sect. 2, there is a cumulated blockage
effect induced by the wind farm as a whole. This produces a deceleration of the incoming
boundary-layer flow and its deflection upwards and sideways due to mass conservation.
The extent and strength of the farm induction region depends on the wind-farm size,
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layout, wind direction, turbine spacing, and thrust coefficient (Branlard 2017). Using
both a cylindrical vortex wake model and actuator-disk simulations, Branlard (2017)
showed that the wind speed at a distance of 2.5d in front of a wind farm may easily be
reduced by 3% with respect to the actual incoming flow speed. This reduction is similar
to that measured in the field (Bleeg et al. 2018) and simulated using the RANS approach
(Bleeg et al. 2018) as well as LES (Wu and Porté-Agel 2017), for the case of wind farms
inside a neutral ABL capped with a thermally-stratified free atmosphere (also known as a
conventionally-neutral ABL) with relatively small lapse rates. It has also been shown that
the extent and strength of the induction region, and therefore its effect on power losses in
the wind farm, can be substantially larger in the case of a shallow conventionally-neutral
ABL with relatively strong free-atmosphere stratification. This is due to the fact that,
in such a case, the flow becomes subcritical and, therefore, the upward flow deflection
induced by the wind farm triggers standing gravity waves, which are responsible for
further flow blockage, also referred to as choking (Smith 2010;Wu and Porté-Agel 2017;
Allaerts and Meyers 2018).

• The entrance and flow development region: downwind of the leading edge of the wind
farm, the extraction of momentum by the wind turbines leads to the formation of
turbine-wake flows, as described in Sect. 2. Within some downwind distance, the flow is
dominated by the presence of individual turbine wakes and, therefore, it remains strongly
heterogeneous in all directions (Fig. 11). Further into the wind farm, the different tur-
bine wakes expand and interact with other wakes, leading to a flow that remains highly
heterogeneous at turbine level, but becomes more homogeneous at the upper part of the
flow region influenced by the turbine wakes. This region can be considered as an inter-
nal boundary layer (IBL), similar to that found downwind of smooth-to-rough surface
transitions (see Garratt (1992) for a review on the IBL). The IBL grows with downwind
distance from the transition, x , following Elliott’s x4/5 power law (Elliott 1958), as shown
in recent LES studies (e.g., Stevens 2016; Allaerts and Meyers 2017; Wu and Porté-Agel
2017). For large enough wind farms, the IBL reaches the top of the ABL and starts to
grow with it by entraining momentum from the free atmosphere. This growth of the ABL
continues further downwind until the flow reaches the fully-developed state described
below. More details on the entrance and flow-development region are given in Sect. 3.3.

• The fully-developed region: in this region, the entire boundary-layer flow is fully adjusted
to the wind farm and, therefore, the spanwise- and row-averaged flow is homogeneous in
the streamwise direction. The power extraction by the wind turbines is balanced exclu-
sively by the turbulent vertical transport of kinetic energy entrained from the flow above.
This asymptotic case, also referred to as infinite wind-farm case, has been extensively
studied in the literature (e.g., Frandsen 1992; Calaf et al. 2010; Lu and Porté-Agel 2011;
Calaf et al. 2011;Lu andPorté-Agel 2015;Abkar andPorté-Agel 2013).Calaf et al. (2010)
stated that the fully-developed regime could be attained after distances of one order of
magnitude larger than the ABL height; however, recent LES studies of very large wind
farms in the conventionally-neutral ABL have shown that much longer distances (about
twoorders ofmagnitude and larger) are required to achieve the fully-developedwind-farm
flow (Wu and Porté-Agel 2017). Markfort et al. (2012) used scaling analysis to propose
a sparse canopy model similar to that of Belcher et al. (2003) to estimate the adjustment
length required for wind-farm flows to undergo transition to the fully-developed regime
under neutral stratification.More details on the fully-developed wind-farm flow are given
in Sect. 3.2.

• The exit region: this region has been observed in simulations of very large wind farms
placed in the conventionally-neutral ABL capped with a strongly-stratified free atmo-
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Fig. 11 Horizontal and vertical contours of the instantaneous wind speed (in m s−1) in the entrance region of
a wind farm simulated with LES using the Smagorinsky turbulence model and a standard actuator-disk model.
Downstream of the wind farm, a fringe region is used to introduce the inflow, computed in a separate precursor
simulation. Figure taken from Goit et al. (2016), in accordance with the Creative Commons Attribution (CC
BY) license

sphere (Wu and Porté-Agel 2017). In that particular situation, the vertical deflection of
the subcritical flow in the downwind region of the wind farm triggers a standing grav-
ity wave whose effects propagate upwind. As a result, a large accelerating exit region
upwind of the trailing edge is formed, leading to an improvement of the wind-turbine
performance in that region, with respect to the case of supercritical flow under relatively
low free-atmosphere stratification.

• The wind-farmwake region: downwind of the wind-farm trailing edge, the absence of tur-
bine thrust forces induces a streamwise acceleration of the flow and, due to conservation
of mass, a downward flux of meanmomentum. The farmwake flow, which is the result of
the cumulative effect of all the turbine wakes in the wind farm, recovers momentum with
increasing downwind distance until the wake is negligible and the flow resembles that
upwind of the wind farm. Satellite measurements (Christiansen and Hasager 2005) and
numerical simulations (Wu and Porté-Agel 2017) have shown that wind-farm wakes can
have non-negligible effects on the surface-layer wind speed, which retains a 2% deficit
at downwind distances from the farm in the range of 5–20km, depending on the ambient
stability and wind-farm size. Therefore, understanding and predicting these farm wake
flows is essential to minimizing farm-to-farm interactions when large wind farms are to
be deployed in proximity to each other. This is the case, for example, in the North Sea,
where multiple wind farms are planned due to the combination of favourable high wind
speeds and shallow water conditions (Christiansen and Hasager 2006).

3.2 Fully-Developed (Infinite)Wind-Farm Flows

Even though the fully-developed wind-farm flow regime is seldom attained in existing wind
farms due to their limited size, it has been extensively studied, particularly using analytical
models (e.g., Frandsen 1992; Calaf et al. 2010; Abkar and Porté-Agel 2013) and large-eddy
simulations (e.g., Calaf et al. 2010, 2011; Lu and Porté-Agel 2011; Abkar and Porté-Agel
2013; Yang et al. 2014a, b). This can be explained as follows: (a) the increasing likeli-
hood of achieving fully-developed flow above the mega-size wind farms of the future; (b)
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the possibility of using more computationally-efficient numerical techniques (e.g., periodic
boundary conditions in LES) with relatively small computational domains; and (c) the pos-
sibility of simplifying the flow governing equations and developing 1D top-down models for
horizontally-averaged fully-developed wind-farm flows. These models can be used to predict
power output in the fully-developed region of very large wind farms, and to parametrize their
effects in large-scale weather and climate models.

The most common approach used to describe fully-developed wind farms within 1D
models is to represent them as an effective surface roughness. This method, commonly
used for plant canopies, has been applied to wind-farm flows since the pioneering studies
of Templin (1974) and Newman (1977), among others. However, Frandsen (1992), later
elaborated in Frandsen et al. (2006), is the cornerstone of most of the fully-developed wind-
farm flow models used nowadays. The Frandsen model is developed based on the following
assumptions:

1. Vertical profiles of the horizontally-averaged wind speed in fully-developed wind farms
can be split into two logarithmic layers; one below the turbine hub-height characterized
by the friction velocity u∗,lo and the roughness length z0,lo, the other one above the hub
height characterized by the friction velocity u∗,hi and the roughness length z0,hi . Thus,

〈ū〉lo(z) = u∗,lo

κ
ln

(
z

z0,lo

)
for z < zh, (16a)

〈ū〉hi (z) = u∗,hi

κ
ln

(
z

z0,hi

)
for z > zh, (16b)

where 〈〉 denotes horizontal averaging and κ is the von Kármán constant. The objective
is to estimate z0,hi , which is the effective roughness length for the logarithmic layer
above the fully-developed wind farm. A schematic of this model, together with two other
one-dimensional models developed in the literature, is shown in Fig. 12.

2. The vertical profile of the mean wind speed is continuous, i.e.,

〈ū〉hi (zh) = 〈ū〉lo(zh). (17)

3. Based on the balance of momentum and assuming that dispersive stresses are negligible,
the difference between the values of the horizontally-averaged turbulent shear stress
〈u′w′〉 corresponding to the two logarithmic layers is equal to the momentum loss caused
by the turbines, i.e.,

u2∗,hi − u2∗,lo =
(
−〈u′w′〉hi

)
−
(
−〈u′w′〉lo

)
= 1

2
c f t [〈ū〉(zh)]2 , (18)

where c f t = πCT /4sx sy , and sx and sy are, respectively, the streamwise and spanwise
turbine spacing normalized with the rotor diameter. It is worth mentioning that dispersive
stresses are, in general, smaller than the horizontally-averaged shear stresses, but they
are not negligible (Cal et al. 2010; Calaf et al. 2010). In particular, for aligned wind
farms, they may comprise as much as 40% of the total shear stress due to the strong flow
inhomogeneity in these wind farms (Markfort et al. 2012, 2017).

SolvingEqs. 16–18 to find z0,hi gives the Frandsen relation for the effective roughness length,

z0,Frandsen = zh exp

⎛
⎜⎜⎝− κ√

1
2c f t +

[
κ

ln(zh/z0,lo)

]2

⎞
⎟⎟⎠ . (19)
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Fig. 12 Different 1D models that predict the effective surface roughness for infinite wind farms. From left to
right, the figure shows themodels developed by Frandsen (1992), Calaf et al. (2010), andAbkar and Porté-Agel
(2013), respectively

Based on the above work, Frandsen and Thøgersen (1999) also developed a simple relation-
ship for the added turbulence intensity ΔI in a fully-developed wind farm,

ΔI = a1
√
CT

a2
√
CT + √

sx sy
, (20)

where a1 and a2 are empirical coefficients, estimated to be 1.8 and 5, respectively.
Calaf et al. (2010) later employed LES to verify the presence of two logarithmic layers

above and below the wind-turbine region. However, they found that, due to the increased
mixing in the wind-turbine region, a third (middle) logarithmic layer with smaller velocity
gradient exists at turbine height (i.e., from zh − d/2 to zh + d/2). The slope of this layer is
determined based on a non-dimensional parameter, referred to as the wake eddy viscosity ν∗

w .
This method results in a modified version of the Frandsen model that is in better agreement
with the LES data reported by Calaf et al. (2010). See also Meneveau (2012) for additional
information on this model. The effective roughness length for a fully-developed wind farm
given by this model is

z0,C = zh

(
1 + d

2zh

)β

× exp

⎛
⎜⎝−

⎡
⎣ c f t

2κ2 +
(
ln

[
zh
z0,lo

(
1 − d

2zh

)β
])−2

⎤
⎦

−1/2
⎞
⎟⎠ ,

(21)

where β = ν∗
w/(1 + ν∗

w) and ν∗
w is roughly estimated as 28

√
0.5c f t . Note that the model of

Calaf et al. (2010) (Eq. 21) is identical to that developed by Frandsen (Eq. 19) if ν∗
w → 0.

One-dimensional models of fully-developed wind-farm flows can also be used to estimate
the spatially-averaged wind speed at hub height and, consequently, the power production
as a function of wind-farm density (i.e., sx × sy) and turbine loading (i.e., turbine thrust
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coefficient CT ) for infinite wind farms. Meyers and Meneveau (2012) used this method to
calculate the power production of an infinite wind farm for different operating conditions.
By considering the costs associated with wind turbines and land surface, they concluded that
the optimal turbine spacing in infinite wind farms should be considerably higher than that
commonly used in current wind farms. Stevens (2016), however, showed that the optimal
turbine spacing for finite-size wind farms, obtained based on a method similar to that of
Meyers and Meneveau (2012), is similar to that normally used in existing wind farms.

One of the limitations of the models developed by Frandsen (1992) and Calaf et al. (2010)
originates from the fact that they are derived for the purely neutral ABL, which rarely occurs
in reality. As discussed in Sect. 3.4.1, the neutrally-stratified ABL is often capped by a
stably-stratified free atmosphere, which can affect the interaction of the ABL with large
wind farms and their power production. With that in mind, Abkar and Porté-Agel (2013)
modified the Frandsen model to account for the effect of free-atmosphere stability. This
model is schematically shown in Fig. 12 and discussed more in Sect. 3.4.1.

Another limitation of these models is that they cannot differentiate between different
layout configurations or different wind directions, as they depend only on the overall wind-
farm density (i.e., number of turbines in a given area). Later studies, such as Yang et al. (2012)
and Stevens et al. (2015), attempted to overcome this limitation by considering the wind-farm
area only as the region influenced by turbine wakes (see Sect. 3.3.1 for more information on
the latter study).

3.3 Finite-SizeWind-Farm Flows

Owing to the fact that all wind farms are finite in size, flow distribution inside and above
finite-size wind farms has been the subject of numerous wind-tunnel, field, and numerical
studies in recent years (e.g., Corten et al. 2004; Frandsen et al. 2006; Barthelmie et al.
2007, 2009; Porté-Agel et al. 2011, 2013; Chamorro and Porté-Agel 2011; Markfort et al.
2012; Wu and Porté-Agel 2013, 2015; Newman et al. 2013; Creech et al. 2015; Hamilton
et al. 2015; Munters et al. 2016; Na et al. 2016; Vanderwende et al. 2016; Andersen et al.
2017). The flow region ‘inside’ the wind farms (i.e., below the turbine top-tip height) is
characterized by spatially-evolving low-speed flows with high turbulence intensity due to
the cumulative effects of wind-turbine wakes. Both velocity deficit and enhanced turbulence
intensity increase in the first few rows of turbine arrays, while their variation between the
subsequent rows becomes progressively smaller. Several studies have shown that, for certain
wind-farm layouts andwind directions, the flow inside somewind farms appears to asymptote
to fully-developed conditions after the first several rows of wind turbines (e.g., Barthelmie
et al. 2010;Chamorro et al. 2011;Markfort et al. 2012;Newman et al. 2013;Archer et al. 2013;
Hamilton et al. 2015). However, as mentioned in Sect. 3.1, recent studies have shown that a
much longer distance is required for the entire ABL flow to reach fully-developed conditions.
This, in turn, leads to a relatively slow adjustment of the flow inside the wind-turbine region,
compared to that observed in the entrance region of the wind farm. The flow adjustment
distance,which depends on the incomingABLflowproperties (e.g., ABLheight, atmospheric
stability, wind speed and turbulence intensity), and wind-farm characteristics (power density
and layout), can be two orders of magnitude larger than the incoming ABL height (Wu
and Porté-Agel 2017). This implies that many large wind farms might never reach fully-
developed conditions (e.g., Crespo et al. 1999a; Allaerts and Meyers 2017) and emphasizes
the importance of studying the wind-farm flow-development region under different ABL
conditions.
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Fig. 13 Horns Rev wind-farm power output in different wind direction scenarios: a schematic of the wind
farm together with some selected wind direction angles θ , b average power output of each row of turbines,
normalized by the power of the first row. The data are obtained from the field measurements of Barthelmie
et al. (2010)

Wind-farm layout has attracted a great deal of attention due to its strong impact on the flow
development inside wind farms and, therefore, on their efficiency. Several recent wind-tunnel
and LES studies have focused on the differences between two basic wind-farm layout con-
figurations: (i) aligned, and (ii) staggered (e.g., Chamorro et al. 2011; Markfort et al. 2012;
Wu and Porté-Agel 2013; Archer et al. 2013; Hamilton et al. 2015; Stevens et al. 2016a; Wu
et al. 2019). Overall, it is found that inside staggered wind farms, wind turbines are subject
to relatively smaller wake effects (power losses and fatigue loads). This can be explained
by the relatively larger effective distance (in the wind direction) between turbines in this
configuration, which allows turbine wakes to attain lower velocity deficits and turbulence
intensities when they interact with downwind turbines. It is also found that wake-induced
power losses display a more gradual change with downstream distance in staggered wind
farms compared with aligned ones. Moreover, even though vertical kinetic-energy entrain-
ment is less localized in staggered wind farms (Stevens et al. 2016a), they benefit, in general,
from more effective total vertical entrainment (Hamilton et al. 2015).

It should be mentioned that staggered and aligned configurations are only two possible,
not necessarily themost common, layouts that can be found inwind farms. Indeed, for a given
wind-farm configuration, the effective layout of the wind farm (with respect to the incoming
flow) changeswith changingwind direction. Several field studies (e.g., Barthelmie et al. 2005,
2007, 2009, 2010; Gaumond et al. 2013) have shown that wind direction and its variability
have profound effects on wind-farm power output. Figure 13 shows the layout of the Horns
Rev wind farm, together with the simulated normalized power output as a function of wind-
turbine row for four selectedwind directions (Barthelmie et al. 2010). Porté-Agel et al. (2013)
performed LES to study how changing wind direction affects the performance of the same
wind farm. The time-averaged streamwise velocity component at hub level for two of those
wind directions is shown in Fig. 14. Finally, Fig. 15 shows the variation of the normalized
total power output from the Horns Rev wind farm as a function of wind direction. As shown,
wind-farm power reaches its minimum value for a wind direction of 270◦, corresponding
to the aligned case with the smallest effective distance between turbines, and it shifts to its
maximum value with a relatively small change in wind direction (270◦ ± 10◦), for which the
effective distance between turbines ismaximum. Stevens et al. (2014) reported a similar value
for the optimum angle (around 10◦) between the wind direction and the turbine columns of
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Fig. 14 a Full-wake conditions seen in the photo taken from Horns Rev wind farm (Courtesy: Vattenfall.
Photographer is Christian Steiness), b Partial-wake conditions seen in the photo taken from Horns Rev 2 wind
farm (figure taken from Hasager et al. 2017, in accordance with the Creative Commons Attribution (CC BY)
license). Contour plot of the simulated time-averaged streamwise velocity component at Horns Rev wind farm
on a horizontal plane at hub level for incoming wind directions of c 270◦ (full-wake conditions) and d 284◦
(partial-wake conditions). Distances are normalized by the turbine rotor diameter d = 80 m (c, d taken from
Porté-Agel et al. 2013, in accordance with the Creative Commons Attribution (CC BY) license)
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Fig. 15 Distribution of the normalized Horns Rev wind-farm power output for different wind directions. The
predictions of different wind-farm analytical models are compared with LES data

a wind-farm array. This strong sensitivity of wind-farm power output to small variations of
the wind direction should be taken into account for the optimal control and grid integration
of wind farms.
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Table 1 Different superposition techniques used in the literature to model wake interactions in wind farms

Superposition method Definition

Lissaman (1979) u(X) = u∞ −∑n
i=1 Δui (X), where Δui (X) = u∞ − ui (X)

Katić et al. (1986) u(X) = u∞ −
√∑n

i=1 Δu2i (X), where Δui (X) = u∞ − ui (X)

Voutsinas et al. (1990a) u(X) = u∞ −
√∑n

i=1 Δu2i (X), where Δui (X) = uin,i − ui (X)

Niayifar and Porté-Agel (2016) u(X) = u∞ −∑n
i=1 Δui (X), where Δui (X) = uin,i − ui (X)

3.3.1 Analytical Modelling of Finite-Size Wind-Farm Flows

The most common approach to analytically model finite-size wind-farm flows is to model
each turbine wake using one of the analytical models presented in Sect. 2.2.3, while applying
superposition methods to account for the interaction among multiple wakes. Since the pio-
neering study of Lissaman (1979), different superposition methods have been proposed in
the literature (Crespo et al. 1999b). A summary of the different methods available to estimate
velocity at a given position X = (x, y, z) in a wind farm is given in Table 1. The velocity at
each position is a function of the velocity deficit induced by all the upwind turbines (from
i = 1 to n) whose wakes affect the flow in that location. The differences among the methods
presented in Table 1 originate from the use of:

• Different superposition principles: linear superposition of velocity deficit (Lissaman
1979; Niayifar and Porté-Agel 2016), or linear superposition of energy deficit (Katić
et al. 1986; Voutsinas et al. 1990a).

• Different definitions of the velocity deficit caused by the i th turbine: it can be defined
either with respect to the incoming boundary-layer flow speed u∞ (Lissaman 1979; Katić
et al. 1986), or with respect to the incoming flow speed for that turbine uin,i (Voutsinas
et al. 1990a; Niayifar and Porté-Agel 2016).

The most common analytical wake model for wind farms is the so-called Park model,
used extensively in the literature (Crespo et al. 1999b; Barthelmie et al. 2009; Barthelmie
and Jensen 2010) and in industry-standard software such as WAsP (Wind Atlas Analysis and
Application Program) (Barthelmie et al. 2005). This model is based on the Jensen analytical
wake model (Jensen 1983), along with the wake superposition approach suggested by Katić
et al. (1986). Predictions of the power output from the Horns Revwind farm by this model are
shown in Fig. 15 for different wind-direction angles, and compared with LES data reported
by Porté-Agel et al. (2013). For the Parkmodel predictions shown in Fig. 15, a constant linear
wake growth rate equal to 0.04 is used according to the semi-empirical formula suggested
by Frandsen (1992) (Eq. 6).

As mentioned in Sect. 2.2.3, in order to use analytical wake models, a priori estimation of
the wake growth rate is needed. The proper estimation of the wake growth rate is especially
important and challenging in the prediction of wind-farm flows, as it is influenced by the
spatial variation of turbulence intensity inside thewind farm. In this respect, wakes of turbines
deep inside wind farms are expected to grow faster than the wakes of those in the first row. To
account for variable wake growth rates in wind farms, Stevens et al. (2015, 2016b) coupled
the Park model with the 1D model developed by Calaf et al. (2010), discussed in Sect. 3.2.
Based on this coupled model, the wake growth rate exponentially increases from the value
suggested by the Frandsen (1992) relation (Eq. 6) at the wind-farm entrance region to an
asymptotic value deep inside the wind farm (i.e., fully-developed region). The asymptotic
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value of the wake growth rate is obtained through an iterative procedure. The predicted values
of this model for the normalized power generated by the Horns Rev wind farm are also shown
in Fig. 15.

As discussed in Sect. 2.2.3, the use of the top-hat distribution to describe velocity-deficit
profiles is an overly simplified assumption thatmay result in unrealistic predictions, especially
in the case thatmultiplewakes interact in largewind farms. To overcome this limitation, recent
studies (e.g., Niayifar and Porté-Agel 2016; Parada et al. 2017) have employed the model
developed by Bastankhah and Porté-Agel (2014b), which assumes a self-similar Gaussian
distribution for the wake velocity-deficit profiles, to predict wind-farm flows. Niayifar and
Porté-Agel (2016) employed a new approach to superpose wakes of different turbines in wind
farms (see Table 1). A variable wake growth rate k changing with the incoming turbulence
intensity for each turbine was also used based on Eq. 15. This model predictions of the power
generated by the Horns Rev wind farm are also shown in Fig. 15.

As mentioned earlier, simple analytical models are particularly useful for the purpose
of wind-farm layout optimization. In this context, analytical models have been extensively
implemented in combination with different optimization techniques with the ultimate goal of
optimizing wind-farm performance. The interested reader is referred to Grady et al. (2005),
Marmidis et al. (2008), Kusiak and Song (2010), González et al. (2010), González et al.
(2011), Chen et al. (2013), Wagner et al. (2013), Chowdhury et al. (2013), and Gebraad et al.
(2014), amongst others.

3.4 Thermal Effects

The aforementioned studies ofwind-farmflows assumepurely neutralABLconditions,which
rarely occur in reality. Indeed, even in situations when the ABL itself is close to neutral (i.e.,
constant mean potential virtual temperature throughout most of the boundary layer), the
free atmosphere is often thermally stratified. Moreover, surface-layer stability can strongly
modulate the interaction between wind farms and the ABL. The following is a summary of
recent research on thermal effects in wind-farm flows.

3.4.1 Free-Atmosphere Stratification

The conventionally-neutral ABL is characterized by neutrally-stratified flow (constant poten-
tial temperature), capped by a thermally-stratified free atmosphere (Zilitinkevich and Esau
2002). The potential temperature gradient (lapse rate) in the free atmosphere Γ is typically
constant with height and falls in the range of 1–10Kkm−1 (Sorbjan 1996). Between the
boundary layer and the free atmosphere lies a relatively thin and more strongly stratified
layer commonly referred to as the inversion layer, even if in some cases it might not be a
thermal inversion.

The interaction of the conventionally-neutral ABL and very large wind farms has been
investigated by, e.g., Abkar and Porté-Agel (2013, 2014) and Allaerts and Meyers (2015,
2017). Churchfield et al. (2012a) and Archer et al. (2013) also performed simulations of wind
farms in the conventionally-neutral ABL.

Abkar and Porté-Agel (2013, 2014) studied the effect of the value of Γ on the interaction
between a fully-developed (infinite) wind farm and the conventionally-neutral ABL, conclud-
ing that increasing free-atmosphere stratification (Γ ) leads to a reduction of the entrainment
of kinetic energy from the free atmosphere. This, in turn, causes the ABL depth to become
shallower and the wind-farm power output to decrease. Abkar and Porté-Agel (2013) pro-
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posed a 1D model to predict the effect of free-atmosphere stratification on the mean wind
velocity profile, the ABL depth, and the power output of the wind farm. The model is based
on the one developed by Frandsen (1992) and discussed in Sect. 3.2. The main difference is
that, unlike Frandsen’s model, which is derived for a purely neutral ABL, the model of Abkar
and Porté-Agel (2013) includes the effect of the stably-stratified free atmosphere, which leads
to vertical profiles of horizontally-averaged wind speed below and above hub height that are
different from those given by Eq. 16. In this case, 〈ū〉lo(z) and 〈ū〉hi (z) are given by

〈ū〉lo(z) = u∗,lo

κ
ln

(
z

z0,lo

)
+ auNz for z < zh, (22a)

〈ū〉hi (z) = u∗,hi

κ
ln

(
z

z0,hi

)
+ auNz for z > zh, (22b)

where au is an empirical constant with the value around 0.3, and N denotes the Brunt–Väisälä
frequency that mainly depends on the lapse rate Γ . The flow continuity at hub height (Eq. 17)
and the balance of momentum (Eq. 18) for the velocity profiles expressed by Eq. 22 yield

u∗,hi =
⎡
⎣
(

κ

ln
(
zh/z0,lo

) (〈ū〉(zh) − auNzh)

)2

+ 1

2
c f t [〈ū〉(zh)]2

⎤
⎦
1/2

, (23)

〈ū〉(zh) = G − u∗,hi

κ
ln

(
δbl

zh

)
− auN (δbl − zh) , (24)

where the boundary-layer thickness δbl is given by (Zilitinkevich and Esau 2002)

δbl = CR

(
1 + CN

N

| f |
)−1/2 u∗,hi

f
+ zh + d

2
, (25)

where CR and CN are empirical constants and f is the Coriolis parameter. The system of
Eqs. 23–25 can be numerically solved to yield the values of u∗,hi , 〈ū〉(zh) and δbl . The value
of the wind-farm effective roughness length can be then found by solving Eq. 22 for z0,hi at
z = zh . A feature of this model is that it can also predict the increase of the ABL thickness
caused by the presence of a very large wind farm.

Allaerts and Meyers (2015) studied the role of changing both the free-atmosphere stratifi-
cation and the inversion-layer characteristics on the interaction between the conventionally-
neutral ABL and an infinite wind farm using LES. To do that, they imposed the height,
thickness, and strength of the inversion layer, instead of letting it develop as previously done
in the aforementioned study. In particular, they investigated the effect of the inversion-layer
strength ΔθI and the base height of the inversion layer (i.e., the height of the ABL), and
found that, with increasing inversion-layer strength and decreasing ABL height, the power
output of the farm decreases. They also proposed a simple analytical model to obtain the
wind-farm power output for the fully-developed regime as a function of the ABL height and
the Rossby number.

Investigation of the interaction of wind farmswith the conventionally-neutral ABL has not
been limited to the infinite wind-farm case, and the more realistic finite-size wind-farm case
has also been studied (Allaerts andMeyers 2017;WuandPorté-Agel 2017).Unlike the infinite
wind-farm case, the flow through a finite-size wind farm evolves in the streamwise direction,
such that an IBL develops above the wind turbines. The IBL development, in turn, causes
vertical displacement of the flow, which can lead to gravity waves. A significant consequence
of these gravity waves is that they induce pressure gradients across the wind farm (Allaerts
and Meyers 2017; Wu and Porté-Agel 2017; Allaerts and Meyers 2018). If Γ is sufficiently
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large, such that the Froude number of the flow is less than one (subcritical flow), then gravity
waves can propagate upwind, leading to the creation of an adverse pressure gradient zone in
the induction region, and a favourable pressure gradient zone in the exit region of the wind
farm. The gravity-wave-induced deceleration of the flow in the induction region leads to a
reduction in the energetic performance of the first turbine rows with respect to the cases in
which gravity waves are not present. In contrast, the favourable pressure gradient in the exit
region leads to a flow acceleration and, consequently, an increase in the power output of the
turbines in that region (Wu and Porté-Agel 2017).

3.4.2 Surface-Layer Stability Effects

Consistent with the single turbine case (Sect. 2.3), surface-layer thermal stability can affect
wind-farm performance in several ways. For example, the mean wind shear and flow speed
at turbine level, which are often larger under stable conditions, can lead to differences in the
available energy and also in the power output from the wind farm. Furthermore, surface-layer
stability has a strong influence on the power losses induced by turbine-wake flows. It has
been shown that the efficiency of a wind farm (which is inversely related to the power losses
due to wake effects) is higher in convective regimes and lower in stable ones (Barthelmie
and Jensen 2010; Hansen et al. 2012; Schepers et al. 2012; Abkar et al. 2016). The reason
for this trend is the fact that, as discussed in Sect. 2.3 for single turbine wakes, the turbulence
intensity of the ABL flow and, consequently, the wake recovery rate are inversely related to
thermal stability (Christiansen and Hasager 2005; Barthelmie and Jensen 2010; Hansen et al.
2012; Schepers et al. 2012; Abkar et al. 2016).

Emeis (2010) and Peña and Rathmann (2014) extended the Emeis and Frandsen (1993)
and Frandsen (1992) models, respectively, to take into account surface-layer stability effects
in the estimation of the wind-speed reduction and energetic efficiency of infinite-size wind
farms.

It should be mentioned that the interaction of relatively large wind farms with the
thermally-stratified ABL leads to modifications of the surface momentum and heat fluxes
inside the wind farm. It can also affect the entrainment fluxes from the free atmosphere if the
wind farm is large enough. Therefore, special care has to be paid to considering both effects
when studying and modelling the two-way interaction between wind farms and thermally-
stratified ABLs. This is further discussed in Sect. 3.5.

3.4.3 Diurnal Cycle

Although studying wind farms under stationary (or quasi-steady) thermal stability conditions
(i.e., purely stable, unstable, neutral or conditionally neutral) allows isolation of the effect of
different thermal stabilies, the non-stationarity of the ABL flow plays also an important role
on the interaction between wind farms and the ABL. Particularly important is the effect of
the ubiquitous non-stationarity associated with the diurnal cycle, which has been investigated
in several recent (mainly LES) studies (Schepers et al. 2012; Fitch et al. 2013; Abkar et al.
2016; Rodrigo et al. 2017; Sharma et al. 2017).

An important feature of wind farms in diurnal cycles is the history effects. In other words,
the wind-farm performance at a specific point in time in a diurnal cycle is influenced by
the history of the ABL before that point in time. For example, in the morning and evening
transitions, even if the background ABL can be considered as near-neutral in both cases
(based on, for instance, the vertical profile of the mean potential temperature or the value
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of the Obukhov length), the wind-farm power deficit due to wake effects can be rather
different. This is because wake recovery and, thus, power losses are influenced by the overall
flow characteristics (e.g., flow depth, range of turbulence scales, or wind direction change
with height), which depend on the previous stable (morning transition) or unstable (evening
transition) regimes (Abkar et al. 2016).

On the comparison between the daytime and night-time performance of wind farms, one
can mention two important differences: (1) the difference in recovery rate of the wakes due to
stability, (2) the difference in the vertical profile of the incoming wind speed experienced by
the wind farm. Considering the first difference, aligned with the discussions of the previous
subsection, it has been widely shown that the power deficit due to turbine wakes is consider-
ably smaller during the daytime (CBL) than during night-time (SBL) (Schepers et al. 2012;
Fitch et al. 2013; Abkar et al. 2016; Sharma et al. 2017). This is due to the fact that turbine
wakes recover faster during the day, owing to the relatively higher atmospheric turbulence
intensity, compared with the night-time. The large changes in wind direction with height
often observed during the late night, resulting from the effect of the Coriolis force on the
relatively shallow SBL, can also have an effect on the wake shape and, consequently, on the
wake-induced power losses.

Regarding the differences in the vertical profile of the incoming wind speed experienced
by the wind farms during the daytime and night-time, a key factor is the presence and location
of the low-level jet (LLJ), which can develop at night. The LLJ forms in and above the SBL
when a maximum in the mean velocity profile emerges at the top of the boundary layer
(Blackadar 1957). This maximum speed is super-geostrophic, and its height from the ground
(i.e., the height of the LLJ) is usually 100–300m (Stull 2012), although values as low as
50m have been reported (e.g. Song et al. 2005). Below the LLJ, the SBL is characterized
by high shear, while laminar free-atmosphere flow is commonly found above. The height
of the LLJ depends on the strength of the stratification of the SBL, in a way that increasing
stability leads to lowering of the LLJ (Banta 2008; Zhou and Chow 2012; Huang and Bou-
Zeid 2013). Considering the above-mentioned range of LLJ heights, the LLJ can be either
above the turbine rotor, within the rotor-disk height range, or even in extreme cases, below
the rotor. When the LLJ forms in the rotor-disk region, it provides large available power for
extraction by the turbines (Fitch et al. 2013; Abkar et al. 2016; Sharma et al. 2017), while
the recovery rate of the wake is reduced because of the non-turbulent flow above the LLJ
(Bhaganagar andDebnath 2015). It is worthwhile tomention that, in the interactionwith large
wind farms, the LLJ does not remain unchanged. In fact, as a result of that interaction, the
LLJ can be either eliminated (Lu and Porté-Agel 2011; Fitch et al. 2013) or shifted upwards
(Abkar et al. 2016; Sharma et al. 2017).

Depending on all the aforementioned factors, the differences between the wind-farm
power output during daytime and night-time can change significantly; for example, Fitch
et al. (2013) reported a higher power output during the night-time, while Abkar et al. (2016)
and Sharma et al. (2017) reported a higher power output during the daytime. Furthermore,
the power density (power per unit surface area) of the wind farm can be a factor in this regard.
For instance, Sharma et al. (2017) have shown that reducing the power density of a wind
farm can lead to an increase in the power output at night, as a result of the smaller upward
deflection of the LLJ.
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Fig. 16 Effect of wind farms on surface air temperature. a Google Earth image of the wind farm at San
Gorgonio, California, USA, showing thewind-farmboundary in 1989.bObserved near-surface air temperature
at the wind-farm. Figure reprinted from Baidya Roy and Traiteur (2010) with the automatic permission of
National Academy of Sciences for the reuse of original PNAS figures in review articles

3.5 Effect ofWind Farms on Local Meteorology

In a pioneering study, Baidya Roy et al. (2004) demonstrated that wind farms can have
a significant impact on near-surface air temperature (see Fig. 16). Later experimental and
numerical studies have confirmed that wind farms, through their interaction with the ABL,
can potentially affect local meteorology (e.g., Baidya Roy and Traiteur 2010; Lu and Porté-
Agel 2011; Baidya Roy 2011; Zhou et al. 2012; Fitch et al. 2013; Smith et al. 2013; Cervarich
et al. 2013; Zhou et al. 2013; Rajewski et al. 2013; Calaf et al. 2014; Armstrong et al. 2014;
Lu and Porté-Agel 2015; Xia et al. 2016; Sharma et al. 2017; Moravec et al. 2018; Adkins
and Sescu 2018; Siedersleben et al. 2018). Particularly interesting in this respect is the ability
of large wind farms to modify surface fluxes of momentum and scalars (e.g., temperature
and moisture) as well as near-surface wind speed and scalar concentration. Regardless of
atmospheric stability, the near-surface wind speed and the kinematic surface momentum flux
(−u2∗) decrease as a result of the extraction of momentum by the wind turbines (e.g., Lu
and Porté-Agel 2011; Fitch et al. 2013; Lu and Porté-Agel 2015; Sharma et al. 2017). The
changes in near-surface scalar concentration and surface scalar flux are less straightforward
and different studies have reported different trends. Belowwe provide a summary of the main
results reported to date.

The changes in near-surface temperature induced by wind farms are found to be more
pronounced in the nocturnal SBL (Zhou et al. 2012; Fitch et al. 2013; Smith et al. 2013;
Zhou et al. 2013; Lu and Porté-Agel 2015; Xia et al. 2016). At night-time (stable regime), it
is well established that the presence of a wind farm leads to a temperature increase (warming)
near the surface (Baidya Roy et al. 2004; Baidya Roy and Traiteur 2010; Lu and Porté-Agel
2011; Baidya Roy 2011; Zhou et al. 2012; Fitch et al. 2013; Smith et al. 2013; Cervarich et al.
2013; Zhou et al. 2013; Xia et al. 2016; Sharma et al. 2017). Conversely, during the daytime
(convective regime), the change in near-surface temperature has been shown to be relatively
weaker (Zhou et al. 2012; Smith et al. 2013; Cervarich et al. 2013; Zhou et al. 2013; Xia
et al. 2016). Lu and Porté-Agel (2015) showed with LES that near-surface and land-surface
temperatures rise slightly as a result of the presence of very large wind farms. It should be
noted that Baidya Roy et al. (2004), Baidya Roy and Traiteur (2010), and Baidya Roy (2011)
reported a cooling effect during convective conditions, based on simulations with a relatively
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low resolution mesoscale weather model. This seemingly contradictory result was addressed
experimentally later by Zhou et al. (2012) who, using satellite data, showed that large wind
farms increase slightly the land-surface temperature during the daytime.

In order to understand the effect of wind farms on the surface heat flux, it is useful to
recall that the kinematic surface heat flux can be expressed as qs = −u∗θ∗, where θ∗ is
a temperature scale related to the gradient of the potential temperature above the surface.
Hence, even though wind farms always tend to reduce the friction velocity u∗, which would
reduce surface scalar fluxes, the relative change in |qs | is also affected by the variation in
the magnitude of θ∗. LES studies have shown a considerable reduction in the magnitude of
the surface heat flux induced by fully-developed wind farms in the SBL (Lu and Porté-Agel
2011), while a much smaller reduction in |qs | is observed in the CBL (Lu and Porté-Agel
2015). Sharma et al. (2017) also showed a decrease in |qs | during the morning hours. Zhang
et al. (2013a), in their wind-tunnel study, reported also a slight net reduction in |qs | for the
CBL and showed that the spatial distribution of |qs | is heterogeneous over the surface, and
is dependent on the wind-farm layout (i.e., staggered and aligned). A similar heterogeneous
surface-flux distribution was found by Lu and Porté-Agel (2015) using LES. In contrast with
some of the above studies, Baidya Roy et al. (2004) and Fitch et al. (2013), using mesoscale
simulations, reported an increase in |qs | in the stable regime. Sescu and Meneveau (2015)
found that |qs | increases in stable and slightly unstable regimes, while it slightly decreases
in strongly unstable conditions.

The aforementioned differences in the effect of wind farms on surface heat flux and near-
surface temperature reported by different numerical studies are likely due to differences in
the numerical method (e.g., RANS vs. LES), grid resolution, wind-turbine parametrization,
turbulencemodel and surface boundary condition. InLES, the turbines are normallymodelled
with standard actuator disk models (ADM-NR) (Jiménez et al. 2010), rotating actuator disk
models (ADM-R) (Wu and Porté-Agel 2011), or actuator line models (ALM) (Shen and
Sørensen 2002). Of those, only the last two are able to capture wake rotation effects. In
numerical weather prediction models, wind turbines are parametrized as sinks of momentum
and sources of turbulence, averaged over large areas (typically several km2) corresponding to
their relatively coarse spatial resolution.Additionally, the surface thermal boundary condition
can also be a potential source of errors. In LES, this consists of specifying the surface
temperature, fixing the surface heat flux, or dynamically computing both by coupling the
flow simulation with a 3D soil heat equation model through the surface energy balance.
In future LES studies of wind-farm flows, this last approach could be extended to include
vegetation effects on heat and moisture fluxes using a soil–vegetation–atmosphere transfer
model.

Sescu and Meneveau (2015) developed a single-column model to estimate the effect of
infinite wind farms on the surface heat flux and vertical profiles of velocity and temperature in
different atmospheric stability conditions. Their approach is a generalization of the previous
models of Frandsen (1992), Calaf et al. (2011), Emeis (2010), and Abkar and Porté-Agel
(2013).

Besides the effect of wind farms on local meteorology, recent studies using general circu-
lation models (GCMs) have shown that extensive installation of wind farms over vast areas
could produce non-negligible effects on the atmospheric flow at synoptic and continental
scales (Keith et al. 2004; Kirk-Davidoff and Keith 2008; Barrie et al. 2010; Wang and Prinn
2010; Jacobson and Archer 2012; Adams and Keith 2013).
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3.5.1 Wind-Farm Parametrization in Weather and Climate Models

Depending on the scale and resolution of the large-scale atmospheric model, two main types
of wind-farm parametrizations are used. In the first type, the wind farm is considered as an
increased surface roughness length. This type of parametrization is normally employed in
GCMs, where the vertical resolution of the grid is so coarse that the lowest grid level falls
above the height of the turbines (Ivanova and Nadyozhina 2000; Keith et al. 2004; Kirk-
Davidoff and Keith 2008; Barrie et al. 2010; Wang and Prinn 2010, 2011). Specifically, the
models described in Sect. 3.2 are commonly used to determine the effective surface roughness
that takes into account the presence of the wind farm in GCMs. In the second type of wind-
farm parametrizations, the wind farm is considered as an elevated sink of momentum and,
at the same time, as a source of TKE. They are usually employed in mesoscale numerical
weather prediction (NWP) models, where the vertical resolution of the grid is such that the
lowest grid level falls below the turbine hub height. A summary of parametrizations of the
second type is provided below.

In NWP models, the horizontal resolution (Δx and Δy ) is such that several turbines can
be located within the horizontal extent of one grid cell. However, the vertical resolution (Δz),
as mentioned above, is fine enough to cover the rotor area with one or more grid levels. We
first consider a control volume that entirely encompasses the turbine rotor area. To model
the turbines as momentum sinks, one can adopt either a direct or an indirect approach. In the
direct approach (Abkar and Porté-Agel 2015b), the induced force of each turbine is directly
written as Ft = 1

2CT ρU 2Ar , where U is a reference flow speed and Ar is the rotor area. As
the momentum equations are normally written with the dimension of force per unit mass,
the momentum sink term for a control volume, which encompasses the turbine rotor, takes
the form ft = 1

2CTU 2Ar/Δ V– , where Δ V– is the volume of the control volume. In the
indirect approach (Baidya Roy et al. 2004; Blahak et al. 2010; Fitch et al. 2012), the turbine
is regarded as a sink of kinetic energy. The turbine extracts kinetic energy of the flow at a rate
Ėt = 1

2CKEρU 3Ar , whereCKE is the fraction of the available kinetic energy that is extracted
by the turbine. On the other hand, the kinetic energy of the control volume, assuming that
U is the average wind speed in the volume, can be written as EV– = 1

2ρU
2Δ V– . The rate of

change of EV– due to the presence of the turbine is (∂EV– /∂t)t = ρU (∂U/∂t)tΔ V– . Equating
(∂EV– /∂t)t and Et results in (∂U/∂t)t = 1

2CKEU 2Ar/Δ V– . This term is the momentum
tendency, which is treated the same as ft and can be regarded as the momentum sink in the
momentum equation.

In Baidya Roy et al. (2004), CKE is taken to be equal to the turbine’s power coefficient
CP . For the TKE source term, they use a constant value (β). This constant value is, in turn,
considered as an additional kinetic energy sink, to conserve energy. In Blahak et al. (2010),
CKE is set equal toCa = CP/ηem , where ηem is a loss factor due to mechanical and electrical
losses. They consider the TKE source term to be a constant fraction (α) of Ėt and, again
to conserve energy, subtract the same amount from the kinetic energy. Finally, Fitch et al.
(2012) assume that the turbine extracts a fraction CT of the available kinetic energy from the
flow (i.e.,CKE = CT ) and from this extracted energy a fractionCP is converted to electricity
and a fraction (CT − CP ) is converted to TKE. In all three models, the flow speed in the
computational grid cell is used to evaluate the aforementioned sink and source.

Abkar and Porté-Agel (2015b), on the other hand, adopt a different approach. First of all,
they use the direct approach to calculate themomentum sink. Second, they analytically derive
the TKE source term based on the resolved-scale TKE budget equation. Moreover, instead of
the grid-cell flow speed, they use amodified value (computedwith a correction factor, denoted
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Table 2 Summary of wind farm parametrizations

Model Momentum sink TKE source

Baidya Roy et al. (2004) fi = nt
[ 1
2
CP (ur )h(ui )h + β]Ak

zk+1 − zk
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Fig. 17 Vertical profiles of a the drag forces induced by the turbines (i.e., f ), and b added TKE induced by the
turbines (i.e., St ) for a typical staggered infinite wind farm [see case s7 × 7 in Abkar and Porté-Agel 2015b,
referred to in the figure as AP(2015)]. Both f and St are calculated according to Table 2 and are normalized by
an appropriate combination of geostrophic wind speed G and rotor diameter d. Figure reprinted from Abkar
and Porté-Agel (2015b) with the permission of AIP Publishing

ξ in Table 2) to account for the difference between the grid-cell flow speed, the undisturbed
flow speed (U∞) and the flow speed at the turbine rotor. Through this modification, the effect
of turbine layout can also be taken into account. A comparison of the results of some of the
aforementioned models to those of high-resolution LES is presented in Fig. 17.

The above-mentioned models are summarized in Table 2. In this table, (ui )k is the i th
component (i = 1, 2) of the flow velocity in a grid cell at the kth vertical level, the subscript
r indicates the resultant horizontal flow speed, the subscript h means the quantity at hub-
height level, nt = Nt/(ΔxΔy), where Nt is the number of wind turbines in a specific grid
cell, Ak is the area of the rotor segment that is trapped in the grid cell, (zk+1 − zk) is the
thickness of the grid cell, a is the induction factor of the turbine, which can be calculated as
a = 0.5(1 − √

1 − CT ), and ξ = U∞/(ur )h .
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4 Topography

Unlike offshore wind farms, an onshore wind farm has a high chance of being located in non-
flat terrain, i.e., topography. In this context, it is readily noticeable that most of the research
on aerodynamics of wind farms is limited to turbines on flat surfaces (e.g., see the previous
sections). Although there is deep and extensive literature on ABL flows over topography, the
combination of wind turbines and topography still has much room for investigation.

Measurements of wind-turbine wakes on topography began in the early 1990s with the
wind-tunnel study of Taylor and Smith (1991). Later, other measurements were performed
both in the wind tunnel and in the field (e.g., Stefanatos et al. 1994; Helmis et al. 1995;
Stefanatos et al. 1996). More recently, Tian et al. (2013) carried out wind-tunnel experiments
to assess the effect of topography on the performance of an array of five wind turbines sited
on a Gaussian hill. Moreover, Yang et al. (2015) performed wind-tunnel flow measurements
for a wind turbine placed downwind of a sinusoidal hill and compared their LES results of
the same case with experimental data, observing that the presence of the hill upstream of the
turbine leads to a faster wake recovery. Furthermore, in their wind-tunnel study, Hyvärinen
and Segalini (2017a) placed two turbines, one downstream of the other, on a series of periodic
sinusoidal hills, whose heights were less than half the turbine hub-heights. They found that
the presence of the hilly terrain produces a more rapid wake recovery of the first turbine and,
hence, a higher power coefficient of the downwind turbine. Recently, a field measurement
campaign in Perdigão, Portugal, was carried out to characterize the flow over a double-ridge
complex terrain on which was sited a turbine (Mann et al. 2017; Fernando et al. 2018).

With regard to the numerical simulations of the flow past wind turbines in topography,
previous research focused on finding numerical solutions of the problem (e.g., Voutsinas et al.
1990b; Hemon et al. 1991; Günther et al. 1993; Ansorge et al. 1994; Chaviaropoulos et al.
1999; Ivanova and Nadyozhina 2000;Migoya et al. 2007). More recently, Politis et al. (2012)
simulated the flow in a real wind farm in Spain using a RANS approach and compared the
power outputs with field measurements. They also studied the flow through a turbine sited
on top of a single Gaussian hill, observing that the presence of the hill leads to a slower
wake recovery. Moreover, using terrain-following coordinates, Shamsoddin and Porté-Agel
(2017a) performed LES of flow through a wind farm sited on a single hill and validated the
results using the dataset of Tian et al. (2013). By linearizing the continuity and momentum
equations, Segalini (2017) developed a numerical model that accounts for both wind turbines
and low-slope topography. The advantage of the model is its lower computational cost. Apart
from these, other numerical studies have been carried out both for real complex terrain (Schulz
et al. 2014; Yang et al. 2014c; Castellani et al. 2015, 2017; Berg et al. 2017; Wagner et al.
2019) and idealized hills (Yang et al. 2015; Zheng et al. 2017).

To model the effect of topography on the wind-turbine wakes with simple methods, many
researchers have used the straightforward idea of simply superposing the turbine wake’s
velocity deficit over flat terrain on the flow (without turbines) over the topography (e.g.,
Crespo and Hernández 1986; Crespo et al. 1993; Hyvärinen and Segalini 2017b). The
superposition method is standard in industry and, although this method is deemed to yield
acceptable predictions for moderate topography (Crespo et al. 1993; Hyvärinen and Segalini
2017b), its general applicability, even for hills with moderate slopes, is questionable (Politis
et al. 2012; Segalini 2017).

Herein, we point out three key aspects of wake flows over topography that potentially
contribute to inaccuracies of a superposition approach; namely, (i) non-zero pressure gra-
dients, (ii) variable elevation of the wake-centre trajectory from the ground, and (iii) flow
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separation (or non-separated sheltering). The variations in the underlying terrain elevation
lead to streamwise pressure gradients and, hence, to streamwise accelerations and deceler-
ations in the flow (without turbines). For example, considering the flow over a single hill,
we have favourable pressure gradient regime on the windward side of the hill and an adverse
pressure gradient regime on the leeward side. It has been shown in the literature that the
pressure gradient can noticeably affect the wake recovery in such a way that wakes recover
faster under favorable pressure gradient and slower under adverse pressure gradient. For
two-dimensional wakes, this phenomenon has been substantiated experimentally (Liu et al.
2002; Thomas and Liu 2004), numerically (Rogers 2002), and theoretically (Shamsoddin
and Porté-Agel 2017b). Shamsoddin and Porté-Agel (2018a) recently demonstrated that the
same trend holds for axisymmetric wakes. Moreover, they developed an analytical model
to account for the effect of the pressure gradient on wake recovery and validated the model
with a LES dataset. In this work, the effect of the pressure gradient is totally decoupled
from the effect of streamline curvature. Therefore, it is shown that pressure gradient, alone,
is responsible for this considerable change in the wake recovery. Another interesting point
about the effect of pressure gradient is that it alters the rate of change of the wake-centre
velocity deficit and wake width in different directions. For instance, as already mentioned,
a favourable pressure gradient regime increases the wake-centre velocity recovery rate, but
it decreases the wake-width growth rate. Bearing in mind that superposition methods do not
consider the pressure gradient effect, these notions and models can be a valuable addition to
the existing common practice.

The second and third aspects, i.e., variable elevation of the wake-centre trajectory and
flow separation (or non-separated sheltering), are intertwined because the flow separation (or
non-separated sheltering) in the leeward side of the hill deflects the wake-centre trajectory
upwards. To acquire a clearer idea of the concept of non-separated sheltering, among others,
see Belcher (1999). In fact, in superposition methods, the wake trajectory is simply shifted
vertically with the same distance as the terrain elevation. Moreover, in these methods, the
models that are used to calculate flow over the topography (without turbines) do not account
for flow separation. These two problems lead to erroneous predictions of wake trajectory
that, in turn, can lead to an inefficient design of wind farms sited on topography.

More recently, Shamsoddin and Porté-Agel (2018b) developed an analytical modelling
framework to model wake flows over two-dimensional hills. The model accounts for the
effects of both the pressure gradient (as discussed above) and the hill-induced streamline
distortion. Moreover, a special treatment is carried out for the behaviour of the wake on the
leeward side of the hill. It is shown that the wake trajectory for a hill of the same height as the
turbine hub-height follows the hill profile fairly closely in the windward side, but it maintains
an almost constant elevation (a horizontal line) downstream of the hilltop. Furthermore, to
show the effect of the hill-induced pressure gradient on the wind-turbine wake recovery from
a more practical point of view, a parametric study of the position of the turbine with respect
to the hill is performed (Fig. 18a, b). The important observation is that, when the turbine
is moved from far upstream towards the hilltop, the wake recovery rate increases up until a
certain distance to the hilltop (region I in Fig. 18a). After this point, if we move the turbine
closer to the hilltop, the recovery rate decreases (region II). This is especially clear when the
turbine is placed at the hilltop, where the wake recovery rate is significantly smaller due to
the adverse pressure gradient on the leeward of the hill.
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Fig. 18 Effect of pressure gradient on the recovery of wind-turbine wakes. Figure reprinted from Shamsoddin
and Porté-Agel (2018b) with the permission of CambridgeUniversity Press. Note thatAPG= adverse pressure
gradient, FPG = favourable pressure gradient. a Schematic of different turbine placements with respect to
the hill. The distance of the turbine to the hilltop is shown on top of the turbine for each placement case. b
Wake-centre velocity recovery for different turbine positions with respect to the hill. The velocity deficit udef
is normalized in two ways: in the left panel, the undisturbed flow speed at hub-height Uh is used, and in the
right panel, the deficit at each point is normalized by the no-wake flow speed of exactly the same point unw

5 Vertical-Axis Wind Turbines

In addition to horizontal-axis wind turbines, vertical-axis wind turbines (VAWTs) are alter-
native devices for wind-energy harvesting. Although these two types of machines have
similarities in many aspects, there are some intrinsic differences between the two, mak-
ing the separate study of VAWTs necessary. In general, VAWTs can be categorized into two
types: the drag-driven type (e.g., the Savonius rotor) and the lift-driven type (e.g., theDarrieus
rotor) (Paraschivoiu 2002). As the tip-speed ratio of drag-driven devices cannot exceed unity,
their maximum power coefficient is much less than their lift-driven counterparts (values of
approximately half the Betz limit have been reached in practice, e.g., Manwell et al. 2010).
The maximum power coefficient of lift-driven VAWTs, however, reaches the Betz limit in
ideal conditions, as is the case with HAWTs (Manwell et al. 2010). Herein, we only consider
the development of lift-driven devices.

The concept of a lift-driven VAWT was first introduced by the patent of Darrieus (1931).
Later in the 1970s and 1980s, the performance of VAWTs was investigated mainly by North
American institutes, including the National Research Council of Canada, NASA Langley
Research Center, and the Sandia National Laboratories (Blackwell et al. 1976; Sheldahl and
Blackwell 1977; Sheldahl et al. 1980; Johnston 1980;Worstell 1981;McNerney 1981). Other
researchers during this time period, mainly using wind-tunnel measurements, investigated

123



F. Porté-Agel et al.

VAWT performance (South and Rangi 1975; Nguyen et al. 1981; Vittecoq and Laneville
1982; Penna and Kuzina 1984; Schienbein 1979; Richards 1987), with the focus of all these
studies mostly on the overall rotor performance (e.g., power and torque) and loading on the
blades. On the other hand, the first measurements of the VAWT wakes can be traced back
to Muraca and Guillotte (1976), Vermeulen et al. (1979), Strickland et al. (1981), Brochier
et al. (1986) and Bergeles et al. (1991). More recently, and especially with the emergence of
the particle-image velocimetry technique, more VAWTwake measurements have been made
both in the near-wake (Battisti et al. 2011; Tescione et al. 2013; Bachant and Wosnik 2015;
Araya and Dabiri 2015) and far-wake (Brochier et al. 1986; Rolin and Porté-Agel 2015; Ryan
et al. 2016; Rolin and Porté-Agel 2018) regions.

Apart from experimental investigations, some analytical models have also been proposed
for the prediction of the VAWT performance. One can categorize these models into two
groups. The first group comprises the streamtube models, which are based on the principle of
conservation of momentum. There are different kinds of such models (single-, double-, and
multiple-streamtube models); however, the double-streamtube model has proven to attract
more attention in the community (e.g., Jafari et al. 2018a, b). By using streamtube models,
one can obtain information about the overall performance of the turbine (e.g., power, torque,
loading on the blades). The second group comprises the vortex models, which are based on
the vorticity equations. Of the different types of these models, one can mention the fixed-
wake (Wilson and Walker 1981) and free-wake (Strickland et al. 1981) types. With vortex
models, unlike the streamtube models, it is also possible to obtain insight into the near-wake
of the turbine. For an in-depth description of these analytical models, the reader is referred
to Paraschivoiu (2002) (Chapters 4 and 6).

Vertical-axis wind turbines have also been investigated with numerical simulations, using
two main approaches to represent the wind turbines. The first approach is to resolve the
blades of the VAWT rotor (i.e., taking into account the geometry of the blade airfoil in the
computational mesh) and the boundary layer around them. This approach, which has been
used for example in Castelli et al. (2011), Li et al. (2013), Marsh et al. (2015), Bremseth and
Duraisamy (2016), Posa et al. (2016), and Ghasemian et al. (2017), is capable of providing
much information about the loading on the blades, the region inside the rotor area and
the near-wake. However, because of its high computational cost, it becomes unpractical
for simulation of the far-wake and, especially, simulation of large wind farms. The second
approach is to model the VAWT rotor using the actuator-type techniques.With this approach,
one can overcome the shortcomings of the first approach, making simulations of VAWTs in
the ABL and in large domains computationally affordable (e.g., Rajagopalan and Fanucci
1985; Rajagopalan et al. 1995; Shen et al. 2009; Shamsoddin and Porté-Agel 2014, 2016;
Hezaveh et al. 2017; Abkar and Dabiri 2017).

In the remainder of this section, we elaborate on some features of VAWTs and their wakes
that are unique to VAWTs and that differentiate them from HAWTs. First, we have a look
at the energetic performance of VAWTs. For this purpose, we consider a typical MW-size
VAWT whose capacity is in the order of 1MW. Such a VAWT has a typical rotor diameter
of around 50 m and a rotor height of around 100m (see Project Éole in Templin and Rangi
1983). Shamsoddin and Porté-Agel (2016) characterized the energetic performance of such
a turbine (operating in the ABL) by calculating the power coefficient of the turbine for more
than 100 different combinations of tip-speed ratios and blade chord lengths (i.e., different
solidities). The optimum combination of solidity (defined as Nc/R, where N is the number
of blades, c is the chord length, and R is the rotor radius) and tip-speed ratio is found to be
0.18 and 4.5, respectively. This combination results in a power coefficient of 0.47.
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Fig. 19 Wake of a VAWT with a tip-speed ratio of 3.85 measured in a water-channel experiment. a Mean
velocity horizontal profiles (normalized by the inflow velocity). b Turbulence intensity profiles. In both figures
the streamwise distance X is normalized by the rotor radius R. Figure reprinted from Brochier et al. (1986)
with the permission of The American Institute of Aeronautics and Astronautics (AIAA)

Another feature of VAWTs is that, unlike HAWTs, their wakes have asymmetries in the
spanwise profiles of both the mean flow speed and the turbulence intensity (see Fig. 19).
Regarding the mean flow speed, it has been demonstrated that the position of the maximum
flow speed point shifts towards the windward side (i.e., the side where the streamwise com-
ponents of the blade velocity and the incoming flow velocity have opposite directions) of
the turbine. This is obviously because on the windward side the magnitude of the relative
flow speed, with respect to the blades, is more than the leeward side (i.e., the side where the
streamwise components of the blade velocity and the incoming flow velocity have the same
direction), and consequently, the magnitude of the exerted force of the blades on the flow is
higher. Concerning the turbulence intensity profile, the observations are less straightforward
to interpret. The horizontal turbulence intensity profile has two local peaks, one on the wind-
ward side and one on the leeward side. In most of the experiments (e.g., Brochier et al. 1986;
Bachant and Wosnik 2015; Posa et al. 2016), it is shown that the leeward peak has a higher
value than the windward one. This was attributed to the stall vortices on the leeward side,
despite the fact that the shear is the highest in the windward side due to the aforementioned
asymmetry in the mean velocity profile. This is, however, in contrast with the measurements
of Rolin and Porté-Agel (2015), where the windward peak was shown to have a higher value;
this can be due to the relatively higher solidity of the model turbine in this experiment (Posa
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et al. 2016). The phenomenon of stall vortices can potentially be captured in numerical sim-
ulations of the blade-resolving type (e.g., Posa et al. 2016). However, as in the actuator-type
simulations the stall (and consequently flow separation from the blades) cannot be captured,
the higher turbulence intensity occurs at the windward side because of the higher shear on
that side. It is also noteworthy that these asymmetries significantly depend on the tip-speed
ratio of the turbine, such that with increasing the tip-speed ratio these asymmetries decrease;
for example, a relatively small asymmetry is reported at tip-speed ratio of 4.5 in Shamsoddin
and Porté-Agel (2016).

The general horizontal asymmetry of the flow field around VAWTs leads to interesting
properties of these kinds of machines. It has been shown that placing two counter-rotating
VAWTs side-by-side increases the total power efficiency of the pair (Dabiri 2011; Zanforlin
and Nishino 2016).

6 Summary

We have reviewed the relevant literature on experimental, computational, and theoretical
studies of the interactions of ABL flow with wind turbines and wind farms. Emphasis has
been placed on the current state of our understanding and ability to model wind-turbine wake
flows and their impact on ABL structure and wind-farm performance. This knowledge is
essential for optimizing the design and control of wind farms.

First, we have focused on the simplest case of the interaction between a stand-alone
horizontal-axis wind turbine and the ABL over homogeneous flat terrain. The structure and
dynamics of the main flow regions (induction, near-wake, and far-wake regions) are dis-
cussed, with emphasis on the role of atmospheric turbulence. The main conclusions can be
summarized as follows:

• The near-wake region, whose structure and dynamics (e.g., tip and hub vortices) are
affected by the geometry and operation of the wind turbine, has a length of about two to
four rotor diameters, depending on the turbulence intensity in the ABL.

• The mean flow velocity in the far-wake region, which depends only on global turbine
performance parameters (mainly CT ) and atmospheric turbulence, can be analytically
modelled using conservation of mass and momentum, together with the assumptions of
a Gaussian distribution of the velocity deficit and a nearly-linear wake expansion.

• Recent attempts have been made to estimate the role of atmospheric turbulence on the
growth rate of the far-wake by using empirical relations as well as theoretical develop-
ments based on the analogy with passive scalar plumes.

• The above-mentioned analytical framework for the far-wakeflowhas been extended to the
case of turbines working under yawed conditions by using conservation of momentum
in both the streamwise and spanwise direction. Experimental and analytical evidence
suggests that yawing can be used as an effective wake mitigation strategy.

• Meandering of the far-wake has been associated with the dynamics of relatively large
(larger than twice the rotor diameter) turbulent eddymotions in theABL. This connection
has been used to develop models for the position of the instantaneous wake centre and
the unsteady loads on downwind turbines.

Next, we have shifted our attention to the more complex case of the interaction between
wind farms and the ABL. In this case, the superposition of multiple wind turbine wakes
and their two-way interaction with the ABL flow can lead to substantial changes in both the
structure of theABL and the energetic efficiency of the farm.Different flow regions have been
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identified and studied for the case of flat homogeneous terrain: wind-farm induction region,
development region, fully-developed region (where the flow is fully adjusted to the wind
farm), and wind-farm wake region. The main conclusions can be summarized as follows:

• The extent of the different wind-farm flow regions is affected by the wind-farm charac-
teristics (e.g., size and layout), as well as the thermal stability of both the surface layer
and the free atmosphere. The latter can trigger standing gravity waves and flow ‘choking’
under subcritical flow conditions.

• Fully-developed wind-farm boundary-layer flow is only achieved after a very long dis-
tance (up to two orders of magnitude of the boundary layer height), which depends on
factors such as free-atmosphere stratification and wind farm layout.

• One-dimensional models have been developed to predict area-averaged flow character-
istics and wind farm performance (power output) in fully-developed wind-farm flows.
These models have been used to parametrize the effects of very large wind farms in
weather and climate models.

• In finite-size wind farms, turbine energetic performance is strongly affected by the wind
direction, which effectively changes the farm layout with respect to the incoming wind.
Analytical models of wake effects in wind farms have been developed based on the
superposition of the aforementioned analytical single-wake models.

• Thermal stability has been shown to have a strong effect on wind-farm performance, as
well as land–atmosphere exchanges of momentum and scalars.

• The non-stationarity of the ABL flow through the diurnal cycle leads to large variations
in wind-farm flows and, consequently, power output. Particularly relevant at night are the
effects of the LLJ and the vertical changes of wind direction associated with the Coriolis
force.

Lastly, we have reviewed two research topics that have benefited from relatively little
research so far: (a) vertical-axis wind turbines (VAWTs), their performance and their wakes;
and (b) topography and its effects on the interaction of wind turbines with the ABL. These
are the main conclusions:

• It is shown that the power coefficient of typical MW-size VAWTs can reach values as
large as 0.47.

• It is shown that VAWT wakes can potentially have significant spanwise asymmetries
in mean velocity and turbulence intensity profiles, which can lead to innovative turbine
placement strategies in VAWT farms to maximize the wind farm efficiency.

• When turbines are sited on topography, the underlying terrain can have significant effects
on both the trajectory and recovery of the wakes. Recent efforts have been made to
quantify and analytically model these effects.

• Pressure gradients in the ABL, induced for example by topography, affect turbine wake
recovery. Specifically, favourable pressure gradients (e.g., on the windward side of a hill)
increase wake recovery, while adverse pressure gradients (e.g., on the leeward side of a
hill) decrease it.

7 Future Perspectives

Despite the remarkable progress made so far in the understanding and modelling of wind-
turbine and wind-farm flows, many research questions remain unanswered or underexplored.
Below, we provide a list of some possible future research directions.
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• Extending the above-described analytical wakemodelling framework to turbulence quan-
tities (e.g., turbulence intensity and turbulent fluxes), so that it can be used to improve
the prediction of both power losses and fatigue loads in wind farms.

• Developing a physics-based ‘theory’ for the superposition of multiple wakes in turbulent
boundary layer flows.

• Further investigating the role of the different scales of atmospheric turbulence on wind
turbine wake structure and dynamics for both stand-alone turbines and wind farms.

• Further understanding the effects of thermal stability on the interactions between the
ABL and wind farms of different sizes and shapes.

• Developing improved, computationally efficientmodels of finite-size wind farms capable
of capturing the two-way coupling and joint evolution of multiple turbine-wake flows
and the overlying ABL flow.

• Developing and validating multi-scale simulation strategies for the prediction of the
entire range of scales of interest in wind-farm aerodynamics. Particularly challenging
is the coupling of coarse-resolution RANS-based weather models with high-resolution
models, such as LES.

• Extending the study andmodelling of topography effects to include complex (multi-scale)
topography and thermal stratification effects.

• Investigating alternativewind-turbine technologies, including for example different types
of VAWTs and multi-rotor (horizontal-axis and vertical-axis) turbines, as well as their
wind farms.

• Developing and testing improved wind-farm control strategies to maximize overall wind-
farmperformanceviawakemitigationmaneuvers, such as yawing and/or downregulation,
applied to selected groups of wind turbines.

• Further investigating and developingmodels for wind-farmwake flows and their effect on
the performance of neighboring wind farms in regions of high wind-energy penetration,
such as the North Sea.

• Further investigating the effect of wind farms on land-atmosphere exchanges, as well as
the potential impact of land-use and climate change on wind-energy potential.

• Designing and performing high-quality wind-tunnel and field experiments to provide fur-
ther physical insight on the flow, and to guide the improvement, calibration and validation
of the aforementioned numerical models.

• Using recent advances in wind-turbine and wind-farm aerodynamics in support of other
wind-energy research areas not covered in this article. These include aerodynamic noise,
structural health, and wind-farm operation aspects such as control, sensing, diagnostics,
monitoring, energy storage, and grid integration. A recent review of these topics is given
byWillis et al. (2018). Another review of long-termmultidisciplinary research challenges
in wind energy is given by van Kuik et al. (2016).
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