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Abstract: In their recent manuscript “An uplifting discussion of T-duality” [26], J. Har-

vey and G. Moore have reevaluated a mod two condition appearing in asymmetric orbifold

constructions as an obstruction to the description of certain symmetries of toroidal confor-

mal field theories by means of automorphisms of the underlying charge lattice. The relevant

“doomed to fail” condition determines whether or not such a lattice automorphism g may

lift to a symmetry in the corresponding toroidal conformal field theory without introducing

extra phases. If doomed to fail, then in some cases, the lift of g must have double the order

of g. It is an interesting question, whether or not “geometric” symmetries are affected

by these findings. In the present note, we answer this question in the negative, by means

of elementary linear algebra: “geometric” symmetries of toroidal conformal field theories

are not doomed to fail. Consequently, and in particular, the symmetry groups involved in

symmetry surfing the moduli space of K3 theories do not differ from their lifts.
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Introduction. Symmetries are a driving force in many areas of mathematics and theoret-

ical physics. They are, in particular, central in the investigation of the recent phenomenon

of Mathieu Moonshine and its relations to K3 theories [1–11]. The Torelli theorems for

complex tori [12] and K3 surfaces [13–17] allow a description of the symmetries of these

complex surfaces in terms of automorphisms of the respective lattices of integral cohomol-

ogy. Inspired by these theorems, the use of lattice automorphisms has been extended to

the investigation and classification of symmetries of superconformal field theories whose

targets are complex surfaces [18, 19].

At the basis of this approach lies, roughly speaking, the description of the moduli spaces

of K3 theories [20–23], on the one hand, and of toroidal conformal field theories [24, 25],

on the other, as Grassmannians that are modelled on the even or odd part of the total

cohomology of the complex two-dimensional target manifold. This may be viewed as an

extension of the description of the moduli spaces of hyperkähler structures for the respective

complex surfaces in terms of Grassmannians, which are modelled on the second cohomology.

It is thus natural to expect the properties of automorphisms of the underlying lattices of

integral cohomology to allow for a generalization to the conformal field theory setting.

Though well rooted in mathematics, the very description of general symmetries both of

toroidal and of K3 theories in terms of such lattice automorphisms is not immediate. The

more important are the recent results [26] by J. Harvey and G. Moore, which show that

the symmetries of toroidal conformal field theories cannot, in general, be fully described

in terms of their action on the underlying charge lattice. Applied to toroidal N = (4, 4)

superconformal field theories at central charges c = c = 6, where the charge lattice may be

directly related to the lattice of odd integral cohomology of the target [23, 27], this raises

some interesting questions about the traditional discussions of symmetries for these models.

More precisely, this discussion concerns symmetries of a toroidal conformal field theory

which induce an action on the underlying charge lattice fixing the respective parameter

point in the Grassmannian description of the moduli space. In [26], it is shown that vice

versa, for certain toroidal conformal field theories, there exist automorphisms of the charge

lattice which preserve the parameter point in the moduli space, but which can only lift to

symmetries of at least double the order for the corresponding conformal field theory. In

other words, the charge lattice of such a theory does not fully capture the symmetry group of

the conformal field theory. There are also cases where a lift of the same order exists, which

however acts non-trivially on some winding-momentum fields associated to invariant charge
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vectors.1 Both phenomena could potentially cast some doubt on traditional descriptions

of symmetries in conformal field theory. Whether or not either of these phenomena occurs

for a given lattice automorphism is encoded by equation (2.17) of the manuscript [26],

simply dubbed the “doomed to fail” condition. This condition had previously been stated

with different interpretation by K.S. Narain, M.H. Sarmadi and C. Vafa [28, 29], and in a

slightly different context by J. Lepowsky [30, 31]. Hai Siong Tan used a similar approach

in [32] to determine consistent asymmetric orbifold group actions. The condition can be

traced back to the properties of involutions on the charge lattice which fix the parameter

point: whenever there exists a charge vector which has an odd scalar product with its image

under such an involution, the lift is “doomed to fail”, i.e. either only a lift of order four

exists, or there are invariant charge vectors whose associated momentum-winding fields are

multiplied by (−1). The latter phenomenon of “non-trivial phases” is compatible with the

description of symmetries of toroidal sigma models [19], and it had been taken into account

in previous discussions of symmetries in conformal field theory [18, 19, 33]. The former

phenomenon, which affects the relevant groups of symmetries, has not been discussed in

this form before. The criterion for at least one of these two phenomena to occur is very

elegant, as it makes it a simple matter of linear algebra to check whether or not a given

lattice automorphism is doomed.

These findings could well be of direct relevance for the discussion of Mathieu Moon-

shine, independently of the general doubts that they may cast on the use of lattice tech-

niques in describing symmetries of conformal field theories. Indeed, by a Z2-orbifolding,

any toroidal N = (4, 4) superconformal field theory at central charges c = c = 6 gives

rise to a K3 theory. The Z2-orbifolding procedure thereby induces a map between the

respective moduli spaces which was determined in [23]. This map is described in terms

of the underlying lattices of integral cohomology, and it requires a transition between the

odd and the even integral cohomology of complex two-tori by means of triality [23].2 The

symmetries of the underlying toroidal conformal field theories thus induce symmetries of

the resulting K3 theories. A failure of a lattice automorphism to fully capture a symmetry

of a toroidal theory may descend to the corresponding K3 theory.

We are not able to predict the full scope of consequences for Mathieu Moonshine that

may follow from [26]. However, in this note we come back to a remark made by J. Harvey

and G. Moore in the first version of their recent paper, addressing symmetry surfing.

The latter is a technique that we have proposed first in [34] and that allows to combine

geometric symmetry groups from distinct points in the moduli space of K3 theories [6].

In [9], we have shown that the maximal subgroup Z4
2 : A8 of M24 is the group which, by

means of symmetry surfing, combines all geometric symmetries induced by the symmetries

of complex tori in the corresponding Z2-orbifold conformal field theories. By constructing

the leading order massive representation which contributes to Mathieu Moonshine, for

this maximal subgroup, our work [8] provides the first piece of evidence that the relevant

1We thank G. Moore for emphasizing this point to us.
2Note that at this point, one needs to work on a 2: 1 cover of the moduli space of toroidal superconformal

field theories in order to keep the target space orientation, as is required for the resulting K3 theories [23,

eq. (1.17)].
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representations of Mathieu Moonshine might arise intrinsically from conformal field theory.

Our arguments have, in the meantime, been vastly generalized by M. Gaberdiel, Ch. Keller

and H. Paul [35], yielding additional evidence in favour of the proposal of symmetry surfing.

Whether or not the symmetries that are relevant for the works [6, 8, 9, 35] are doomed

to fail is an important question for our programme. In this note we show that thanks to the

very elegant “doomed to fail” condition, this question may be answered in the negative by

means of elementary linear algebra: symmetry surfing is not doomed to fail by the uplifting

properties of lattice automorphisms. It is important to appreciate that this statement is

closely tied to the fact that symmetry surfing only proposes to combine geometric symme-

tries of K3 theories. In fact, we show more generally that geometric symmetries of toroidal

conformal field theories are never doomed to fail. The very definition of geometric symme-

tries needs to be treated with great care. It refers to symplectic automorphisms of finite

order that also leave invariant the B-field, viewed as a real-valued two-form. In particular,

this notion excludes the identification of a B-field with its shifts by integral cohomology

classes, thus excluding some symmetries that are certainly in the realm of geometry.3 The

adjective geometric thus solely means that such symmetries leave invariant a geometric

interpretation. In the context of symmetry surfing, our notion of geometric symmetries is

inseparably connected with the idea that there is a space of states that generically exist

in all K3 theories, which bears all the structure that is relevant to Mathieu Moonshine.

As already predicted in [9, 36], the cohomology of the chiral de Rham complex of [37–

42] is expected to model this “space of generic states”. In identifying the cohomology of

the chiral de Rham complex with the large volume limit of a topological half-twist of K3

theories [43], we need to require compatibility of the symmetries in question with a large

volume limit. We do so by requiring that they leave invariant a geometric interpretation of

the model. Recently, the idea of explaining Mathieu Moonshine by means of such a space

of generic states has been further substantiated by the observation that the cohomology of

the chiral de Rham complex for K3 surfaces indeed decomposes into irreducible represen-

tations of the “small” N = 4 superconformal algebra at central charge c = 6 with proper

multiplicity spaces of every massive representation, i.e. without the occurrence of virtual

representations [10, 11].

We emphasize that symmetry surfing has not been proved to explain Mathieu Moon-

shine, so far, and that this proposal may still ultimately fail, as is extensively discussed

in [11, section 4.5]. However, in this note we use plain scientific arguments to prove that

the symmetry surfing programme is not jeopardized by misidentification of geometric sym-

metries at the level of toroidal conformal field theories. Nevertheless, we expect that the

findings of [26] have important implications on the discussion of symmetries of K3 theories,

and thus on the broader programme.

The remainder of this note is divided into two sections. Section 1 is devoted to a more

detailed discussion of our notion of geometric symmetries. We describe the properties of

the symmetries that enter the symmetry surfing proposal of [6, 9, 34] and that are thus

3A lower-dimensional toroidal example is a reflection in a simple root in the su(3)-point for two free

bosons, discussed in [26, section 4.1]. We thank G. Moore for this comment.

– 3 –



J
H
E
P
0
9
(
2
0
1
8
)
0
6
2

relevant for [8, 35]. In particular, the properties of the underlying symmetries of toroidal

conformal field theories and their induced actions on the respective charge lattices are

discussed. Section 2 is devoted to the proof of our claim that geometric symmetries of

toroidal conformal field theories, in particular those that enter symmetry surfing, are not

doomed to fail. We remark that an alternative, just as immediate proof follows from the

discussion around equation (4.54) of [32].

1 Geometric symmetries of K3 theories

The Mathieu Moonshine phenomenon, discovered by T. Eguchi, H. Ooguri and

Y. Tachikawa [1], predicts the existence of a Z2 × Z2 graded representation of the “small”

N = 4 superconformal algebra of [44] at central charge c = 6, whose diagonally Z2-graded

character yields the complex elliptic genus of a K3 surface, and which simultaneously fur-

nishes a representation of the Mathieu group M24. This should yield the corresponding

twisted twining genera with their strongly restrictive modular properties. The existence

of such an M24-module was proved by T. Gannon [7]. However, in addition one expects a

compatible structure of a super vertex operator algebra on this M24-module. The latter

has not been constructed, so far. Neither has a satisfactory explanation been found for the

existence of an M24-module with all this structure.

Our quest for an explanation of these phenomena has led us to propose that the M24-

module in question should arise as a subspace of the spaces of states of K3 theories which

is common to all such theories. The representations constructed in [8, 35] arise precisely

as such from the spaces of states of Z2-orbifold conformal field theories on K3. We suggest

that the action of M24 might then be explained by means of certain symmetry groups of

K3 theories on this space of generic states, combined from distinct points of the moduli

space. The latter is our proposal of symmetry surfing.

As explained in [9, 11, 36], we expect such a space of generic states to arise as the large

volume limit of a topological half-twist of the space of states of our K3 theories (denoted

X in [9, section 5], for example). According to A. Kapustin, it thus may be modelled by

the cohomology of the chiral de Rham complex of the underlying K3 surface [43], which

according to [38, proposition 3.7 and definition 4.1] indeed carries the structure of a super

vertex operator algebra, see also [10]. To be compatible with such a large volume limit, the

symmetries that are relevant to Mathieu Moonshine must be geometric in the sense that

they are induced by geometric symmetries of the underlying K3 surface, independently of

the volume. More precisely, we require these symmetries to fix a geometric interpretation

of our theories according to [22].

To characterize such symmetries more specifically, let us recall the description of the

moduli space of K3 theories, following [22, 23]. Indeed, a K3 theory may be specified by

data that determine a hyperkähler structure on a K3 surface X, its volume V ∈ R, V > 0,

and its B-field B ∈ H2(X,R). Here, the cohomology H∗(X,R) of K3 is equipped with

the scalar product 〈·, ·〉 of signature (4, 20) that is induced by the intersection form. A

hyperkähler structure on X may then be uniquely specified by an oriented, positive definite

three-dimensional subspace Σ ⊂ H2(X,R). Denoting by υ0 ∈ H0(X,Z), υ ∈ H4(X,Z) a
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generating pair of vectors for the hyperbolic lattice H0(X,Z) ⊕ H4(X,Z) with 〈υ0, υ〉 =

1, the K3 theory in question is uniquely specified by the positive definite oriented four-

dimensional subspace of H∗(X,R) which is generated by{
σ − 〈B, σ〉υ

∣∣∣∣σ ∈ Σ

}
∪
{
υ0 +B +

(
V − 〈B,B〉

2

)
υ

}
.

As is explained, for example, in [18], the symmetries in question in particular induce lattice

automorphisms of H∗(X,Z) which leave the above four-dimensional subspace of H∗(X,R)

invariant, point-wise. To be compatible with a large volume limit, this property must hold

independently of the value of V . It follows that the vector υ must be invariant under our

lattice automorphisms. Since our large volume limit is not only independent of the value

of V but solely depends on a choice of complex structure, in all our works we have been

even more restrictive on the symmetries that enter symmetry surfing. To call a symmetry

geometric, we require it to fix the geometric interpretation, i.e. we require that the induced

lattice automorphism fixes both υ and υ0. Thus B must also be fixed, see [9, footnotes 18,

19], [8, section 4], and [33, section 4.1.1].

All the symmetries that have been used in symmetry surfing, so far [6, 8, 9, 35], are

induced from symmetries of Kummer surfaces that in turn descend from symmetries of

the underlying complex torus. In other words, any such symmetry is given in terms of the

geometric interpretation of our toroidal theory on some torus Rd/Λ, d = 4, with B-field

B̃. Here, B̃ is given by a real, skew-symmetric d× d matrix, Λ ⊂ Rd is a lattice of rank d

and by Λ∗ ⊂ Rd we denote its dual after identification of Rd with (Rd)∗ by means of the

Euclidean metric ·, that is,

Λ∗ =
{
µ ∈ Rd | µ · λ ∈ Z ∀λ ∈ Λ

}
.

The corresponding charge lattice then is

Γ(Λ, B̃) =

{
1√
2

(µ− B̃λ+ λ;µ− B̃λ− λ) | (µ, λ) ∈ Λ∗ ⊕ Λ

}
⊂ Rd,d, (1.1)

where we use the standard conventions as for example in [23, eq. (1.11)], [33, eqs. (A.3)–

(A.5)], [26, eq. (3.3)], and Rd,d = Rd ⊕ Rd is equipped with the scalar product •

∀(pl; pr), (p′l; p
′
r) ∈ Γ(Λ, B̃) : (pl; pr) • (p′l; p

′
r) = pl · p′l − pr · p′r

of signature (d, d). The geometric symmetries of the toroidal superconformal field theory

that might potentially be affected by the findings of [26] are thus given by linear maps

g ∈ O(d) with gΛ = Λ and gB̃ = B̃g. The induced action of g on the charge lattice is

∀p = (pl; pr) ∈ Γ(Λ, B̃) : g(p) := (gpl; gpr). (1.2)

For concrete examples relevant to symmetry surfing, the reader is referred to [9, section 1].

We emphasize that the respective symmetry groups may be non-abelian, and that this does

not impose any additional difficulties.
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2 Not doomed to fail

Consider a toroidal conformal field theory with charge lattice Γ ⊂ Rd,d, and a lattice

automorphism γ of Γ which fixes the parameter point of the theory, i.e. which acts on the

charge lattice by means of

∀p = (pl; pr) ∈ Γ: γ(p) = (glpl; grpr)

with gl, gr ∈ O(d). Assume that γ has order `. Then, reevaluating obstructions previously

discussed in different interpretations or contexts [28–32], J. Harvey and G. Moore find

the following obstruction for γ to lift to an automorphism of order ` of the corresponding

toroidal conformal field theory that leaves invariant winding-momentum fields associated

to γ-invariant charge vectors [26, eq. (2.17)]: such a lift is doomed to fail if ` is even and

∃p ∈ Γ: p • γ`/2(p) /∈ 2Z. (2.1)

To show that the geometric symmetries of toroidal conformal field theories are not doomed

to fail, we may thus assume without loss of generality that ` = 2. As explained in section 1

above, by (1.2) we furthermore assume that gl = gr = g ∈ O(d), Γ = Γ(Λ, B̃) as in (1.1)

with B̃T = −B̃, and that gΛ = Λ, gB̃ = B̃g. We thus have g = g−1 = gT , and we find

(gB̃)T = −B̃g = −gB̃.

In particular, we have

∀λ, λ′ ∈ Rd : λ · (gB̃)λ′ + λ′ · (gB̃)λ = 0. (2.2)

For charge vectors

p =
1√
2

(µ− B̃λ+ λ, µ− B̃λ− λ), p′ =
1√
2

(µ′ − B̃λ′ + λ′, µ′ − B̃λ′ − λ′) (2.3)

with arbitrary λ, λ′ ∈ Λ and µ, µ′ ∈ Λ∗ we thus have

p′ • γ(p) = (µ′ − B̃λ′) · gλ+ λ′ · g(µ− B̃λ)

g=gT
= µ′ · gλ+ µ · gλ′ − λ · (gB̃)λ′ − λ′ · (gB̃)λ

(2.2)
= µ′ · gλ+ µ · gλ′.

In particular,

∀p =
1√
2

(µ− B̃λ+ λ, µ− B̃λ− λ) ∈ Γ(Λ, B̃) : p • γ(p) = 2µ · gλ ∈ 2Z

since by assumption, gλ ∈ Λ and µ ∈ Λ∗. In other words, the “doomed to fail” condi-

tion (2.1) does not hold. In particular, at d = 4 we learn that the symmetries that have

been relevant for symmetry surfing, so far, are not doomed to fail.

We remark that the “doomed to fail condition” of [26] is solely testing the cyclic

subgroups of a given symmetry group. However, as noted at the end of section 1, symmetry-

surfing does involve non-cyclic, in fact even non-abelian symmetry groups. Actually, all

– 6 –
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examples of symmetries that are doomed to fail and that are discussed in [26] arise in non-

abelian global symmetry groups of special conformal field theories with enhanced symmetry.

This raises the question of whether every geometric symmetry group G has a lift to a

symmetry group of the respective conformal field theory which is isomorphic to G. That

this is indeed the case follows from the existence of an invariant 2-cocycle

ε : Γ× Γ −→ {±1}

on the charge lattice Γ which governs the operator product expansions between vertex

operators (see, for example, [45–48] for the classical results). Indeed, with notations as

in (2.3), one may use the cocycle

∀p, p′ ∈ Γ: ε
(
p, p′

)
:= (−1)µ·λ

′
.

For a geometric symmetry γ as above, g ∈ O(d) thus implies

∀p, p′ ∈ Γ: ε
(
γ(p), γ(p′)

)
= ε
(
p, p′

)
.

In terms of [26, appendix A], this means that a lift G −→ Ĝ, g 7→ Tg, of our symmetry

group G exists which obeys Tg1 ◦Tg2 = Tg1g2 for all g1, g2 ∈ G (see [26, eqs. (A.5)–(A.11)]),

thus yielding G ∼= Ĝ.
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