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Abstract
We prove that a random distribution in two dimensions which is conformally invariant
and satisfies a natural domainMarkov property is a multiple of the Gaussian free field.
This result holds subject only to a fourth moment assumption.

Mathematics Subject Classification 60K35 · 60G60 · 60G15 · 60J67

1 Introduction

1.1 Setup andmain result

The Gaussian free field (abbreviated GFF) has emerged in recent years as an object
of central importance in probability theory. In two dimensions in particular, the GFF is
conjectured (and inmany cases proved) to arise as a universal scaling limit fromabroad
range of models, including the Ginzburg–Landau ∇ϕ interface model [19,27,29], the
height function associated to planar domino tilings and the dimer model [3,4,12,13,20,
23], and the characteristic polynomial of random matrices [17,18,32]. It also plays a
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1260 N. Berestycki et al.

crucial role in the mathematically rigourous description of Liouville quantum gravity;
see in particular [10,22] and [14] for some recent major developments (we refer to
[30] for the original physics paper). Note that the interpretations of Liouville quantum
gravity in the references above are slightly different from one another, and are in fact
more closely related to the GFF with Neumann boundary conditions than the GFF
with Dirichlet boundary conditions treated in this paper.

As a canonical random distribution enjoying conformal invariance and a domain
Markov property, the GFF is also intimately linked to the Schramm–Loewner Evolu-
tion (SLE). In particular SLE4 and related curves can be viewed as level lines of the
GFF [11,31,35,36]. In fact, this connection played an important role in the approach
to Liouville quantum gravity developed in [14,15,26,38] (see also [5] for an introduc-
tion).

It is natural to seek an axiomatic characterisation of the GFF which could explain
this ubiquity. In the present article we propose one such characterisation, in the spirit
of Schramm’s celebrated characterisation of SLE as the unique family of conformally
invariant laws on random curves satisfying a domain Markov property [34].

As theGFF is a random distribution (and not a random function) wewill need to pay
attention to the measure-theoretic formulation of the problem.We start by introducing
some notations. Let D be a simply connected domain and let C∞

c (D) be the space
of smooth functions that are compactly supported in D (the space of so-called test
functions).We equip it with the topology such that φn → 0 if and only if there is some
M � D containing the supports of all the φn , and all the derivatives of φn converge
uniformly to 0. (Here and in the rest of the paper, the notation M � D means that the
closure of M is compact and contained in the open set D.) For any two test functions
φ1, φ2, we define

(φ1, φ2) :=
∫

φ1(z)φ2(z)dz,

and for any test function φ we call (φ, 1) the mass of φ.
In order to avoid discussing random variables taking values in the space of dis-

tributions in D we take the simpler and more general point of view that we have a
stochastic process hD = (hD

φ )φ∈C∞
c (D) indexed by test functions and which is linear

in φ: that is, for any λ,μ ∈ R and φ, φ′ ∈ C∞
c (D),

hD
λφ+μφ′ = λhD

φ + μhD
φ′ ,

almost surely.We thenwrite,with an abuse of notation, (hD, φ) = hD
φ forφ ∈ C∞

c (D).

We call �D the law of the stochastic process (hD
φ )φ∈C∞

c (D). Thus �D is a probabil-

ity distribution on R
C∞
c (D) equipped with the product topology; by Kolmogorov’s

extension theorem �D is characterised by its consistent finite-dimensional distri-
butions, i.e., by the joint law of (hD, φ1), . . . , (hD, φk) for any k � 1 and any
φ1, . . . , φk ∈ C∞

c (D).
Suppose that � := {�D}D⊂C is a collection of such measures, where D ⊂ C

ranges over all simply connected proper domains and �D is as above for each simply
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connected proper domain D. We will always denote by D the unit disc of the complex
plane. We now state our assumptions:

Assumptions 1.1 Let D ⊂ C be a proper simply connected open domain, and let hD

be a sample from �D . We assume the following:

(i) (Moments, stochastic continuity) For every φ ∈ C∞
c (D),

E[(hD, φ)] = 0 and E[(hD, φ)4] < ∞.

Moreover, there exists a continuous bilinear form K D
2 onC∞

c (D)×C∞
c (D) such

that

E[(hD, φ)(hD, φ′)] = K D
2 (φ, φ′), φ, φ′ ∈ C∞

c (D).

(ii) (Dirichlet boundary conditions) Suppose that ( fn)n�1 is a sequence of nonnega-
tive, radially symmetric functions in C∞

c (D), with uniformly bounded mass and
such that for every M � D, Support( fn) ∩ M = ∅ for all large enough n. Then
we have Var((hD, fn)) → 0 as n → ∞.

(iii) (Conformal invariance) Let f : D → D′ be a bijective conformal map.
Then �D = �D′ ◦ f , where �D′ ◦ f is the law of the stochastic process
(hD′

, |( f −1)′|2(φ ◦ f −1))φ∈C∞
c (D).

(iv) (Domain Markov property) Suppose D′ ⊂ D is a simply connected Jordan
domain. Then we can decompose hD = hD′

D + ϕD′
D where:

• hD′
D is independent of ϕD′

D ;
• (ϕD′

D , φ)φ∈C∞
c (D) is a stochastic process indexed by C∞

c (D) that is a.s. linear

in φ and such that (ϕD′
D , φ)φ∈C∞

c (D′) a.s. corresponds to integrating against a
harmonic function in D′;

• ((hD′
D , φ))φ∈C∞

c (D) is a stochastic process indexed by C∞
c (D), such that

(hD′
D , φ)φ∈C∞

c (D′) has law �D′
and (hD′

D , φ) = 0 a.s. for any φ with
Support(φ) ⊂ D\D′.

Remark 1.2 Note that in the domain Markov property, we have (by linearity) that if
D′ ⊂ D is simply connected, and φ1 = φ2 on D′, then (hD′

D , φ1) = (hD′
D , φ2) almost

surely.

When we discuss the domain Markov property later in the paper, we will often
simply say that

“ϕD′
D is harmonic in D′, hD′

D is 0 in D\D′ and hD′
D

(d)= hD′
in D′ ”.

These statements should be interpreted as described rigorously in Assumptions 1.1.

Remark 1.3 The finite fourth moment condition implies, in particular, that there exists
a quadrilinear form K D

4 on (C∞
c (D))⊗4 such that for every φ1, . . . , φ4 ∈ C∞

c (D),

E[(hD, φ1)(h
D, φ2)(h

D, φ3)(h
D, φ4)] = K D

4 (φ1, φ2, φ3, φ4).
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Lemma 1.4 The assumption of zero boundary conditions implies that the domain
Markov decomposition from (iv) is unique.

Proof Suppose that we have two such decompositions:

hD = hD′
D + ϕD′

D = h̃D′
D + ϕ̃D′

D . (1.1)

Suppose that we have two such decompositions:

hD = hD′
D + ϕD′

D = h̃D′
D + ϕ̃D′

D . (1.2)

Pick any z ∈ D′ and let F : D′ → D be a conformal map that sends z to 0. Further,
let ( fn)n�1 be a sequence of nonnegative radially symmetric, mass one functions in
C∞
c (D), that are eventually supported outside any K � D, and set gn := |F ′|2( fn ◦F)

for each n. Then the assumption of Dirichlet boundary conditions plus conformal
invariance implies that (hD′

D − h̃D′
D , gn) → 0 in probability as n → ∞. In turn, by

(1.2), this means that (ϕD′
D − ϕ̃D′

D , gn) → 0 in probability.
However, since (ϕD′

D − ϕ̃D′
D ) restricted to D′ is a.s. equal to a harmonic function,

and since the fn’s are radially symmetric with mass one, we have

(ϕD′
D − ϕ̃D′

D , gn)=((ϕD′
D − ϕ̃D′

D ) ◦ F−1, fn)=(ϕD′
D − ϕ̃D′

D ) ◦ F−1(0)=ϕD′
D (z) − ϕ̃D′

D (z)

for every n. This implies that for each fixed z ∈ D′, ϕD′
D (z) = ϕ̃D′

D (z) a.s. Applying this
to a countable dense subset of z ∈ D′, together with the fact that hD = ϕD′

D = ϕ̃D′
D

a.s. outside of D′, see Remark 1.2, then implies that ϕD′
D and ϕ̃D′

D are a.s. equal as
stochastic processes indexed by C∞

c (D). ��
Definition 1.5 A mean zero Gaussian free field hGFF = hD

GFF with zero boundary
conditions is a stochastic process indexed by test functions (hGFF, ϕ)ϕ∈C∞

c (D) such
that:

• hGFF is a centered Gaussian field; for any n � 1 and any set of test functions
φ1, . . . , φn ∈ C∞

c (D), ((hGFF, φ1), . . . , (hGFF, φn)) is a Gaussian random vector
with mean 0;

• for any two test functions φ1, φ2 ∈ C∞
c (D),

E[(hGFF, φ1), (hGFF, φ2)] =
∫
D
GD(z, w)φ1(z)φ2(w)dzdw

where GD is the Green’s function with Dirichlet boundary conditions on D.

It is well known and easy to check (see e.g. [5]) that Assumptions 1.1 are satisfied
for the collection of laws {�D

GFF; D ⊂ C} obtained by considering the GFF, hD
GFF, in

proper simply connected domains. More generally any multiple of the GFF αhD
GFF

(with α ∈ R) will verify these assumptions. (In fact, the boundary conditions satisfied
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A characterisation of the Gaussian free field 1263

by the GFF are much stronger than what we assume: it is not just the average value of
the GFF on the unit circle which is zero, but, e.g., the average value on any open arc
of the unit circle.) The main result of this paper is the following converse:

Theorem 1.6 Suppose the collection of laws {�D}D⊂C satisfy Assumptions 1.1 and
let hD be a sample from �D. Then there exists α ∈ R such that hD = αhD

GFF in law,
as stochastic processes.

Remark 1.7 Given the close relationship between the GFF and SLE, it is natural to
wonder if the characterisation Theorem 1.6 could be deduced from Schramm’s cel-
ebrated characterisation (and discovery) of SLE curves [34]. Perhaps if one is also
given an appropriately defined notion of local sets in addition to the field (see [2,36]),
one could identify these local sets as SLE type curves with some unknown parameter.
However, even this would not be sufficient to identify the field as the GFF. Indeed, note
that the CLEκ nesting fields [28] provide examples of conformally invariant random
fields coupled with SLE-type local sets, yet are only believed to be Gaussian in the
case κ = 4.

1.2 Role of our assumptions

Wetake amoment to discuss the role of our assumptions. The fundamental assumptions
of Theorem 1.6 are (ii), (iii) and (iv) which cannot be dispensed with. To see that they
are necessary, the reader might consider the following two examples:

• The magnetisation field in the critical Ising model [7,8];
• The CLEκ nesting field [28].

In both these examples, conformal invariance (or at least conformal covariance) and
even a form of domainMarkov property (but not exactly the one formulated here) hold;
yet neither of these are the GFF (except in the second case when κ = 4). These two
examples are the kind of possible counterexamples to keep in mind when considering
Theorem 1.6 or possible variants.

The role of Assumption (i) however is more technical and is instead the result of a
choice and/or limitations of our proof.

We do not know whether a fourth moment assumption is necessary. Our use of this
assumption is to rule out by Kolmogorov estimates the possibility of Poissonian-type
jumps. To explain the problem, the reader might think of the following rough analogy:
if a centered process has independent and stationary increments, it does not follow that
it is Brownian motion even if it has finite second moment; for instance, (Nt − t)t�0,
where Nt is a standard Poisson process satisfies these assumptions. See the section on
open problems for more discussion.

Regarding the assumption of stochastic continuity, we point out that (φ, φ′) 
→
K (φ, φ′) = E[(hD, φ)(hD, φ′)] is clearly a bilinear map. So the assumption we make
is simply that this map is jointly continuous. Another way to rephrase this assumption
is to say that ϕ 
→ (hD, ϕ) is continuous in L2(P) (referred to as stochastic continuity
by some authors), which seems quite basic.
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1.3 The one-dimensional case

In one-dimension, the zero boundary GFF reduces to a Brownian bridge (see e.g.
Sheffield [37]). However, even in this classical setup it seems that a characterisation of
the Brownian bridge along the lines we have proposed in Theorem 1.6 was not known.
Of course we need to pay some attention to the assumptions here, since it is not the
case that a GFF is scale-invariant in dimension d �= 2. Instead, the Brownian bridge
enjoys Brownian scaling.

Let I be the space of all closed, bounded intervals of R and assume that for each
I ∈ I we have a stochastic process X I = (X I (t))t∈I indexed by the points of I . We
let μI be the law of the stochastic process (X I (t))t∈I , so that μI is a probability dis-
tribution on R

I equipped with the product topology. Similarly to the two-dimensional
case, by Kolmogorov’s extension theorem, μI is characterised by its consistent finite-
dimensional distributions, i.e., by the joint law of X I (t1), . . . , X I (tk) for any k � 1
and any t1, . . . , tk ∈ I .

Assumptions 1.8 We make the following assumptions.

(i) (Tails) For each I and t ∈ I , E[log+ |X I (t)|] < ∞.
(ii) (Stochastic continuity) For each I the process (X I (t))t∈I is stochastically con-

tinuous: that is, lims→t P(|X I (t) − X I (s)| > ε) = 0 for every ε > 0.
(iii) (Zero boundary condition) For each interval I = [a, b], X I (a) = X I (b) = 0.
(iv) (Domain Markov property) For each I ′ = [a, b] ⊂ I , conditioned on

(X I (t))t∈I\I ′ , the law of (X I (s))s∈I ′ is the same as

L(s) + X̃ I ′(s); s ∈ I ′

where L(s) is a linear function interpolating between X I (a) and X I (b) and X̃ I ′

is an independent copy of X I ′ .
(v) (Translation invariance and scaling) For any a ∈ R, c > 0

(X I−a(t − a))t∈I
(d)= (X I (t))t∈I

and
(

1√
c
XcI (ct))t∈I

(d)= (X I (t)

)
t∈I

.

Our result in this case is as follows:

Theorem 1.9 Subject to Assumptions 1.8, a sample X I has the law of a multiple σ of
a Brownian bridge on the interval I , from zero to zero.

Interestingly, the proof in this case is substantially different from the planar case,
and relies on stochastic calculus arguments. The definition in Assumption 1.8 is
reminiscent of the classical notion of harness in one dimension: roughly speak-
ing, a square integrable continuous process such that conditionally on the process
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outside of any interval, the process inside has an expectation which is the linear
interpolation of the data outside. If such a process is defined on the entire nonneg-
ative halfline, then Williams [39] proved that a harness is a multiple of Brownian
motion plus drift; see Mansuy and Yor [25] for a survey and extensions. Theo-
rem 1.9 may therefore be seen as a generalisation of Williams’ result to the case
where the underlying domain is bounded, without assuming continuity and assuming
only logarithmic tails (but assuming more in terms of the domain Markov property).
To our knowledge, this result has not been previously considered in the litera-
ture.

1.4 Outline

We now summarise the structure of the proof of the main result (Theorem 1.6) and
explain the organisation of the paper.

Our first goal is to make sense of circle averages of the field, which exist as a
result of the domain Markov property, conformal invariance and zero boundary con-
dition (Sect. 2.1). These circle averages can then fairly easily be seen to give rise
to a two-point function K̃2(z1, z2) (Sect. 2.2). Intuitively, the bilinear form K2 in
the assumption is simply the integral operator associated with this two-point func-
tion, but we do not need to establish this immediately (instead, it will follow from
some estimates obtained later; see Lemma 2.18). In Sect. 2.5 we establish a priori
logarithmic bounds on the two-point (and four-point) functions which are needed
to control errors later on. The Markov property and conformal invariance are easily
seen to imply that the two point function is harmonic off the diagonal (Sect. 2.4).
This point of view culminates in Sect. 2.6, where it is shown that the two point func-
tion is necessarily a multiple of the Green’s function. (Intuitively, we rely on the
fact that the Green’s function is characterised by harmonicity and logarithmic diver-
gence on the diagonal, though our proof exploits an essentially equivalent but slightly
shorter route). At this point we still have not made use of our fourth moment assump-
tion.

To conclude it remains to show that the field is Gaussian in the sense that any
test function (h, ϕ) is a centered Gaussian random variable. This is the subject of
Sect. 3 and is the most delicate and interesting part of the argument. The Gaussianity
comes from an application of Lévy’s characterisation of Brownian motion, or more
precisely, from the Dubins–Schwarz theorem. For this we need a certain process to
be a continuous martingale, and it is only here that our fourth moment assumption
is required: we use it in combination with a Kolmogorov continuity criterion and a
deformation argument exploiting the form of a well-chosen family of conformal maps
to prove continuity. The arguments are combined in Sect. 4 to conclude the proof of
Theorem 1.6. Finally, the last section (Sect. 5) gives a proof in the one-dimensional
case (Theorem 1.9) using stochastic calculus techniques. The paper concludes with a
discussion of open problems in Sect. 6.
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2 Two-point and four-point functions

To begin with, we make sense of circle averages of our field. These will play a key
role in the proof of Theorem 1.6, as we will be able to identify the law of the circle
average process around a point with a one-dimensional Brownian motion.

In fact, we will define something more general. Let γ be the boundary of a Jordan
domain D′ ⊆ D. We will, given z ∈ D′, define the harmonic average (as seen from
z) of h on γ and will denote this average by (hD, ρ

γ
z ). Note that since h can only

be tested a priori against smooth functions, and therefore not necessarily against the
harmonic measure on γ , this is a slight abuse of notation. We will define the average
in two equivalent ways: through an approximation procedure, and using the domain
Markov property of the field.

2.1 Circle average

Let D be a simply connected domain such that D ⊆ D where D is the unit disc. We
will first try to define (hD, ρ∂D

0 ) as described above. To this end, let ψ̃δ
0 be a smooth

radially symmetric function taking values in [0, 1], that is equal to 1 on A := {z :
1 − δ � |z| � 1 − δ/2} and is equal to 0 outside of the δ/10 neighbourhood of the
annulus A. Let ψδ

0 = ψ̃δ
0/
∫

ψ̃δ
0 . Then for all δ ∈ [0, 1], since ψδ

0 ∈ C∞
c (D), the

quantity (hD, ψδ
0 ) is well defined. We will take a limit as δ → 0 to define the circle

average (the precise definition of ψδ
0 does not matter, as will become clear from the

proof).

Lemma 2.1

lim
δ→0

(hD, ψδ
0 ) =: (hD, ρ∂D

0 )

exists in probability and in L2(P). Moreover,

(hD, ρ∂D
0 ) = ϕD

D(0)

where hD = hDD + ϕD

D is the domain Markov decomposition of hD in D described in
Assumptions 1.1.

Proof We write (hD, ψδ
0 ) = (hDD, ψδ

0 ) + (ϕD

D, ψδ
0 ) using the domain Markov decom-

position. Note that because ψδ
0 is radially symmetric with mass 1, and is supported

strictly inside D for each δ, by harmonicity (ϕD

D, ψδ
0 ) must be constant and equal to

ϕD

D(0). Thus, we need only show that

lim
δ→0

Var((hDD, ψδ
0 )) = 0.

However this follows from the fact that hDD
(d)= hD has zero boundary conditions (see

the definition in Assumptions 1.1), since for any M � D, ψδ
0 is supported outside of
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M for small enough δ and is radially symmetric. Note that the rate of convergence of
the variance to 0 is uniform in the choice of domain D. ��
Remark 2.2 We could have simply defined (hD, ρ∂D

0 ) := ϕD

D(0) as above. The reason
we use the definition in terms of limits is so that later we are able to estimate its
moments.

2.2 Harmonic average

Now, let D′ ⊂ D be a Jordan domain bounded by a curve γ . Given z ∈ D′, also let
f : D′ → D be the unique conformal map sending z 
→ 0 and with f ′(z) > 0. We
define

ψ̂δ
z := | f ′|2 (ψδ

0 ◦ f )

and then set

(hD, ρ
γ
z ) := lim

δ→0
(hD, ψ̂δ

z )

which we know exists in L2 and in probability by the same argument as in the proof
of Lemma 2.1 (note that by conformal invariance, (hD′

D , ψ̂δ
z ) is equal to (hD, ψδ

0 ) in
law if hD = hD′

D +ϕD′
D is the domain Markov decomposition of hD in D′). Again, we

could have simply defined the harmonic average to be equal to ϕD′
D (z).

It is clear that the harmonic average is always a random variable with mean 0. We
record here another useful property:

Lemma 2.3 Suppose D′′ ⊂ D′ ⊂ D are Jordan domains and z ∈ D′′. Then

E[(hD, ρ∂D′′
z )2] � E[(hD, ρ∂D′

z )2] and E[(hD, ρ∂D′′
z )4] � E[(hD, ρ∂D′

z )4].

Proof Let hD = hD′
D + ϕD′

D according to the domain Markov decomposition of hD

in D′. Then we have that (hD, ρ∂D′
z ) = ϕD′

D (z). We can also decompose hD′
D inside

D′′ as hD′
D = hD′′

D′ + ϕD′′
D′ , which means (by uniqueness of the decomposition) that

(hD, ρ∂D′′
z ) = ϕD′

D (z) + ϕD′′
D′ (z). By independence of ϕD′

D (z) and ϕD′′
D′ (z), and the fact

that the harmonic average has mean 0, the result follows. ��
Later on in the proof we will also use some alternative approximations to (hD, ρ

γ
z ),

as different approximations will be useful in different contexts.

2.3 Circle average field

Now consider a general simply connected domain D. By the above construction, we
can define

hD
ε (z) := (hD, ρ

∂Bz(ε)
z ) = ϕ

Bz(ε)
D (z)
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1268 N. Berestycki et al.

for all z ∈ D and all ε small enough, depending on z. We call this the circle average
field. It will be important to know that this is a good approximation to our field when
ε is small. To show this, we will first need the following lemma.

Lemma 2.4 For z1 �= z2 distinct points in D,

K̃ D
2 (z1, z2) := lim

ε→0
E[hD

ε (z1)h
D
ε (z2)]

exists. Moreover, for any D1, D2 ⊂ D Jordan subdomains such that D1 ∩ D2 = ∅

and z1 ∈ D1, z2 ∈ D2, we have

K̃ D
2 (z1, z2) = E[ϕD1

D (z1)ϕ
D2
D (z2)]

Proof Let D1, D2 be as above and write, by the domain Markov property,

hD = hD1
D + ϕ

D1
D and hD = hD2

D + ϕ
D2
D ,

so that for ϕ = ϕ
D1
D − hD2

D = ϕ
D2
D − hD1

D we have

hD = hD1
D + hD2

D + ϕ. (2.1)

By definition of the domain Markov property, we can see that (ϕ, φ)φ∈C∞
c (D) is a

stochastic process that a.s. corresponds to a harmonic function when restricted to φ in
C∞
c (D1) or C∞

c (D2): in fact, we have that ϕ = ϕ
D1
D in D1 and ϕ = ϕ

D2
D in D2. Note

that hD2
D is measurable with respect to ϕ

D1
D by Remark 1.2 (and conversely with the

indices 1 and 2 switched), so the three terms in (2.1) are pairwise independent.
Now let ε < min{|z1−z2|/2, d(z1, ∂D), d(z2, ∂D)}. Choosing D ⊃ D1 ⊃ Bε(z1)

and D ⊃ D2 ⊃ Bε(z2), this means (also using uniqueness of the domain Markov
decomposition) that ϕ

Bε(zi )
D = ϕ + ϕi for i = 1, 2 where ϕ, ϕ1, ϕ2 are pairwise

independent and centered (indeed, ϕ1, ϕ2 are measurable with respect to hD1
D , hD2

D
respectively). This implies that

E[hD
ε (z1)h

D
ε (z2)] = E[(ϕ + ϕ1)(z1)(ϕ + ϕ2)(z2)] = E[ϕ(z1)ϕ(z2)] = E[ϕD1

D (z1)ϕ
D2
D (z2)].

Hence the limit as ε → 0 exists, and we also see that it is equal to E[ϕD1
D (z1)ϕ

D2
D (z2)]

for any D1, D2 as in the statement of the Lemma. ��

Similarly, we have the following:

Lemma 2.5 For z1, z2, z3, z4 be pairwise distinct points in D. Then

K̃ D
4 (z1, z2, z3, z4) := lim

ε→0
E[hD

ε (z1)h
D
ε (z2)h

D
ε (z3)h

D
ε (z4)]
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exists. Moreover, for any D1, D2, D3, D4 ⊂ D Jordan subdomains such that Di ∩
Dj = ∅ for every 1 � i �= j � 4 and zi ∈ Di for 1 � i � 4, we have

K̃ D
4 (z1, z2, z3, z4) = E[ϕD1

D (z1)ϕ
D2
D (z2)ϕ

D3
D (z3)ϕ

D4
D (z4)]

It will also be convenient in what follows to have an alternative, “hands-on” way
of approximating K̃ D

2 and K̃ D
4 , which corresponds to directy testing the field against

smooth test functions (rather than using the slightly abstract notion of circle averages).

Definition 2.6 (Mollified field) Let φ be a smooth radially symmetric function, sup-
ported in the unit disc, and with total mass 1. Let φz

ε(·) = ε−2φ(
|·−z|

ε
) so that

φz
ε is smooth, radially symmetric, has mass 1, and is supported in Bz(ε). Define

h̃D
ε (z) := (hD, φz

ε). Then by the domain Markov property again, we see that we can
equivalently write

K̃ D
2 (z1, z2) = lim

ε→0
E[h̃D

ε (z1)h̃
D
ε (z2)]

and

K̃ D
4 (z1, z2, z3, z4) = lim

ε→0
E[h̃D

ε (z1)h̃
D
ε (z2)h̃

D
ε (z3)h̃

D
ε (z4)].

Note that here we do not have h̃D
ε (z) = ϕ

Bz(ε)
D (z) for every ε (because φz

ε has
support inside Bz(ε)), but we still have for small enough ε (depending on z1, z2) that
E[h̃D

ε (z1)h̃D
ε (z2)] = K̃ D

2 (z1, z2).

2.4 Properties of the two point kernel

We can now prove some of the important properties of our two point kernel K̃ D
2 .

Namely:

Proposition 2.7 (Harmonicity) For any x ∈ D, K̃ D
2 (x, y), viewed as a function of y,

is harmonic in D\{x}.
Proposition 2.8 (Conformal invariance) Let f : D → f (D) be a conformal map.
Then for any distinct x �= y in D

K̃ D
2 (x, y) = K̃ f (D)

2 ( f (x), f (y)).

Proof of Proposition 2.7 This is a direct consequence of the following Lemma (Lemma
2.9) and [16, §2.2, Theorem 3]. ��
Lemma 2.9 Fix x ∈ D. Then K̃ D

2 (x, ·) ∈ C2(D\{x}). Moreover, for any η > 0 and
y ∈ D such that |x − y| ∧ d(y, ∂D) > η:

K̃ D
2 (x, y) = 1

|∂By(η)|
∫

∂By(η)

K̃ D
2 (x, w) dw. (2.2)
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Proof In fact, the first regularity statement follows from (2.2). Indeed, take y ∈ D\{x},
pick η < |x − y| ∧ d(y, ∂D), and also take a smooth radially symmetric function φ

that has mass 1 and is supported on B0(η/2). Set f (z) = ∫D K̃ D
2 (x, w)φ(z − w)dw.

Then f ∈ C∞(U ) where U = By(η/2). Moreover, f (z) = K̃ D
2 (x, z) for z ∈ U by

(2.2). This implies that f is twice continuously differentiable at y.
Thus, we only need to prove (2.2). However, this follows almost immediately from

the definition of K̃ D
2 . Take η and y as in the statement, and pick ε > 0, η′ > η such

that Bx (ε) and By(η
′) lie entirely in D and are disjoint.

Then by Lemma 2.4 we have

K̃ D
2 (x, y) = E[ϕBx (ε)

D (x)ϕ
By(η

′)
D (y)] and K̃ D

2 (x, w)

= E[ϕBx (ε)
D (x)ϕ

By(η
′)

D (w)] ∀w ∈ ∂By(η).

This allows us to conclude, since

∫
∂By(η)

K̃ D
2 (x, w)dw =

∫
∂By(η)

E[ϕBx (ε)
D (x)ϕ

By(η
′)

D (w)] dw

= E[ϕBx (ε)
D (x)

∫
∂By(η)

ϕ
By(η

′)
D (w) dw]

which by harmonicity of ϕ in By(η
′) is equal to |∂By(η)| times

[ϕBx (ε)
D (x)ϕ

By(η
′)

D (y)] = K̃ D
2 (x, y).

��

Proof of Proposition 2.8 Let Dx � x , Dy � y be two Jordan subdomains of D such
that Dx ∩ Dy = ∅. Then we have

K̃ f (D)
2 ( f (x), f (y)) = E[ϕ f (Dx )

f (D)
( f (x))ϕ

f (Dy)

f (D)
( f (y))] = E[ϕDx

D (x)ϕ
Dy
D (y)] = K̃ D

2 (x, y)

where we have used Lemma 2.4 in the first and final equalities, and conformal invari-
ance of hD in the second. ��

2.5 Estimates on two- and four-point functions

Before we can proceed to identify the two-point function as the Green’s function, we
need to derive some bounds on K̃ D

2 and K̃ D
4 . For any set of pairwise distinct points

z1, . . . , zk ∈ D, we define

R(zi ; z1, . . . , zk) := min j �=i |zi − z j | ∧ R(zi , D)/10 (2.3)
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where R(z, D) is the conformal radius of z in the domain D. We also set

l2(z, w)2 := log

(
R(z, D)

R(z; z, w)

)
log

(
R(w, D)

R(w; z, w)

)

l4(z1, . . . , z4)
4 :=

4∏
i=1

[
log2

(
R(zi , D)

R(zi ; z1, . . . , z4)
)

+ log

(
R(zi , D)

R(zi ; z1, . . . , z4)
)]

.

The following logarithmic bounds are the main results of this section. We will use
these repeatedly in the sequel, in order to justify the use of Fubini’s theorem and the
dominated convergence theorem. We will also use the four-point function bound in
Sect. 3 to prove the estimate described in Proposition 3.2, which is essential to showing
Gaussianity of the process.

Proposition 2.10 Fix D and let z1, . . . , z4 ∈ D. Then there exists some universal
constant C > 0 such that for ε with Bzi (ε) ⊂ D for all i :

E

⎡
⎣ ∏
i=1,2

h̃D
ε (zi )

⎤
⎦ � C

(
l2(z1, z2)

)1/2
and E

⎡
⎣ ∏
1�i�4

h̃D
ε (zi )

⎤
⎦ � C

(
l4(z1, z2, z3, z4)

)1/4
.

(2.4)

In particular, using Definition 2.6, we see that

K̃ D
2 (z, w)2 � Cl2(z1, z2) and K̃ D

4 (z1, . . . , z4)
4 � Cl4(z1, z2, z3, z4).

Remark 2.11 Using the fact that R(zi ; z1, . . . , z4)/R(zi , D) � 1/10 for all i � 4, the
AM-GM inequality and Koebe’s quarter theorem, we see that we can also write

|K̃ D
4 (z1, . . . , z4)| � C

∑
i �= j

(
log2

( |zi − z j |
4 diam(D)

)
∨ log2(10)

)
.

This alternative formulation will be useful in Sect. 3.

We first prove an intermediate lemma. Let φ, (φz
r )r>0,z∈D : C → R be as in

Definition 2.6 and (h̃D
r (z))r>0,z∈D be the mollified field. Then we have the following:

Lemma 2.12 Fix D ⊂ C. There exists C > 0 universal such that for all z, r with
r � R(z, D)/10,

Var(h̃D
r (z)) � C log(R(z, D)/r).

Also,

E[(h̃D
r (z))4] � C(log2(R(z, D)/r) + log(R(z, D)/r))
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Fig. 1 The sets (Bk )0�k�N (the
dotted circles represent the
boundaries of (Bk )1�k�N−1)
and BN+1 = D

D

B0 = Bz(r)

BN ∼ Bz(
R(z,D)

5 )

Proof Let N = �log2(R(z, D)/5r)� and set Bk = Bz(2kr) for k � N ; BN+1 = D.
By the domain Markov property, we can write

hD = hBN
D + ϕ

BN
D (2.5)

where ϕ
BN
D is harmonic in BN and hBN

D is independent of ϕ
BN
D and is 0 outside BN

(Fig. 1).
Iterating this decomposition, we get

hD = h̃ +
N∑

k=0

ϕk

where:

• the ϕk’s are independent and ϕk is harmonic in Bk ;
• h̃ is an independent copy of hB0 and is 0 outside of B0 = Bz(r).

Recall that φz
r is radially symmetric (about r ) and has mass 1, so that

(ϕk, φ
z
r ) = ϕk(z) (2.6)

for every 0 � k � N . Note that by scale and translation invariance we have

(h̃, φr
z )

(d)= (hD, φ), and therefore (h̃, φz
r ) has finite variance (by Assumptions 1.1)

that is independent of r and z. Also note that since ϕk is equal (in law) to the harmonic
part in the decomposition hBk+1 = hBk

Bk+1
+ ϕ

Bk
Bk+1

, we have by conformal invariance
and the domain Markov property that

{ϕk(2
k+1rw + z) : w ∈ B0(1/2)} (d)= {ϕB0(1/2)

D
(w) : w ∈ B0(1/2)}
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for 0 � k � N − 1. Combining this information and (2.6), we finally obtain that

Var(h̃D
r (z)) = Var(hD, φz

r ) = Var(hD, φ) + N Var(ϕB0(1/2)
D

(0)) + Var(ϕBN
D (z)).

This completes the proof using our finite variance assumption. Note that Var(ϕBN
D (z))

can be bounded above by something which does not depend on either z or D. Indeed,
by the Koebe quarter theorem, we can conformally map D to D, with z 
→ 0 and
BN 
→ DN , for some DN ⊂ D such that d(0, ∂DN ) � 1/40. Then by conformal
invariance and Lemma 2.3, Var(ϕBN

D (z)) = Var(ϕDN
D

(0)) � Var(ϕB0(1/40)
D

(0)).
Using the same decomposition, (2.5) and (2.6), and the fact that every variable in

the decomposition has mean 0, we also obtain the fourth moment bound

E[h̃D
r (z)4] � C ′(N 2 + N )

for some constant C ′ > 0. ��

We now prove a corollary which gives the same bound for the variance of the field
convolved with a mollifier at a point that is near the boundary.

Corollary 2.13 There exists a constant c > 0 such that for any point z with
R(z, D)/10 < r < d(z, ∂D),

Var(h̃D
r (z)) � c.

Proof We can find a domain D′ containing D such that 10r � R(z, D′) � 11r . Also
we can write

hD′ = hD′
D + ϕD′

D

for hD′
D

(d)= hD and ϕD′
D independent and harmonic inside D. We know from Lemma

2.12 that Var(hD′
, φz

r ) � c. Since adding ϕD′
D only increases the variance, the proof

is complete. ��

We now extend this to the full covariance structure of the mollified field to prove
Proposition 2.10.

Proof of Proposition 2.10 We first prove (2.4) in the case of two points z1 �= z2.
Observe that by the domain Markov property, as in the proof of Proposition 4.1,
if ε0 := |z1 − z2|/10 ∧ R(z1, D)/10 ∧ R(z2, D)/10 then for all ε < ε0 we have
that E[h̃D

ε (z1)h̃D
ε (z2)] = E[h̃D

ε0
(z1)h̃D

ε0
(z2)]. Thus we need only prove the inequality

for ε0 � ε < d(z, ∂D). However, this follows simply by applying Cauchy–Schwarz
and using Lemma 2.12 and/or Corollary 2.13 as necessary (depending on whether ε0
is less than or greater than R(z1, D)/10 and R(z2, D)/10). The case of four points
follows in the same manner. ��
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2.6 Identifying the two point function

In this section we prove that for z1, z2 distinct

K̃ D
2 (z1, z2) := lim

ε→0
E[hD

ε (z1)h
D
ε (z2)] = aGD(z1, z2) (2.7)

for some a > 0, where GD is the Green’s function on D with Dirichlet boundary
conditions.

We first need a technical lemma, namely, an exact expression for the variance of
harmonic averages, derived from the bounds of the previous section together with the
properties of the two-point kernel deduced in Sect. 2.4.

Lemma 2.14 Let γ be the boundary of a Jordan domain D′ ⊂ D, such that γ ∩ ∂D =
∅. Let z ∈ D′. Then

E[(hD, ρ
γ
z )2] =

∫
D
K̃ D
2 (w, z)ργ

z (dw)

where ρ
γ
z is the harmonic measure seen from z on γ .

Note that although the statement of this lemma may seem obvious, recall from
Sect. 2.2 that the notation for the harmonic average (hD, ρ

γ
z ) is an abuse of notation

(the way we define it does not a priori have anything to do with integrating against
harmonic measure).

Proof Let ϕ : D′ → D be the unique conformal map with ϕ(z) = 0 and ϕ′(z) > 0.
Then by definition of the harmonic average,

E[(hD, ρ
γ
z )2] = lim

δ2→0
lim

δ1→0
E[(hD, ψ̂δ1

z )(hD, ψ̂δ2
z )]

= lim
δ2→0

lim
δ1→0

∫∫
D2

K̃ D
2 (x, y)ψ̂δ1

z (x)ψ̂δ2
z (y) dxdy

= lim
δ2→0

lim
δ1→0

∫∫
D2

K̃ D
2 (ϕ−1(x), ϕ−1(y))ψδ1

0 (x)ψδ2
0 (y) dxdy,

where the last equality follows by definition of ψ̂δ
z and the harmonic average. Recall

that ψδ
0 is defined by normalising a smooth radially symmetric function from D to

[0, 1], that is equal to 1 on {z : 1−δ � |z| � 1−δ/2} and 0 on the δ/10 neighbourhood
of this annulus, to have total mass 1.

We define

K̃ D
2 (ϕ−1(x), ϕ−1(y)) =: f (x, y).

Observe that for every x ∈ D, by analyticity of ϕ and Proposition 2.7, f (x, y) viewed
as a function of y is harmonic in D\{x}. We also have the bound

f (x, y) � C log |ϕ−1(x) − ϕ−1(y)|
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for every x �= y and some C = C(D) by Proposition 2.10. The dependence on the
domain here comes from the bounded conformal radius term in (2.3). Now fix δ2 > 0
and take δ1 < 4

11δ2, so that the support ofψ
δ1
0 lies entirely outside of B0(1−4δ2/10) ⊃

supp(ψδ2
0 ). Pick x ∈ supp(ψδ1

0 ). Then it follows from harmonicity of f (x, y) in
B0(1 − 4δ2/10) that

∫
D

f (x, y)ψδ2
0 (y) dy = f (x, 0). (2.8)

Now, (2.8) tells us that (since the above expression does not depend on δ2)

E[(hD, ρ
γ
z )2] = lim

δ1→0

∫
D

f (x, 0)ψδ1
0 (x) dx .

Furthermore, Proposition 2.7 togetherwith the fact that γ lies strictlywithin D, implies
that f (x, 0) extends to a continuous function on x ∈ ∂D. This means that the right
hand side is equal to

∫
D
f (x, 0) ρ∂D

0 (dx), which is equal to
∫
D K̃ D

2 (w, z)ργ
z (dw) by

a change of variables. ��
Remark 2.15 As a direct consequence of the above proof we see that if ε < 1 then

E[(hDε (0))2] =
∫
D

K̃D

2 (0, y)ρ∂B0(ε)
0 (dy).

We are now ready to prove (2.7): we start with the case x = 0 and D = D.

Lemma 2.16 There exists a > 0 such that K̃D

2 (0, y) = −a log |y| for all y ∈ D\{0}.
Proof First, we prove that there exists an a > 0 such that f (r) := E[hDr (0)2] is equal
to −a log(r) for all r ∈ [0, 1]. To see this, note that by the domain Markov property
and conformal invariance we have f (rs) = f (r) + f (s) for all r , s < 1. Moreover,
f is continuous (by Remark 2.15 and Lemma 2.7) and decreasing (by Lemma 2.3),
with f (1) = 0. This proves the claim.

With this in hand, by Remark 2.15 we can write

−a log |y| = E[(hD|y|(0))2] =
∫
D

K̃D
2 (0, w)ρ

∂B0(|y|)
0 (dw),

where by conformal invariance (in particular, rotational invariance) K̃D
2 (0, w) must

be constant and equal to K̃D
2 (0, |y|) on ∂B0(|y|). Since ρ

∂B0(|y|)
0 (·) has total mass 1

we obtain the result. ��
In particular, combining this with conformal invariance (Proposition 2.8) and

Lemma 2.18, we obtain:

Corollary 2.17 K̃ D
2 = aGD, where GD is the Green’s function with zero boundary

conditions and a � 0 is some constant.
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2.7 The circle average approximates the field

We conclude this section by showing that, in fact, the covariance kernel K D
2 defined in

Assumptions 1.1 (whichwe recall is a bilinear formonC∞
c (D)×C∞

c (D)) corresponds
to integrating against the two-point function K̃ D

2 . Thus, due to Corollary 2.17, we can
say that our field has “covariance given by a multiple of the Green’s function”. In
particular, there exists a > 0 such that for any test function φ ∈ C∞

c (D),

Var(hD, φ) =
∫∫

D2
aGD(x, y)φ(x)φ(y)dxdy. (2.9)

Lemma 2.18 For any ψ1, ψ2 ∈ C∞
c (D)

K D
2 (ψ1, ψ2) =

∫∫
D2

K̃ D
2 (x, y)ψ1(x)ψ2(y) dxdy.

In particular, if hD
ε is the circle average field and ψ ∈ C∞

c (D), then

Var((hD
ε , ψ) − (hD, ψ)) → 0

as ε → 0.

We will need this last statement for the conclusion of the proof: see Sect. 4.

Proof We have, by Proposition 2.10 and dominated convergence (for this we use that
ψ1 and ψ2 are compactly supported, meaning that for some ε0 > 0, Bx (ε0) ⊂ D for
all x ∈ Support(ψ1) ∩ Support(ψ2)),

∫∫
D2

K̃ D
2 (x, y)ψ1(x)ψ2(y) dxdy =

∫∫
D2

lim
ε→0

E[h̃D
ε (x)h̃D

ε (y)]ψ1(x)ψ2(y) dxdy

= lim
ε→0

∫∫
D2

E[h̃D
ε (x)h̃D

ε (y)]ψ1(x)ψ2(y) dxdy

= lim
ε→0

∫∫
D2

K D
2 (ψ1(x)φ

x
ε , ψ2(y)φ

y
ε ) dxdy,

where the last line follows from definition of K D
2 . Here K D

2 (ψ1(x)φx
ε , ψ2(y)φ

y
ε )

means the value of K D
2 ( f , g) where f : z 
→ φx

ε (z)ψ1(x) and g : z 
→ φ
y
ε (z)ψ1(y)

are both in C∞
c (D). Now we use the fact that K D

2 is a continuous bilinear form on
C∞
c (D) × C∞

c (D) with the topology discussed in the introduction. This means that
if we fix y ∈ D and consider the map f 
→ K D

2 ( f , φy
ε ψ2(y)), then this is a contin-

uous linear map on C∞
c (D) i.e. it is a distribution. Standard theory of distributions

(associativity of convolution, see for example [33, Theorem 6.30]), then tells us that

∫
D
K D
2 (φx

ε ψ1(x), φ
y
ε ψ2(y)) dx = K D

2 (ψ1 ∗ φε, φ
y
ε ψ2(y)) (2.10)
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where ψ1 ∗ φε(z) = ∫D ψ1(x)φz
ε(x) dx . Now applying the same argument in the y-

variable gives that the right hand side of (2.10) is equal to K D
2 (ψ1 ∗ φε, ψ2 ∗ φε), and

we have overall attained the equality

∫∫
D
K̃ D
2 (x, y)ψ1(x)ψ2(y) dxdy = lim

ε→0
K D
2 (ψ1 ∗ φε, ψ2 ∗ φε). (2.11)

Finally, since ψi ∗ φε → ψi in C∞
c (D) for each i as ε → 0 [16, §5.3, Theorem 1],

and K D
2 is continuous, we can deduce the result.

For the statement concerning the variance, we expand

Var((hD
ε , ψ) − (hD, ψ)) = E[(hD

ε , ψ)2] + E[(hD, ψ)2] − 2E[(hD
ε , ψ)(hD, ψ)]

=
∫∫

K D
2 (ψ(x)φx

ε , ψ(y)φy
ε ) dxdy + K D

2 (ψ,ψ)

− 2
∫

K D
2 (ψ(x)φx

ε , ψ) dx

= K D
2 (ψ ∗ φε, ψ ∗ φε) + K D

2 (ψ,ψ) − 2K D
2 (ψ ∗ φε, ψ)

where the final equality follows by the same reasoning that led us to (2.11). Again,
since ψ ∗ φε → ψ in C∞

c (D) as ε → 0, this allows us to conclude that the final
expression converges to 0 as ε → 0. ��

Similarly, we deduce the following:

Lemma 2.19 For any ψ1, . . . , ψ4 ∈ C∞
c (D)

K D
4 (ψ1, ψ2, ψ3, ψ4) =

∫∫
D4

K̃ D
4 (x1, x2, x3, x4)

∏
1�i�4

ψi (xi ) dxi .

Remark 2.20 Lemma 2.18 and Corollary 2.17 imply that Assumptions 1.1 (ii) (Dirich-
let boundary conditions) is satisfied by a much wider family of test functions fn : in
particular the assumption that fn be rotationally symmetric in this assumption can be
partly relaxed (however fn cannot be completely arbitrary, i.e., it is not sufficient to
assume that the support of fn leaves any compact and that fn has bounded mass, as
can be seen by considering fn to have unit mass within a ball of radius 1/n at distance
1/n from the boundary).

3 Gaussianity of the circle average

In this section, we argue that from Assumptions 1.1, we can deduce that the circle
average field of hD is Gaussian. This is where we will need to use our finite fourth
moment assumption. Let (hD

ε (z))z∈D be the circle average field. The key result we
prove here is the following:

123



1278 N. Berestycki et al.

Fig. 2 The cells V1, . . . , V4

V1

V3

V2

V4

0

z1

z2

z3

z4

Proposition 3.1 Let z1, . . . , zk be k pairwise distinct points in D with d(zi , z j ) > 2ε
for every 1 � i �= j � k and d(zi , ∂D) > 2ε for 1 � i � k. Then the law of
(hD

ε (z1), . . . , hD
ε (zk)) is that of a multivariate Gaussian random variable.

3.1 Bounds for the 4 point kernel

Let z1, . . . , z4 be pairwise distinct points in D = D and let

Vi = {y ∈ D : |u(y) − u(zi )|1 < |u(y) − u(z j )|1 ∀ j �= i}

for 1 � i � 4, where u(x) = x/|x | and | · |1 is distance (with respect to arc length)
on the unit circle. In words, we divide the disc into four wedges each containing one
of the four distinguished points. By definition, the boundary between two adjacent
wedges Vi and Vj is the ray emanating from the origin which bissects the rays going
through zi and z j (Fig. 2).

We have (by definition of the harmonic average, and Lemma 2.5) the following
expression for the four point kernel:

K̃D

4 (z1, z2, z3, z4) = E

[
4∏

i=1

(hD, ρ∂Vi
zi )

]

In the next section, we will require some bounds on these quantities when the zi ’s
are close to the boundary of D. We can estimate them as follows:

Proposition 3.2 Suppose that z1, . . . , z4 are pairwise distinct points in C, each with
modulus between 1 − ε and 1. Then if Vj is as described above (with respect to
z1, . . . , z4) and a j = mini �= j {|u(z j ) − u(zi )|1} is the isolation radius of u(z j ) in
{u(z1), . . . , u(z4)} we have
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A characterisation of the Gaussian free field 1279

E[(hD, ρ
∂Vj
z j )4] � c

(
ε4

a4j
∧ 1

)
log4(a j )

for some universal constant c.

We remark that the bound above is much improved compared to Proposition 2.10 if
ε � min j a j . This is where the effect of the Dirichlet boundary condition assumption
is manifested. Also the choice of the Voronoi cell is not crucial, any partition of the
domain separating the points would work. This particular choice of cells is simply to
make the calculations explicit.

Proof First suppose that a j > ε. By Lemma 2.3 and Cauchy–Schwarz, it is enough
to consider the wedge

Wa = {z = reiθ : −a < θ < a, 0 < r < 1}

for every ε � a � π/2 andprove thatE[(hD, ρ
∂Wa
w )4] � c ε4

a4
log4(a)whenw := 1−ε.

To begin, we describe how to approximate (hD, ρ
∂Wa
w ) in a slightly different way.

This is very similar to the approximation used in Sect. 2.2 (we take some smooth
approximations to the harmonic measure on the boundary of a sequence of domains
increasing to Wa from the inside) but is more explicit, which will be an advantage
here.

For δ � ε, let

r δ
1 := {rei(a−δ) : δ � r � 1 − δ} and r δ

2 := {rei(−a+δ) : δ � r � 1 − δ}

and let W δ
a = {δ < |z| < 1 − δ; arg(z) ∈ (−a + δ, a − δ)}. Let ν̂δ be the harmonic

measure seen from w on the boundary of the domain W δ
a and let νδ be the same har-

monic measure, but restricted to the lines r δ
1 and r

δ
2 . Finally, let φ be a smooth radially

symmetric function with mass 1, supported on D, and denote φz
δ (·) = δ−2φ(|z−·|/δ)

as usual. Set pδ(z) = ∫ φz
δ/10(x)ν

δ(dx). We claim the following.

Claim (a) (hD, pδ) → (hD, ρ
∂Wa
w ) in L2(P) and in probability as δ → 0.

(b) pδ(z) is bounded aboveby someuniversal constant times δ−1 ε
a

π
2(a−δ)

(
|z|
1−δ

)
π

2(a−δ)
−1.

Proof of claim For (a), we first prove the same statement with pδ replaced by

p̂δ(z) :=
∫
D

φz
δ/10(x)ν̂

δ(dx).

To do this, we apply the Markov property in Wa , writing hD = hWa
D

+ ϕ
Wa
D

. First, we
consider the part with zero boundary conditions: by Corollary 2.17, we have that

E[(hWa
D

, p̂δ)2] =
∫
W 2

a

GWa (z, w) p̂δ(z) p̂δ(w)dzdw → 0
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1280 N. Berestycki et al.

as δ → 0 by standard properties of the Dirichlet Green’s function (note that p̂δ is
simply a perturbation of the harmonic measure on ∂Wa).

Then we consider the harmonic part: we have

(ϕ
Wa
D

, p̂δ) = (ϕ
Wa
D

, φ0
δ/10 ∗ ν̂δ) = (ϕ

Wa
D

∗ φ0
δ/10, ν̂

δ) = (ϕ
Wa
D

, ν̂δ) = ϕ
Wa
D

(w)

for every δ, since φ is radially symmetric with mass 1, ϕ
Wa
D

is harmonic, and ν̂ is

the harmonic measure on W δ
a ⊂ Wa meaning that ϕ

Wa
D

is a true harmonic function

on W δ
a . Combining these two facts, it follows that (hD, p̂δ) converges to (hD, ρ

∂Wa
w )

in L2(P) and in probability as δ → 0. Now to conclude (a), simply observe that
Var(hD, pδ − p̂δ) converges to 0 as δ → 0: again, this follows from Corollary 2.17
and elementary properties of the Green’s function since pδ − p̂δ is supported on an
arbitrarily small neighbourhood of a fixed arc of the unit circle (and converges to the
harmonic measure on that arc seen from w).

We now move on to (b). For z ∈ D we have

pδ(z) � sup
x

|φ(x)| × δ−2 νδ(Bz(δ) ∩ {r δ
1 ∪ r δ

2 }) = sup
x

|φ(x)| × δ−2 ν̂δ(Bz(δ) ∩ {r δ
1 ∪ r δ

2 })

by definition. Consider the maps

ϕδ
1 : z 
→ zπ/(2(a−δ))

(1 − δ)π/(2(a−δ))
, ϕδ

2 : z 
→ z2 + 2z − 1

2z + 1 − z2
, ϕδ

3 : z 
→ z − (1 − η)

1 − (1 − η)z

where (1 − η) = ϕδ
2 ◦ ϕδ

1(w). Then ϕδ
1 maps W̃ δ

a to the half disc D ∩ {�(z) > 0},
W̃ δ

a = {|z| < 1−δ : arg(z) ∈ (−a+δ, a−δ)}. It can also be checked using elementary
properties of Möbius maps that ϕδ

2 maps the half disc to the full disc D, and ϕδ
3 maps

D to itself so that ϕδ
2 ◦ ϕδ

1(w) is sent to 0. Hence ϕδ
3 ◦ ϕδ

2 ◦ ϕδ
1 is a conformal map from

W̃ δ
a to D sending w to 0,
A computation verifies that for any z ∈ D, ϕδ

3 ◦ ϕδ
2 ◦ ϕδ

1(Bz(δ) ∩ {r δ
1 ∪ r δ

2}) is an
arc of the unit circle with length less than cεδπ

2a(a−δ)
(

|z|
1−δ

)
π

2(a−δ)
−1 for some universal

constant c. In particular, we use that

|(ϕδ
1)

′| � π

2(a − δ)

( |z|
1 − δ

) π
2(a−δ)

−1

on {r δ
1 ∪ r δ

2}; |(ϕδ
2)

′| � 4 on {iy : y ∈ [−1, 1]}

and

|(ϕδ
3)

′| � 2η on {eiθ : π/2 � θ � 3π/2}

where η � 1
a cε for some such c. By definition of ν̂δ , and the fact that the harmonic

measure with respect to W δ
a is less than the harmonic measure with respect to W̃ δ

a for
any fixed subset of {r δ

1 ∪ r δ
2}, this finishes the proof of the claim. ��
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A characterisation of the Gaussian free field 1281

With this claim in hand, we have by Fatou’s Lemma and Lemma 2.19

E[(hD, ρ∂Wa
w )4] � lim inf

δ→0

∫∫
D4

K̃D

4 (x1, . . . , x4)p
δ(x1) · · · pδ(x4)

∏
dxi

and then by Proposition 2.10 and Remark 2.11, we see that this is less than or equal to

c
ε4

a4
lim inf

δ→0
δ−4

∫∫
{supp(pδ)}4

(
1 +

∑
i �= j

log2(|xi − x j |)
) 4∏
i=1

π

2(a − δ)

( |xi |
1 − δ

) π
2(a−δ)

−1

dxi

another universal c (which may now change from line to line).
We can simplify this expression. Because pδ is supported in a strip of width δ/10

around the lines r δ
1 and r δ

2 , we can change of variables by considering the orthogonal
projection onto r δ

1 ∪ r δ
2 , so that we can write

(xi )1�i�4 = (zi + yi )1�i�4 with zi ∈ r δ
1 ∪ r δ

2 ; 0 � |zi | � 1 − δ and − δ/10 � |yi | � δ/10.

Note then that log2 |xi − x j | � log2(
∣∣|zi |− |z j |

∣∣). Performing the change of variables

(ui )1�i�4 = (
|zi |
1−δ

)1�i�4) we obtain that the above is less than or equal to

c
ε4

a4

⎛
⎝1 + lim inf

δ→0

∑
1�i �= j�4

∫
[0,1]4

log2 |ui − u j |
4∏

i=1

π

2(a − δ)
u

( π
2(a−δ)

−1)

i dui

⎞
⎠ .

Thus, to conclude the proof in the case a j � ε, we need to show that

∫
[0,1]2

log2 |x − y|bxb−1byb−1 dx dy � C log4 b

for some constant C and all b � 1. To see this, we break up the integral into 4
regions. The first is S1 := {x � 1 − log(b)/b} ∩ {y � 1 − log(b)/b}, and on this
region bxb−1 and byb−1 are uniformly bounded in b (indeed, one can easily check
that b(1− log b/b)b−1 → 1 as b → ∞). Since

∫∫
[0,1]2 log

2 |x − y|dxdy is finite, this
means that the integral over S1 is less than or equal to a universal constant. The second
is S2 := {x � 1 − log(b)/b} ∩ {y > 1 − log(b)/b}, and on this region, bxb−1yb−1

is uniformly bounded in b for the same reason. Thus integrating over S2, and using
that

∫ a
0 log2(u) du = O(a log2(a)) as a → 0, we obtain something of order at most

log3(b). Symmetrically, the integral over the region S3 := {y � 1− log(b)/b}∩ {x >

1− log(b)/b} is at most order log3(b). The last region is S4 := {x � 1− log(b)/b} ∩
{y � 1−log(b)/b}. Using that ∫∫[0,a]2 log2(|x− y|)dxdy = O(a2 log2(a)) as a → 0,

we see that the integral over S4 is O(log4(b)), and this completes this part of the
proof.
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1282 N. Berestycki et al.

Finally, suppose that a j < ε. Then we have Bz j (a j/10) ⊂ Vj , so by Lemma 2.3

E[(hD, ρ
∂Vj
z j )4] � E[(hD, ρ

∂Bz j (a j /10)
z j )4].

Using Proposition 2.10, we see that this is less than c log2(a j ) for some universal c.
��

3.2 Proof of Gaussianity

The proof of Proposition 3.1 is based on the following lemma. Let D′ � D be an
analytic Jordan domain1 containing k pairwise distinct points z1, . . . , zk .

Proposition 3.3 ((hD, ρ∂D′
z1 ), . . . , (hD, ρ∂D′

zk )) is a Gaussian vector.

By conformal invariance, we can assume for the proof that D = D. To prove this
we will need the following technical lemma.

Lemma 3.4 Let D′ � D be an analytic Jordan domain containing k pairwise distinct
points z1, . . . , zk . Then there exists a sequence of increasing domains (Ds)s∈[0,1] with
D0 = D′ and D1 = D, such that

• Ds is an analytic Jordan domain for every s ∈ [0, 1].
• dH (Ds, Dt ) � c|s − t | for all s, t ∈ [0, 1] where dH is the Hausdorff distance
and c does not depend on s, t ∈ [0, 1].

• If φ j,s : Ds → D for each 1 � j � k and s ∈ [0, 1] is the unique conformal map
sending z j 
→ 0 and with φ′

j,s(z j ) > 0 then

sup
s∈[0,1]

sup
1� j�k

sup
z∈Ds

|φ′
j,s(z)| < ∞

Proof This fact seems intuitive and may well be known but we could not find a refer-
ence. The proof we give here is elementary and relies on Brownian motion estimates
as well as explicit constructions of Riemann maps.

Consider the doubly connected domainD\D′. Then, by the Riemann mapping the-
orem for doubly connected domains [1, Ch6, §5, Theorem 10], there exists a conformal
map φ from D\D′ to the annulus D \ rD for some unique r < 1. We set

Ds := {φ−1((r + (1 − r)s)D\rD)} ∪ D′

for each s ∈ [0, 1] so that D0 = D′, D1 = D and the (Ds)s are increasing as required.
It is also clear that Ds is an analytic Jordan domain for each s.

Moreover, as D′ = D0 has analytic boundary we know that φ−1 can be extended
analytically, by Schwarz reflection, to D\uD for some u < r (and we can pick u such
that zi /∈ φ−1(D\uD) for each 1 � i � k). We also have that |φ′| is a continuous

1 By analytic Jordan domain we mean a simply connected domain bounded by a Jordan curve, where the
curve is the image of the unit circle under a conformal map defined on an open neighbourhood of the unit
circle.
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A characterisation of the Gaussian free field 1283

function on the compact set D\D′ (because φ extends analytically to D̄\D′) so is
bounded above and below on this set. This provides the second statement of the
lemma (concerning Hausdorff distance).

For the third statement, we pick u < v < r and define V to be the domain given by
the interior of the Jordan curve φ−1(∂(vD)). Similarly, we define U to be the domain
bounded by the curve φ−1(∂(uD)), so that U � V � D′. Then we set

M = sup
x∈∂U

sup
y∈∂V

K V (x, y)

where KV (x, ·) is the boundary Poisson kernel on ∂V . That is, KV (x, y) is the density,
with respect to arc length, of the harmonic measure on ∂V viewed from x ∈ V . We
recall here that for an analytic Jordan domain D, and x ∈ D, y ∈ ∂D

K D(x, y) = ∂nG
D(x, y) = √

2|ϕ′
x (y)| (3.1)

for ϕx : D → D the unique conformal map with ϕx (x) = 0 and ϕ′
x (x) > 0.2 In

particular, since ∂V is an analytic Jordan curve, |ϕ′
x (y)| is a continuous function on

∂U × ∂V , and this means that M defined above is finite.
We will use the fact that for any s ∈ [0, 1], by definition of φ and conformal

invariance, the image under φ of a Brownian motion started at y ∈ ∂V and stopped
when it leaves Ds\U is a Brownian motion started at φ(y) ∈ ∂(vD) and stopped when
it leaves (r + (1 − r)s)D\uD. We refer to this elementary fact as (†).

First, we will use (†) to prove that for any z ∈ ∂Ds , if n(z) is the inward unit normal
vector to ∂Ds at z, then

∂nG
Ds (zi , z) = lim

δ→0
δ−1GDs (zi , z + δn(z)) � c (3.2)

where the constant c is independent of 1 � i � k, s ∈ [0, 1] and z ∈ ∂Ds . To do this,
without loss of generality we take i = 1. Assume that δ is always small enough that
z+ δn(z) does not intersect V . Then we take a Brownian motion (Bt )t�0 in C started
from z1, and define the following series of stopping times:

T1 = inf{t � 0 : Bt /∈ V }; S1 = τDs ∧ inf{t � T1 : Bt ∈ U },
Tj = τDs ∧ inf{t � S j−1 : Bt /∈ V } S j = τDs ∧ inf{t � Tj : Bt ∈ U } for j � 2

where τDs is the hitting time of ∂Ds . Then for each time interval [Tj , S j ], writing pt
for the transition density of Brownian motion in C, we have

Ez1

[∫ S j

t=Tj

pt (z1, z + δn(z)) dt

]
= Ez1

[∫ S j−Tj

t=0
pt (BTj , z + δn(z)) dt

]

� M |∂V | sup
x∈∂(vD)

G(r+(1−r)s)D(x, φ(z + δn(z)))

2 This follows from the fact that for analytic D, ϕx (z) = e−GD(x,z)−i G̃D (x,z) where G̃D(x, ·) is the
harmonic conjugate of GD(x, ·), see for example [21].
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where |∂V | is the length of the curve ∂V . The inequality follows from (†) since the
expected time that a Brownian motion started at x ∈ ∂(vD) spends at any given point
before exiting (r + (1 − r)s)D\U is less than the expected time spent there before
exiting (r + (1 − r)s)D. This gives us that

lim sup
δ→0

δ−1GDs (zi , z + δn(z))

� C lim sup
δ→0

(
δ−1 sup

x∈∂(vD)

G(r+(1−r)s)D(x, φ(z + δn(z)))

)
Ez1 [ |{ j : S j < ∞}| ].

Now, since |{ j : S j < ∞}| is dominated by a geometric random variable with success
probability uniformly bounded below (for example, the probability that a Brownian
motion started on ∂(vD) hits ∂D before ∂(uD)) we see that the expectation is bounded,
independently of z and s ∈ [0, 1]. Thus we only need to consider the limsup term in
the above. For this, we first note that |φ(z + δn(z))| � (r + (1 − r)s)(1 − K δ) for
some K depending only on φ (since φ has uniformly bounded derivative). Then, an
explicit calculation using the Green’s function in the unit disc tells us that

sup
x∈∂(vD)

G(r+(1−r)s)D(x, φ(z + δn(z))) � log

(
1 + K δ

(
a2 − 2 + K δ − K δa2

(a(1 − K δ) − 1)2

))

where a := v/(r + (1 − r)s). Since |a| � v/r < 1, we obtain (3.2).
Now recall the definition of φ j,s from the statement of the lemma. We have just

proved, by the second equality in (3.1), that

sup
z∈∂Ds

|φ′
j,s(z)| � c

for some c not depending on j or s. However, since φ′
j,s is analytic up to the boundary

of Ds we obtain the same upper bound for supz∈Ds
|φ′

j,s(z)|. ��
Proof of Proposition 3.3 To prove Proposition 3.3, we take a sequence of increasing
domains (Ds)s∈[0,1] as described by Lemma 3.4. Then we define

X (i)
s := (hD, ρ

∂D1−s
zi )

for all i, s and let

Xs := (X (1)
s , . . . , X (k)

s )

(note the reversal of time here—we want to now move inwards from ∂D to ∂Ds). We
will prove that for every s, Xs is distributed as a multivariate Gaussian random vector.
Setting s = 1, this proves the lemma.

In fact, we will prove the following equivalent statement: for every vector
(a1, . . . , ak) ∈ R

k , and s > 0
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Ys :=
k∑

i=1

ai X
(i)
s

is a Gaussian random variable. Note that Y0 = 0 because hD has zero boundary
conditions, and it is also straightforward to check using the domain Markov property
that Ys has independent mean zero increments. By the Dubins–Schwarz theorem,
these observations tell us that as long as Ys has a continuous modification, it must be a
Gaussian process (because it is a continuous martingale with deterministic quadratic
variation process).

To prove that Ys has continuous modification, we shall prove that for any η > 0
there exists some constant C such that for all ε > 0 and s ∈ [0, 1]

E[(Ys − Ys+ε)
4] � Cε2−η (3.3)

Using Kolmogorov’s continuity criterion, (3.3) is enough to conclude that Ys admits
a continuous modification.

Fix some 0 < η < 1, let s ∈ [0, 1) and let γε be the curve defined by ∂D1−s−ε

inside D1−s . Then by definition, expansion and Cauchy-Schwarz,

E[(Ys − Ys+ε)
4] = E[(

k∑
i=1

ai (h
D1−s , ρ

γε
zi )
)4]

�
∑

1�i1�···�i4�k

ai1ai2ai3ai4

4∏
j=1

(
E[(hD1−s , ρ

γε
zi j

)4]
)1/4

.

In light of the above inequality, it is enough to show that there exists a C such that
for all 1 � j � k, s ∈ [0, 1] and ε > 0

E
[
(hD1−s , ρ

γε
z j )

4] � Cε2−η. (3.4)

For this, we use our hypotheses on the family of domains (Ds)0�s�1. These tell
us that if φ j,s : Ds → D is the unique conformal map sending z j 
→ 0 and with
φ′
j,s(z j ) > 0, we have that φ j,s(γε) is contained in {z : 1 − bε < |z| < 1} for some

b > 0 not depending on j, s or ε. Then by conformal invariance, we can write

E[(hD1−s , ρ
γε
z j )

4] = E[(hD, ρ
φ j,s (γε)

0 )4] � E[(hD, ρ
∂(1−bε)D
0 )4],

where the inequality follows from Lemma 2.3.
So we estimate the final quantity; without loss of generality, we assume that b = 1.

By Fatou’s Lemma we have

E[(hD, ρ
∂(1−ε)D
0 )4] � lim inf

δ→0

∫∫
D4

K̃D
4 (x1, x2, x3, x4)ψ̂

δ(x1)ψ̂
δ(x2)ψ̂

δ(x3)ψ̂
δ(x4)

∏
dxi ,

(3.5)
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recalling the definition of ψ̂δ from Sect. 2.2: it is a smooth function, bounded above
by some constant multiple of δ−1, that is supported on the annulus �δ,ε := {z :
(1 − ε)(1 − 11δ/10) � |z| � (1 − ε)(1 − 4δ/10)}. Suppose that δ < ε. Then the
integrand is only supported on points (x1, x2, x3, x4) all lying in �δ,ε. Moreover, if
(x1, . . . , x4) are 4 such points, then by Proposition 3.2

K̃D

4 (x1, . . . , x4) �

⎛
⎝ 4∏

j=1

E

[(
hD, ρ

∂Vj
z j

)4]
⎞
⎠

1/4

� c

⎛
⎝∏

j

(
ε4

a4j
∧ 1

)
log4(a j )

⎞
⎠

1/4

for some universal constant c, where a j = mini �= j {|u(xi ) − u(x j )|1} (and u(x) =
x/|x |.) Using the bound on ψ̂δ , we see that (3.5) is bounded above by

c′ lim inf
δ→0

δ−4
∫∫

�4
δ,ε

⎛
⎝ 4∏

j=1

(
ε4

a4j
∧ 1

)
log4(a j )

⎞
⎠

1/4

dx j (3.6)

for another universal c′.
Now, we rewrite the integral in polar coordinates x j = r jeiθ j (so u j = eiθ j ) and

then, noticing that a j depends only on the angular coordinate, integrate over r1, . . . , r4.
This gives us that (3.6) is less than or equal to

c′′
∫∫

0�θ1�θ2�θ3�θ4�2π

⎛
⎝ 4∏

j=1

(
ε4

a4j
∧ 1

)
log4(a j )

⎞
⎠

1/4

dθ j

where a j = a j (θ1, . . . , θ4). Now, we divide the integral over the θ j ’s into several
parts, depending on which a j ’s are smaller or bigger than ε. Let

(A j )1� j�4 := {a( j+k)mod4 < ε for k = 0, 1; a( j+k)mod4 � ε for k = 2, 3}s
(Bj )1� j�4 := {a( j+k)mod4 < ε for k = 0, 1, 2; a( j+3)mod4 � ε}

D := {a j < ε for j = 1, 2, 3, 4}, and

E := {a j � ε for j = 1, 2, 3, 4}.

A computation yields that the integral over A j is O(ε2−η) for all j , the integral over
Bj is O(ε3−η) for all j , the integral over D is O(ε2−η), and the integral over E is
O(ε2−η). This completes the proof of equation 3.4 and hence the lemma. ��

Proof of Proposition 3.1 The strategy of the proof is to construct a sequence of analytic
Jordandomains (Dn)n�1, all contained inD, such that ((hD, ρ

Dn
z1 ), . . . , (hD, ρ

Dn
zk )) →

(hε(z1), . . . , hε(zk)) in a precise sense as n → ∞. More concretely, it is enough to
show that for any (a1, . . . , ak) ∈ R

k , we can choose a sequence of analytic domains
(Dn)n�1, such that setting
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Yn :=
k∑

i=1

ai (h
D, ρDn

zi ) and Z :=
k∑

i=1

ai h
D
ε (zi ),

we have

Var(Yn − Z) → 0 (3.7)

as n → ∞. Since Yn is Gaussian for every n (by Proposition 3.3) and Z has finite
variance, this shows that Z is Gaussian.

So, we choose the Dn . This will involve first defining a sequence of auxiliary
domains D′

n , that need not be analytic, and then using them to define the analytic
domains Dn .

To begin, we observe that for n ∈ N with 1/n < ε, the balls {Bzi (ε + 1/n) : 1 �
i � k} are disjoint. Let us choose a further point z ∈ D, that does not lie in any of
these balls. It is easy to see (since the set {zi }1�i�k is finite) that one can choose such
a z, along with a smooth curve γi from z to zi for each 1 � i � k, and c, c′ ∈ (0, 1)
such that:

• γi ∩ ∂B(z j , ε) is empty for i �= j and consists of exactly one point when i = j ,
1 � i � k;

• the c/n fattenings γ n
i := {z ∈ D : d(z, γi ) < c/n} of the γi are such that

D′
n :=⋃1�i�k γ n

i ∪Bzi (ε+1/n) is a simply connected domain strictly contained
in D for every n > 1/ε;

• the boundary of D′
n contains, for each 1 � i � k, the curve ∂Bzi (ε + 1/n)\An

i ,
where An

i is an arc of ∂Bzi (ε) that has length � c′/n.

We need the following basic statement that says, in some sense, that D′
n is a good

approximation to ∪i Bzi (ε) for large n.

Lemma 3.5 For every 1 � i � k,

sup
D′
n⊂D′⊂D′

n/2

∫∫
GD′

(x, y)ρε
zi (dx)ρ

ε
zi (dy) → 0

as n → ∞, where the supremum is over all simply connected domains D′ satisfying
the indicated inclusions.

Proof Without loss of generality, we prove the result for i = 1, and assume that
diam(D) � 1. Fix D′

n ⊂ D′ ⊂ D′
n/2 simply connected. Then by harmonicity of the

Green’s function, we have

∫∫
GD′

(x, y)ρε
z1(dx)ρ

ε
z1(dy) =

∫
GD′

(z1, y)ρ
ε
z1(dy)

and also for y ∈ ∂Bz1(ε),

0 � GD′
(z1, y) � GD′′

(z1, y) = log(1/ε) − Ey[log(1/|BτD′′ − z1|)], (3.8)
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Fig. 3 The domain D′
n from the

proof of Proposition 3.1. The
boundary of D′

n overlaps with
∂Bzi (ε + 1/n) for 1 � i � k
except on k small arcs
(Ani )1�i�k with maximum
length tending to 0. Here k = 4

where the expectation Ey is for a Brownian motion B starting from y, and τD′′ is its
exit time from D′′ := D′

n/2.
Moreover,we have the upper boundEy[log(1/|BτD′′ −z1|)] � log(1/(ε+2/n))(1−

py,n), where py,n is the probability that a Brownian motion started from y exits

∂Bz1(ε + 2/n) through the boundary arc An/2
1 . Since py,n tends to 0 as n → ∞

for almost every y ∈ Bz1(ε) (in fact, the only y for which this fails to hold is the
single intersection point of ∂Bz1(ε) and γ1), it follows by dominated convergence that∫
GD′′

(z1, y)ρε
z1(dy) → 0 as n → ∞ (Fig. 3). The lemma then follows from the

inequalities on the left hand side of (3.8). ��
Now from the (D′

n)n we define our sequence of domains (Dn)n , such that Dn is
analytic, and also D′

n ⊂ Dn ⊂ D′
n/2 for each n. This second condition will allow us

to apply Lemma 3.5.
By the Riemann mapping theorem for doubly connected domains, we know that

we can choose a conformal map φ from D\D′
n to the annulus D\rD for some unique

r ∈ (0, 1). For each r < s < 1, denote by D′
n(s) the complement in D of the preimage

of D\sD under φ. Then D′
n(s) is a simply connected domain containing D′

n for every
s ∈ (r , 1), and ∩s∈(r ,1)D′

n(s) is equal to D′
n . Hence there exists some 1 > sn > r

such that D′
n(s) is contained in D′

n/2. We then define

Dn := D′
n(sn).

It is clear that Dn is analytic for every n (since by definition its boundary is the image
of the unit circle under a conformal map that is defined in a neighbourhood of the
circle) and also, by construction, that D′

n/2 ⊂ Dn ⊂ D′
n .

Having defined the Dn , we just need to prove (3.7). Without loss of generality it
is enough to show that E[(hD

ε (z1) − (hD, ρ
∂Dn
z1 ))2] → 0 as n → ∞. For this, write

hD = hDn
D + ϕ

Dn
D using the domain Markov decomposition, so that (hD, ρ

∂Dn
z1 ) =
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ϕ
Dn
D (z1). Then since Bz1(ε) ⊂ Dn we can further write hDn

D = h
Bz1 (ε)

Dn
+ ϕ

Bz1 (ε)

Dn
, and

by uniqueness, we must have

hD
ε (z1) = ϕ

Bz1 (ε)

Dn
(z1) + ϕ

Dn
D (z1).

Thus, we need to show that E[ϕBz1 (ε)

Dn
(z1)2] → 0 as n → ∞. However, from the

definition of the circle average as an L2 limit (Lemma 2.1) and the identification of
the covariance structure (2.9), we know that

E[ϕBz1 (ε)

Dn
(z1)

2] =
∫∫

GDn (x, y)ρε
z1(dx)ρ

ε
z1(dy).

The result then follows from Lemma 3.5. ��

4 Proof of Theorem 1.6

To conclude we prove convergence of the circle average field, which then implies
Theorem 1.6 by Lemma 2.18.

Lemma 4.1 For any φ ∈ C∞
c (D), (hD

ε , φ) converges to (hD
GFF, φ) in distribution as

ε → 0.

We first see how this implies Theorem 1.6.

Proof of Theorem 1.6 To prove that hD (d)= hD
GFF we need to show that for any

(φ1, . . . , φn) with (φi )1�i�n ∈ C∞
c (D), ((hD, φ1), . . . , (hD, φn)) is a Gaussian vec-

tor with mean 0 and the correct covariance matrix. Equivalently, we need to show
that for any (u1, . . . , un) ∈ R

n , the sum
∑n

1 ui (h
D, φi ) is a centered Gaussian vari-

able with the correct variance. By linearity, we therefore need only prove that for any
φ ∈ C∞

c (D),

(hD, φ)
(d)= (hD

GFF, φ).

So, we fix such a φ. By Lemma 2.18, we know that Var((hD
ε , φ) − (hD, φ)) → 0

as ε → 0. Thus (hD
ε , φ) converges to (hD, φ) in distribution. From here, Lemma 4.1

implies the result. ��

Proof of Lemma 4.1 Wewill prove that for everyn ∈ N,E[(hD
ε , φ)n] → E[(hD

GFF, φ)n]
as ε → 0, which implies the result by the method of moments, [6, Theorem 30.2].
This requires a bit of care however, since a priori it is not even clear that this moment
is well defined when n � 4.

To show the convergence, we need to compute the limit as ε → 0 of
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E[(hD
ε , φ)n] = E

[∫∫
Aε

(
n∏

i=1

hD
ε (zi )φ(zi )dzi

)]

+E

[∫∫
Eε

(
n∏

i=1

hD
ε (zi )φ(zi )dzi

)]
=: I Aε + I Eε , (4.1)

where in the middle term, we have decomposed the integral over Dn into the integrals
over Aε := {(z1, . . . , zn) ∈ Dn : |zi − z j | > 2ε for all i, j} and Eε := Dn\Aε.
We assume that ε > 0 is always small enough that d(z, ∂D) > 2ε for every z in the
support of φ. We will consider the right hand side and show that both terms are well
defined and finite, from which it will follow by Fubini’s theorem that the moment on
the left hand side is also finite.

Let us first show that I Eε → 0 as ε → 0. This follows from our a priori bounds on
the two point function in Lemma 2.12. Indeed, for any z1, . . . , zn in the support of φ,
we have that the hε(zi ) are marginally Gaussian (Proposition 3.1), and therefore the
nth moment of |hε(zi )| is at most cE(hε(zi )2)n/2 for some constant c depending only
on n. Therefore by Hölder’s inequality and Lemma 2.12, we have

E

(
n∏

i=1

|hD
ε (zi |)

)
� c(log(1/ε))n/2,

for some constant c depending on n but not on ε (note this already implies that for
fixed ε > 0, (hε, φ) has finite nth moment). Hence we can apply Fubini to bring the
expectation inside the integral in I Eε , and conclude that

lim
ε→0

I Eε = lim
ε→0

[∫∫
Eε

E

(
n∏

i=1

|hD
ε (zi )φ(zi )|dzi

)]
� lim

ε→0
c(log(1/ε))n/2ε2 = 0.

(4.2)

Here we have used that the integral of
∏

i |φ(zi )| over Eε is O(ε2): indeed the n-
dimensional volume of Eε is O(ε2) by definition for fixed n � 2, and φ is bounded.

Consequently, we need only consider the term I Aε on the right-hand side of (4.1).
For this we use Proposition 3.1, which tells us that for every (z1, . . . , zn) ∈ Aε ,
(hD

ε (z1), . . . , hD
ε (zn)) is multivariate normal with mean (0, . . . , 0). Therefore, by the

Wick rule (to be more precise, Isserlis’ theorem), we have that

E
[ n∏
i=1

hD
ε (zi )

] = 1n even
∑

P:pairings

∏
(i, j)∈P

E[hD
ε (zi )h

D
ε (z j )], (4.3)

on Aε, where the above sum is over all pairings of {1, 2, . . . , n}. In fact, by
(2.7), Proposition 2.10, Lemma 2.14 and Cauchy–Schwarz, we know that for any
zi , z j ∈ Aε,
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|E[hD
ε (zi )h

D
ε (z j )]| � log

(
1

|zi − z j |
)

+ O(1). (4.4)

This allows us to deduce that the right hand side of (4.3) is bounded above by a function
independent of ε, that is also integrable over Dn . Thus we can apply Fubini and then
the dominated convergence theorem in (4.1), to see that

lim
ε→0

E[(hD
ε , φ)n]

= lim
ε→0

I Aε = 1n even lim
ε→0

∫∫
Aε

∑
P:pairings

∏
(i, j)∈P

E[hD
ε (zi )h

D
ε (z j )]

∏
j

φ(z j )dz j

= 1n even

∫∫
Aε

lim
ε→0

∑
P:pairings

∏
(i, j)∈P

E[hD
ε (zi )h

D
ε (z j )]

∏
j

φ(z j )dz j

= 1n even

∫∫
Aε

∑
P:pairings

∏
(i, j)∈P

GD(zi , z j )
∏
j

φ(z j )dz j

= 1n even

∫∫
Dn

∑
P:pairings

∏
(i, j)∈P

GD(zi , z j )
∏
j

φ(z j )dz j

where the penultimate line follows by (2.7), and the final line by the same reasoning
as in (4.2). From this, it follows that that limε→0 E[(hD

ε , φ)n] = E[(hD
GFF, φ)n], and

hence we have concluded the proof of Lemma 4.1 and of Theorem 1.6. ��

5 Proof of Theorem 1.9

First, we prove that the family {X [0,2n ](1)}n∈N is tight:

Lemma 5.1 For any ε > 0 there exists M > 0 such that P(X [0,2n ](1) � M) � ε for
all n ∈ N.

Proof First observe that X [0,2n ](1) (d)= 2
n
2 X [0,1](2−n), by the assumption of Brownian

scaling. Then, by iteratively dividing the interval [0, 1] into two and using scaling and
the Markov property again, we can write

2
n
2 X [0,1](2−n)

(d)= 2− n
2+1

n−1∑
k=0

2
k
2 X [0,1]

k (1/2), (5.1)

where the (X [0,1]
k : 0 � k � n − 1) are independent copies of X [0,1]. Write Yn for

the right hand side of (5.1), and let X have the law of X [0,1](1/2). By Assumptions
1.8 we know that

E[log+(|X |)] < ∞. (5.2)

The idea is to derive a uniform bound (in n) for P(|Yn| > M) by recursion.
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To do this, write

Yn+1 = Yn√
2

+ 2X [0,1]
n (1/2)

(where X [0,1]
n (1/2) has the same distribution as X ). This means that if we pick some

a ∈ (1,
√
2) and set b = 1 − a√

2
∈ (0, 1) we have that

P(|Yn+1| � M) � P(|Yn| � aM) + P(|X | � b

2
M).

Since P(|Y0| � M) = P(|X | � M/2) we have by iteration that

P(|Yn| � M) � P

(
|X | � an

M

2

)
+

n−1∑
k=0

P

(
|X | � akb

M

2

)
�

n∑
k=0

P

(
|X | � akb

M

2

)
,

and we can bound this sum above by

∞∑
k=1

P

(
log+

(
2|X |
bM

)
� k log a

)
� 1

log a

∫ ∞

0
P

(
log+

(
2|X |
bM

)
� t

)
dt

= 1

log a
E

[
log+

(
2|X |
bM

)]
.

By (5.2) the right hand side converges to 0 as M → ∞, and it is clearly uniform in n,
which completes the proof. ��

We now claim that, locally, the process X [0,2n ] (in the large n limit) has to be a
constant times a Brownian motion.

Lemma 5.2 We have the following convergence in the sense of finite dimensional
distributions:

(X [0,2n ](t))t∈[0,1]
n→∞−−−→

(d)
σ (B(t))t∈[0,1]

for some constant σ � 0 where (B(t))t�0 is a standard Brownian motion.

Proof Step one is to show that for any sequence of natural numbers going to infinity,
there exists a subsequence n(k) such that (X [0,2n(k)](t))t∈[0,1] converges as k → ∞
(in the sense of finite-dimensional distributions). To do this, we write by the domain
Markov property applied to the subinterval [0, 1] ⊂ [0, 2n]:

(X [0,2n ](t))t∈[0,1] = (X̃ [0,1](t) + t X [0,2n ](1))t∈[0,1], (5.3)

where X̃ [0,1] is an independent copy of X [0,1]. This means that to show convergence
of (all) the finite dimensional distributions of X [0,2n ] along (the same) subsequence,
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it suffices to show that X [0,2n ](1) has subsequential limits. However, this is just a
consequence of Lemma 5.1.

So now assume that we have a subsequence (n(k) : k � 1) such that
(X [0,2n(k)](t))t∈[0,1] converges to (Y (t))t∈[0,1] in law for finite-dimensional distribu-
tions. If we can show that Yt = σ Bt in the sense of finite-dimensional distributions
for some σ � 0 (not depending on the subsequence), then we will have completed the
proof.

We first show that Y has independent and stationary increments. Pick 0 = t0 �
t1 � · · · � tl � tl+1 = 1, and observe that by the Markov property,

(
Y (t1),Y (t2) − Y (t1), . . . ,Y (tl) − Y (tl−1),Y (1) − Y (tl)

)
(5.4)

is a limit in distribution as k → ∞ of

(
X [0,2n(k)]
1 (t1),

t2 − t1
2n(k) − t1

Zk
1 + X [0,2n(k)−t1]

2 (t2 − t1), . . . ,
1 − tl

2n(k) − tl
Zk
l

+X [0,2n(k)−tl ]
l+1 (1 − tl)

)

where the X
[0,2n(k)−t j−1]
j (for 1 � j � l + 1) are independent copies of X [0,2n(k)−t j−1]

; and Zk
j for 2 � j � l is defined recursively by

Zk
1 = X [0,2n(k)]

1 (t1) ; Zk
j =

j−1∑
i=1

ti+1 − ti
2n(k) − ti

Zk
i

+
j∑

i=1

X [0,2n(k)−ti−1]
i (ti − ti−1) for 2 � j � l + 1.

Now we claim that for any s ∈ [0, 1] and u ∈ [0, 1), X [0,2n(k)−s](u) converges
in distribution as k → ∞ to the same limit as X [0,2n(k)](u). To see this, we write by
scaling and (5.3), whenever k is large enough that 2n(k)(2n(k) − s)−1u � 1:

X [0,2n(k)−s](u)
(d)=
√
2n(k) − s

2n(k)
X [0,2n(k)]

(
2n(k)

2n(k) − s
u

)

(d)=
√
2n(k) − s

2n(k)

(
X̃ [0,1]

(
2n(k)

2n(k) − s
u

)
+
(

2n(k)

2n(k) − s
u

)
X [0,2n(k)](1)

)

where X̃ [0,1] is an independent copy of X [0,1]. Since X [0,1] is stochastically continuous,
the claim follows.

By the above claim, an induction argument, and the fact that (t j+1 − t j )/(2n(k) −
t j ) → 0 as k → ∞, it follows that (t j+1 − t j )/(2n(k) − t j ) × Zk

j converges to 0 in
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distribution as k → ∞ for every 1 � j � l. This means that the law of (5.4) is the
same as the limit in distribution of

(
X [0,2n(k)]
1 (t1), X [0,2n(k)]

2 (t2 − t1), . . . , X
[0,2n(k)]
l+1 (1 − tl)

)
.

For this last step we have also used the independence of the (X j ), the fact that the
(t j+1 − t j )/(2n(k) − t j )× Zk

j actually converge in probability (because they converge
in distribution to a constant), and the claim one more time.

Finally, by independence of the X j again, we deduce that the entries in (5.4) (and so
the increments ofY )must be independent. Furthermore the distribution of the j th entry
depends only on t j −t j−1 and so the increments are stationary. Hence, (Y (t))t∈[0,1] has
independent and stationary increments. Y is also continuous in probability at every
t , because of (5.3) and Assumptions 1.8. Thus Y is a Lévy process on [0, 1] (and
can be extended to a Lévy process on all of [0,∞) by adding independent copies on
[1, 2], [2, 3], . . .).

Now it is clear that Y also enjoys the scaling property: for t � 1,

Y (t) = lim
k→∞ X [0,2n(k)](t) = lim

k→∞
√
t X [0,2n(k)/t](1) = √

tY (1)

where all the equalities above are in law and the limits are in the sense of distribution.
To justify the last equality we write, by the domain Markov property,

√
t X [0,2n(k)/t](1) (d)= √

t X̃ [0,2n(k)](1) + √
t2−n(k)X [0,2n(k)/t](2n(k)),

where X and X̃ are independent. Since the first term converges to
√
tY (1) in distribu-

tion, and the second, by scaling, is equal in distribution to 2−n(k)/2X [0,1](t), we obtain
the result.

BecauseY is a Lévy process, we know that for any θ ∈ R, the characteristic function
of Y can be written as

E[eiθY (t)] = eψ(θ)t .

(In fact, by the Lévy–Khinchin theorem, ψ has an explicit representation which will
not be required here). By scaling,

E[eiθY (t)] = E[eiθ
√
tY (1)]

so that

tψ(θ) = ψ(
√
tθ)

for any θ > 0 and any t � 0. Set
√
tθ = 1 so that t = 1/θ2. Then we deduce that

ψ(θ) = θ2ψ(1)

123



A characterisation of the Gaussian free field 1295

for all θ > 0. Since |E[eiθY (t)]| � 1 we see that ψ(θ) � 0 and hence it follows that
Y is a multiple of Brownian motion. (While we only know the characteristic function
in the positive half-line, this is enough to compute the moments and check that this
matches with those of a Gaussian random variable). In other words, Y is σ times a
standard Brownian motion.

The final thing to check is that σ does not depend on the subsequence along which
we assumed convergence. We first argue that, for any fixed t ∈ [0, 1], X [0,1](t) has
Gaussian tails and thus hasmoments of arbitrary order. Applying theMarkov property,
Y is the limit in distribution as k → ∞ of (X [0,1](t)+ t X [0,2n(k)](1))t∈[0,1], where the
two terms on the right are independent. Hence we can write

Y (t)
(d)= X [0,1](t) + t Ỹ (1). (5.5)

From this it follows that the tails of X [0,1](t) are dominated by those of Y (t). Indeed,
for any fixed t ∈ [0, 1] fix a constant c ∈ R such that P(t Ỹ (1) � c) > 0 and
P(t Ỹ (1) � c) > 0. Then for all x > 0,

P(Y (t) � x + c) � P(X [0,1](t) � x)P(t Ỹ (1) � c)

so that

P(X [0,1](t) � x) � 1

P(t Ỹ (1) � c)
P(Y (t) � x + c).

This means that the right tail of X [0,1](t) is at most a constant times that of Y (t),
which is Gaussian as Y is a multiple of Brownian motion. A similar argument can be
made for the left tail of X [0,1](t). Hence we have proved that this random variable has
moments of arbitrary order as claimed.

Furthermore, observe that by the domain Markov property and scaling,

X [0,T ](1) (d)= X̃ [0,S](1) + 1

S
X [0,T ](S)

= X̃ [0,S](1) + 1√
S
X [0,T /S](1)

for any T � S, where X̃ and X are independent. This implies Var X [0,T ](1) (which
is well defined by the above) is an increasing function of T . Moreover, referring
back to (5.1), we see that this variance is uniformly bounded and hence Var X [0,T ](1)
converges to a limit as T → ∞: call it s2. By (5.5), E[X [0,1](t)] = 0, and so using
(5.1) and the same argument again, we see that in fact the fourth moment of X [0,2n ](1)
is bounded in n. Hence E[X [0,2n(k)](1)2] converges to E[Y (1)2] = σ 2, but this limit
must also be s2 = limT→∞ E[X [0,T ](1)2] and so cannot depend on the subsequence
n(k). This means that the subsequential limit Y does not depend on the subsequence,
and hence the lemma is proved. ��
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In particular, an important consequence of this convergence is the following corol-
lary:

Corollary 5.3 X [0,1] has a continuous modification.

Proof By Lemma 5.2, the limit Y in distribution as n → ∞ of (X [0,1](t) +
t X [0,2n ](1))t∈[0,1] is a multiple of Brownian motion and so has a continuous mod-
ification. Since the first of the two summands is simply X [0,1] and does not depend on
n, and since the second summand is in the limit a.s. a linear function, we deduce that
X [0,1] has a continuous modification. ��

Now the main idea is to use the following change of variables which turns a Brow-
nian motion to a Brownian bridge:

Lemma 5.4 Let (X(t))t∈[0,1] be a process defined by X(1) := 0 and

X(t) := (1 − t)Z

(
t

1 − t

)
; t ∈ [0, 1)

where (Z(s))s∈[0,∞) is a standard Brownian motion. Then (X(t))t∈[0,1] is a standard
Brownian bridge on [0, 1].

This elementary and standard lemma can easily be verified by checking that the
covariance of X agrees with that of a Brownian bridge (and observing that X retains
the Gaussian character of Z ).

We can now start the proof of Theorem 1.9.

Proof of Theorem 1.9 First of all, note that by the scaling relation it is enough to prove
the theorem for I = [0, 1]. Consider the process

W (t) := (1 + t)X [0,1]
(

t

1 + t

)
; t ∈ [0,∞).

In view of Lemma 5.4 it suffices to show that W is a multiple of Brownian motion.
We first claim that (W (t))t�0 has independent increments. Indeed, note that from

the domain Markov property (applied to the interval [s/(1+ s), 1] ⊂ [0, 1]), we have
for all s < t :

X [0,1]
(

t

1 + t

)
= X [0,1]

(
s

1 + s

)
1 + s

1 + t
+ X̃ [s/(1+s),1]

(
t

1 + t

)
,

where X̃ [s/(1+s),1] is a copy of X [s/(1+s),1] that is independent of (X [0,1](u), u �
s/(1 + s)). Then the above equation implies that

W (t) = W (s) + (1 + t)X̃ [s/(1+s),1]
(

t

t + 1

)
(5.6)

which proves the claim, since X̃ is independent of (W (u), u � s).
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Now observe that by Corollary 5.3,W admits a continuousmodification.Moreover,
since X [0,1] has zero mean (as already observed in the proof of Lemma 5.2), we see
that W is a martingale.

Finally, note that by (5.6) and translation/scaling invariance, we can write

E[(W (t) − W (s))2] = (t − s)
1 + t

1 + s
E[X [0, 1+t

t−s ](1)2].

Wehave already noted in the proof of Lemma5.2 thatVar(X [0,T ](1)) increases towards
σ 2 as T → ∞. Hence, letting s → t , we obtain that

E[(W (t) − W (s))2] ∼ σ 2(t − s)

in the sense that the ratio of the two sides tends to 1 as s → t � 0. Since W has
independent increments, we conclude that the quadratic variation of the continuous
modification of W is given by

〈W 〉t = σ 2t .

Moreover we have W (0) = 0 a.s. Therefore, by Lévy’s characterisation of Brownian
motion, we see that

(W (t))t�0
(d)= σ(B(t))t�0,

where (B(t))t�0 is a standard Brownian motion and σ is the constant from Lemma
5.2. Thus

X [0,1](t) (d)= σ(1 − t)B

(
t

1 − t

)
; t ∈ [0, 1]

which is an equivalent definition of a constant σ times a Brownian Bridge in [0, 1] by
Lemma 5.4. ��

6 Open problems

We end this article with a few open questions raised by our results. The most obvious
ones are the following two:

Open Problem 6.1 Is Theorem 1.6 true assuming only E[(h, ϕ)2] < ∞ instead of
E[(h, ϕ)4] < ∞? Is it true without any moment assumption at all?

Open Problem 6.2 Does an analogue of Theorem 1.6 hold in dimensions d � 3 (and
if so, under what natural assumptions)?

For Problem 6.1, we believe that no moment assumptions (or perhaps only very
weak moment assumptions) are necessary for the theorem to hold. In this direction,
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we were able to prove that certain averages of the field are Gaussian with moments
assumption no stronger than Theorem 1.9. This is the case if we consider a realisation
of the Itô excursion measure in the upper half plane starting from zero (i.e., a process
whose real coordinate is a Brownian motion, and whose imaginary coordinate is a
sample from one-dimensional Itô measure), and consider the hitting distribution by
this process of a semicircle of radius r centered at zero. Equivalently, this is the deriva-
tive at zero of the the harmonic measure on a semi-circle of radius r centered at zero.
Indeed, it can be shown that the field integrated against this measure is a time-change
of Brownian motion (as a function of the radius). This is because there are martingale,
Markovian properties together with scaling properties, which are sufficient to char-
acterise Brownian motion. While this argument is very suggestive that no moments
assumptions are needed, we could not exploit this (and so have chosen not to include
a proof).

This makes it likely that no heavy-tailed analogue version of the GFF can exist if we
insist on conformal invariance. Nevertheless it is interesting to try and investigate what
are natural analogues (if any) of the GFF such that the integral against test function
gives a heavy-tailed random variable.

Open Problem 6.3 Does there exist a “natural” stable version of the GFF?

Let us give more details about what we mean in this question. In this paper, the
domain Markov property is formulated in terms of harmonic functions, but in the
context of Problem 6.3 it seems clear the notion of Markov property needs to be
changed. Indeed, one might hope that by adapting this definition of this hypothetical
process to the one-dimensional case, one would recover the bridge of a stable Lévy
process, about which very little seems in fact to be known in general (see e.g. the
recent paper [9] for some basic properties). In particular, there does not seem to be
an explicit relation between a stable bridge from 0 to 0 of duration one and a stable
bridge from a to b of same duration for arbitrary values of a, b. This suggests that if
a natural stable version of a GFF exists, it may be characterised by a more complex
Markov property.

A natural way to ask the question precisely would be to try and discretise the
problem, by considering the Ginzburg–Laundau ∇ϕ interface model. That is, for a
domain D ⊂ C, consider Dδ a fine mesh lattice approximation of D. On Dδ , consider
the random function hδ defined on the vertices of Dδ through the law

P(dhδ) ∝
∏
x∼y

�
(
hδ(x) − hδ(y)

) ∏
x∈Dδ

dhδ(x)

where
∏

x dh(x) is the product Lebesgue measure on R for all vertices in the graph,
and V is some fixed symmetric nonnegative function which decays to zero sufficiently
fast that the total mass of the measure is finite. A priori this only defines a law up to
a global additive constant, which can be fixed by requiring hδ(x0) = 0 at some fixed
vertex x0 ∈ Dδ . Then the question is to identify the limit (if it exists) as δ → 0 of the
height function hδ , extended in some natural way to all of D and viewed as a random
distribution on D. Moreover, one can ask how the limit depends on the choice of �.
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When � decays very fast at infinity (say if � is supported on a bounded interval) it
is expected – but not proved – that the limit is a Gaussian free field. This is currently
known only in the case where we can write � = e−V for V uniformly convex and
V ′′ a Lipschitz function: see Miller [27], who relied on earlier work of Giacomin,
Olla and Spohn [19] and Naddaf and Spencer [29] for the analogous result in the full
plane. However the case of bounded support remains wide open at the moment. To
formulate the above problem concretely, we ask what happens when� is heavy-tailed:
in particular, does the limit as δ → 0 exist? If so, what sort of Markov property does
it satisfy?

In another direction, it is not entirely clear how to characterise other versions of the
GFF in a similar way. For instance:

Open Problem 6.4 What is the analogue of Theorem 1.6 for a GFFwith free boundary
conditions?

(See e.g. [5] for a definition of the GFF with free (or Neumann) boundary condi-
tions.)

Another natural family of random fields which arises naturally are the so-called
fractional Gaussian fields (FGF for short), see [24] for a definition and survey of basic
properties. Roughly, they are defined as (−�)−s/2W where W is white noise on R

d ,
and (−�)−s/2 is the fractional Laplacian for a given s ∈ R. By contrast with the
hypothetical “stable” GFF discussed above, FGFs can be seen as Gaussian free fields
with long range interactions (see section 12.2 in [24]). This includes the Gaussian free
field (corresponding to s = 1) and many other natural Gaussian fields. It turns out
that FGFs enjoy a Markov decomposition similar to that of the GFF, where the notion
of harmonic function is replaced by the notion of s-harmonic function (i.e., harmonic
with respect to the fractional Laplacian (−�)s , see Proposition 5.4 in [24]). However,
note that the fractional Laplacian is a nonlocal operator so this Markov decomposition
is not a Markov property in the usual sense: the conditional law of the field given the
values outside of some domain U depend on more than just the boundary values.

In dimension two, FGFs are not conformally invariant at least in the sense of this
article except if s = 1, since in general for a given a ∈ R, we have h(ax) = as−d/2h(x)
in distribution (see below (3.4) in [24]). Nevertheless, it is natural to ask:

Open Problem 6.5 What properties characterise fractional Gaussian fields for a given
s ∈ R ?

Finally, it is natural to ask what can be said on a given Riemann surface. In this case,
the field h should also have an “instanton” component, which describes the amount
of height that one picks up as one makes a noncontractible loop over the surface. It
is natural to allow this quantity to be nonzero in general, and to depend only on the
equivalence class of the loop (for the homotopy relation). In the language of forms,
this means that ∇h will be a closed one-form but not exact.

Characterising conformally invariant random fields with a natural Markov property
would be particularly interesting because (a) there exists more than one natural field
in this context (e.g., there is at least the standard Gaussian free field with mean zero
as well as the so-called compactified GFF which arises as the scaling limit of the
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dimer model on the torus, see [4,12]); and (b) in the context of the dimer model,
there are natural situations (see again [4]) where a conformally invariant scaling limit
is obtained but its law is unknown. Hence it would be of great interest to prove an
analogue of Theorem 1.6 in the context of Riemann surfaces.

Open Problem 6.6 Characterise fields on a given Riemann surface (including an
instanton component) which enjoy a domain Markov property and conformal invari-
ance.
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