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1 Introduction

The analyses of collider data collected at both the Tevatron [1] (
√
s = 1.96 TeV) and the

LHC [2–7] (
√
s = 7, 8 TeV) indicate that perturbative terms beyond fixed order are re-

quired for the description of observables in processes involving at least two jets, in the

region of large partonic centre-of-mass energy
√
ŝ compared to the typical transverse mo-

mentum scale p⊥,
√
ŝ/p⊥ > 5. This corresponds to the jets spanning more than 3 units

of rapidity. It is of course well-known and indeed not surprising that the convergence of

the perturbative series requires input beyond fixed-order perturbation theory in certain re-

gions of phase space. The dominant and large corrections in this particular region of phase

space is the focus of one of the applications of the theory of Balitsky-Fadin-Kuraev-Lipatov

(BFKL) [8–11]. The study of such perturbative effects has received renewed interest, not

only because the increasing energy of colliders allows for detailed study of observables in

these regions, but also because some measurements specifically concentrate on experimental

signatures with large rapidity spans [3–7, 12–14].

The BFKL formalism can provide a systematic description of large perturbative cor-

rections in two separate kinematic limits. Firstly, in the small-x limit of ŝ/s � 1 (where
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√
ŝ is the centre-of-mass energy for the partonic process and

√
s is the centre-of-mass en-

ergy of the collider), BFKL theory can be used to describe the evolution of the PDFs in

x. Secondly, in the limit ŝ/|t̂| � 1 (where |t̂|1/2 is a typical jet transverse momentum

scale and ŝ ≤ s), BFKL theory captures the single-logarithmic corrections in ŝ/|t̂| ∼ e∆y

to the hard-scattering matrix element for processes with a colour-octet exchange between

two jets. These two applications of BFKL are valid in two opposite kinematic regions.

In the former case, a formalism to combine logarithms of BFKL and Dokshitzer-Gribov-

Lipatov-Altarelli-Parisi (DGLAP) [15–17] origin was developed resulting in the Ciafaloni-

Catani-Fiorani-Marchesini (CCFM) equation [18–21], with an explicit partonic evolution

implemented in Cascade [22, 23]. This has the non-perturbative stages of the evolution

handled by PYTHIA6 [24].

The second high energy limit of ŝ/|t̂| � 1 is the focus of Mueller-Navelet-style studies

of QCD processes involving at least two jets [25]. Monte Carlo approaches to solving

the BFKL equation were developed for the detailed study of such processes [26, 27]. A

more accurate description of the scattering matrix elements that still captures the BFKL

logarithms was later obtained, which also included matching to fixed-order high multiplicity

matrix elements [28–30]. This approach is implemented in the parton-level Monte Carlo of

High Energy Jets (HEJ), which shall be described further in section 2.

An application of the HEJ formalism that is of particular interest is the study of the

production of a Higgs boson in association with dijets that have a large rapidity separation.

The ability to model jets in the rapidity interval permits an examination of the sensitivity

of predictions to the placement of vetoes upon additional radiation, which is particularly

relevant to measurements of the vector boson fusion (VBF) production channel [31–33].

In order to fully understand the challenges in the theoretical modelling of QCD in the

presence of vetoes, and to expose deficiencies in different approaches, observables sensitive

to additional radiation (such as gap fractions and average jet multiplicities) were measured

by ATLAS in refs. [2, 3]. These analyses provided evidence that both high energy and

DGLAP logarithms are necessary for an adequate description of data.

An algorithm to combine the high energy BFKL logarithms of HEJ with the soft and

collinear logarithms of DGLAP evolution was developed for the parton shower ARIADNE [34]

in ref. [35]. The benefit of such a treatment is not only that the logarithmic accuracies of

both descriptions are maintained (such that emissions under both small and large invariant

masses are described correctly), but also that the partonic results of HEJ are showered and

hadronised, thus obtaining a more realistic description of the various stages of a hard

scattering. This combined approach compared favourably to data for several observables.

Missing from this approach however were two important features that resulted in an

inability to correctly describe jet profiles. Firstly, the method did not allow for the incor-

poration of the underlying event [36], which is required for a successful description of jet

profiles. Furthermore, even when the effect of the underlying event was taken into account,

there was a discrepancy in the profiles of high transverse momentum jets. It transpired

that this could be understood in terms of certain soft gluons being produced in HEJ that in

ARIADNE would only have been produced at a late stage in evolution. The presence of such

soft emissions thereby inhibited the further evolution of the parton shower and such events
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would not contain the correct amount of collinear radiation. Although the algorithm prop-

erly prevented the double-counting of such soft emissions, there was no mechanism in place

to account for the probability that the parton shower might preferentially have inserted

collinear emissions at an earlier stage.

In this paper we therefore present a new method for combining the effects of soft and

collinear logarithms with those of the all-order summation of HEJ based on the advances

made in the merging of parton showers with fixed-order matrix elements. A crucial fea-

ture of our approach is that the exclusive n-parton events generated according to the HEJ

all-order matrix elements will be reweighted using properly subtracted collinear Sudakov

factors, and moreover the parton shower will be able to insert collinear emissions where

it is appropriate to do so. This has been implemented for the interleaved parton shower

of PYTHIA8 [37], allowing for the inclusion of multiple partonic interactions as well as the

subsequent hadronisation of the event.

The outline of the paper is as follows. The all-order calculation of HEJ is described in

section 2. This is followed in section 3 by a brief description of the relevant parts of PYTHIA8

and the tree-level matrix element merging procedures from which our algorithm is inspired.

Section 4 will present the method for combining the calculations of PYTHIA8 with HEJ. In

section 5 we examine the performance our merged description, firstly by demonstrating

the capacity of the new approach to describe jet profiles. Secondly we compare to data

for a set of observables that measure additional radiation in inclusive dijet events. We

note that in this paper we restrict our focus to pure dijet studies, despite the relevance to

Higgs phenomenology. The reasons for this are two-fold. Firstly, the observables of interest

have not yet been measured for Higgs plus dijet processes, and secondly it is preferable to

test newly developed tools in cleaner environments where there is no expectation of new

physics. Nevertheless the method we present should be easily applicable to other processes.

Finally we present the conclusions and outlook in section 6.

2 The High Energy Jets Monte Carlo

2.1 The High Energy Jets formalism

The framework of High Energy Jets (HEJ) [28–30] provides an approximation to the per-

turbative hard scattering matrix elements for jet production to any order in the strong

coupling. The results are exact in the limit of large invariant mass between all particles.

The formalism is inspired by the high energy factorisation of matrix elements (as pioneered

by BFKL [8–11]), and obtains a power series in ŝ for the square of the scattering matrix

elements. Within HEJ, approximations are only applied to the matrix elements. This is dif-

ferent to the framework of BFKL, where numerous kinematic approximations are applied

in order to cast the cross section in the form of a two-dimensional integral equation. The

highest power in ŝ/p2
t from the square of the matrix element gives the leading-logarithmic

contribution (in ŝ/p2
t ) to the cross section. Logarithmic corrections additionally arise from

virtual corrections. Recently it was shown that some next-to-leading contributions may be

reached within HEJ [38] by including so-called unordered emissions, which have the square
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of the matrix elements suppressed by one power in ŝ compared to the leading flavour-

configuration for the same rapidity-ordered momenta. However, in the present study we

consider only the leading-logarithmic contributions to the cross section, where only certain

Fadin-Kuraev-Lipatov [9] (FKL) partonic configurations contribute.

We will now discuss in more detail the features of HEJ that are relevant to the con-

struction of an algorithm for merging with a parton shower. The all-order perturbative

treatment of pp → jj scattering in HEJ starts with an approximation to the tree-level

amplitude for the scattering process f1f2 → f1g · · · gf2, where the final-state particles are

listed according to their ordering in rapidity, and f1, f2 can be quarks, antiquarks or gluons.

These are the FKL configurations that give rise to the leading contribution to the inclusive

n-jet cross section in the Multi-Regge-Kinematic (MRK) limit (see ref. [38] for a recent

discussion of the power-suppression of other partonic contributions to the same multi-jet

process). The MRK limit can be specified as the limit of large rapidity separations between

all particles, for fixed transverse momentum scales:

∀i : y1 � · · · � yi−1 � yi � · · · � yn; p⊥i ∼ p⊥ (2.1)

It should be noted that the existence of large transverse momentum hierarchies is not

compatible with the MRK limit, which will be of importance later.

The 2 → n scattering amplitude is approximated at lowest order by the following

expression [30]:∣∣∣Mt
f1f2→f1g...gf2

∣∣∣2 =
1

4 (N2
C − 1)

‖Sf1f2→f1f2‖2

·
(
g2 Kf1

1

t1

)
·
(
g2 Kf2

1

tn−1

)
·
n−2∏
i=1

(−g2CA
titi+1

V µ(qi, qi+1)Vµ(qi, qi+1)

)
,

(2.2)

where ‖Sf1f2→f1f2‖2 denotes the square of a pure current-current scattering, Kf1 ,Kf2 are

flavour-dependent colour-factors (which can depend also on the momentum of the particles

of each flavour f1, f2, see ref. [30] for more details); qi are the momenta of the colour-

octets exchanged in the t-channel, and ti = q2
i . The leading-logarithmic contribution to jet

production beyond the first two jets is given by gluon emission from the underlying 2 → 2

process f1f2 → f1f2, and the effective vertex for gluon emissions takes the form [28]:

V ρ(qi, qi+1) = −(qi + qi+1)ρ

+
pρA
2

(
q2
i

pi+1 · pA
+
pi+1 · pB
pA · pB

+
pi+1 · pn
pA · pn

)
+ pA ↔ p1

− pρB
2

(
q2
i+1

pi+1 · pB
+
pi+1 · pA
pB · pA

+
pi+1 · p1

pB · p1

)
− pB ↔ pn.

(2.3)

This form of the effective vertex is fully gauge invariant; the Ward Identity, pj · V = 0

(j = 2, . . . , n − 1) can easily be checked, and is valid for any values for the outgoing

momenta pj (that is, not just in the MRK limit).
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The virtual corrections to the amplitude for each multiplicity are approximated in

D = 4 + 2ε dimensions with the Lipatov ansatz [11] for the t-channel gluon propagators

(see ref. [28] for more details). This is obtained by the simple replacement

1

ti
→ 1

ti
exp [α̂(qi)(yi−1 − yi)] (2.4)

in eq. (2.2), where yi are the rapidities of the outgoing partons and

α̂(qi) = −g2 CA
Γ(1− ε)
(4π)2+ε

2

ε

(
q2
i /µ

2
)ε
, (2.5)

is the Regge trajectory which is regulated in D = 4 + 2ε dimensions, in which q2
i is the

Euclidean square of the transverse components of qi. The cancellation of the poles in ε

between the real and virtual corrections is organised using a subtraction term, such that

the regulated matrix elements used in the all-order summation of HEJ are given by [30]:∣∣∣Mreg,f1f2→f1g···gf2
HEJ ({pi})

∣∣∣2 =
1

4 (N2
C − 1)

‖Sf1f2→f1f2‖2

·
(
g2 Kf1

1

t1

)
·
(
g2 Kf2

1

tn−1

)
·
n−2∏
i=1

(
g2CA

( −1

titi+1
V µ(qi, qi+1)Vµ(qi, qi+1)

− 4

p2
i

Θ
(
p2
i < λ2

)))

·
n−1∏
j=1

exp
[
ω0(qj , λ)(yj−1 − yj)

]
,

(2.6)

where

ω0(qj , λ) = −αs(µ
2
R)CA
π

log
q2
j

λ2
, (2.7)

and λ is a regularisation parameter describing the extent of the subtraction terms in the

real emissions phase space.

Here αs is evaluated using a renormalisation scale µR, which typically is chosen to

reflect the momenta of the final-state partons. Possible choices include half the scalar sum

of transverse momenta (HT /2) and the maximum jet transverse momentum (pTmax). Since

the matrix elements have been regulated, this allows for a finite numerical approximation

to the all-order scattering amplitude to be constructed, and for this to be integrated over

all of phase space using a Monte Carlo approach (allowing for the application of arbitrary

phase space cuts). Just as for perturbative fixed-order calculations, the parton momenta

in eq. (2.6) are interpreted as arising from identifiable partons. An NLO calculation of

the production of dijets would deliver the exclusive dijet cross-section to order α3
s and the

inclusive trijet cross-section at the same order in αs. The perturbative result in eq. (2.6)

contains real and virtual corrections to any order, and the momenta and multiplicities

should all be considered exclusive (to the logarithmic accuracy of HEJ).
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Indeed, the all-order dijet cross section is simply calculated by explicitly summing the

exclusive n-parton cross sections (calculated by numerically integrating the matrix elements

squared from eq. (2.6) over all of phase space) over all numbers of gluon emissions from

the initial scattering f1f2 → f1f2. In addition, matching to tree-level matrix elements is

performed by reweighting each exclusive m-jet event with the factor:

wm−jet ≡

∣∣∣Mf1f2→f1g···gf2
({
pnew
Jl ({pi})

})∣∣∣2∣∣∣Mt,f1f2→f1g···gf2
HEJ

({
pnew
Jl ({pi})

})∣∣∣2 . (2.8)

This is just the ratio of the square of the full tree-level matrix element (evaluated using

MADGRAPH5 aMC@NLO [39]) to the approximation of this in eq. (2.2), both evaluated on

a set of shuffled momenta pnew
Jl ({pi}) derived from the hard jets only. This procedure is

summarised in the following formula:

σresum,match
2j =

∑
f1,f2

∞∑
n=2

n∏
i=1

(∫ pi⊥=∞

pi⊥=0

d2pi⊥
(2π)3

∫ ymax

yi−1

dyi
2

)
|Mreg,f1f2→f1g···gf2

HEJ ({pi})|
2

ŝ2

×
∑
m

Oemj({pi}) wm−jet

× xafA,f1(xa, Q
2
a) x2fB,f2(xb, Q

2
b) (2π)4 δ2

(
n∑
i=1

pi⊥

)
O2j({pi}), (2.9)

where n is the partonic multiplicity of the final state, and the operator Oemj returns one

if there are exactly m jets, and zero otherwise. We also define the inclusive dijet operator

O2j =
∑∞

n=2Oemj , and require that the extremal partons from HEJ are members of the

extremal jets, in order to ensure that the partonic configuration matches the situation

for which the HEJ framework was developed. The last line in eq. (2.9) corresponds to

the inclusion of parton density functions (PDFs) and the momentum-conserving delta-

functional. Finally we note that while the sum in the first line of eq. (2.9) is over all

numbers of final-state partons, 2 ≤ n < ∞, in practice the sum needs to include only a

finite number of terms: for finite rapidities and collider energies, the contribution beyond a

certain number of gluons is perturbatively suppressed. The upper bound N is chosen such

that the results are insensitive to further emissions. This check is performed by simply

keeping track of the contribution from each term in the series, and N = 22 is sufficient for

this study. Nevertheless, for completeness this choice will enter into the merging algorithm

described in section 4.

The matching of HEJ to tree-level accuracy is currently performed up to four jets.

The limit on the multiplicity is determined by the time taken to evaluate the full expres-

sions. In addition, the partonic configurations not conforming to the ordering described

above are included in HEJ by simply adding the contributions order by order (again using

MADGRAPH5 aMC@NLO [39]), but no all-order summation is performed for these non-

FKL configurations. In the current study, we will focus on the FKL configurations, since

this is where special attention is needed in order to avoid double-counting. This is unlike
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Figure 1. Examples of a colour flow (left) which contributes in the limit of wide angle, hard

radiation, and (right) a configuration which is suppressed in the same limit. In these diagrams, the

final-state gluons (on the right of each picture) are ordered according to their rapidity.

the challenge addressed by typical fixed-order merging algorithms, because the description

in HEJ goes beyond approximating leading-order matrix elements. As previously discussed,

application of the Lipatov ansatz through eq. (2.4) is used to sum to all-orders the leading-

logarithmic virtual corrections to the t-channel poles. Although the approaches of HEJ and

PYTHIA8 are complementary and calculate different all-order contributions to the pertur-

bative series, they cover overlapping regions of phase space, and the combination of HEJ

and PYTHIA8 therefore requires a new merging algorithm.

We conclude this overview on HEJ by reiterating that a parton shower framework such

as PYTHIA8 [37] is necessary in order to evolve the partonic state of HEJ to the state of

hadronisation, primarily by populating the partonic state with further soft and collinear

radiation. In order to obtain the logarithmic accuracy of the shower, it should also populate

(with the appropriate probability) any region between disparate transverse scales, which

might be generated by HEJ. Since the shower, as well as the subsequent string hadronisation,

relies on well-defined colour connections between partons, we now briefly discuss the colour

connections arising in HEJ.

2.2 The colour connections of High Energy Jets

The colour-ordered Parke-Taylor amplitudes [40] for tree-level gg → g · · · g scattering allow

for a very neat analysis [41, 42] of the dominant colour configurations in the limit of widely-

separated, hard gluons. The conclusion, as presented in references [41, 42], is that the

leading contribution in the MRK limit is provided by the colour configurations which can be

untwisted into two non-crossing ladders that connect the rapidity-ordered gluons. Figure 1

(left) contains an example of a configuration contributing in the MRK limit, and one (right)

which is suppressed. The numbering of the final-state partons is assigned according to their

rapidity; as drawn their vertical ordering also coincides with their ordering in rapidity.

The colour connections in figure 1 (left) can be summarised as a134b2a. It is possible

to arrange the final-state partons such that no colour lines cross without modifying the

vertical order of the final-state particles, namely by moving particle 2 to the left side of the

same plot. Since the vertical ordering is unchanged, the rungs of the resulting un-crossed
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ladders are also ordered in rapidity. Such manoeuvres are always possible when the order

of the particles in the colour connection string between the two initial-state gluons a . . . b

and b . . . a also reflects their order in rapidity, as in the case of {134} and {2} in a134b2a.

The colour connections in figure 1 (right) can be summarised as a1324ba; in this case

the string {1324} between a and b is not ordered in rapidity. The only manoeuvre which

will untangle the colour connections requires flipping the vertical arrangement of particles

2 and 3 such that their vertical ordering is no longer equivalent to their ordering in rapidity.

This configuration is therefore suppressed in the MRK limit, because the two un-crossed

ladders are not rapidity-ordered.

Furthermore, the study of references [41, 42] shows that all the leading configurations

each have the same limit in the MRK limit, resulting in a colour factor CA for every

final-state gluon. The limit agrees with that predicted by the amplitudes of Fadin-Kuraev-

Lipatov (FKL) [9]. When we pass an event from HEJ to PYTHIA8, we choose a colour

configuration at random from the set of colour connections which are leading in the MRK

limit, and pass the event using an interface conforming to the Les Houches accord [43].

This method is identical to that applied in ref. [35].

3 PYTHIA8 and CKKW-L

There are several reasons for using PYTHIA8 to handle the collinear resummation rather

than ARIADNE as was done in ref. [35]. First of all, the handling of initial-state radiation in

ARIADNE is somewhat peculiar [44] and does not quite fit into a conventional resummation

scenario. Furthermore, PYTHIA8 has a much more advanced infrastructure for handling

matching and merging. Finally, PYTHIA8 has a very advanced model for multiple par-

tonic scattering (based on ref. [45]) which is needed to have a realistic description of the

underlying event.

3.1 The interleaved shower in PYTHIA8

PYTHIA8 implements a transverse-momentum-ordered shower [36], which includes not only

initial- and final-state emissions, but also interleaves these with multiple partonic scatter-

ings. The general philosophy is that emissions (or sub-scatterings) with high transverse

momentum should always be performed before those with lower transverse momentum.

As in all parton shower algorithms the ordering is used to ensure that the probability

for any emission remains finite, and that the whole shower process is unitary. Even though

the splitting functions for an emission diverge for small transverse momenta according to

P (k2
⊥, z) ∝ 1/k2

⊥, at each step of the shower the basic splitting probabilities are amended

by the probability that no splittings with larger transverse momenta had happened before.

The probability that the hardest emission occurs at the scale k2
⊥ with an energy splitting

z is given by:

dPhardest

dk2
⊥dz

= P (k2
⊥, z) exp

{
−
∫ k2⊥max

k2⊥

dk
′2
⊥

∫
dz′P (k

′2
⊥ , z

′)

}
≡ P (k2

⊥, z)∆(k2
⊥max, k

2
⊥). (3.1)
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Here the Sudakov factor ∆(k2
⊥max, k

2
⊥) corresponds to the no-emission probability, ensuring

that there were no other emissions between the maximum scale k2
⊥max and k2

⊥. A lower

cutoff, k2
⊥cut, is still needed but can be taken very small and still result in probabilities

below unity. Formally, eq. (3.1) resums the leading double-logarithms of k2
⊥max/k

2
⊥ in the

soft-collinear limit in the leading colour (large Nc) approximation. It should be noted

however that many formally subleading contributions, such as momentum conservation,

which in practice give rise to large effects are also included.

The no-emission probabilities are fairly easily implemented using the Sudakov veto

algorithm [24], and has simple factorisation properties if several different types of emissions

are possible, due to the exponential form. The ordering variable, k⊥, used in the evolution

is not necessarily the actual transverse momentum of an emission in any Lorentz frame,

and it is defined slightly differently depending on the class of emission in the interleaved

shower. For final-state radiation — FSR — (or time-like splittings) it is defined as k2
⊥FSR =

z(1− z)Q2, where Q2 is the invariant mass of the two final-state partons. For initial-state

radiation — ISR — (or space-like splittings) we instead have k2
⊥ISR = (1 − z)Q2, where

now Q2 is the virtuality of the incoming parton entering the hard sub-system after the

emission. Finally for multi-parton interactions (MPI ), k2
⊥MPI is simply defined as the

transverse momentum in the lab system for the 2→ 2 scattering.

3.2 Merging à la CKKW(-L)

The partonic states generated by a parton shower are exclusive; in other words, the prob-

ability to produce an n-parton state in the parton shower is approximately given by the

exclusive cross section for exactly n partons. This is in contrast to n-parton states gener-

ated by a matrix element generator, where the state is exactly given by the inclusive cross

section for having at least n partons. The main principle of algorithms that merge matrix

elements with parton showers is therefore to take several inclusive samples with different

numbers of partons from a matrix element generator and reweight them with no-emission

probabilities to make them exclusive. This allows the samples to be safely added and

subsequently showered without any double-counting.

The general idea in this paper is to use HEJ as a matrix element generator and add

emissions from PYTHIA8 in a consistent way. In doing so we will use ideas from the

CKKW-L merging algorithm [46–48], but with some important modifications which will be

described in section 4. Here we shall review the pertinent features of the CKKW-L method.

Similarly to merging algorithms such as CKKW [49] and MLM [50], the CKKW-L

method takes matrix-element-generated states and tries to reconstruct a sequence of emis-

sion scales from which the no-emission probabilities are calculated. While some merging

procedures use jet clustering algorithms to do this, CKKW-L looks at the partonic states

and tries to answer the question “How would my parton shower have generated this state?”,

and then reconstructs the full kinematics of the corresponding sequence of emissions in the

parton shower. Often there is more than one sequence of emissions possible, in which case

one sequence is chosen at random with relative weights given by the product of the values

of the corresponding splitting functions. The sequence chosen is referred to as the parton

shower history and will comprise of a complete set of intermediate states, {S0, . . . , Sn}
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(where S0 is the lowest multiplicity state and Si has i additional partons) and a series of

n parton shower emissions. Each emission i is characterised by an ordering scale k2
⊥i, a

splitting fraction zi, and an azimuthal angle, φi. This procedure differs from the standard

CKKW algorithm, where the intermediate states are not needed and instead only the emis-

sion scales are calculated by the k⊥ jet-clustering algorithm. Formally this difference only

affects sub-leading logarithms.

The no-emission probabilities are then calculated by generating trial emissions from

each intermediate state in turn, starting at S0. The emission generated from Si will have a

maximum scale given by k2
⊥i. The probability that this emission has a scale above k2

⊥i+1 is

exactly the no-emission probability ∆i(k
2
⊥i, k

2
⊥i+1). Giving the matrix-element-generated

state a weight zero if a trial emission from a given state Si has a scale above k2
⊥i+1 is

therefore equivalent to reweighting the cross section by the no-emission probability:

n∏
i=0

∆i(k
2
⊥i, k

2
⊥i+1). (3.2)

Here k2
⊥0 is the maximum possible scale and corresponds to the scale of the Born level

process; k2
⊥n+1 ≡ k2

⊥M is the merging scale which is given by the cut used in the matrix

element generator, and is used to isolate the region of soft and collinear divergences where

the parton shower is assumed to give a better description.

We can now freely add more partons below the merging scale with our parton shower.

For the case that n = N is the maximum multiplicity of the matrix element samples to be

merged, trial emissions from SN are not performed and the last factor ∆N (k2
⊥N, k

2
⊥N+1) is

omitted. (This is because there is no possibility of double-counting with states of higher

multiplicity, n > N .) Consequently the shower is instead started from k2
⊥N .

In addition to the reweighting of the cross section by the no-emission probability, there

is also a reweighting of the value for αs used in the matrix element, typically evaluated at

some fixed renormalisation scale µR characteristic of the Born level process. For a parton

shower resummation, however, it can be shown that true collinear logarithms are better

reproduced if αs is evaluated at the scale of the individual shower splittings. The states

are therefore reweighted by the factor:

1

αns (µ2
R)

n∏
i=1

αs(k
2
⊥i). (3.3)

Additionally there is a reweighting with PDFs, related to the fact that the no-emission

probabilities contains PDF ratios, as explained in more detail in [47]. The end result is

that the merged event sample will be constructed by exclusive partonic states where the N

hardest emissions above the merging scale are given by the full tree-level matrix element,

and all softer emissions are given by the shower.

So far we have only considered initial- and final-state showers, but to get a realistic

description we also need to consider the underlying event. This cannot be described by a

tree-level matrix element, but it may be accounted for in an interleaved parton shower using

MPI. This means that we also want to incorporate the MPI “emissions” from the shower
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in the merged event sample. The underlying event may actually contain hard jets, and it is

impossible to separate these from the jets given by the matrix element generator. Therefore

we cannot blindly include MPI emissions in the CKKW-L no-emission probabilities above,

but the procedure is modified [48] as follows.

As before we reconstruct a parton shower history for every matrix element state. We

make trial emissions including MPI from each intermediate state Si for i < n, giving the

event a weight zero if the emission scale is above k2
⊥i+1. The last state Sn is treated

separately. When an emission is generated above k2
⊥M , if it corresponds to either ISR or

FSR we still give the event a weight zero; if however an MPI is generated we will accept

the generated state and continue the shower below the emission scale rather than below

the merging scale. The end result is thus changed such that the merged event sample will

now consist of exclusive partonic states where the N hardest emissions above the merging

scale that are not from an MPI are given by the full tree-level matrix element, and all

softer emissions are given by the shower.

We note that merging procedures such as CKKW-L are not necessarily unitary, in that

the inclusive lowest multiplicity Born level cross section is not preserved, as is the case in

parton showers. This is because of the mismatch between the ratio of full matrix element

describing the addition of a parton and the splitting function used in the no-emission

probabilities. This is in contrast to matching procedures (see e.g. [51]) where it is the

matrix element ratios that are exponentiated in the no-emission probabilities.

4 Modified merging for HEJ

In merging matrix elements with parton showers there are two primary challenges encoun-

tered, which we recapitulate here so as to compare the corresponding challenges in merging

HEJ with a parton shower. The first challenge is to ensure there is no double-counting be-

tween the fixed order matrix elements and the parton shower. In fixed order merging

algorithms, this is achieved through the merging scale, which provides a clear partition of

phase space. Above the merging scale, the multiplicity of hard jets should not be increased

by the parton shower, and the distribution of hard jets should be determined by the fixed

order matrix elements. Below the merging scale, soft and collinear radiation from the

parton shower is added, smearing the energy of the original hard partons, but leaving the

original jets’ energies largely unchanged.

We want the merging of HEJ and PYTHIA to obtain the logarithmic accuracy of both.

Therefore, the parton shower should not change the jet multiplicity relative to HEJ in

the MRK limit (namely, at large rapidities with no transverse momentum hierarchies).

The parton shower should however be able to add collinear radiation inside the jet cone.

One could envisage using a phase space slicing mechanism such that regions populated

by HEJ and parton shower are not allowed to overlap. However, in combining HEJ with a

parton shower we are aiming to correctly model the amount of radiation (for example, the

multiplicity of jets) in regions of phase space sensitive to both high energy and soft-collinear

logarithms, which is hard to achieve with a strict partition. Instead we will allow both

formalisms to populate their respective overlapping phase spaces and define a subtraction
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term for the splitting functions and corresponding no-emission probabilities in the shower.

Double-counting is then avoided by reducing the probability of producing a certain emission

in the shower by the probability that HEJ had already performed that emission.

The second challenge in fixed order merging is to avoid double-counting between the

inclusive event samples that are combined, which is resolved by making those event samples

exclusive through reweighting with Sudakov factors. The picture for merging HEJ with a

parton shower is slightly different, because a given n-parton event generated by HEJ is

already exclusive. (This is ensured by the inclusion of virtual corrections at the level of the

matrix elements to all orders in eq. (2.6).) It would therefore be inappropriate to näıvely

reweight events with the Sudakov factors in eq. (3.2) whose kernels correspond to the full

Altarelli-Parisi splitting functions. Instead we have devised a procedure where collinear

emissions from the shower are added to states produced by HEJ in a way such that the

corresponding collinear Sudakov form factors only change the relative weight of different

HEJ multiplicities, and retain the inclusive cross section. It does so by inserting emissions

also in early stages of the reconstructed parton shower history to avoid under -counting of

collinear emissions due to phase space limitations set by the full generated HEJ state, which

was the main drawback of the previous approach in [35].

In section 4.1 we will outline the merging procedure without specifying the particulars

of how the division of phase space between HEJ and parton shower is achieved. We simply

assume that there exists a consistent way to classify a given emission as being belonging

to the either the HEJ or parton shower regimes. We use the jet cone radius as an example

of a cut to highlight some features of our algorithm. Interpreting this statement in the

language of the parton shower implies that it is possible to define both HEJ and collinear (or

subtracted) Sudakov factors. We will then develop these ideas, in particular the definition

of and procedure to calculate these subtracted Sudakov factors in section 4.2. Finally, the

algorithm will be disclosed in full in section 4.3.

4.1 CKKW-L and HEJ

A prescription for dressing HEJ events with collinear radiation may be obtained in a manner

analogous to how MPI were added to samples of tree-level events in CKKW-L. To under-

stand how this works, we first note that the MPI algorithm could have been reformulated

such that one first does a normal reweighting with the no-emission probabilities excluding

MPI in the trial emissions, and then go through the reconstructed states a second time

making trial emissions using only MPI. In this second round, starting from S0, as soon as

an MPI trial emission from Si with a scale k⊥ > k⊥i+1 is found one simply replaces the

original Sn state with the Si state plus the additional generated MPI emission. The shower

subsequently evolves from the MPI emission scale k⊥.

In the analogous procedure for HEJ, since the states are already exclusive we completely

skip the first round of reweighting, and proceed directly to the adding of collinear splittings

and MPI. As before this is done by first constructing the parton shower history, however

the reconstructed states should only correspond to configurations which HEJ could have

generated. We will define such ‘HEJ states’ more precisely in the next section. This is
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followed by the generation of trial emissions from each reconstructed state which HEJ could

not have done, namely the collinear emissions and MPI.

If a trial emission from state Si is generated that has a scale k⊥ > k⊥i+1, the original

Sn state is replaced by the reconstructed state Si with the additional trial emission. If

the original event is replaced, the shower is allowed to evolve freely from the scale k⊥. In

such a prescription, the N hardest emissions that are neither collinear nor correspond to

an MPI are generated by HEJ; everything else is generated by the shower. We also skip the

reweighting of αs in eq. (3.3), since as discussed in section 2 the scale used in HEJ has been

chosen to be characteristic of the event topology. We will however still use αs(k
2
⊥) in the

addition of collinear emissions from the shower.

To illustrate how the algorithm works quantitatively we will in the following assume

that there is a clean separation in phase space between the HEJ states and the region where

we want to dress the jets with collinear emissions from PYTHIA. For instance, we could

imagine a simple phase space cut, where HEJ states are required to have a ∆R between any

two partons larger than some value, and the PYTHIA splitting functions are set to zero if

they result in such states.

We start by reformulating the n-parton state produced by HEJ within the shower-

formalism, written as a basic two-parton inclusive cross section multiplied by a series of

‘HEJ splittings’ with decreasing values of the scale reconstructed by the merging algorithm.

The fact that the HEJ states are exclusive means we can write the cross section for an

n-parton state produced by HEJ (that is, prior to merging) as:

dσHn = dσ?2

(
n∏
i=3

PHi−1(k2
⊥i)∆

H
i−1(k2

⊥i−1, k
2
⊥i)dk

2
⊥iΘ(k2

⊥i−1 − k2
⊥i)

)
×∆H

n (k2
⊥n, k

2
⊥M ). (4.1)

Here PHi (k2
⊥) is the splitting function for emitting a parton at the scale k2

⊥ from the state i

according to HEJ, integrated over the energy fraction z; ∆H
i (k2

⊥i, k
2
⊥) is the probability that

there were no ‘HEJ-like’ emissions from the state i between the scales k2
⊥i and k2

⊥. Finally,

dσ?2 is the inclusive differential cross section for the initial two-parton state.

The shower-merging will have to construct all shower-histories, which could have pro-

duced a given n-parton state from HEJ. This ends up being the time-consuming step for the

high-multiplicity states produced by HEJ. These states can be of much higher multiplicity

than the current limit experienced with fixed-order matchings, where the shower-histories

are also reconstructed. In order to reduce the complexity of the shower history reconstruc-

tion, we trim the parton-content of the high-multiplicity states from HEJ before they are

passed to the shower. This is done removing any parton with a transverse momentum

smaller than a scale k⊥M from the event record (and reshuffling the remaining momenta to

absorb the transverse momentum thus removed). The effect of introducing the trimming

though is that the event record contains no partons with transverse momenta less than k⊥M .

After the trimming, this phase space is therefore left completely for the shower to populate,

and the trimming scale is thus the final scale for the last Sudakov factor in eq. (4.1).
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The inclusion of trimming can speed up the merging significantly; however, it should

be emphasised that formally we should consider the limit where k⊥M → 0. Nevertheless,

as the weight of the event is kept unchanged, as long as k⊥M is smaller than the scale of

the jet threshold, any observable based on jet momenta is only weakly dependent on this

trimming if at all. We will later (in figure 8) investigate directly the numerical impact of

the transverse scale used in the trimming of the event record in passing events from HEJ to

PYTHIA, which indeed is found to be insignificant even on the observables which are very

sensitive to the jet multiplicities of the events.

Before continuing, some comments may be needed to clarify eq. (4.1):

• At this stage we do not need to know anything about PH . The fact that we have a

sequence of emissions means that we can describe it as a product of splitting functions

accompanied by corresponding no-emission probabilities which are of the form given

in eq. (3.1), even if the states were not produced that way by HEJ.

• In rare cases it is not possible to reconstruct an ordered history of shower emis-

sion. Such cases are handled by joining two (or more) subsequent steps into one,

as described in [48]. Such unordered paths are by definition far the parton shower

resummation regions and does not affect the logarithmic accuracy of the procedure.

• In other rare cases, it is not possible to find intermediate states corresponding to

HEJ states. Again we treat these by joining several steps into one, so that the trial

emissions always come from HEJ-like states.

• The total inclusive dijet cross section is given by σ?2 and is not the basic tree-level

2 → 2 cross section. This is because HEJ includes non-unitary corrections beyond

leading order, and these we would like to preserve.

We shall now consider the different possibilities which may arise in the merging procedure

described above. In the first case, the original state generated by HEJ is not replaced by

one generated by the shower. This will occur only if at each reconstructed state in the

history, no trial (non-HEJ-like) emission is generated above the scale k⊥i+1 of the next

reconstructed state. This corresponds to multiplying eq. (4.1) by the following product of

no-emission factors:

∆C
n (k2

⊥n, k
2
⊥M ) ·

n∏
i=3

∆C
i (k2

⊥i−1, k
2
⊥i), (4.2)

where ∆C
i is a suitably modified (collinear) Sudakov factor, for example, corresponding

to the exponentiation of a PYTHIA splitting function with the ∆R cut assumed above.

Defining ∆M
i = ∆H

i ∆C
i , such events will contribute to the cross section according to:

dσ̃n = dσ?2

(
n∏
i=3

PHi−1(k2
⊥i)∆

M
i (k2

⊥i−1, k
2
⊥i)dk

2
⊥iΘ(k2

⊥i−1 − k2
⊥i)

)
×∆M

n (k2
⊥n, k

2
⊥M ). (4.3)

Furthermore it is clear that we can freely dress these states with full PYTHIA splittings

below the merging scale.
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If instead a trial emission is generated from a reconstructed state m ≤ n at the scale

k2
⊥C > k2

⊥M (and above the scale of the next reconstructed state) the original n-parton

state from HEJ will be replaced by the reconstructed m-parton state plus the accepted

trial emission. Calculating the contribution to the cross section from such states requires

summing and integrating over all possible reconstructed HEJ emissions below k2
⊥C ,

dσ̃m/n = dσ?2

(
m∏
i=3

PHi−1(k2
⊥i)∆

M
i−1(k2

⊥i−1, k
2
⊥i)dk

2
⊥iΘ(k2

⊥i−1 − k2
⊥i)

)
×

× PCm(k2
⊥C)∆M (k2

⊥m, k
2
⊥C)dk2

⊥CΘ(k2
⊥m − k2

⊥C) (4.4)

×
n∑

j=m+1

∫ k2⊥C

k2⊥M

all HEJ emissions,

where PCm is the ∆R-truncated PYTHIA splitting function. For n = m there is no integral

and we just get the probability that there are no extra emissions. For n = m + 1, we get

the probability that there is exactly one extra emission, for n = m + 2 exactly two, etc.

The sum of all these must necessarily sum up to unity, and the final result is just the two

first lines of eq. (4.4).

In practice there is an upper cut, N , on the parton multiplicity in HEJ. Assuming that

the corresponding cross section is inclusive over the last emission, the last integral in the

third line of eq. (4.4), becomes∫ k2⊥N−1

k2⊥M

dk2
⊥NP

H
N−1(k2

⊥N )∆H
N−1(k2

⊥N−1, k
2
⊥N ) = 1−∆H

N−1(k2
⊥N−1, k

2
⊥M ), (4.5)

where we have used the property of no-emission probabilities that its derivative is simply

itself times the splitting function, d
dk2⊥

∆i(k
2
⊥i, k

2
⊥) = Pi(k

2
⊥)∆i(k

2
⊥i, k

2
⊥). When adding this

to the N − 1 contribution, this will explicitly cancel the last no-emission factor there, and

we can do the last integral in the N − 1 contribution in the same way, and so on, until we

cancel also the last no-emission factor in the m = n contribution.

Adding full PYTHIA shower splittings below k2
⊥C , we can now write the exclusive

probability that we have exactly n partons above the merging scale as

dσ̃n = dσ?2

(
n∏
i=3

PHi−1(k2
⊥i)∆

M
i (k2

⊥i−1, k
2
⊥i)dk

2
⊥iΘ(k2

⊥i−1 − k2
⊥i)

)
×∆M

n (k2
⊥n, k

2
⊥M )

+

n−1∑
m=3

dσ?2

(
m∏
i=3

PHi−1(k2
⊥i)∆

M
i−1(k2

⊥i−1, k
2
⊥i)dk

2
⊥iΘ(k2

⊥i−1 − k2
⊥i)

)
×

× PCm(k2
⊥C)∆M (k2

⊥m, k
2
⊥C)dk2

⊥CΘ(k2
⊥m − k2

⊥C) (4.6)

×
(

n∏
i=m+1

PPi−1(k2
⊥i)∆

P
i−1(k2

⊥i−1, k
2
⊥i)dk

2
⊥iΘ(k2

⊥i−1 − k2
⊥i)

)
×∆P

n (k2
⊥n, k

2
⊥M ),

where PP is now the full PYTHIA splitting function (possibly also including MPI) and ∆P

the corresponding no-emission probability. Comparing this with what PYTHIA would give
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on its own,

dσPn = dσ?2

(
n∏
i=3

PPi−1(k2
⊥i)∆

P
i−1(k2

⊥i−1, k
2
⊥i)dk

2
⊥iΘ(k2

⊥i−1 − k2
⊥i)

)
×∆P

n (k2
⊥n, k

2
⊥M ), (4.7)

we see that for n partons above the merging scale the m hardest ones will always be

produced by HEJ, and if there are partons from PYTHIA above the merging scale the hardest

one of these will always be a collinear splitting. We also see that the procedure is unitary,

in that the inclusive jet cross section is still given by σ?2 as calculated by HEJ. All we have

done is to add (unitary) parton shower emissions and, in some cases where these are harder

than the HEJ ones, reclustered the original HEJ state into a lower multiplicity state, and

then added the parton shower.

We note that the action of multiplying by eq. (4.2) was not present in the algorithm

presented in [35] for matching HEJ with ARIADNE. That is to say, the probability that

the parton shower might have produced a collinear emission at an earlier stage in the

reconstructed history was not taken into account. It was the lack of this step which allowed

the inclusion of soft gluons from HEJ that interfered with the ordering of the parton shower

and prevented a proper parton shower evolution in the full phase space. Furthermore these

collinear emissions which according to the parton shower should have occurred were not

inserted; instead such emissions could only be included below the matching scale. We

emphasise that in this regard the approach we take here is fundamentally different from

how HEJ was matched with ARIADNE.

4.2 The subtracted shower

In the previous subsection it was assumed that we could make a simple phase space cut

between collinear splittings to be described by PYTHIA and large angle splittings from HEJ.

However, the MRK-limit in HEJ does not take into account large logarithms that arise in

case we have large transverse momentum hierarchies between (possibly widely separated)

jets. Such logarithms are included in the parton shower, and we would like to include them

in our merging.

To accomplish this we go beyond a simple phase space cut and use subtracted splitting

functions instead. The idea is that where resummation is important the splitting functions

are large, and we could naively say that where the PYTHIA splitting function is less than

the HEJ one we set it to zero, and vice versa. This would still correspond to a simple phase

space cut, albeit more complicated than the ∆R cut assumed above. However, this would

be fairly wasteful as we would throw away many of the jets produced by HEJ. Instead

we have introduced a procedure where the HEJ splitting function is subtracted from the

PYTHIA one.

To do this it is now necessary to obtain an explicit definition of the splitting functions

and no emission probabilities for HEJ. Although no such expressions appear explicitly within

the HEJ formalism, we note that the Altarelli-Parisi splitting functions may be derived as

the soft and collinear limit of a ratio of matrix elements [52]:

dk2
⊥dz

∫
dφ

1

16π2

|Mn+1|2
|Mn|2 ∼ dk2

⊥
k2
⊥
dz
αs
2π
Pgg(z) . (4.8)
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This is just the normal universal behaviour of matrix elements in the soft and collinear limit.

The Altarelli-Parisi splitting functions precisely capture the soft and collinear singularities

which must be exponentiated to calculate the leading DGLAP logarithms in the parton

shower no emission probabilities. If instead we replace the full matrix elements by the HEJ

ones, this will no longer contain any collinear singularities, but only the soft singularities.

Such a function is precisely what is needed to define a subtraction term for the parton

shower. Of course, we could take the MRK limit of this and retain the same logarithmic

accuracy, but by using the full matrix elements we retain more of the HEJ accuracy.

Therefore, as in the approach of [35], we define the HEJ splitting function as a ratio

of HEJ matrix elements given by eq. (2.6) corresponding to an event before and after the

insertion of an emission as generated by the parton shower. Of course as noted in section 2,

these matrix elements are only valid for FKL configurations, but there is no restriction upon

the kind of configuration which may be generated by the parton shower. We must therefore

assert that the following criteria define a ‘HEJ state’:

1. The most forwards outgoing parton should have the same flavour as the parton in-

coming along the positive z axis.

2. The most backwards outgoing parton should have the same flavour as the parton

incoming along the negative z axis.

3. All other outgoing partons must be gluons.

4. It must be possible to untangle the colour connections into two ‘ladders’ of rapidity-

ordered partons.

5. The outgoing partons must cluster into at least two jets.

6. Each extremal (most forwards or backwards) parton must be a member of the corre-

sponding extremal jet.

7. Each parton must have a transverse momentum above the merging scale k⊥M .

Criteria 1–3 simply define an FKL configuration; criterion 4 is required since a given set of

colour connections is chosen (as described in section 2.2) and this has an impact upon which

dipoles arise in the PYTHIA parton shower; criteria 5–6 are kinematic constraints on HEJ

events. Finally, although not strictly necessary for the purpose of efficiency events gener-

ated by HEJ containing soft emissions below k2
⊥M are reclustered (in a manner that does not

alter the rapidities of the resulting jets) and this is therefore reflected by the requirement

given in condition 7. The reclustering reduces the complexity of constructing all possible

shower histories for the state passed to PYTHIA. This reduces the CPU time needed to

obtained merged predictions, and explicit tests indicate that the impact of the reclustering

is unnoticeable on observables based on hard jets, such as those studied in this paper.

Now, for any emission resulting in a configuration not corresponding to a HEJ state we

set PH = 0 (because there is nothing to subtract for non-FKL states), and otherwise we

can define:

PH =
1

2

1

16π2

|Mn+1
HEJ|2

|Mn
HEJ|2

. (4.9)
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The factor of 1
2 accounts for the fact that the matrix elements are summed over all possible

colour connections, but for each parton shower emission we wish to calculate the splitting

function for one of two possible choices (each of which contribute equally in the MRK limit).

This expression however only accounts for time-like emissions. For a space-like branching

i→ jk, where parton j is evolved backwards to parton i with a higher momentum fraction

xi = (1/z)xj , we instead define:

PHspacelike =
1

2

1

16π2

|Mn+1
HEJ|2

|Mn
HEJ|2

xifi(xi, µ
2
F )

xjfj(xj , µ2
F )

. (4.10)

where the PDFs fi,j should be evaluated at an appropriately chosen factorisation scale

µF . Our effective Sudakov factor ∆H from the previous section would then simply be the

exponentiation of this splitting kernel, however, we will not need to compute this explicitly

in the numerical implementation of the algorithm. For completeness we shall also write

down the PYTHIA8 splitting functions, evaluated as a function of the evolution variables

k2
⊥ and z:

PP (k2
⊥, z) =

αs
(2π)2

1

k2
⊥
P (z) , (4.11)

where P (z) is the appropriate unregulated Altarelli-Parisi splitting function. There is an

additional factor of 1/(2π) to average over azimuthal angle, since the matrix elements in

eq. (4.9) will be evaluated for a given choice of azimuthal angle for the generated emission.

In the case of a space-like branching we modify eq. (4.11) to include the ratio of PDFs for

the branching, as in eq. (4.10).

To illustrate the differences between the HEJ and PYTHIA splitting functions, in figure 2

we show their typical behaviour as a function of (a) the angular distance between the

emitted gluon and the nearest parton, ∆R, and (b) the transverse momentum of the emitted

parton in the lab frame, p⊥. What is shown is the average value of the splitting functions

in the first emission in HEJ-generated qQ→ qQ events, excluding factors of αS and ratios

of PDFs. In figure 2a we average over emissions with p⊥ > 10 GeV. The discontinuity in

the HEJ splitting function at the jet radius is an artefact of the regularisation procedure

used for emissions inside the jet cone of extremal jets [30]. This is in any case the phase

space region we want to populate with collinear shower splittings.

For the p⊥ plot we average of all emissions with ∆R > 0.6. We clearly see that for

small p⊥ the PYTHIA splitting function exceeds the HEJ one (and also the analytic MRK-

limit splitting shown for comparison). This is the region of large transverse momentum

hierarchies, where the MRK approximation fails to properly resum the corresponding log-

arithms. Such large logarithms are present and are resummed by PYTHIA, and we would

therefore like to add such splittings even if they are far away from the collinear region.

From this we see that it makes sense to use a simple phase space cut based on the

relative sizes of the splitting functions. However, instead we can go one step further and

in regions where PP > PH we subtract the HEJ splitting function from the PYTHIA one.

There we define the subtracted PYTHIA splitting function as

PS(k2
⊥, z) = max

(
PP (k2

⊥, z)− PH(k2
⊥, z), 0

)
. (4.12)
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Figure 2. Plots comparing the average splitting function for HEJ and PYTHIA for the first parton

shower emission in HEJ-generated qQ→ qQ events.

Here the arguments of PH are intended to be schematic. This is intended to denote

that having generated an emission with corresponding evolution variables k2
⊥ and z, and

having inserted this into the event with an appropriate recoil strategy, the matrix element

containing n + 1 partons should be evaluated with the resulting set of n + 1 final-state

(recoiled) momenta. With this notation we can now define the subtracted Sudakov factor:

∆S(k2
⊥i,k

2
⊥i+1) = exp

{
−
∫ k2⊥i

k2⊥i+1

dk2
⊥

∫
dzΘ(PP−PH)

[
PP (k2

⊥,z)−PH(k2
⊥,z)

]}
. (4.13)

It should be clear that we then want ∆M = ∆S∆H , and in order that such a Sudakov factor

might be employed during a trial shower, it is sufficient to generate emissions according to

the full PYTHIA splitting function PP (k2
⊥, z), but veto emissions with probability

Pveto = PH(k2
⊥, z)/PP (k2

⊥, z), (4.14)

in accordance with the Sudakov veto algorithm.

Armed with this we can go through the steps in section 4.1 again and arrive at exactly

the same formulae except with PC and ∆C replaced by PS and ∆S . The net result is

that in phase space regions where PH > PP , where we believe HEJ is doing a good job, we

never add any PYTHIA splittings, while in the complementary region emissions are added

in proportion to the subtracted splitting function so that in total they will correspond to

populating that region only with PYTHIA splittings.
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4.3 The merging algorithm

For completeness we now explicitly disclose the full algorithm for merging HEJ with PYTHIA

as follows:

1. Generate samples of n-parton HEJ states with n ≤ N . Recluster any partons that

have momenta above k⊥M in such a way that the rapidities of the resulting jets is

unchanged.

2. For each n-parton state from HEJ (2 < n ≤ N), reconstruct all possible PYTHIA

shower histories where each clustering has the reconstructed scale k2
⊥i, and set k2

⊥n+1

= k2
⊥M . If n = 2 calculate the scale k2

⊥2 and continue to step 3, and otherwise

continue as follows.

(a) Throw away all histories that do not correspond to a sequence of HEJ states.

(b) If there is at least one history that is correctly ordered in k2
⊥i, throw away every

other history.

(c) Give each history that is left a weight proportional to the HEJ matrix element

squared for the lowest multiplicity (HEJ) state, times the product of PYTHIA

splitting functions for the sequence of emissions that gives the original n-parton

state. Pick a history at random according to its relative weight.

(d) Starting from the most clustered state in the history, make a trial emission from

each intermediate state in the selected history starting from k2
⊥i.

i. If the emission scale is below the reconstructed scale of the next state in

the history, k2
⊥i+1, continue to the next state in the history. If this is the

original event we started with, continue to step 3.

ii. If the emission scale is above the reconstructed scale of the next state in the

history, but has produced a HEJ state, veto the emission with probability

PH/PP . If the emission is vetoed, generate a new trial emission starting

from the current emission scale, and return to 2(d)i. If the emission is not

vetoed replace the original event with this state and continue to step 3.

iii. If the emission scale is above the reconstructed scale and has not produced

a HEJ state, we substitute the original event with this state and continue to

step 3.

3. (a) If in the previous step we replaced the original event with one that could not

have been produced by HEJ, continue the shower from the emission scale of the

new state without restriction.

(b) If this is the original event and we have n < N start the shower from the

reconstructed scale k2
⊥n and check the first emission. If it gives a new HEJ state,

discard the emission with probability PH/PP and continue generating the first

emission starting from the scale k2
⊥n. Once a first emission is accepted, the

shower continues from the emission scale, radiating freely.

(c) If n = N , let the shower radiate freely from the scale k2
⊥N .

4. Once the parton shower has evolved below the cut-off scale, hadronise the event.
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This method represents one of the possibilities for merging HEJ with a parton shower.

In particular, it retains the dijet cross section and logarithmic accuracy of HEJ: indeed,

each event configuration and weight is first generated by HEJ, and all of phase space is thus

covered. In the MRK limits of similar transverse scales for all emissions, the Sudakov factors

introduced in equation (4.3) all evaluate to unity, since the scale used in the evolution of

PYTHIA in the MRK limit tends to the transverse scale of the lab frame. Since the MRK

phase space is populated, and the matrix elements are unchanged in this limit, the merging

maintains the logarithmic accuracy of HEJ.

The logarithmic accuracy of PYTHIA is ensured since the full allowed phase space in

PYTHIA is covered, and the appropriate Sudakov factors between emissions are applied in

the shower evolution, with the possibility of generating further emissions from the shower

evolution. Such emissions are then vetoed with a probability that said emissions were also

generated from HEJ, such that double-counting is avoided.

For completeness we here mention three potential issues with the algorithm. One lim-

itation of the proposed method is that only the hardest emissions (as ordered by PYTHIA)

will be merged to HEJ, which is not itself ordered in hardness: it is possible for the parton

shower to modify a state classified as non-FKL (according to the momenta above the merg-

ing scale) to a FKL state (accounted for in HEJ) through an emission, and such emissions

will not have their splitting kernels subtracted. However, the non-FKL configurations ac-

count for a logarithmically suppressed part of the cross section, quickly diminishing with

increasing rapidity [38]. Furthermore, future accounting for next-to-leading logarithmic

contributions in HEJ will decrease further the significance of the parton shower changing

non-HEJ to HEJ states.

In addition, we reiterate that the method we are presenting is currently only applicable

to FKL configurations. The impact of non-FKL corrections on the observables presented in

this study is relatively small and within the indicated scale variations of the FKL results.

To include non-FKL configurations, it would be necessary to extend the definition of what

constitutes a HEJ state, and ensure that the appropriate tree-level matrix elements are used

when calculating the veto probability for non-FKL states. This is so that no problems arise

from double-counting. Primarily such changes would affect what states may be included

in the parton shower history, and which states may be inserted by the parton shower.

Finally we note that the factor one half in eq. (4.9) is based on the fact that the colour

flows which have a leading logarithmic contribution will contribute equally to the colour-

summed matrix element squared in the MRK limit. This means that there will always be

just two possible colour flows for inserting a gluon in the exchange, and they will have the

same leading kinematic term in the MRK limit. While it is relevant to take into account

the different kinematic contribution from each possible colour connection when matching

full matrix elements to the parton shower, the fact that the collinear divergences are absent

from the formalism of HEJ means that the kinematic contributions from different colour

connections differ far less than in the full theory. While it would be possible to account for

the colour flow dependence in the contribution from the sub-leading (and non-divergent)

terms introduced in HEJ compared to BFKL, we choose in this study to assign an equal

weight to the each of the possible colour flows, just as will be the case in the MRK limit.

This allows for the simple attribution of 1
2 in eq. (4.9).
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Figure 3. A Lego-plot of the momenta of partons arising from a single event from HEJ (blue) and

average of the momenta arising from particles from that event showered 10,000 times with PYTHIA8

using the merging of HEJ+PYTHIA. For this event configuration from HEJ, which contains partons

of similar transverse momenta, the effect of the showering is mostly to distribute physical particles

around the partons of HEJ.

5 Results

In this section, we will present the results of the formalism developed, and contrast it

with experimental data. We start however by qualitatively examining the effect of the

parton shower and hadronisation on a specific partonic event from HEJ. This is presented

in figure 3, which shows a LEGO-plot of the average transverse momentum deposit (greater

than 100 MeV) in bins of 0.2×0.2 units of rapidity and azimuthal angle. A single HEJ event

with 5 partons (and with fixed colour connections), of which 4 are sufficiently hard to form

individual jets of pT > 30 GeV, is shown in blue. The average result of passing this event

10,000 times to PYTHIA8 is shown in red.

The effect of the shower on average is to spread out the momentum of each HEJ parton

over an area with radius R ∼ 1 around that parton. Indeed, for events similar to the chosen

one, the effect of the shower seems to be limited to filling the jet cones, and in section 5.1 we

study in more detail the accuracy with which the jet cones are filled. In section 5.2 we will

study multi-jet observables, some of which probe large hierarchies in transverse momentum,

and in such regions PYTHIA8 can additionally supplement the jets produced by HEJ.

We will mainly look at LHC analyses especially designed to probe effects of high energy

logarithms. It should be noted however, that these have so far employed a relatively soft

definition of hadronic jets, typically requiring a transverse momentum of less than 40 GeV.

This results in broad shower profiles, where the description of the spill-over outside the jet
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cones is necessary for accurate results. Furthermore, it was noted in ref. [53] that these

analyses often use cuts that also enhance soft and collinear logarithms. In section 5.2 we

therefore propose to use a slightly harder threshold for jets to reduce the dependence on

shower and hadronisation effects, and crucially, investigate the full rapidity range of the

hard event rather than just the region in-between the two hardest jets. This allows for a

much cleaner probe of the high energy logarithms.

We note that there exist many parameters in PYTHIA8 that control non-perturbative

effects, and which are fixed by tuning to measurements of certain soft observables. We

investigate an example of such an observable in the next section. As we will shortly see,

the combination of HEJ and PYTHIA8 obtains a very similar description to PYTHIA8 alone.

Therefore, in the results that follow we do not retune PYTHIA8 for use with HEJ, even if

this might further improve the agreement of HEJ+PYTHIA with data; instead we use the

default Monash 2013 tune [54] for both PYTHIA8 and HEJ+PYTHIA.

5.1 The description of the profile of jets

The jet profiles were measured at the LHC in early 7 TeV runs, for example by ATLAS

in ref. [55], accepting events with just one primary vertex (no pile-up) and at least one

jet with transverse momentum p⊥ > 30 GeV and rapidity |y| < 2.8. For such events, the

differential jet profile ρ(r) as a function of the distance r =
√

∆y2 + ∆φ2 to the jet axis

is defined as the average fraction of the jet transverse momentum in an annulus between

r −∆r/2 and r + ∆r/2 around the jet axis in the (y, φ)-plane. As such,

ρ(r) =
1

∆r

1

Njets

∑
jets

p⊥(r −∆r/2, r + ∆r/2)

p⊥(0, R)
, (5.1)

where p⊥(r1, r2) is the summed p⊥ in the annulus of the two circles of radii r1 and r2, and

Njets is the number of jets. The measurement of ref. [55] used ∆r = 0.1 and the anti-kT jet

algorithm [56] with R = 0.6. This analysis is implemented in recent versions of Rivet [57],

which we use to analyse generated events (both here and in section 5.2).

The HEJ formalism captures the logarithms associated with wide-angle emissions, but

not those associated with the collinear emissions. HEJ is thus not expected to fill the jet

cones with radiation, and it is expected that the results of HEJ+PYTHIA8 for the jet shapes

is similar to those of pure PYTHIA8 (since the merging procedure should produce results

similar to PYTHIA8 in regions where HEJ does not radiate). In figure 4 we compare the

predictions of PYTHIA8 and HEJ+PYTHIA for ρ(r) in slices of jet transverse momentum to

data [55]. While HEJ alone would primarily have filled just the first bin in each distribution,

HEJ+PYTHIA gives the same very good description of the jet shapes as the parton shower

of PYTHIA8. The merging procedure has therefore performed a perfect job of populating

the jet areas (through collinear emissions), which are mostly empty in the pure partonic

description of HEJ— and has of course furthermore fully hadronised the partonic states.

The ability to describe this observable represents an improvement relative to the matching

of HEJ + ARIADNE.
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Figure 4. The data and predictions for the differential jet profile as defined in eq. (5.1). The parton

shower of PYTHIA8 gives a very good description of data, which is inherited by HEJ+PYTHIA.

5.2 Impact on multi-jet observables

In this section we will investigate the impact of the merging on observables which depend

only on the identified hard jets of the event. We shall make comparisons between pure

HEJ, PYTHIA8 and HEJ+PYTHIA. Events in HEJ (both with and without showering) were

generated with the PDF set CT14nlo [58, 59], and the renormalisation and factorisation

scales were taken to be the maximum jet transverse momentum µR = µF = pTmax. In the

case of pure HEJ the scale uncertainties were estimated by varying µR and µF independently

between twice and half the central scale choice, and these uncertainties will be denoted as a

band around the central predictions. The vertical lines indicate the statistical uncertainty

on the results. As before, PYTHIA8 predictions were generated using the Monash 2013

tune. The expectation is that there should be little impact on the results of HEJ in phase

space regions where the jets have similar transverse momenta but are widely separated in

rapidity. This is the region where HEJ should already control the dominant logarithms to

all orders. The parton shower should therefore not introduce sizeable corrections. On the

other hand, as mentioned in section 2.1 regions with large disparate transverse scales are

not encompassed by the kinematic assumptions of the HEJ formalism, and should therefore

receive additional hard emissions from the parton shower.

We will first consider two ATLAS analyses [2, 3] that measure the amount of additional

radiation in inclusive dijet events. Dijet systems are of course simple at the Born level,

characterised by two jets of equal transverse momenta that are back-to-back in the az-

imuthal plane; however, this simple topology is in general spoiled by radiative corrections.

The analyses in question both require the existence of a dijet pair above some transverse

momentum cut, defining the tagging jets; in what follows the tagging jets are identified
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Figure 5. Plot showing a comparison between HEJ, PYTHIA8, HEJ+PYTHIA and ATLAS data [2] for

the gap fraction as a function of the rapidity separation of the tagging jets, in slices of the average

transverse momentum of the tagging dijets. The impact of the parton shower in HEJ+PYTHIA

is modest.

as the two hardest (leading) jets in the event. The number of jets in the rapidity interval

between the tagging jets, each having a transverse momentum above a given veto scale

Q0, is then measured. This allows the definition of two observables: first, the gap fraction,

and secondly the average number of jets in the rapidity interval Njet. Events having no

jets above the veto scale in the rapidity interval between the tagging jets are classified as

gap events. The gap fraction as defined by ATLAS [2, 3] is then simply the ratio of the

contribution to the cross section from these gap events to the inclusive dijet cross section.

We start with the ATLAS analysis presented in ref. [2], in which jets were defined using

the anti-kT jet algorithm with R = 0.6 and having rapidity |yj | < 4.4. In figure 5 we show

a plot of gap fraction as a function of the rapidity interval between the tagging jets |∆y|,
where the veto scale was taken to be Q0 = 20 GeV. This is shown in bins of the average

transverse momentum of the tagging dijets pT , from 70 GeV–90 GeV to 240 GeV–270 GeV.

By construction, the gap fraction will be 1 at |∆y| = 0, since the phase space where a

third jet would be counted is vanishing (since only jets in-between the two hardest jets are

counted, and the rapidity difference between the two hardest jets is zero). The variation

between the predictions is small, and discernible only for the bins with the largest pT .

Here there is a large hierarchy between the scale of the tagging jets and the scale of any

additional jets (which are characterised by the veto scale). It is therefore not surprising

that HEJ predicts too few additional jets in this region instead requiring the DGLAP

resummation of the parton shower. Moreover the combination of HEJ+PYTHIA results in a

description that at least as good as, or better than, PYTHIA8 or HEJ individually.
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Figure 6. Plot showing a comparison between HEJ, PYTHIA8, HEJ+PYTHIA and ATLAS data [2] for

the gap fraction as a function of the veto scale Q0, in slices of both the average transverse momentum

and rapidity separation of the tagging dijets. For sufficiently large Q0 ∼ 50 GeV HEJ alone achieving

a good description; PYTHIA8 and HEJ+PYTHIA are consistent, with a good description across all bins.

In figure 6 the gap fraction is instead shown as a function of the veto scale Q0, now

binned in both pT and |∆y|. It is evident that even a modest increase in Q0 to 50 GeV

in figure 5 would have brought the predictions from pure HEJ into perfect agreement with

data across all regions in pT and ∆y. Furthermore, there are indications (e.g. from the

region of 210 GeV ≤ pT ≤ 240 GeV, 2 ≤ ∆y ≤ 3) that the high energy logarithms of HEJ in

HEJ+PYTHIA improve the predictions of PYTHIA8 alone.

The average number of hard jets is a potentially better discriminant between the

predictions than the gap fraction, simply because the average number of jets has a larger

range of variation. We now consider this observable as measured by ATLAS in ref. [3],

where the hardest and second hardest jets (also defining the tagging jets) were required to

have transverse momenta above 60 GeV and 50 GeV respectively.1 Jets were again defined

using the anti-kT algorithm with R = 0.6. In figure 7a the average number of jets in the

interval between the tagging jets is shown as a function of the rapidity interval between the

tagging jets (with Q0 = 20 GeV). While the differences in the predictions are again small,

we observe that although the data from ATLAS lie within the scale uncertainty band for

pure HEJ, the central line for HEJ nevertheless underestimates the number of additional

jets. Meanwhile, the predictions of HEJ+PYTHIA are better in line with data, and are of a

similar quality to that of PYTHIA8.

1Asymmetric cuts are required in order for a meaningful comparison to NLO calculations, which suffers

a spurious logarithmic dependence on the soft emissions [60].
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Figure 7. Plot showing a comparison between HEJ, PYTHIA8, HEJ+PYTHIA and ATLAS data [3]

for the average number of jets in the rapidity interval between the two tagging jets, as a function of

(a) the rapidity interval between the two tagging jets, and (b) the average transverse momentum

of the two tagging jets.

In figure 7b the average number of jets in the interval between the tagging jets is

instead shown as a function of the average transverse momentum of the tagging jets (with

Q0 = 30 GeV), and where the dijets were required to be separated by at least one unit

of rapidity. As the average transverse momentum of the two hardest jets increases to

1 TeV, the number of 30 GeV jets is unsurprisingly no longer well-described without a

shower resummation. Indeed, for increasing pT , the predictions of pure HEJ rises from 0.12

additional jets to 0.3, whereas data rises from 0.15 to 0.5. Both PYTHIA8 and HEJ+PYTHIA

give a good description of this distribution. For such large ratios of transverse scales, the

effect of the shower resummation is large, and therefore the results for HEJ+PYTHIA are

outside the scale uncertainty band for pure HEJ.

It should be apparent at this stage that in distributions that probe large differences in

transverse momentum such as figure 7b a parton shower is necessary for an accurate de-

scription, and therefore the addition of PYTHIA8 to HEJ gives rise to a notable improvement

relative to HEJ. Likewise, in distributions that probe large rapidity spans, one might have

expected that HEJ (and hence HEJ+PYTHIA) would provide a superior description relative

to PYTHIA8. Indeed, it is perhaps surprising that the predictions of HEJ and PYTHIA8 are so

similar for the rapidity distributions studied so far. (In fact, we note that in some cases the

description of PYTHIA8 is closer to data than the predictions of PYTHIA +POWHEG [61–63]

which were used in the original analyses [2, 3]. This could be an effect of the later tunings of

the non-perturbative parameters of PYTHIA, and reiterates the possible benefits of perform-

ing similar analysis with much harder jet scales, such that the sensitivity to the tunings of
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Figure 8. Plot showing a comparison between HEJ, PYTHIA8 and HEJ+PYTHIA for the average

number of jets as function of (a) the rapidity interval between the most forward and backward jets,

and (b) the scalar sum of transverse momenta. The event selection and definition of observables

was taken from ref. [53], chosen to better disentangle effects originating from high energy or soft

and collinear logarithms.

the MPI and non-perturbative effects are reduced). Firstly, the restrictive definition of the

chosen observables prevents much variation in their values. Also, as discussed in ref. [53],

the softness of the veto scale relative to the tagging dijets’ transverse momentum results

in event samples that are influenced by both high energy and soft-collinear logarithms,

spoiling the applicability of the HEJ formalism.

Simpler event samples were suggested in ref. [53] to disentangle the two sources of

logarithmic corrections, together with more inclusive observables that better expose the

differences in the description of a fixed-order calculation, a parton shower and HEJ. The

analysis considered inclusive dijet events, requiring at least one jet with transverse momen-

tum above 45 GeV, and with all other jets required to have transverse momentum above

35 GeV. Jets are defined using the anti-kT algorithm with R = 0.5 and with rapidities

|yj | < 4.7. Comparisons between PYTHIA8, HEJ, and HEJ+PYTHIA were made for this

analysis and the results for the average total number of jets are shown in figure 8. We

emphasise that the additional jets are no longer required to be in the rapidity interval

between the two hardest jets, and there is no longer a significant disparity between their

transverse momenta and that of the two hardest jets. This results in a greater number

of jets passing the selection cuts, and consequently the potential for variation between

different predictions is slightly higher.

Also shown in figure 8 as a shaded red band around the central predictions for

HEJ+PYTHIA are variations of the merging scale k⊥M (with a central scale of 15 GeV)

between 7.5 GeVand 30 GeV. k⊥M should be set to a value below the minimum jet trans-

verse momentum used in the analysis, which in this case is 35 GeV. We see that even for

these very exclusive multiplicity-dependent observables, allowing the merging scale to get

very close to the analysis scale leads to only modest variations, and do not exceed the
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size of the HEJ renormalisation and factorisation scale uncertainties. As this plot is most

sensitive to differences between HEJ, PYTHIA8 and HEJ+PYTHIA, we expect the merging

scale dependence in other plots to be comparable or smaller than that observed here.

In figure 8a the average number of jets is shown as a function of the rapidity inter-

val between the most forward and backward jets ∆yfb; we expect this to be particularly

sensitive to the logarithms in ŝ/|t̂| ∼ e∆y summed by HEJ. The predictions of PYTHIA8

are significantly lower than those of HEJ and HEJ+PYTHIA, and moreover are outside the

scale variation band for pure HEJ beyond ∆yfb > 4.5. This implies that in this regime, the

merging of HEJ with PYTHIA8 increases the number of wide-angle jets relative to PYTHIA8

alone, as we should expect. Such differences should be even more pronounced with a larger

centre-of-mass energy than the choice of
√
s = 7 TeVwhich was used for these comparisons.

It is interesting to note that not only is the spread of predictions significantly larger in

figure 8a than in figure 7a, but also that the prediction of HEJ+PYTHIA is lower than that

of HEJ alone. There are several possible explanations for this. Firstly the addition of a

parton shower extends the shower profile beyond the jet radius, such that potentially fewer

of the jets from the partonic calculation pass the relevant criteria. Secondly, at ∆y = 10

two partonic jets of 45 GeV transverse momentum would take up all the energy available at

a 7 TeV collider, and all predictions for the average number of jets would therefore have to

return to 2 at this point. Since the parton shower uses some of the available collider energy

in (for example) the description of the underlying event, the turnover of the average number

of jets will have to happen earlier than in the pure partonic prediction. Alternatively it

could be that too many non-FKL configurations of lower multiplicity are being inserted by

the merging algorithm, an issue that could be resolved by the extension of this method to

merge non-FKL events.

Finally, in figure 8b the average number of jets is shown as a function of the scalar

sum of transverse momentum HT ; we expect this observable to be sensitive to the double

logarithms in transverse momentum summed by the parton shower. PYTHIA8 now adds

further hard radiation to that of HEJ, which is both as expected and is consistent with the

previous results.

The choice of more inclusive observables and simpler selection cuts leads to a clearer

separation of the effects of the logarithms included in the parton shower and those of the

all-order summation of high energy logarithms in BFKL or HEJ. A simple experimental

investigation with a similar set of cuts and distributions would be extremely interesting in

exposing the shortcomings of either predictions, and the benefits of the combined formalism

presented in this paper. Such an experimental analysis would further aid the development

of predictions valid for the separation of the VBF and GF contribution to Higgs-boson

production in association with dijets.

6 Summary and outlook

We have introduced a new CKKW-L-inspired merging algorithm for combining the all-

order summation of high energy logarithms in HEJ with a parton shower. For the first time

HEJ events have been fully evolved down to particle level using the modern parton shower,

– 29 –



J
H
E
P
0
9
(
2
0
1
8
)
0
7
4

hadronisation and modelling of MPI in PYTHIA8. The merging algorithm systematically

combines the dominant perturbative corrections due to hierarchies of transverse momenta

(i.e. of soft and collinear origin) from the parton shower with those due to large invariant

masses between jets of similar transverse momenta, as implemented in HEJ or BFKL.

The performance of the merging algorithm was assessed by considering observables

which measure the additional radiation in the rapidity interval between two tagging jets.

Many of the observables measured so far have (intentionally or not) a hierarchy of trans-

verse scales induced, and so require a systematic resummation of the logarithms from the

parton shower in order to arrive at a satisfactory description. For such observables we find

that the description of HEJ+PYTHIA is consistent with standalone PYTHIA and data. The

improvement upon HEJ in such distributions is notable. In addition, an investigation of

related observables but with more inclusive cuts demonstrated that the jet multiplicity for

large rapidity intervals is increased relative to PYTHIA through merging. A measurement

of such clean observables can serve as test of high energy evolution. These results demon-

strate that we have combined effects originating from both parton shower and from HEJ,

providing a proof of concept for this method.

Notwithstanding what has been so far achieved, what has been presented constitutes a

first attempt at merging HEJ with a parton shower. We envisage numerous refinements that

can be made. There is a need to implement a prescription for incorporating full fixed-order

matching into the merging procedure and the inclusions of sub-leading partonic channels

(non-FKL) to the HEJ resummation [38]. In particular this will have an impact upon which

states may be inserted by the parton shower. A systematic inclusion of such events in the

prescription would not require dramatic changes to the algorithm. Firstly, the definition of

what constitutes a HEJ state would need to be extended; secondly, the appropriate tree-level

matrix elements should be used when calculating the veto probability of trial emissions.

Nevertheless, the impact upon the observables discussed in this paper should be relatively

modest; this was assessed by studying the relative size of the contributions of fixed-order

non-FKL events in pure HEJ.

As discussed in section 4.3, a limitation to the method is that only the hardest emission

of the shower received subtractions in their associated splitting kernel. This limitation

could be addressed by re-inserting HEJ emissions in those events that were modified by

PYTHIA above the merging scale, at the appropriate evolution scales reconstructed during

the parton shower history. However, such a procedure has several ambiguities, such as

where in the (modified) colour flow the emission should be inserted, and precisely how

the recoils should be performed. Preliminary studies indicate the effect of reinserting HEJ

emissions has a small effect, even upon the most sensitive observables shown in figure 8.

However, we postpone a systematic study of these effects to a future publication.

Finally, also noted in section 4.3, a more advanced treatment for the weighting of

colour flows in HEJ events that is informed by the parton shower may be necessary. The

impact of this last effect is not obvious, and its resolution will require further study.

In this paper we considered the effects of our merging algorithm in pure dijet analyses.

Partially this was due to the availability of data; in addition it is worthwhile to first consider

the effects of a new method in a simpler environment where there is no expectation of new
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physics. Nevertheless it is also important to apply this method to processes other than

those which are purely QCD. Since one of the primary motivations was to assess the impact

of jet vetoes that are relevant for Higgs plus dijets studies, this process is the next natural

arena for study. We emphasise that this should not require any significant modifications

to the method; the task is primarily an exercise in software development, rather than a

theoretical challenge.

Finally, although we chose to implement this method for PYTHIA, in principle it should

be possible to implement for other parton showers. It would be interesting to compare the

effect of merging HEJ with different choices of parton shower. It would also be informative

to perform the jet analysis with a much harder jet threshold, such that the sensitivity

to the tunings of the non-perturbative effects are reduced. This would result in a much

cleaner comparison of the perturbative merits.

Although we have been able to draw many positive conclusions by comparing with

experimental data, the cuts that were chosen are not conducive to examining the effect of

high energy logarithms. Both these points entail that it is difficult to discriminate between

theoretical predictions that model different physics and should be expected to differ. We

hope that as more data is collected, future analyses will examine a similar set of observables

but with more inclusive cuts, as discussed.

This work has reinforced the notion that the interplay between different types of loga-

rithms is not necessarily straightforward, and that there are circumstances under which the

combination of two all-order summations is necessary. We hope that the merging algorithm

we have developed may be used in future as a tool to inform analyses what selection of

cuts and observables are sensitive to parton shower effects, high energy effects, or both.
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