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Abstract

We evaluate the impact of denoising and Metal Artefact Reduction (MAR)

on 3D object segmentation and classification in low-resolution, cluttered dual-

energy Computed Tomography (CT). To this end, we present a novel 3D materials-

based segmentation technique based on the Dual-Energy Index (DEI) to auto-

matically generate subvolumes for classification. Subvolume classification is

performed using an extension of Extremely Randomised Clustering (ERC) for-

est codebooks, constructed using dense feature-point sampling and multiscale

Density Histogram (DH) descriptors. Within this experimental framework, we

evaluate the impact on classification accuracy and computational expense of pre-

processing by intensity thresholding, Non-Local Means (NLM) filtering, Linear

Interpolation-based MAR (LIMar) and Distance-Driven MAR (DDMar) in the

domain of 3D baggage security screening. We demonstrate that basic NLM

filtering, although removing fewer artefacts, produces state-of-the-art classifica-

tion results comparable to the more complex DDMar but at a significant reduc-

tion in computational cost - bringing into question the importance (in terms of

automated CT analysis) of computationally expensive artefact reduction tech-

niques. Overall, it was found that the use of MAR pre-processing approaches

produced only a marginal improvement in classification performance (< 1%) at

considerable additional computational cost (> 10×) when compared to NLM

pre-processing.
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1. Introduction

The use of 3D X-ray Computed Tomography (CT) has seen a massive surge

in popularity in recent years, beyond the traditional domain of medical imag-

ing. Current industrial applications of CT range from micro-CT for non-invasive

imaging of wood anatomy to automated baggage and parcel screening within

the aviation security infrastructure [1, 2, 3]. The use of Dual-energy Computed

Tomography (DECT), whereby objects are scanned at two distinct energy levels,

has been especially widespread. DECT provides an effective means for perform-

ing materials-based discrimination of objects and has thus been used for a vari-

ety of tasks such as the automated detection of explosives in baggage-screening

[4, 5] and mineral and rock characterisation in Non-Destructive Testing (NDT)

applications in the geoscience domain [6, 7]. In this work, we consider the dual-

energy baggage-CT imagery obtained in the aviation security screening domain.

The main non-object recognition based objective of dual-energy baggage-CT

scanners [5] , combined with the demand for throughput in the aviation-security

domain , lead to compromises in image quality in terms of noise, artefacts

and voxel resolutions [5, 3]. While medical-CT imagery typically presents with

sub-millimetre isotropic voxel resolutions [8, 9] and relatively low quantities of

background clutter, baggage-CT data contains dense collections of man-made

objects scanned at low millimetre scale, anisotropic resolutions with high levels

of noise and metal streaking artefacts [10, 3]. This characteristically complex

nature of security-screening CT imagery has complicated the implementation of

traditional 3D object segmentation and classification techniques in this domain

[11, 2, 12].

Image noise and metal streaking artefacts in particular, have been high-

lighted as the predominant factors limiting the efficacy of object classification

and segmentation techniques in such complex volumetric imagery. Megherbi

et al. [11] investigated the effectiveness of classical medical-segmentation tech-

niques when applied directly to low-quality baggage-CT scans. Successful seg-

mentation is shown to be dependent on careful parameter tuning. Furthermore,

even after parameter optimisation, the effects of image noise, metal streak-

ing artefacts and background clutter result in significantly poorer segmentation

than those observed in the medical domain. Although several recent studies

have demonstrated successful, unsupervised 3D object segmentation in clut-

tered baggage-CT data [13, 14, 15], these were performed using medical-grade

CT imagery. Despite high near-isotropic voxel resolutions and relatively low
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levels of noise and artefacts, each of the studies again cited metal streaking

artefacts as limiting factor on performance.

Figure 1: Baggage-CT scans illustrating poor image quality, low resolution, artefacts
and clutter (obtained on a Reveal CT80-DR baggage scanner).

Owing to these limitations in the state-of-the-art in unsupervised 3D object

segmentation techniques for low-resolution, complex volumetric imagery, prior

classification studies in this domain have relied largely on the manual segmen-

tation of images [16, 17, 2, 12, 10].

Megherbi et al. [18, 17] present a comparison of classifier-based approaches

using volumetric shape characteristics for the classification of pre-segmented

objects in cluttered volumetric baggage-CT imagery. The performance of com-

binations of three shaped-based feature descriptors (3D Zernike descriptors [19];

the Histogram-of-Shape Index (HSI) [20] and a combination of both) and five

classifiers (Support Vector Machines (SVM) [21]; neural networks [22]; decision

trees [23]; boosted decision trees [24] and random forests [24]) are considered for

the classification of pre-segmented bottles. Correct classification rates in excess

of 98.0% for pre-segmented bottles are presented using the HSI descriptor in

conjunction with an SVM or random forest classifier. The study, however, uses

a limited data-set and does not consider the effects of image noise or artefacts.

Extending upon their earlier work [25], Flitton et al. [12] present an exper-

imental comparison to investigate the suitability of the Bag-of-Words (BoW)

model [26] for the detection of threat items in both manually-segmented as

well as unsegmented baggage-CT imagery. Combinations of four 3D interest-

point descriptors (Density Histograms (DH) [25]; Density Gradient Histograms

(DGH) [25]; the 3D Scale-Invariant Feature Transform (SIFT) [16] and the 3D

Rotationally-Invariant Feature Transform (RIFT) [27]) and three codebook as-

signment methodologies (hard, kernel and uncertainty) are considered. In the

classification of handguns and bottles in manually segmented subvolumes, op-
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timal correct classification rates (∼ 89% for bottles; ∼ 97% for handguns) are

obtained using an uncertainty assignment protocol [28] in conjunction with sim-

ple density-based descriptors [25] sampled at 3D SIFT [16] keypoint locations.

The impact of the classifier type, the clustering method and the keypoint de-

tection protocol are, however, not considered. Further experimentation, using

unsegmented whole volumes, results in a significant decline in performance, par-

ticularly in terms of false-positive rates (∼ 16% for whole volumes vs. < 3%

for subvolumes). Poor resolution, image noise and metal-streaking artefacts

(characteristic to baggage-CT imagery) are again shown to negatively impact

the efficacy of the 3D descriptors and subsequently classification performance in

both the segmented and unsegmented volumes. Image denoising and metal arte-

fact reduction are not considered. Despite the high false-positive rates for the

whole volumes, this work currently represents the only fully-automated (end-

to-end) 3D object classification approach for low-quality baggage-CT imagery

[12].

Flitton et al. [2] present a novel 3D extension to the hierarchical visual

cortex model for 3D object classification in pre-segmented baggage-CT sub-

volumes. The approach outperforms a traditional BoW approach with correct

classification rates in excess of 95% and low false-positive rates. Classification

performance is again hindered by image noise, metal streaking artefacts and

clutter (denoising and metal artefact reduction are not considered). Further-

more, an extremely high computational cost is associated with the construction

of the cortex model.

With the exception of the whole-volume approach of Flitton et al. [12],

the aforementioned techniques all operate on manually segmented subvolumes

and none of them consider image denoising and/or metal artefact reduction.

Nonetheless, prior studies investigating noise and Metal Artefact Reduction

(MAR) in low-resolution, cluttered CT imagery have demonstrated improved

image quality, despite the complex nature of the data [10, 29, 30, 3]. Although

Mouton et al. [10, 29] have presented a novel 3D SIFT-based [16] quantita-

tive performance evaluation metric, which gives an indication of the impact

of denoising/MAR on 3D object classification, a true system-level evaluation,

whereby the impact on overall system performance (e.g. classification accuracy)

is quantified, has not previously been performed.

Given the challenges of complex CT imagery, pre-classification denoising and

MAR would initially appear to be a natural choice in any end-to-end processing

pipeline. Here, we examine the relevance of this assumption, given its computa-
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Figure 2: An overview of the joint 3D object segmentation and classification processing
pipeline used to evaluate the impact of the denoising and MAR pre-processing.

tional overhead and impact on overall classification performance. To these ends

we present novel methodologies for the segmentation and classification of 3D

objects in complex dual-energy CT imagery and evaluate the impact of four de-

noising and artefact reduction techniques on overall performance. This work is

the first to perform an experimental evaluation of this nature on complex dual-

energy baggage-CT imagery, whereby the relevance of denoising and artefact

reduction are addressed.

Here, we address these limitations in prior work in the following ways. First,

we present a dual-energy-based segmentation technique to automatically gen-

erate subvolumes for classification (Section 3). The approach is based on three

novel contributions: 1) a materials-based coarse segmentation technique us-

ing the Dual-Energy Index (DEI) [31] and connected component analysis; 2)

a random-forest-based model for measuring the quality of individual object

segments, which is used to guide the segmentation process and 3) an effi-

cient segmentation-refinement procedure for splitting fused objects. Secondly,

we present a codebook 3D object classification approach based on Extremely

Randomised Clustering (ERC) forests [32], a dense feature sampling strategy

[33] and an Support Vector Machine (SVM) classifier [34] (Section 4). Fi-

nally, we perform an overall system-level performance evaluation of four de-

noising/artefact reduction techniques: 1) simple intensity thresholding; 2) Non-

Local Means (NLM) filtering [35, 36]; 3) Linear Interpolation MAR (LIMar) [37]

and 3) Distance-Driven MAR (DDMar) [30] (Section 5). The overall outcome

of this work is to show the efficacy of such denoising and artefact reduction

techniques within the context of a fully automated, yet computationally effi-

cient joint 3D object segmentation and classification processing pipeline for low-

quality, complex baggage-CT imagery. An overview of this processing pipeline

is shown in Figure 2 within which each the operations of denoising/MAR, seg-
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mentation and classification are each associated to corresponding section of this

study (Figure 2 / Sections 2 - 4).

2. Noise and Artefact Reduction

We extend the prior work of Mouton et al. [10, 29], where the impact

of denoising/MAR on object class recognition is quantified using the ratio of

object to noise 3D SIFT interest points, by performing a classification-task-

driven performance evaluation of four denoising and MAR techniques.

A comprehensive review and evaluation of noise and artefact reduction in

low-quality cluttered CT imagery has been presented in [29, 10, 3, 30]. Most

notably, it is shown that the superiority of the state-of-the-art techniques from

the medical literature, over simpler techniques is reduced as a result of the com-

plexity and poor quality of non-medical CT imagery. It is thus not obvious if

the performance gains (if any) of such techniques merit their additional com-

putational overhead. We thus compare the classification-impact of four noise

and artefact reduction techniques (of varying complexities): 1) simple intensity

thresholding; 2) Non-Local Means (NLM) filtering [35, 36]; 3) MAR by linear

interpolation [37] (denoted LIMar) and 4) Distance-Driven MAR [30] (denoted

DDMar). Note that DDMar was denoted Mouβ in the original study [30]. Al-

though significant advancement within MAR techniques continue, recent devel-

opments continue to focus on the medical domain [38, 39, 40] whereas extensive

comparative experimental studies [3] have already clearly identified the discrete

and varied challenges of baggage-CT when compared to the medical domain.

Furthermore, MAR approaches targeting the baggage-CT domain consistently

show superior performance when compared to leading medical domain MAR

approaches [10, 30, 3]. For a further overview of work in this area the reader is

directed to the recent reviews of [41, 42].

Denoising by NLM filtering involves computing the weighted mean of all

points whose Gaussian neighbourhood is similar to the neighbourhood of the

current pixel [36]. The NLM algorithm (in its original form) is computationally

demanding, making it ill-suited for practical applications [43, 44]. We thus use

the linear-complexity NLM implementation of Mahmoudi and Sapiro [43], to

optimise computational efficiency and reduce processing times. NLM filtering

is accelerated by pre-classifying neighbourhoods using the mean neighbourhood

intensities and local gradients as measures of similarity (i.e. by computing their

responses to a mean intensity-based filter and a local gradient-based filter).
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The technique is shown to reduce the quadratic complexity of the original NLM

algorithm to a linear complexity.

DDMar [30] is a sinogram completion-based MAR approach [3] that imposes

a weighted limit on the intensities of the MAR-corrected pixels where weights are

based on the spatial locations of the pixels relative to the metal objects within

the image. In particular, pixels falling within the straight-line regions connecting

multiple metal objects are subjected to less intensive intensity-limiting, thereby

compensating for the characteristic dark bands occurring in these regions [3].

These filtering and MAR methods are applied on a per-slice basis.

3. 3D Object Segmentation

In prior work [25, 2, 45], 3D object classification has been performed on

manually generated subvolumes, containing at most a single object of interest.

To address this, we present a dual-energy based unsupervised 3D object seg-

mentation technique. In a related study [46], the proposed approach has demon-

strated comparable performance to the state-of-the-art Isoperimetric Distance

Tree (IDT) technique [15] at significant reduction in computational cost. In

view of the high classification rates achieved using such volumes (> 98% [45]),

the output label maps generated using the proposed segmentation method, are

used to create a set of single-object subvolumes for each given input volume.

These subvolumes are then passed to the chosen classifier.

Dual-Energy CT (DECT): Conventional, single-energy CT scanners pro-

duce reconstructions representative of the Linear Attenuation Coefficients (LAC)

of the object under investigation such that voxel intensities are dependent on

the LAC of the scanned object [47]. It is thus difficult to distinguish between

materials that share similar LAC. In contrast, DECT, whereby attenuation data

is captured using two distinct X-ray spectra, offers a means for characterising

the chemical composition (e.g. atomic number and/or electron density) of the

scan based on its response under these different spectral conditions. The phys-

ical basis of DECT relies on the energy dependence of the interaction of X-ray

photons with matter. Within a photon energy range of approximately 30 keV

to 200 keV, these interactions are known to be dominated by the photoelectric

effect and Compton scattering [48]. Dual-energy decomposition involves de-

termining the Compton scatter and the photoelectric absorption coefficients of

the material from the measured high and low-energy projections. Decomposed

dual-energy data may subsequently be used to compute effective atomic num-
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bers and electron densities (this is the basis for traditional explosives detection

systems in aviation security-screening [5, 4]).

DECT techniques typically fall into one of three categories [49]: 1) post-

reconstruction techniques; 2) pre-reconstruction techniques and 3) iterative-

reconstruction techniques. Pre-reconstruction [50] and iterative reconstruction

[51] techniques are concerned with solving the material decomposition problem

and determining the effective atomic number and electron density images. While

a variety of DECT-decomposition techniques exist (e.g. direct approximation

[48]; iso-transmission lines [52]), they typically require access to raw projection

data and rely on a physical calibration procedure [50]. A more rudimentary

estimation of the chemical characteristics of a scan may be obtained via post-

reconstruction (or image-based) DECT techniques. Post-reconstruction DECT

does not require a calibration procedure or the availability of raw-data. The

Dual-Energy Index (DEI) [31] is a post-reconstruction DECT measure that

represents an estimate of the effective atomic numbers of the materials in a

scan. For a material within air (i.e. not dissolved in water) the DEI is given by:

DEI =
xL − xH

xL + xH + 2000
(1)

where xL and xH are the pixel values, in Hounsfield Units (HU), for the

low and high-energy scans respectively [31]. In contrast to the true effective

atomic number [4], the DEI does not rely on the photoelectric cross-section

characteristics of the material (which are not precisely known) [31].

We generate initial coarse segmentations using the DEI, simple thresholding

operations and connected component analysis. More particularly, based on the

assumption that different materials in a scan are relatively well separated by

their DEI, material-specific images are generated by thresholding:

Iτi =

1 if τi−1 ≤ Idei ≤ τi
0 otherwise

i = 1, . . . , Nτ (2)

where Idei is the DEI image and the number of thresholds Nτ is a user

specified parameter. Connected component analysis [53] is then performed on

each of the Nτ thresholded images. Those connected components larger than a

predefined minimum object size are assigned individual labels and represent the

image foreground (or coarse segmentation) to be passed to the segmentation-
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refinement algorithm.

The quality of the individual components of the coarse segmentations are de-

termined using a random-forest-based evaluation metric (denoted the Random

Forest Score (RFS)), which is trained to recognise high-quality, single-object

segments. Each foreground object in the coarse segmentation is characterised

by a 42D descriptor comprising feature attributes falling into one of five cate-

gories [54]: 1) unweighted geometric features (quantifying the size and regularity

of the segmentation); 2) weighted geometric features (locally emphasising the

geometric features when intensity values are similar to each other); 3) intensity

features (measuring absolute intensity and intensity distributions within seg-

mentations); 4) gradient features and 5) ratio features (computed as ratios of

previously computed features). Individual trees in the random forest are con-

structed in a top-down recursive manner using a simple thresholding function

as the node split function for all internal nodes:

f(vi, θj) =

0 vi < θj

1 otherwise
(3)

where vi, i = 1, . . . , D is a single feature attribute selected from aD-dimensional

descriptor vector v ∈ RD and θj is a scalar valued threshold (D = 42). The

optimality criterion used for node splitting is the classical Information Gain

(IG) [55]. Randomness is injected into the trees via random node optimisation,

whereby a random subset of the available node test parameter values is con-

sidered at each node. Trees are grown to a maximum depth D and leaf nodes

are generated if the IG falls below a minimum threshold IGmin. The RFS

of a given segmentation is computed by averaging the corresponding posterior

probabilities of each of the leaf nodes reached in the forest:

RFS = p(c|v) =
1

T

T∑
t=1

pt(c|v) (4)

where T is the number of trees in the forest; p(c|v) is the estimated con-

ditional probability that a given test point v belongs to the class c and c is a

discrete class label (i.e. (0, 1)→ (bad,good)).

The RFS is computed for each component (or object) in a given coarse

segmentation. Those components yielding an RFS below a given threshold τRFS

are considered to be composed of multiple objects and are partitioned at the
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estimated intersection (or touching) points of the multiple objects comprising

that segment. These points are found by detecting the perimeter voxels of the

original object that are likely to be common to two objects. Non-zero (i.e.

object) voxels are assumed to lie on the perimeter of the object if they are

connected to at least one zero (i.e. background) voxel. The assumption is

made that those voxels corresponding to the intersections of multiple objects

will be surrounded by higher numbers of object voxels compared to regular

(non-intersection) perimeter points [13]. If the total number of object voxels

in a predefined local cubic neighbourhood (11 × 11 × 11) of a given perimeter

voxel is greater than a threshold, τHP , then that perimeter voxel is considered

to be an intersection point [13]. A Connected Component Analysis (CCA) [53]

is performed on a mask obtained by removal (i.e. setting to zero) of these so-

called hot points. The two connected components returning the highest RFS

(computed with the hot-points reinserted) are retained. When CCA results in

only a single connected component, morphological dilation of the zeroed-out

region is performed until CCA returns at least two components. If the RFS of

one of the regions falls below the RFS of the original region, or if the region

is smaller than the minimum permissible size of an object, then the region is

assumed to be noise or artefact-induced and is discarded. After CCA, if both

components result in a decrease relative to the original RFS, then the original

object is retained. Although objects split in this way are not guaranteed to

produce segments with RFS> τRFS , only splits resulting in improved scores are

permitted. For objects containing multiple hot-point clusters, the RFS of the

final split objects are affected by the order in which the clusters are considered.

As the described splitting procedure is fast and the numbers of hot-point clusters

per object are generally low (typically ≤ 3), the optimal order (i.e. that which

results in the individual objects with the highest RFS) is determined by testing

all possible orders.

Finally, for each labelled object in the resulting segmentation, a subvolume is

generated by computing the minimum bounding box encompassing that object

and then increasing the dimensions of the box by approximately 30mm in all

3 dimensions (as per [2, 45]). The high correct classification rates presented in

[2, 45] were achieved without considering noise and/or artefact reduction. This

suggests that classification performance is robust to image noise and artefacts,

provided a given subvolume is dominated by a single object. The final sub-

volume used for classification is thus obtained by extracting the entire region

corresponding to the expanded bounding box from the pre-processed volume
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(as opposed to setting the non-object, background, voxels to zero in the subvol-

ume). This strategy is adopted to ensure that contextual information is not lost

in the subsequent feature extraction and description process. A segmentation

composed of N labelled objects thus results in N subvolumes, each theoretically

containing a single, distinct object (Figure 3).

Figure 3: Generation of single-object subvolumes for object classification.

4. 3D Object Classification

We present a codebook sub-volume classification technique to independently

classify each of the subvolumes in a given input volume. In a related study [45],

the proposed approach has been shown to outperform the state-of-the-art visual

cortex approach [2] both in terms of classification accuracy and processing time.

The method adheres to the following traditional classification framework [56]:

1) feature detection and description; 2) visual codebook generation and vector

quantisation and 3) classification.

Feature detection and description: In accordance with [33], we adopt a

dense feature-sampling strategy, whereby 3D keypoints are sampled uniformly

and randomly from the baggage-CT sub-volume using the Density Histogram

(DH) descriptor of [25]. An invariance to uniform changes in image scale is

obtained by sampling interest points from three image scales [57] (as per [16]).

At each of the scales a limit of τN = 0.006N on the number of randomly sampled

points is enforced (where N is the number of voxels in the Gaussian scale-

space image and τN is determined empirically). Flitton et al. [25] have shown

that simple density statistics-based descriptors outperform more complex 3D

descriptors (SIFT [16] and RIFT [58]) in object detection within low resolution,

baggage-CT imagery. We thus use the Density Histogram (DH) descriptor [25]
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here. The descriptor characterises the local density variation at a given interest

point as an N -bin histogram defined over a continuous density range. Optimal

descriptor parameters are selected in accordance with [25, 59] and result in a

60-dimensional feature vector.

Visual codebook generation: We employ Extremely Randomised Clus-

tering (ERC) forests [32] for feature encoding and codebook generation. ERC

forests assign separate codewords to every leaf node in a given forest. A BoW

representation for a given image is obtained by accumulating the codeword

counts after applying the forest to all the descriptors in the image. The result-

ing histogram of codewords is then used in subsequent classification in the same

way as any standard BoW model. ERC forests are built in the same manner as

the random forests used for computing the RFS. Particularly, trees are trained

in a top-down recursive fashion [60] using a set of labelled training descriptors,

where the labels are obtained from global image annotations (i.e. all descriptors

from a given image share the same label). Internal nodes are optimised using

the thresholding function in Equation 3 and the information gain optimality

criterion [55]. Randomness is injected into the trees by considering a fixed-size

random subset of the available node split function parameter values at each

node.

Classification is performed using a multi-class (one-versus-the-rest) Sup-

port Vector Machine (SVM) classifier with a Radial Basis Function (RBF) ker-

nel [34] that is optimized via grid search over the kernel parameter space [45].

Subvolumes are classified individually and the final class label of a given input

volume, composed of N segmented objects (i.e. N subvolumes) is computed

as the logical ‘OR’ of the class labels of each of its N constituent subvolumes.

While the classification of each of the N subvolumes is easily parallelised the

processing time of a serial classification of a given N -object input volume may

be reduced by only classifying the ith subvolume if the (i − 1)th subvolume

(where i = 2, . . . , N) has returned a negative class label (i.e. classification is

terminated as soon as a positive label is produced).

For further detail, on all aspects of the 3D object classification approach

used as a reference within the processing pipeline for this study the reader is

directed to [45]. Additional parameter details are presented in Section 5.
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5. Results

Classification performance was evaluated for two independent object types

(handguns and bottles) in complex 3D baggage-CT imagery using traditional

measures (true-positive rate, false-positive rate, precision, accuracy and pro-

cessing time). Processing times were measured for all experiments performed

on an Intel Core i5 machine running a 2.30GHz processor with 6GB of RAM.

The 3D dual-energy baggage-CT imagery was obtained on a CT-80DR dual-

energy baggage scanner manufactured by Reveal Imaging Inc, which produces

volumes with low anisotropic resolutions of 1.56× 1.61× 5mm. All images were

gathered using a set of ˜200+ test baggage items, packed with numerous benign

items of clutter (e.g. clothing, books, paperwork, electronics) representative of

the aviation traveling public. The set of baggage items used conform to the

variety and packing profile commonly used for test and evaluation within the

baggage-CT security domain. These images were scanned with and without the

target object types (handguns and bottles) present.

Within these CT images, all voxels with intensities lower than a predefined

threshold of 1000 Modified Hounsfield Units (MHU) were considered to belong

to the background and thus set to zero prior to segmentation. The minimum

permissible object volume was set to 50 cm3.

All non-target objects were considered as clutter and chosen to provide an

environment that is comparable to that encountered within a transport security

setting. Typical clutter items included both low density items (e.g. clothing,

books etc.) and high density items (e.g. belt buckles, batteries, pliers, dumbbells

etc.). We used separate training and testing datasets, due to the multi-faceted

nature of the proposed approach. From the available baggage CT-imagery, sub-

volume training and test sets were extracted manually for the target object types

under consideration. The handgun training set consisted of 101 manually seg-

mented positive (handgun) subvolumes and 134 manually segmented negative

(clutter) subvolumes, while the bottle training set consisted of 88 and 90 man-

ually segmented positive and negative subvolumes respectively (Figure 4). The

handgun and bottle test sets consisted of 208/150 and 146/190 positive/negative

samples (whole volumes) respectively (Figure 5). Within an operational con-

text, it is expected that a given baggage-CT image would be exhaustively split

into sub-volumes, either uniformly with possible inter-subvolume overlap or via

the use of object segmentation (Section 3), such that all the sub-volumes are

processed (screened) for detection of the target objects (e.g. handguns and
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bottles, Figure 5)

Figure 4: Examples of manually segmented training data.

Optimal algorithm parameters were determined independently for each ob-

ject class and kept constant for every instance in that experiment (i.e. one set of

parameters used for the entire handgun experiment and another set for the entire

bottle experiment). Pre-processing parameters were determined using a small

set of validation volumes and several different sets of input parameters. Those

parameters that produced the most visually satisfying segmentations were cho-

sen. The block-wise linear-time NLM implementation [43], with a block size of

128 pixels, was used to reduce the high processing time of NLM filtering [35, 36].

Due to the efficiency of the random forest-based classification process and the

relatively small data-set, the optimal ERC forest and SVM parameters were de-

termined empirically via cross-validation performed over the entire dataset (i.e.

those parameters yielding the highest correct classifications rates were chosen).

The number of tests performed for each node split in the ERC forest was set to

|Tj | = 10 - this value was fixed for all nodes. Trees were grown to a maximum

depth of D = 5, with a lower bound of IGmin = 10−4 on the information gain.

These settings resulted in tree growth terminating prior to maximum depth
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Figure 5: Example test volumes - target object indicated.

and thus no tree pruning was performed. For a forest containing T = 5 trees,

codebooks typically contained approximately 1500 codewords.

Table 1 summarises the results of the classification experiments. In terms

of handgun classification, pre-processing by DDMar (TPR = 97.60%; FPR =

1.33%) and NLM filtering (TPR = 96.63%; FPR = 1.33%) yielded the optimal

results. While LIMar (TPR = 95.70%; FPR = 2.67%) outperformed simple

intensity thresholding (TPR = 90.87%; FPR = 6.0%), the latter still performed

surprisingly well given its simplicity.

In the classification of bottles, NLM filtering correctly classified all positive

(bottle) instances (TPR = 100%) while maintaining a low false-positive rate

(FPR = 2.11%). DDMar again yielded high correct classification rates (TPR

= 98.62%; FPR = 1.58%). The superiority of NLM filtering and DDMar over

LIMar (TPR = 89.04%; FPR = 1.58%) was more pronounced compared to the
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Table 1: Overall classification performance for tested methods.

Method Class TPR (%) FPR (%) Prec. Acc.

Intensity Handgun 90.87 6.0 0.955 0.922

threshold Bottle 21.23 3.68 0.816 0.637

NLM filter Handgun 96.63 1.33 0.990 0.975

[36] Bottle 100.0 2.11 0.973 0.988

LIMar Handgun 95.70 2.67 0.980 0.964

[37] Bottle 89.04 1.58 0.977 0.944

DDMar Handgun 97.60 1.33 0.990 0.980

[30] Bottle 98.63 1.58 0.980 0.985

Table 2: Mean per-volume processing times.

Avg. Processing Times (s/volume)

Method Denoising Segmentation Total

Intensity threshold 0.23 245.87 246.10

NLM filter [36] 34.01 127.31 161.32

LIMar [37] 49.05 145.67 194.72

DDMar [30] 401.42 129.44 530.86

handgun experiments. Intensity thresholding (TPR = 21.23%; FPR = 3.68%)

performed significantly poorer than all three methods, yielding a classification

accuracy of only 0.637 (while all other methods yielded accuracies > 0.92).

The mean, per-volume processing times for each of the four pre-processing

methods (averaged over both sets of experiments) are shown in Table 2. The

use of the average is justified by the fact that similar volumes were used in

both experiments (with only the target objects differing) and thus processing

times across the two experiments were relatively consistent. As expected, simple

intensity thresholding incurred virtually no computational overhead (0.23s per

volume). As suggested by the experimentation in [3], the processing times of

LIMar (49.05s per volume) and DDMar (401.42s per volume) were higher than

that of the NLM filter (34.01s per volume) due to the computational expense as-

sociated with the Filtered Back-Projection (FBP) reconstructions. DDMar was,

on average, significantly more computationally demanding than the other three

methods. As expected, segmentation times were lower for volumes with higher

signal-to-noise ratios (i.e. better denoising/artefact reduction). The mean seg-

mentation times for the NLM volumes (127.31s) and the LIMar and DDMar vol-
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umes (145.67s and 129.44s respectively) were thus significantly lower than those

of the thresholded volumes (245.87s). Although the processing times associated

with the final stage of the proposed framework (random forest clustering and

SVM classification) are theoretically dependent on the number of objects (i.e.

subvolumes) segmented from the original volume, the average times for all four

methods were negligible relative to the pre-processing and segmentation stages

and are thus not shown in Table 2. The total mean, per-volume processing time

was lowest for the NLM-filtered volumes (161.32s).

6. Effects of Denoising and MAR

The relatively high correct handgun classification rates obtained using simple

intensity thresholding may be attributed to the predominantly metallic nature

of the handguns in the dataset. Their correspondingly high atomic numbers

lead to significantly higher intensity values compared to the majority of other

commonly encountered, low-density items (e.g. clothing and books) and high-

density streaking artefacts. Such high-density items are thus fairly easily iso-

lated, even in cluttered and noisy volumes, using only a single threshold (a

property which is exploited in most MAR techniques [3]). The obvious short-

coming of segmentations performed in this manner is the elimination of the

majority of the contents of typical baggage scans.

Figure 6: Threshold pre-processing examples. Top row: handgun correctly classi-
fied high-density information if not eliminated by the threshold. Bottom row: bottle
misclassified as threshold eliminates empty (top) half of bottle.

17



In the top row of Figure 6 we see an example of a threshold which has

been chosen such that the handgun is successfully segmented from a cluttered

bag. However, we note that only the high-density objects (the handgun, pliers

and dumbbell) in the original scan are accurately depicted in the segmentation

map, while the majority of the remaining items are eliminated. This limitation

of pre-processing by thresholding is further emphasised by the massive decline

in performance when applied to the bottle classification task (where the correct

classification rate is significantly lower than random guessing - Table 1). The

bottom row in Figure 6 illustrates an example of a bottle-containing volume

which was incorrectly classified using intensity thresholding. Note that only the

liquid containing region of the bottle is retained in the segmentation while the

remaining part of the bottle is eliminated by the threshold. The corresponding

subvolume bears little resemblance to a bottle and is thus misclassified. Thresh-

olding is thus only suitable when considering objects with very high densities

- it is important to emphasise that these densities need to be higher than the

high-density noise and artefacts in the image. In the majority of cases a thresh-

olding approach will not suffice (as illustrated by the poor performance on the

bottle dataset). At best, thresholding may be used as an initial screening for

high-density threats.

The most important observation that can be made from the results in Section

5 is the high-quality performance of the NLM filtering approach relative to the

two MAR-based approaches (both in terms of classification performance as well

as processing time). The experimentation presented in [3] suggested that ded-

icated MAR techniques (e.g. DDMar and LIMar) outperform simple denoising

filters (e.g. NLM filter) in the reduction of noise and metal-streaking artefacts

in baggage-CT imagery. The results in Section 5, however, bring into question

the importance of this superior artefact reduction. Figure 7, for example, shows

a handgun-containing volume that was correctly classified by both the DDMar

and NLM-filtering approaches. The MAR volume, however, contains notably

less streaking than the NLM volume (clearly visible in the final subvolumes)

and leads to a handgun segmentation that is superior to the under-segmented

NLM handgun - both qualitatively as well as quantitatively (as determined by

a higher Random Forest Score (RFS)). The key factor appears to be in the

generation of the subsequent subvolumes. Since the original denoised volume

information is retained in these subvolumes (as opposed to retaining only the

foreground/object information) the errors related to the incorrect labelling in

the under-segmented object are largely eliminated - note that both the MAR
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and NLM subvolumes contain the object which was incorrectly labelled in the

NLM segmentation. In related work [45], it has been shown that classification

performance using ERC forests is relatively robust to background noise and

clutter, provided the clutter objects are small in relation to the target object

(i.e. the target object forms the main part of the subvolume). It is apparent (as

illustrated by the additional examples in Figure 8), that for both the handgun

and bottle datasets, the NLM segmentations produced sufficiently small under-

segmentations to allow for correct classifications. This indicates that the degree

of artefact reduction offered by more complex MAR techniques (which comes at

a significant increase in computational cost - Table 2) as well as very precise seg-

mentations are not absolutely necessary for successful 3D object classification in

complex baggage-CT imagery. This observation is particularly encouraging in

the context of security screening, where the demand computational efficiency is

paramount to maximise throughput [5]. It is worth emphasising, however, that

some degree of denoising is still important, as illustrated by the comparatively

poor performance of simple intensity thresholding.

A more detailed analysis of the classification errors produced by the NLM,

LIMar and DDMar techniques is necessary. Figure 9 illustrates examples of two

subvolumes that resulted in false-positive handgun classifications for each of the

three pre-processing techniques. The most obvious trend (evident for all three

techniques) is the presence of high-density objects. Beyond this, the subvolumes

bear little obvious resemblance to the handguns in the training set (e.g. Figure

4), making it difficult to determine, with any confidence, the root of the missed

classifications.

Further investigation of the results have indicated trends in the character-

istics of the missed NLM and DDMar handguns (false negatives). In partic-

ular, the missed handguns contain relatively large low-density regions in their

grips/handles, resulting in over-segmentations of the handguns into separate

handle and barrel components. Examples of such handguns (together with

their corresponding segmentation maps and relevant subvolumes) are shown in

Figure 10 (a) and (b) for the NLM and DDMar techniques respectively. Inter-

estingly, the handgun barrel subvolumes that lead to false negatives are notably

similar in appearance to the false-positive generating subvolumes for all three

methods (Figure 9) and bear some resemblance to the whole-gun subvolumes.

This suggests that the false-positive and false-negative instances lie near to the

decision boundary established by the SVM classifier. It is likely that a larger

and more diverse training set and a finer tuning of the input parameter space
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may alleviate these errors. Note that the fact that handguns with these prop-

erties (low-density handles) were included in the classification training data is

immaterial, as the errors occur in the segmentation phase of the classification

procedure. This highlights the challenge of defining a suitable ‘object philos-

ophy’ in the development of a segmentation algorithm [13]. Hierarchical ap-

proaches to segmentation, whereby the relation between the individual parts of

composite objects are stored in tree-like structures, allow for multi-part objects

to be represented both by their constituent parts as well as single composite

objects [14]. The incorporation of such techniques into the proposed framework

is likely to be beneficial in the aforementioned scenarios and is left as an area

for future work.

We have found that the main cause of false-negative handgun classifications

for the LIMar method is an introduction of new streaking artefacts arising from

the FBP reconstructions of linearly interpolated sinograms [3], which ultimately

leads to under-segmentations (i.e. multiple objects segmented as one). Two such

examples are shown in Figure 11. In both cases, the subvolumes containing the

handguns also contain the majority of the large items present in the original

scans. While the NLM under-segmentations are typically small (Figure 8), the

LIMar under-segmentations contain objects similar in size (or larger) than the

target objects, thus leading to erroneous classifications.

Figures 12 - 14 show examples of misclassified bottle volumes for each of

the three pre-processing techniques (NLM, LIMar, DDMar). The subvolumes

that led to false-positive classifications for all three techniques are dominated by

objects with circular cross-sections and densities in the range of common liquids

(Figure 12). This is a similar observation to that made in related work [12, 2]. It

is worth noting that not all such objects resulted in false-positive classifications

and the reasons for these particular misclassifications are not clear.

NLM filtering returns a perfect classification of the positive (bottle-containing)

test volumes, while DDMar results in only two false negatives. A closer exami-

nation of these two cases has indicated that both false positives are caused by

half-filled bottles surrounded by high-density objects and hence corrupted (i.e.

intersected) by streaking artefacts. One of the two volumes is shown in Figure

13 in addition to the corresponding denoised volume, the segmentation map

and the subvolume for NLM filtering. Due to the presence of four high-density

objects in the input volume (indicated in Figure 13), the degree of streaking is

severe, making it challenging to distinguish the upper border of the bottle. The

bottom half of the bottle is more pronounced due to the presence of a higher-
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density liquid (relative to the plastic of the bottle). While DDMar successfully

removes the artefacts, it also appears to over-compensate and removed valuable

image information. Most importantly, the upper border of the bottle is almost

entirely eliminated. Consequently, only the liquid-containing region of the bot-

tle is segmented and represented in the corresponding subvolume. In contrast,

while NLM filtering removes considerably less streaking (as expected), the entire

bottle is retained. The resulting segmentation map, although including back-

ground noise in the bottle region, captures all of the relevant information and

hence the subvolume is correctly classified. This again illustrates that classifi-

cation is not affected by inaccurate segmentation provided the error relatively

small. Note that, in the case of the DDMar volume, the information related

to the upper half of the bottle is eliminated prior to segmentation (since it is

the pre-processed volume that is used in the generation of the subvolume). A

possible solution may thus be to use the original, unprocessed volume as the

input to the subvolume generation.

The false negatives resulting from LIMar again appear to stem from large

under-segmentations, caused by the introduction of new streaking artefacts

in the MAR procedure. Figure 14 illustrates two such examples: in both

instances the post-MAR volumes contain new streaking artefacts, leading to

under-segmentations. The limitations of linear interpolation-based MAR in the

presence of multiple metal objects, which are already well documented [3], are

further substantiated here.

7. Conclusion

We have evaluated the impact of image denoising and Metal Artefact Re-

duction on 3D object segmentation and classification in low-resolution, cluttered

dual-energy CT imagery. To this end, four novel contributions have been made:

1) a materials-based technique for the segmentation of unknown 3D objects from

low-resolution, cluttered CT imagery; 2) a high-speed codebook subvolume clas-

sification technique using Extremely Randomised Clustering (ERC) forests [32];

3) a novel, fully automated approach for 3D object classification in cluttered

CT imagery (by combining (1) and (2)) which produces correct classification

rates in excess of 97% with false positive rates of less than 2% and 4) a full

classification-driven performance evaluation of denoising and MAR.

The experimental comparison to investigate the impact on overall perfor-

mance of the four denoising and Metal Artefact Reduction (MAR) techniques
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(intensity thresholding, NLM filtering [35, 36], LIMar [37], DDMar [30]), has

demonstrated the superiority of the NLM filtering and DDMar over LIMar and

intensity thresholding. NLM filtering is further shown to outperform both MAR

techniques in terms of processing time. Considering the comparable classifica-

tion performance following pre-processing by NLM filtering and DDMar (within

1%), we make the important conclusion that the benefits of superior reduction

of artefacts and noise of dedicated MAR do not sufficiently justify the large

associated increase in processing time (up to 10×).

Future work will thus shift away from denoising and artefact reduction,

seeking instead to improve image segmentation by considering a more accu-

rate materials-based characterisation of scans using dual-energy decomposition

techniques [4, 51].
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Figure 7: Comparison of DDMar and NLM pre-processed handgun segmentations.
Superior artefact removal by MAR indicated in MAR/denoised volumes. Although
NLM leads to an under-segmentation of the handgun, the error is small and both
methods return correct classifications.

29



Figure 8: Under-segmentations (outlined regions) resulting from NLM filtering. Since
errors are small, classification is not affected.
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Figure 9: Handgun false-positive examples caused by high-density objects.

Figure 10: NLM and DDMar handgun false-negative examples. Handguns (outlined)
are over-segmented into barrels and handles due to uncharacteristically low-density
handles. Resulting subvolumes classified as clutter.
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Figure 11: LIMar handgun false-negative examples. New streaking introduced in
MAR procedure leads to over-segmentations of the handguns and hence incorrect
classifications. Handguns outlined in inputs.

Figure 12: Bottle false-positive examples. Caused by objects with circular cross-
sections and similar densities to liquids.
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Figure 13: Comparison of DDMar (false negative) and NLM (true positive) bottle
segmentation/classification. DDMar removes greater degree of artefacts, eliminating
the empty region in the bottle and causing a misclassification.

Figure 14: Example of LIMar false-negative classification of a bottle (outlined).
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