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Abstract 

The skeleton of a cricket fast bowler is exposed to a unique combination of gravitational 

and torsional loading in the form of substantial ground reaction forces delivered through 

the front landing foot, and anterior-posterior shear forces mediated by regional muscle 

contractions across the lumbo-pelvic region. The objectives of this study were to 

compare the hip structural characteristics of elite fast bowlers with recreationally-active 

age-matched controls, and to examine unilateral bone properties in fast bowlers. Dual-

energy X-ray absorptiometry (DXA) of the proximal femur was performed in 26 elite 

male fast bowlers and 26 normally-active controls. Hip structural analysis (GE Lunar; 

enCORE version 15.0) determined areal bone mineral density (BMD) of the proximal 

femur, and cross-sectional area (CSA), section modulus (Z), cross-sectional moment of 

inertia (CSMI) and femoral strength index (FSI) at the narrow region of the femoral 

neck. Mean femoral neck and trochanter BMD were greater in fast bowlers than 

controls (p<0.001). All bone geometry properties except for CSMI were superior in fast 

bowlers (p<0.05) following adjustment for height and lean mass. There were no 

asymmetries in BMD or bone geometry when considering leg dominance of the fast 

bowlers (p>0.05). Elite fast bowlers have superior bone characteristics of the proximal 

femur, with results inferring enhanced resistance to axial compression (CSA), and 

bending (Z) forces, and enhanced strength to withstand a fall impact as indicated by 

their higher FSI. No asymmetries in hip bone properties were identified, suggesting that 

both torsional and gravitational loading offer significant osteogenic potential.  
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Introduction 

Bone adapts architecturally to reflect its habitual loading environment [1] and responds 

to a wide range of biochemical and physical stimuli [1, 2]. In particular, the 

musculoskeletal loading sustained during exercise serves as a major osteogenic stimulus 

[3] that is essential for the development of a functionally and mechanically appropriate 

skeleton, the attainment of optimal peak bone mass, and the subsequent maintenance of 

bone strength as a prophylaxis against osteoporosis [4, 5]. This phenomenon is 

comprehensively described in the Mechanostat theory [6], which proposes that when all 

else is equal, individuals that are physically active should possess stronger bones than 

their less active peers.  

 The osteogenic response to loading is site-specific and is reflected through 

differences in bone mass and size between the dominant and non-dominant limbs [7, 8], 

and site-specific bone loss during unilateral limb immobilisation [9]. To date, a large 

number of studies have demonstrated the effectiveness of gravitational loading in 

stimulating bone anabolic responses in various regions of the hip over an individual’s 

lifespan [4, 10]. This is important because the hip, and in particular the femoral neck, is 

the site at which osteoporotic fractures are most devastating and costly [11]. It has been 

proposed that regional muscle forces offer the greatest mechano-stimulus to bone [12]
, 

with studies building on early evidence provided by Rubin et al. [13] that torsional 

loading is a more compelling anabolic stimulus than axial loading in disuse-related bone 

loss.  

 The skeletal loading generated through playing cricket appears to be beneficial 

for bone density at the hip [14] and in particular, fast bowlers appear to be exposed to a 

unique loading environment that is worthy of investigation. Substantial ground reaction 
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forces are transmitted through the landing foot, representing axial gravitational loading, 

and torsional loading is generated through peak transverse plane rotation moments and 

anterior-posterior shear forces across the lumbo-pelvic region [15, 16]. A typical fast 

bowling delivery is initiated with a run-up to the wicket, culminating in the delivery 

stride or bowling action, and ending in the follow-through [17, 18]. Sequentially, the 

delivery stride comprises the back foot contact, front foot contact and ball release 

phases [18]. At front foot contact, bowlers absorb ground reaction forces of between 3.8 

and 9.0 times body mass [15, 17, 19]. On impact, greater mean peak loading rates have been 

documented at the front foot (298 BW·s-1) when compared to the back foot (79 BW·s-1) 

[15]. These forces coincide with lower trunk movements known to produce high 

contralateral facet joint contact forces, and have been posited as a major cause of lower 

back injury in fast bowlers [17-19]. Attenuated forces are transmitted to the lumbo-sacral 

junction via trunk hyperextension, and torsional forces by way of lateral flexion and 

twisting during the delivery stride are also endured [20]. Despite the considerable and 

differential musculoskeletal stresses encountered by fast bowlers, only limited studies 

have investigated the skeletal characteristics of this population, with much of the 

existing work focusing on the biomechanical factors underlying performance and the 

epidemiology of injury [16, 18, 19, 21].  

 To date, only two studies have investigated bone properties in elite fast bowlers 

using dual-energy X-ray absorptiometry (DXA), with both elite fast bowlers [7] and 

cricketers in general [14] possessing greater total-body bone mineral content (BMC) 

compared to controls. Adjusted for age and height, cricketers also demonstrate greater 

bone mineral density (BMD) for the total-body, proximal femur, femoral neck and 

lumbar spine, with no site-specific differences between playing positions [14]. More 
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recently, we have observed greater unilateral differences in the arm BMC of fast 

bowlers compared to controls, alongside greater BMC of the bowling versus the non-

bowling arm [7]. In addition to BMC and BMD, DXA images of the proximal femur can 

be utilised to obtain geometrical measures that are associated with bone strength. Hip 

structural assessment (HSA) provides quantification of bone geometry in the narrow 

regions parallel to thin cross-sectional slices of bone at specific locations throughout the 

proximal femur. This method compares favourably to volumetric qualitative computed 

tomography (QCT) [22] and enables DXA-derived data to be expressed in ways that are 

more mechanically interpretable, such that the geometric properties that underlie the 

prognostic value of BMD measurements can provide deeper insights into bone strength. 

Given the unique loading environment associated with fast bowling [15, 16, 19], the 

characterisation of both total and unilateral femoral bone structure in bowlers would 

provide valuable insights with relation to hip structural characteristics and surrogate 

measures of bone strength. We therefore undertook the study presented here, with the 

specific objectives of: 1) characterising hip geometrical and structural qualities in fast 

bowlers and normally-active controls, and 2) in the fast bowlers, investigate potential 

asymmetry in bone strength between the front (leading in the delivery stride) and back 

(balancing in the delivery stride) leg proximal femur that might be reflective of the 

differential loading endured during the delivery phase. 

  

Methods 

Study design 

The present study was carried out using a cross-sectional research design. 
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Participants 

The participants were twenty-six (n = 26) elite male fast bowlers from a first-class 

county cricket club and twenty-six (n = 26) recreationally-active (< 3 sports-specific 

sessions per week) controls matched for age and ethnicity. The age range of both groups 

was 16 to 36 years. The descriptive characteristics for each group are presented in Table 

1. Written informed consent was obtained prior to completing the study and all 

procedures were carried out in accordance with the Declaration of Helsinki, following 

approval by the University Faculty Research Ethics Committee.  

 

Basic anthropometry and body composition 

Stature was measured using a stadiometer (SECA Alpha, Birmingham, UK) and 

recorded to the nearest 0.1 cm. Body mass was measured using calibrated electronic 

scales (SECA Alpha 770, Birmingham, UK) and recorded to the nearest 0.1 kg. Body 

mass index (BMI) was calculated as mass/height2. Shoes and jewellery were removed 

and lightweight clothing was worn for all physical measurements. Participants received 

one total-body and one total-hip DXA scan (GE Lunar iDXA, GE Healthcare, UK) 

during the cricket preseason (January) in a rested (refrained from intensive exercise in 

the preceding 12 hours), fasted and euhydrated state (urine osmolality <700 

mOsmol·kg-1) [23] in line with established recommendations [24]. For the total-body scan, 

participants were instructed to lie in a supine position on the scanning table, with arms 

to the side and ankles supported with the Lunar ankle strap (0.5 cm space between the 

ankles). Total-body fat mass, lean tissue mass (LTM), BMC and percentage tissue fat 

mass (%TFM) values were ascertained. 
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Bone mineral density measurements 

Areal BMD was evaluated using DXA (Lunar iDXA, enCORE software, version 15.0, 

GE Healthcare, UK). Age and sex-specific United Kingdom reference data were used to 

calculate BMD Z-scores. Measurements were performed at the left and right proximal 

femur and the regions of interest were the femoral neck and trochanter.  

 

Hip structural assessment 

Structural geometry of the left and right proximal femur was determined from the 

acquired scans. These scans were analysed for bone structure and cross-sectional 

geometry by utilising the GE Lunar Advanced Hip Structural Analysis (HSA) 

programme. This was originally developed by Beck et al. [25] and based on the principles 

first described by Martin and Burr [26], which state that mass in a pixel value calibrated 

in g/cm2 of hydroxyapatite can be converted to linear thickness in cm by dividing by the 

effective mineral density of fully mineralised adult bone. The enCORE HSA software 

(version 15.0) provides a line of pixels traversing the bone axis which gives a projection 

of the surface area of bone in the cross-section. We report the results from the narrow 

neck (NN) region, located across the femoral neck at its narrowest point. At this 

analysis region, several measurement outcomes were obtained.  

 Cross-sectional area (CSA in cm2; exclusive of soft tissue spaces), cross-

sectional moment of inertia (CSMI, in cm4), section modulus (Z) and femoral strength 

index (FSI) values were assessed using HSA. CSA is an index of strength in pure 

compression along the bone axis. CSMI is a component of bending strength used in 

engineering calculations. It takes into account the strength improvement resulting from 

bone that is placed farther outward from the bone axis. Section modulus is an index of 
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strength in pure bending and is derived from the CSMI and the maximum distance from 

the profile centre of mass to the medial or lateral cortical margin (y) neutral axis to the 

outer bone surface in the plane of bending (y). FSI is a rough two-dimensional 

engineering estimate of strength relative to a fall impacting on the greater trochanter. It 

incorporates some subject information (height and body mass) and some geometry 

computed by the HSA method (y, CSMI, CSA, neck-shaft angle, hip axis length etc.) 

and is based on the work of Yoshikawa et al. [27]. 

The observed in-vitro coefficient of variation was low at less than 0.5% for the 

regular quality control scans of the Lunar calibration phantom. The in-vivo precision 

value (coefficient of variation; %CV) for total hip BMD in our laboratory is 0.6% [28]. 

DXA precision error for Z, CSMI and CSA are 4.5%, 3.7% and 3.1% respectively [29]. 

Scan analysis was performed by the same trained operator using the Lunar enCORE 

software (version 15.0, GE Healthcare, UK).  

 

Statistical analyses 

Comparisons of descriptive results between groups were undertaken using two-tailed t-

tests, as were comparisons of unilateral bone properties in fast bowlers, to investigate 

any differences between the front (leading) and back (trailing) hips in the delivery 

stride. Cohen’s d effect sizes were calculated and classified using the following 

threshold values: 0.2 = small, 0.5 = moderate, 0.8 = large [30].  

 Linear multivariate analyses were conducted to compare unadjusted and 

adjusted (for height and lean mass) bone properties between groups. Significant main 

effects were explored using Bonferroni post-hoc tests. Effect size was quantified using 

partial eta squared (
2
p ) and classified using the following criteria: 0.01 = small, 0.06 = 
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moderate, 0.14 = large [30]. Pearson’s correlation analyses were used to investigate 

relationships between anthropometric and descriptive characteristics and hip geometry 

variables. Covariates were selected based on theoretical and actual relationships to bone 

density and structural variables. These statistical procedures were carried out using the 

SPSS software package (version 22.0, IBM Corp., Armonk, NY). 

 To gain a deeper understanding of the unadjusted differences between groups, 

binomial logistic regression analysis was used to generate several models to distinguish 

between cricketers and non-cricketers. These models were refined using a backward 

stepwise approach, with variables having p > 0.1 excluded. Outputs from the logistic 

regression models were fed into a receiver operating characteristic (ROC) model so that 

respective sensitivity and specificity scores could be calculated. These procedures were 

completed using ‘in-house’ algorithms written in ‘R’ (open source statistical software) 

and Matlab (Mathworks, Natick, USA). The level of significance for all analyses was 

set at p ≤ 0.05.  

 

Results 

Descriptive characteristics 

Table 1 presents the descriptive comparisons between sample groups. Fast bowlers were 

significantly taller, heavier and possessed greater LTM and BMC than controls, 

demonstrating large effects. Although strictly non-significant, there was a statistical 

trend (p = 0.056) towards reduced %TFM in the fast bowlers, which was matched by a 

moderate effect size. There were no differences in age, fat mass or BMI between the 

two groups (i.e. only small to trivial effects). A logistic regression model constructed 

using only the anthropometric variables: body fat percentage (b = -181.9, p = 0.003); 
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total fat mass (b = 6.897, p = 0.008); total lean mass (b = -7.278, p = 0.009); and total 

BMC (b = 0.010, p = 0.003); distinguished the fast bowlers from the controls with a 

high degree of accuracy (sensitivity = 92.3%, specificity = 92.3%; p < 0.001), as 

depicted in Figure 1.  

***insert Table 1 about here*** 

***insert Fig. 1 about here*** 

 

Relationships between covariates and bone variables 

In the fast bowling group, height was significantly correlated with CSMI (r = 0.68, p < 

0.001) and section modulus (Z values) (r = 0.49, p = 0.011). Body mass was correlated 

with CSMI (r = 0.45, p = 0.022), CSA (r = 0.54, p = 0.005), and Z values (r = 0.43, p = 

0.028). BMI was correlated with BMD at the femoral neck (r = 0.40, p = 0.042) and the 

trochanter (r = 0.48, p = 0.013). %TFM was correlated with BMD at the femoral neck (r 

= 0.42, p = 0.034). Fat mass was correlated with femoral neck BMD and CSA (both r = 

0.41, p = 0.036). Lean mass was associated with CSMI (r = 0.46, p = 0.019). 

In controls, height was associated with FSI (r = -0.39, p = 0.048) and CSMI (r = 

0.49, p = 0.010). Body mass was correlated with BMD at the femoral neck (r = 0.42, p 

= 0.033), CSMI (r = 0.43, p = 0.029) and Z values (r = 0.41, p = 0.036). BMC was 

associated with BMD at the femoral neck (r = 0.40, p = 0.044), CSA (r = 0.61, p = 

0.001) and Z values (r = 0.46, p = 0.017). No other significant associations were 

observed in either group.  

 

Bone density and geometrical properties 
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Unadjusted and height and lean mass-adjusted data are given in Table 2. With respect to 

the unadjusted data, the fast bowlers had greater BMD at the femoral neck and 

trochanter compared to controls. Resistance to axial loads, as indicated by CSA, was 

also greater in fast bowlers, as were derived Z values. Resistance to bending forces in 

the form of CSMI was greater in fast bowlers, in addition to FSI. Large effect sizes were 

noted for all unadjusted comparisons.  

***insert Table 2 about here*** 

 

After adjusting for height and lean mass, significantly greater BMD remained at 

the femoral neck and trochanter in fast bowlers (Table 2). CSA and Z values were also 

greater in fast bowlers, with comparisons supported by large and moderate effect sizes, 

respectively. However, no significant difference was noted in CSMI, and this was 

corroborated by a small effect size. 

A second logistic regression model was created using just the unadjusted hip 

geometry variable ‘femoral neck BMD’ (b = 8.479, p < 0.001) as a predictor. Whilst this 

model did not distinguish between the cricketers and non-cricketers as well as the model 

generated using the anthropometric characteristics, it was still able to differentiate 

between the two groups with a high degree of accuracy (sensitivity = 80.8%, specificity 

= 84.6%; p < 0.001) as illustrated in Figure 2.  

***insert Fig. 2 about here*** 

 

Unilateral bone properties 

When comparing the hip structural geometry of fast bowlers between the front (leading) 

and back (trailing) femur in the delivery stride, no significant differences were found 
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(Table 3). Greater FSI was observed at the back proximal femur, which despite not 

reaching statistical significance, yielded a small effect size. All other comparisons were 

non-significant and comprised trivial effects.  

***insert Table 3 here*** 

 

Discussion 

To our knowledge, this is the first study of proximal femur bone geometry in elite 

cricket fast bowlers and the first to explore surrogates of unilateral bone strength in 

relation to gravitational, axial and torsional loading. The key findings were that elite fast 

bowlers exhibited greater hip BMD and altered bone geometry compared with the 

controls, a finding that was consistent for all bone properties except CSMI following 

adjustment for height and lean mass. Indeed, such was the magnitude of this effect that 

we could distinguish with accuracy >80% between cricketers and non-cricketers, using 

unadjusted femoral neck BMD as the sole variable (Fig. 2). This indicates that the hip 

structural geometry of the fast bowlers observed in this study was profoundly different 

from the age-matched control group. Whilst the controls were representative of 

recreationally-active young adults, their hip bones would not have been exposed to the 

unique stresses and strains associated with first-class cricket, and fast bowling in 

particular. As such, our findings support those of previous research [14], and suggest that 

the observed differences in bone structure, density and geometry may be due to 

modelling brought about by the specific stresses associated with fast bowling.  

 Bone is reflective of its habitual loading environment, and exposure to forces of 

sufficient magnitude, frequency and duration will instigate an osteogenic response. Our 

findings are consistent with previous studies of athletes and controls exploring DXA-



13 
 

derived BMD and HSA parameters, both in our laboratory [31] and elsewhere [14]. In the 

present study the fast bowlers demonstrated greater resistance to axial loads (both 

adjusted and non-adjusted CSA) and bending forces in the form of Z. Cumulatively, the 

superior bone status of the fast bowlers would suggest that these athletes may be at a 

lower risk for osteoporosis in later life, through an optimisation of peak bone mass 

during young adulthood. FSI is an index which accounts for age, sex, body mass, height 

and BMD, and the lower FSI observed in controls would indicate that fast bowlers may 

be more resilient to hip fracture, provided that these benefits are maintained into later 

adulthood [31]. As such, our findings may be of relevance to the osteogenic potential of 

the unique loading conditions in fast bowling and to ongoing concerns regarding the 

aetiology of increased injury risk in these athletes. 

An important finding was the absence of bilateral differences in proximal femur 

bone properties, despite the differential loading conditions between the front and back 

leg during the delivery stride, as evidenced by force platform data [15]. Substantial 

gravitational forces are generated to the front limb during the fast bowling action and 

there are also large forces associated with rapid deceleration, with anterior-posterior 

braking forces of around two times body mass [17]. Our findings may be indicative of 

equivalent osteogenic loading between the leading and trailing hips, and future research 

using biomechanical and three-dimensional geometry data would enable this to be 

explored further. 

Considerable evidence is available to demonstrate the osteogenic effects of axial 

[32, 33] and gravitational loading [31]. Specific to fast bowling, peak vertical ground 

reaction forces have been reported as 6.7 times body mass [16]. To our knowledge, this 

study is the first to report elevated surrogate measures of hip bone strength in these 
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athletes. Evidence of the effects of muscle torsional forces on bone has been 

documented using animal models [13] and in studies of the unilateral limbs in tennis and 

baseball players [12, 34]. The muscle torsional forces experienced during fast bowling 

occur in the lumbo-pelvic region, with significant flexion and rotation, as well as 

engagement of the hip extensor muscles to maximise ball release speed [35]. The finding 

that bone properties were similar between the leading and trailing hip would suggest 

that both types of loading conditions are likely to serve as bone anabolic stimuli, thus 

representing a practically useful avenue for the design of exercise interventions to 

promote bone strength [32, 33]. 

 

Conclusions 

The findings of this study demonstrate profound differences in hip structure, density and 

geometry between fast bowlers and recreationally-active controls. Fast bowlers appear 

to have superior resistance to axial loads and bending forces at the proximal femur, 

allied to greater indices of bone strength (FSI). Importantly, no asymmetries in proximal 

femur bone properties were identified, suggesting that both gravitational and torsional 

loading provide similar and positive osteogenic potential. These findings may be 

transferrable to the design of exercise interventions with the aim of promoting bone 

health, in the form of weight-bearing exercises and those that develop muscle torsional 

strength.  
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Table 1. Descriptive characteristics of elite male fast bowlers and controls.  

 

 Variable  Controls (n = 26) Fast Bowlers (n = 26) P value Cohen’s d 

Age (years) 24.3 ± 4.2 22.4 ± 5.7 0.186 0.38 

Height (cm) 178.3 ± 7.6 186.7 ± 5.0 <0.001 1.31 

Body mass (kg) 77.2 ± 8.8 86.7 ± 5.9 <0.001 1.27 

BMI (kg/m2) 24.3 ± 2.4 25.1 ± 1.9 0.170 0.37 

Fat mass (kg) 15.6 ± 5.5 15.3 ± 2.9 0.815 0.07 

LTM (kg) 57.8 ± 5.9 67.6 ± 4.3 <0.001 1.75 

%TFM 20.9 ± 6.0 18.4 ± 2.8 0.056 0.53 

BMC (g) 3183 ± 356 3888 ± 338 <0.001 2.03 

 

Data presented as mean ± SD 

 

BMC bone mineral content; BMI body mass index; LTM lean tissue mass; %TFM 

percentage tissue fat mass  
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Table 2. Comparison of unadjusted and adjusted (for height and lean mass) mean areal 

bone mineral density and geometry measurements at the narrow neck of the proximal 

femur in elite male fast bowlers and controls. 

 Variable  Controls (n = 26) Fast Bowlers (n = 26) P value 2
p  

Unadjusted     

Femoral neck (g/cm2) 1.715 ± 0.232 2.138 ± 0.185 <0.001 0.51

Trochanter (g/cm2) 1.469 ± 0.219 1.811 ± 0.161 <0.001 0.45

CSA (mm2) 304.3 ± 46.2 387.9 ± 39.8 <0.001 0.50

CSMI (mm4) 28495 ± 6844 37525 ± 8401 <0.001 0.27

Section Modulus (cm3) 1513 ± 294 1944 ± 292 <0.001 0.36

FSI 2.56 ± 0.63 3.16 ± 0.79 0.004 0.16

Adjusted     

Femoral neck (g/cm2) 1.750 ± 0.224 2.104 ± 0.187 <0.001 0.43

Trochanter (g/cm2) 1.483 ± 0.219 1.798 ± 0.159 <0.001 0.41

CSA (mm2) 321.9 ± 42.4 370.2 ± 36.5 <0.001 0.28

CSMI (mm4) 32167 ± 6147 33853 ± 6645 0.339 0.02

Section Modulus (cm3) 1633 ± 273 1824 ± 256 0.012 0.12

 

Data presented as mean ± SD 

 

CSA cross-sectional area, CSMI cross-sectional moment of inertia, FSI femoral strength 

index 
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Table 3. Comparison of hip structural analysis variables between the front (leading) and 

back (trailing) proximal femur in elite fast bowlers (n = 26).  

 

 Variable  Front (Leading) Back (Trailing) P value Cohen’s 

d 

Femoral neck (g/cm2) 1.431 ± 0.133 1.414 ± 0.120 0.154 0.13 

Trochanter (g/cm2) 1.205 ± 0.099 1.209 ± 0.117 0.638 0.04 

CSA (mm2) 257.6 ± 26.3 259.8 ± 29.9 0.448 0.08 

CSMI (mm4) 24891 ± 5511 25236 ± 6021 0.382 0.06 

Section Modulus (cm3) 1287.2 ± 194.2 1309.5 ± 215.7 0.270 0.11 

FSI 2.03 ± 0.63 2.25 ± 0.70 0.191 0.33 

 

Data presented as mean ± SD 

 

CSA cross-sectional area, CSMI cross-sectional moment of inertia, FSI femoral strength 

index 
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Figure Legend 

 

Fig. 1 Plot of the logit and the probability of being a cricketer for the first logistic 

regression model, derived from the anthropometric variables only (age, height, weight, 

BMI, %TFM, total fat mass, LTM, and BMC). 

 

Fig. 2 Plot of the logit and the probability of being a cricketer for the second logistic 

regression model, using femoral neck BMD as the sole predictor. 

 

 

 


