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ABSTRACT
Cosmic voids are an important probe of large-scale structure that can constrain cosmological parameters
and test cosmological models. We present a new paradigm for void studies: void detection in weak lensing
convergence maps. This approach identifies objects that relate directly to our theoretical understanding of
voids as underdensities in the total matter field and presents several advantages compared to the customary
method of finding voids in the galaxy distribution. We exemplify this approach by identifying voids using the
weak lensing peaks as tracers of the large-scale structure. We find self-similarity in the void abundance across
a range of peak signal-to-noise selection thresholds. The voids obtained via this approach give a tangential
shear signal up to ∼ 40 times larger than voids identified in the galaxy distribution.

Key words: gravitational lensing: weak – large-scale structure of Universe – cosmology:
theory – methods: data analysis

1 Introduction

The large-scale structures of the Universe, collectively called the
cosmic web, describe the matter distribution in our Universe in the
forms of structures such as voids, sheets, filaments and knots. These
structures result from the anisotropic gravitational collapse of mat-
ter on cosmic scales. These components are intertwined in a com-
plex web where the knots form at the intersections of filaments,
filaments form at the intersections of sheets, and voids occupy the
underdense space between all three (Bond et al. 1996).

Voids, which represent large regions mostly devoid of matter
and galaxies, have attracted a lot of interest as powerful probes of
cosmological parameters (Lavaux & Wandelt 2012; Hamaus et al.
2016), dark energy (Li 2011; Bos et al. 2012; Pisani et al. 2015)
and dark matter (Massara et al. 2015). Voids are especially useful
for testing cosmological models that make environmentally depen-
dent predictions, such as the fifth force of modified gravity theories
which, while screened in high density regions, attains maximum
values in voids (Clampitt et al. 2013; Cai et al. 2015; Barreira et al.
2015; Falck et al. 2018; Baker et al. 2018). The largest constraining
power of voids comes from measuring their total matter content
(e.g. Cautun et al. 2018), which can be achieved via gravitational
lensing (Melchior et al. 2014; Clampitt et al. 2016; Gruen et al.
2016; Sánchez et al. 2017; Cai et al. 2017), redshift space distor-
tions (Hamaus et al. 2015; Cai et al. 2016) as well as the inte-
grated Sachs-Wolfe effect in the cosmic microwave background
(Granett et al. 2008; Nadathur 2016). In particular, weak lensing
(WL) measurements using upcoming large area and deep imaging
surveys such as EUCLID and LSST will result in tight constraints on
the mass profile of voids (Krause et al. 2013; Cautun et al. 2018).

Theoretically, voids correspond to low density regions
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in the large-scale matter field (Sheth & van de Weygaert 2004;
van de Weygaert & Platen 2011; Aragon-Calvo & Szalay 2013).
However, because the full mass distribution is not easily ob-
servable, observational studies typically identify voids using the
galaxy distribution (e.g. Nadathur 2016). Due to the sparsity of
galaxy tracers and their bias, which depends on environment
(Neyrinck et al. 2014), the relation between matter and galaxy
voids is a complex one, with galaxy voids being typically less
underdense than would have otherwise been identified using the
full matter density field. This could potentially weaken the lens-
ing signals (which are produced by the total matter) from galaxy
voids, and, due to difficulties in simulating galaxies in cosmolog-
ical volumes, it is also more challenging to test cosmology using
galaxy void properties such as abundances and sizes (see, e.g.,
Cautun et al. 2018).

In this work, we propose a new paradigm for void studies: the
identification of voids from weak lensing convergence maps, which
we refer to as VOLEs (VOids from LEnsing). The convergence field
represents the projected line-of-sight density field weighted by the
lensing kernel, and thus the identified underdensities correspond to
voids in the projected density field (for example Chang et al. 2018
have shown that the deepest minima of the convergence field have
good correspondence to galaxy voids). This approach represents a
simple way of finding voids that relates directly to our theoretical
understanding of voids as underdensities in the total matter field. As
void lensing is a key observable, it is only natural to identify voids
and extract their lensing signal from the very same observations,
such as a convergence map. VOLEs not only help avoid some of the
disadvantages of galaxy voids, but also allow for a more complete
exploitation of lensing maps by naturally combining VOLEs with
other statistics, such as WL peaks and Minkowski functionals.

There are many void finders in the literature (e.g. see the void
comparison project of Colberg et al. 2008) and here we choose
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to illustrate our methodology using the tunnel finding method
(Cautun et al. 2018), but, in principle, many of the previous void
finding approaches can be applied to the lensing convergence maps
by using the convergence field itself, rather than using peaks as trac-
ers. Our choice of tunnels is based on the Cautun et al. (2018) and
Paillas et al. (2018) studies which find that WL by tunnels iden-
tified in the galaxy distribution is the most promising method for
testing a wide range of modified gravity theories.

2 Method

2.1 N-body and ray-tracing simulations: The WL maps used
in this analysis are made using an analytical on-the-fly ray trac-
ing algorithm, RAY-RAMSES (Li et al. 2011; Barreira et al. 2016),
which is inbuilt in the publicly available N-body and hydrodynam-
ical adaptive mesh refinement simulation code RAMSES (Teyssier
2002). The N-body evolution part is done using the default RAM-
SES code. To construct the first map, five independent realisations
of simulations evolving 10243 particles in a 512 h−1Mpc box are
tiled together to form a light cone up to a source redshift zs = 1
(see Fig.1 of Barreira et al. 2016 for an illustration). The second
map is constructed from the same box repeated 5 times. The cos-
mological parameters adopted are Ωm = 0.32, ΩΛ = 0.68 and
H0 = 67 km s−1 Mpc−1. The two WL convergence maps cover a
field of view of 10 × 10 deg2 with a resolution of 20482 pixels. In
order to use information from separate maps in conjunction with
each other, we respectively subtract the mean convergence value of
each map, to give us zero-mean convergence maps.

2.2 Galaxy shape noise: The convergence field is determined
observationally by averaging over a large number of source galax-
ies, which, due to their intrinsic ellipticity, leads to measurement
uncertainties. This effect is known as galaxy shape noise (GSN)
and can be a main uncertainty source on small angular scales. To
allow our method to be interpreted in the context of observations,
we generate WL maps with added GSN and compare the VOLEs
identified with and without GSN. For each pixel of the WL maps,
we add GSN by drawing from a Gaussian with standard deviation,

σ2
pix = σ

2
int / 2θ2

pixngal , (1)

where σint is the dispersion of the source galaxy intrinsic ellipticity,
θpix the angular width of each pixel, and ngal the number density
of source galaxies. Here we use σint = 0.4 and ngal = 40 arcmin−2

corresponding to LSST (LSST Science Collaboration et al. 2009).

2.3 Peak extraction: In a first step, we identify peaks in the
convergence map. In order to suppress GSN, we smooth the con-
vergence map using a Gaussian window with a smoothing scale, θs ,
of 2.5 arcmin (unless otherwise stated). We define a peak as a pixel
whose convergence value is greater than that of its 8 neighbours.
We also trim the peaks in each map within one smoothing length
of the edge of the map to exclude the boundary effects of smooth-
ing a finite map. Each peak is characterised by the lensing con-
vergence at its position, which we express as a signal-noise-ratio
(SNR), ν ≡ κ/σ, where σ is the standard deviation of the smoothed
convergence maps, which is 0.011 and 0.012 for the maps without
and with GSN, respectively.

The resulting number density of WL peaks averaged across
both of our convergence maps as a function of SNR, ν, is shown in
Fig. 1. It shows that the number of peaks is largest for small SNR,
increasing from 2 deg−2 at SNR' 3 to 20 deg−2 at SNR' 0. Fig.
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Figure 1. (Colour Online) Cumulative number per unit area of convergence
peaks as a function of peak SNR, ν = κ/σ, for the maps with and without
GSN. The inlay plot shows the two-point peak correlation functions, w (θ),
for peak catalogues with ν thresholds indicated in the legend, identified
using θs = 1 arcmin, with the peak pair separation θ (horizontal axis) and
w (θ) (vertical axis) both scaled by θ̄p , the mean peak separation in the
respective peak catalogue. Though noisy due to the small map size, the
rescaled curves show self-similarity for a range of ν thresholds. The shaded
regions show 1σ uncertainties.

1 shows that our choice of θs (2.5 arcmin) leads to only small dif-
ferences in the peak number densities. We have checked that both
the number density and the two point correlation functions of peaks
agree with previous studies (e.g. Shirasaki 2017; Shan et al. 2014).
For each map, we generate peak catalogues by selecting all the
peaks with SNR, ν, above a given threshold value. Throughout this
work, we mainly identify voids from three peak catalogues corre-
sponding to ν > 1, ν > 2 and ν > 3, but in some places we also use
catalogues with ν > 1.5 and ν > 2.5.

2.4 Void identification: We identify voids using the tunnel
finding algorithm of Cautun et al. (2018), which is so-named be-
cause it has been developed to find regions in the projected distri-
bution of galaxies that do not contain any galaxies. The method can
easily be extended and applied to the WL peak field by identifying
the largest circles that are devoid of peaks. Thus, the tunnels cor-
respond to circles in the 2D convergence map that contain no WL
peaks.

The tunnels are obtained by first constructing a Delaunay tes-
sellation with its vertices chosen to be the WL peaks. By definition,
the circumcircle of every Delaunay triangle does not enclose any
WL peak. The WL peaks, which define the triangle, reside directly
on its circumcircle. Thus, each circumcircle represents a candidate
tunnel with radius, Rv, and centre given by that of the correspond-
ing circumcircle. We further discard any tunnels whose centres are
found inside a larger tunnel. A visualisation of the tunnels found
from the WL peak catalogues in one of our maps is shown in Fig. 2.

2.5 Calculating void profiles: We calculate the convergence
profiles of voids by using annuli of thickness Rv/Nbin, where Rv
is the void radius and Nbin = 20, and then stack all the voids in
terms of the scaled radial distance, r/Rv. To get better statistics, we
average over both lensing maps.

The tangential shear profile γt (r) is calculated from the con-
vergence profile using

γt (r) = κ̄(< r) − κ(r); κ̄(< r) =
1
πr2

∫ r

0
2πr′κ(r′)dr′ , (2)
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Figure 2. (Colour Online) Visualisation of 2D voids found in a small region of the smoothed lensing convergence maps (with and without galaxy shape noise).
The panels show the voids for two convergence peak selection criteria, from left to right: ν > 1, ν > 2, and the third panel shows ν > 2 with galaxy shape
noise added to the map. The background colours show the convergence map, expressed in terms of ν. The dots show the peaks that satisfy each selection
criterion, and the circles show the voids identified in each peak catalogue. θ1 and θ2 denote angular coordinates of the map in two orthogonal directions.
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Figure 3. (Colour Online) Cumulative number density of voids as a function
of the void radius, Rv. The curves correspond to void catalogues defined us-
ing WL peaks above different ν thresholds. The inlay plot shows a universal
relation in the void abundance for catalogues with θs = 1 arcmin, where Rv,
is scaled by the mean peak separation, θ̄p , and n(> Rv), is divided by the
mean peak number density, np , of the corresponding peak catalogue. The
shaded regions show 1σ uncertainties.

where κ(r) denotes the convergence at the radial distance r and
κ̄(< r) the mean enclosed convergence within r .

All of our uncertainties, including those of the convergence
and shear profiles, are estimated using bootstrap sampling. For each
of the two maps we generate 100 bootstrap resamples, which we
then combine and quote the uncertainties obtained by taking the
16th and 84th percentiles of these resamples.

3 Results

Fig. 2 shows that, as the ν threshold increases, the WL peaks are
more spread out, and less numerous, resulting in larger voids. This
is as expected because high-SNR peaks generally correspond to
more massive structures or more structures aligned along the line
of sight, which are rarer (e.g., Liu & Haiman 2016). The third panel
shows how adding GSN can slightly alter the void catalogue. The
dependence of void size on ν is quantitatively confirmed in the cu-
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Figure 4. (Colour Online) The stacked convergence profiles of WL voids.
Each curve corresponds to an average over all of the objects in each of the
void catalogues. The dashed lines show the added GSN case. The shaded re-
gions show the 1σ bootstrap uncertainties of the no GSN catalogues, which
are similar to the GSN added case.

mulative void radius distribution given in Fig. 3, which shows that
the ν > 1 void catalogue has more small voids and fewer large
voids, with none above Rv ∼ 0.7 deg, while the ν > 3 cata-
logue has fewer small voids and more large voids with radii up
to Rv ∼ 1.1 deg. Again we can see that GSN has a small im-
pact on the VOLEs size distribution, where the addition of spuri-
ous peaks tend to slightly reduce the size of the VOLEs. The inlay
plot in Fig. 3 shows self-similarity in the void abundance across
the void catalogues with peak thresholds ν ≥ 1, which is achieved
by dividing the void radius by the mean peak separation and the
void number density by the mean peak number density. We find
this self-similarity for a range of smoothing scales, but we show
only results for a small smoothing scale, θs = 1 arcmin, which
gives the largest number of VOLEs and thus provides the most strin-
gent test of self-similarity. We also found that adding GSN has very
little impact on the self-similarity of the void abundance, which al-
lows us to choose the previously stated smaller smoothing scale.
This self-similar scaled void abundance is likely related to the self-
similarity in the peak two-point correlation functions from the peak
catalogues with different SNR thresholds (see the inlay panel of
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Figure 5. (Colour Online) The stacked tangential shear profiles of WL
voids. The coloured lines show the average profile for the void catalogues
identified in this work, without GSN (solid) and with GSN (dashed). The
shaded regions, show the 1σ bootstrap uncertainties. The black patterned
lines correspond to the shear profile of underdensities identified in the
galaxy distribution: tunnels (dot-dashed), troughs (dotted) and Watershed
Void Finder (WVF; circle-solid) voids (Cautun et al. 2018).

Fig. 1), and we will present a detailed analysis on this, based on
larger and more realistic lensing maps, in a forthcoming work.

3.1 Void convergence profiles: Fig. 4 shows the convergence
profiles as a function of scaled radial distance, r/Rv, averaged over
all voids in both lensing maps. The profiles are plotted up to twice
the void radius to show how, at large distances, they return to back-
ground levels (which we have set to be 0). Each curve corresponds
to one of the three void catalogues. For r . 0.75Rv, we find neg-
ative convergence values, which indicates that the voids are un-
derdense in those regions. Interestingly, the ν > 3 void catalogue
has the least underdense voids. This is to be expected, since the
ν > 3 voids are the largest and can enclose inside them slightly
overdense regions, i.e. with κ > 0. As the peak SNR threshold used
to identify voids decreases, the voids become smaller, they enclose
fewer overdense regions and thus have lower overall κ values. The
maximum convergence is achieved at r = Rv and all three void
catalogues have roughly similar maximum values. At even larger
radii, the convergence profiles decrease towards the mean back-
ground value of κ = 0. Of the three catalogues, ν > 3 voids take
the longest to reach the background value, which is a manifestation
of the fact that the large peak values that define the boundary of
ν > 3 voids are typically found in large-scale overdense regions.
Voids identified using high SNR peaks, i.e. ν & 2, have the same
profiles in WL maps with and without GSN, but differences appear
when using low SNR peaks, i.e. ν . 1, where GSN can lead to
spurious peaks, and thus spurious voids.

A final feature of the convergence profiles is that the width of
the convergence maximum somewhat decreases as we increase the
ν threshold of the WL peaks used for finding voids. This is due
to the profiles being plotted against the rescaled distance, r/Rv,
rather than the physical distance, r . The ν > 2 and 3 voids actually
have wider convergence maxima when expressed as a function of r ,
but this larger width is overcompensated by their even larger radii
which results in a narrower maxima when expressed in rescaled
distances.

3.2 Tangential shear profiles: Fig. 5 shows the tangential
shear profiles of the VOLEs, calculated using Eq. (2). These profiles

are qualitatively similar with the tangential shear of galaxy voids
(e.g., Cautun et al. 2018) and show a maximum signal at r = Rv.
The maximum signal has a negative value, indicating that voids
lead to diverging lensing, similar to a concave lens. Like the con-
vergence profiles, larger ν thresholds reduce the width associated to
the maximum tangential shear signal, while the height and position
of the maximum signal are almost independent of the ν threshold
from ν > 2. The shear signals are very similar for the case with
GSN, with the greatest deviation at the lower ν threshold, ν > 1
due to spurious peaks from GSN, which create spurious voids.

The error bars for the tangential shear profiles are smaller than
those for the convergence profiles (see Fig. 4). The uncertainty in
the convergence profile is dominated by modes many times larger
than the void size, which determines on average a systematic shift
up or down between the convergence profiles of voids some dis-
tance apart. We checked that the voids in different regions of the
lensing map have the same convergence profile up to some con-
stant shift in κ values. In contrast, the tangential shear profiles are
only sensitive to the shape of the convergence profiles, and are not
affected by a constant shift of the latter. Thus, given one WL peak
catalogue, different VOLEs have very similar lensing profiles, how-
ever the profiles show a weak dependence on the ν threshold used
to define the peak catalogue. It remains to be seen whether there is
a strong cosmological model dependence of the VOLEs γt profiles,
which we leave for future work.

Fig. 5 also compares the VOLEs tangential shear profiles to re-
sults from other void definitions used in previous works. We com-
pare the VOLEs with three types of voids identified in the galaxy
distribution: 3D watershed voids (WVF, Platen et al. 2007), fixed-
aperture cylinders along lines-of-sight with low projected galaxy
number densities (troughs; Gruen et al. 2016) and tunnels (the same
as the method used in this work but applied to galaxy fields).
These three void catalogues are obtained from a z = 0.5 halo
occupation distribution galaxy catalogue that matches the cluster-
ing of SDSS-CMASS which has a galaxy number density, n̄g ≈
3 × 10−4h3Mpc−3 (see Cautun et al. 2018, for more details). This
represents a typical galaxy catalogue at redshift, z = 0.5. We take
the WL signals of the galaxy voids from Cautun et al. (2018), and
we rescale them to match our source galaxies redshift, zs = 1.

We find that the maximum γt signal of VOLEs is roughly twice
as large as tunnels identified from a galaxy field, and about 10 and
40 times larger than the signals of troughs and WVF voids, re-
spectively. The stronger lensing signal in VOLEs is not surprising
since the WL peaks are taken straight from the convergence field
itself, which is directly related to the projected total matter distri-
bution. The projected galaxy number density used to identify the
Cautun et al. tunnels and troughs is ∼500 gal deg−2 and is much
larger than that used for the VOLEs catalogues (see Fig. 1). We find
that using higher number density peak catalogues, which could be
obtained with a smaller smoothing scale and smaller GSN, results
in VOLEs with an even higher tangential shear signal and thus in-
creases further the differences between VOLEs and galaxy tunnels.

4 Conclusions and future work

Cosmic voids are becoming an increasingly important cosmologi-
cal probe. While theoretical studies usually focus on voids identi-
fied from the dark matter field, in observations galaxies are usually
used as tracers to find voids. Here, we have proposed an alterna-
tive: to identify voids in the WL convergence field (dubbed VOLEs),
which, since it represents the line-of-sight projected matter distri-
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bution, is conceptually closer to identifying voids as underdensities
in the matter distribution. This opens a new window for exploring
the cosmic mass distribution and, in particular, for designing novel
environment-sensitive cosmological tests.

As an example, we identified VOLEs by applying the tunnel
algorithm of Cautun et al. (2018) to the WL lensing peak distribu-
tion, and investigated several properties, including their abundance,
convergence and tangential shear profiles. Using peaks with lower
SNR leads to finding smaller voids, which are on average more un-
derdense. The void convergence profiles, which are indicative of
the projected matter density inside and around the voids, are nega-
tive for r ≤ 0.75Rv, which corresponds to line-of-sight underden-
sities, and show a sharp overdense peak at the void edge, r = Rv .
In terms of tangential shear profiles, the VOLEs show a maximum
signal at r = Rv, with the maximum signal height somewhat inde-
pendent of the peak catalogue used to identify the voids. However,
the width of the tangential shear signal decreases when using peaks
corresponding to a higher SNR threshold. We found that the am-
plitude of the maximum signal in the tangential shear profiles for
the VOLEs is roughly twice as large as that of voids generated us-
ing the same void finder (tunnels) but by using galaxies as tracers.
The amplitude is more than an order of magnitude larger compared
to those corresponding to galaxy voids identified using other algo-
rithms (troughs and WVF voids). This shows the benefit of using a
more reliable tracer of the projected total matter field.

The method introduced here represents a new avenue to iden-
tify 2D voids rather than a new void-finding algorithm, in the sense
that many, if not all, existing void finders (troughs, spherical void
finders, WVF, ZOBOV, etc.) can be applied to the WL convergence
maps. Indeed, in principle one can use the WL convergence field
itself (i.e. not just the peaks from it) as a tracer field for void identi-
fication. The study of void identification and void lensing from the
same WL observation is also convenient in practice, because there
is no need for foreground galaxies, whose redshifts are hard to mea-
sure accurately and can be affected by the peculiar velocities of the
galaxies. Instead, the particular lensing map that is used to study
void lensing is expected to offer sufficient information for locating
those very voids. With the upcoming WL surveys (HSC, EUCLID,
LSST, etc.) which offer lensing maps with increasing sky coverage,
we hope that this approach will take us a step forward in extracting
information from such maps in a maximal way.

Unlike galaxy voids, for VOLEs it is also possible to use void
abundance to discriminate different models as there is no ambiguity
in modelling the galaxy populations for these models. The univer-
sal scaled void abundance shown in Fig. 3 implies that it is possible
to find generic simulation-calibrated fitting formulae for these void
properties (e.g., Hamaus et al. 2014) which can be used as theoreti-
cal templates in cosmological tests. For the latter purpose, it is also
critical to test the VOLEs void finding method in real weak lensing
data sets to understand how observational systematics and galaxy
formation physics can affect the void properties. These possibilities
will be investigated in follow-up studies.
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