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ABSTRACT 

Young (61 Ma) unaltered picrites from Baffin Island, northwest Canada, possess some of the 

highest 
3
He/

4
He (up to 50 Ra) seen on Earth, and provide a unique opportunity to study 

primordial mantle that has escaped subsequent chemical modification. These high-degree partial 

melts also record anomalously high 
182

W/
184

W ratios, but their Sr-Nd-Hf-Pb isotopic 

compositons (including 
142

Nd) are indistinguishable from those of North Atlantic mid-ocean 

ridge basalts. New high precision Fe and Zn stable isotope analyses of Baffin Island picrites 

show limited variability with δ
56

Fe ranging from −0.03‰ to 0.13‰ and δ
66

Zn varying from 

0.18‰ to 0.28‰. However, a clear inflection is seen in both sets of isotope data around the 

composition of the parental melt (MgO = 21 wt %; δ
56

Fe = 0.08 ± 0.04‰; and δ
66

Zn = 0.24 ± 

0.03‰), with two diverging trends interpreted to reflect the crystallisation of olivine and spinel 

in low-MgO samples and the accumulation of olivine at higher MgO. Olivine mineral separates 

are significantly isotopically lighter than their corresponding whole rocks (δ
56

Fe ≥ −0.62‰ and 

δ
66

Zn ≥ −0.22‰), with analyses of individual olivine phenocrysts having extremely variable Fe 

isotope compositions (δ
56

Fe = −0.01‰ to −0.80‰). By carrying out modelling in three-isotope 

space, we show that the very negative Fe isotope compositions of olivine phenocryst are the 

result of kinetic isotope fractionation from disequilibrium diffusional processes. An excellent 

correlation is observed between δ
56

Fe and δ
66

Zn, demonstrating that Zn isotopes are fractionated 

by the same processes as Fe in simple systems dominated by magmatic olivine. The 

incompatible behaviour of Cu during magmatic evolution is consistent with the sulfide-

undersaturated nature of these melts. Consequently Zn behaves as a purely lithophile element, 
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and estimates of the bulk Earth Zn isotope composition based on Baffin Island should therefore 

be robust. The ancient undegassed lower mantle sampled at Baffin Island possesses a δ
56

Fe value 

that is within error of previous estimates of bulk mantle δ
56

Fe, however, our estimate of the 

Baffin mantle δ
66

Zn (0.20 ± 0.03‰) is significantly lower than some previous estimates. 

Comparison of our new data with those for Archean and Proterozoic komatiites is consistent with 

the Fe and Zn isotope composition of the mantle remaining constant from at least 3 Ga to the 

present day. By focusing on large-degree partial melts (e.g. komatiites and picrites) we are 

potenitally biasing our record to samples that will inevitably have interacted with, entrained and 

melted the ambient shallow mantle during ascent. For a major element such as Fe, that will 

continuosly participate in melting as it rises through the mantle, the final isotopic compositon of 

the magama will be a weighted average of the complete melting column. Thus it is unsuprising 

that minimal Fe isotope variation are seen between localities. In contrast, the unique geochemical 

signatures (e.g. He and W) displayed by the Baffin Island picrites are inferred to solely originate 

from the lowermost mantle and will be continuously diluted upon magma ascent. 

 

Keywords: Iron; Zinc; Stable isotopes; picrites; komatiites; olivine; sulfide 

.
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1. INTRODUCTION 

Accurate knowledge of the composition of the mantle helps place fundamental constraints on 

differentiation and evolution of the Earth. However, thus far the lack of unambiguous tracers has 

made identifying secular variations in mantle chemistry difficult (Canil, 2002; Hibbert et al., 

2012). The Fe isotope composition of the bulk silicate Earth, based on primitive mantle xenoliths 

and komatiites, is well established with excellent agreement observed between different studies 

(Dauphas et al., 2010; Poitrasson et al., 2013; Weyer and Ionov, 2007; Williams et al., 2005). A 

recent data compilation has led to an estimate of δ
56

Fe (where δ
56

Fe = 

((
56

Fe/
54

Fesample/
56

Fe/
54

Festd) −1) x 1000) of 0.033 ± 0.027 ‰ for the primitive mantle (Sossi et 

al., 2016b). In contrast, there have been conflicting recent estimations of the Zn isotope 

composition of the silicate Earth, with values of δ
66

Zn (where δ
66

Zn = 

((
66

Zn/
64

Znsample/
66

Zn/
64

Znstd) −1) x 1000) between 0.15 and 0.30 ‰ suggested (Chen et al., 2013; 

Doucet et al., 2016; Sossi et al., 2018; Wang et al., 2017). Initial estimates based on a basaltic 

average (0.28 ± 0.05‰; Chen et al., 2013) and continental mantle xenoliths (0.30 ± 0.03‰; 

Doucet et al., 2016) suggested a relative heavy δ
66

Zn of the silicate Earth. However, more recent 

appraisals based on the depleted mid-ocean ridge basalt (MORB) mantle (0.20 ± 0.05‰; Wang 

et al., 2017) and ancient komatiites and peridotite data (0.16 ± 0.06‰; Sossi et al., 2018) suggest 

that the Earth’s primitive mantle has a significantly lighter Zn isotope composition than this. 

Theory predicts that under equilibrium conditions stable isotope fractionation is driven by 

contrasts in bonding environment and oxidation state (e.g. Polyakov, 2009; Rustad and Yin, 

2009). However, the use of stable isotopes in mantle-derived rocks is further complicated 
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because additional variability can be generated during melt extraction, metasomatism of the 

mantle source, during fractional crystallisation and through changes in oxidation state (Dauphas 

et al., 2009; Williams et al., 2004). Thus, several studies have focused on using  komatiites to 

place constraints on the stable Fe isotope composition of the Earth’s mantle (Dauphas et al., 

2010; Greber et al., 2015; Hibbert et al., 2012; Nebel et al., 2014; Sossi et al., 2018), because as 

the result of their large degrees of partial melting (>25%) they faithfully represent the 

volumetrically dominant peridotite component of the mantle; and their elevated formation 

temperatures (up to 1700 °C) minimise the extent of isotope fractionation upon melting 

(proportional to 1/T
2
). However, ancient (>2.4 Ga) komatiite samples have all been exposed to 

long-term surficial weathering ± serpentinisation ± variable intensities of metamorphism, all of 

which may perturb their original stable isotope compositions (Craddock et al., 2013; Pons et al., 

2011) and the ~89Ma Gorgona komatiites studied by Hibbert et al. (2012) may sample a distinct 

mantle source region (Kerr, 2005; Kerr et al., 1996). Here we complement these studies by 

focusing on an extremely well-studied series of picrate lava flows from Baffin Island, which are 

considered to sample the starting head of the plume currently underneath Iceland.  

The Baffin Island and the contemporaneous West Greenland picrites are virtually 

unaltered and represent olivine-rich magmas erupted at 61 Ma (Storey et al., 1998), and provide 

an excellent opportunity to study deep-seated mantle source regions. Their major element 

composition requires substantial amounts of partial melting (c. 25%) of an anomalously hot 

mantle at 1515-1560 °C (Graham et al., 1998; Herzberg et al., 2007; Larsen and Pedersen, 2000; 

Spice et al., 2016), which is consistent with derivation from the start-up head of the Iceland 
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plume. Furthermore, the primitive radiogenic isotopic compositions (
87

Sr/
86

Sr <0.7034; εNd > 

+6; 
187

Os/
188

Os =0.127-0.129) and the extremely high 
3
He/

4
He ratios (up to 50 Ra) confirm the 

uncontaminated and undegassed nature of these melts (Dale et al., 2009; Ellam and Stuart, 2004; 

Kent et al., 2004; Starkey et al., 2009; Stuart et al., 2003). The Baffin Island lavas also preserve 

Pb and W isotope signatures that have been attributed to differentiation and isolation of a 

primordial region of mantle very early in Earth’s history (>4.5 Gyr ago; Jackson et al., 2010; 

Rizo et al., 2016).  Here we present new Fe and Zn stable isotope data for whole rock and olivine 

phenocrysts from picrites collected on the eastern margin of Baffin Island. The pristine nature of 

these samples allows us to precisely constrain the modern composition of Earth’s lower mantle 

and test previous estimates of the bulk silicate Earth composition. 

 

2. SETTING & SAMPLES 

2.1. Geological setting and sample location 

The North Atlantic Igneous Province comprises extensive sequences of high-Mg basalts that 

were erupted between 62 and 60 Ma on Baffin Island and West Greenland (along with tholeiitic 

lava flows preserved in south and central East Greenland, the Faeroe Islands and the British 

Isles) that represent the earliest phase of magmatism from the proto-Iceland plume (Saunders et 

al., 1997; Fig. A1). The most voluminous exposures occur in the Baffin Bay area where the 

magma erupted through thinned continental lithosphere in response to Paleocene rifting in the 

Labrador Sea and Baffin Bay (Oakey and Chalmers, 2012; Roest and Srivastava, 1989). 

Volcanism in Baffin Island and West Greenland is considered contemporaneous and dated at 
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∼61 Ma (Storey et al., 1998). The volcanic rocks in West Greenland cover an onshore area of c. 

22,000 km
2
 (Clarke and Pedersen, 1976), and a substantially larger submerged area on the 

continental shelf (Chalmers et al., 1999). The overall vertical thickness of the exposed volcanic 

succession is 2–3 km on Disko Island and around Nuussuaq, although the total stratigraphic 

thickness is considerably higher due to lateral migration of the magma depocentres (Larsen and 

Pedersen, 2000). In the exposed onshore areas the volcanic succession can be divided into a 

lower part with Mg-rich olivine-phyric rocks (the Vaigat Formation) and an upper sequence of 

plagioclase-phyric rocks that have been assigned to several local formations. The Vaigat 

Formation constitutes roughly one-third of the total erupted volume. No resolvable age 

differences are detected, consistent with very high eruption rates, and the whole formation was 

probably erupted within around 0.5 Ma (Storey et al., 1998). Some members of the West 

Greenland magma sequence show evidence for up to 2% crustal contamination by Archean felsic 

basement rocks (Larsen and Pedersen, 2000; Lightfoot et al., 1997; Starkey et al., 2009), with 

melt inclusion data consistent with ≥10% crustal input (Yaxley et al., 2004). 

The Baffin Island picrites occur as a series of sporadic outcrops along 90 km of the 

eastern coast of Baffin Island between Cape Searle and Cape Dyer, and on several small nearby 

islands in the Davis Strait (Fig. A1). The lava flows on Baffin Island are almost entirely picritic 

in composition and the preserved magma volumes are not large, with the lavas generally 

occupying depressions within the Precambrian basement. The lavas either directly overlie the 

Proterozoic basement or, at some locations, a thin sequence of Paleogene continental sediments 

intervenes between the basement and the volcanic rocks. The volcanic succession generally 
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consists of a lower subaqueous volcanic breccia covered by an upper sequence of usually 5-10 m 

thick subaerial lava flows that become thinner toward the top of each section (Clarke and Upton, 

1971). The samples analyzed here were collected during a University of Edinburgh expedition in 

1996, with the majority coming from continuous lava-flow sections on Padloping and Durban 

Islands (Lass-Evans, 2004). The volcanic rocks directly overlie the Late Paleoproterozoic 

basement rocks of the Hoare Bay Group (Jackson et al., 1990), the largest section on Padloping 

Island has a cumulative thickness of c. 750 m (Francis, 1985). The Baffin Island lavas are not 

distinguished stratigraphically and collectively form a coherent magmatic sequence independent 

of their location (Fig. 1). Sample CS-7 from Cape Searle is from a cross-cutting dyke, and not 

part of the main lava succession.  

2.2. Petrography and chemical composition 

The samples studied here have previously been characterized for their mineral compositions and 

whole rock major and trace element and Sr-Nd-Pb-Os-He isotope geochemistry (Lass-Evans, 

2004; Dale et al., 2009; Starkey et al., 2012; Starkey et al., 2009; Stuart et al., 2003).  The Baffin 

Island picrites are highly porphyritic rocks dominated by olivine phenocrysts with minor 

chromian spinel, and very rare plagioclase phenocrysts. Olivine occurs as single crystals and 

sometimes crystal aggregates and comprises between c. 10 and 35 modal percent of the rocks 

(see Table A1; Lass-Evans, 2004; Starkey, 2009). Two major olivine populations have been 

recognised: 1) large, near-equant crystals (~1.5-3.5 mm) that contain wide high magnesian cores 

(Fo90–93 = 100 x atomic Mg/(Mg +Fe)) and thinner, normally zoned rims (Fo78–85); and 2) small 

to medium-sized crystals (~ ≤1 mm) with normal zoning from Fo87–88 in the core to Fo74–85 at the 
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rim (the majority of olivine ≤0.2 mm is unzoned) (Lass-Evans, 2004; Starkey et al., 2012). The 

olivine phenocrysts are generally accompanied by minor (1-2%) chromian spinel up to 0.1 mm 

in size, one sample (DI-22) also contains plagioclase phenocrysts and glomerocrysts. 

Clinopyroxene has not been observed as a phenocryst phase in Baffin Island samples (this study; 

Clarke and Upton, 1971; Francis, 1985; Lass-Evans, 2004; Starkey, 2009). The picrites have a 

groundmass consisting of intergrown olivine, clinopyroxene and plagioclase microlaths, minor 

chromian spinel and rare glass patches.   

The Baffin Island lavas analysed here have MgO contents that range from 12 to 30 wt % 

(n = 18) and form a cogenetic magmatic sequence, independent of their eruption locality (Fig. 1). 

Using the extensive major and trace element dataset presented in Starkey et al. (2009) the 

following trends are observed with decreasing MgO content: 1) CaO, SiO2, Al2O3 and TiO2 

contents increasing in all samples; 2) relatively constant FeO and Zn abundances; 3) decreasing 

Ni and Cr abundances; and 4) increasing Cu, V, Y and rare earth element concentrations. On 

logarithmic plots of MgO content versus several incompatible element concentrations clear 

inflections in slope are observed around 21 wt % MgO (Fig. 2).  

 

3. ANALYTICAL TECHNIQUES 

All of the analyses described below were undertaken in the Arthur Holmes Geochemistry 

Laboratories at Durham University. Agate-crushed whole rock powders (50-200 mg), olivine 

mineral separates (c. 40 mg) or individual olivine grains (c. 0.2-9.2 mg) were digested using 

conventional HF-HNO3 (2:1) Teflon beaker hotplate digestions. Some of the olivine phenocrysts 
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contained minute (≤0.1 mm) spinel inclusions that were intentionally left undissolved to obtain 

pure olivine compositions (Fig. A2), whereas an additional Parr bomb digestion step was 

required to completely dissolve the refractory spinels in the whole rock samples. After the 

samples were completely dissolved, they were evaporated to dryness and then brought into 

solution in 1M HCl and an aliquot containing 300 µg Fe was removed for Fe isotopic analyses 

(c. 5-15% of total volume) and subsequently dried and then bought into solution in 0.5 mL of 6M 

HCl. Iron separations were undertaken using a well-established protocol (Williams et al., 2004; 

2005), which briefly comprises loading samples onto Bio-Rad Bio-Spin columns containing c. 1 

mL of Bio-Rad AG1-x4 (200–400 mesh) anion exchange resin, eluting the matrix in 6M HCl and 

subsequently collecting the purified Fe fraction in 2M HCl. The remaining solution was then 

used for Zn analyses (c. 15-20 µg Zn); separations were undertaken using established procedures 

(Moynier et al., 2006; Pons et al., 2011), which briefly comprised a double pass through Teflon 

columns filled with 500 μL AG1-x4 anionic resin. Samples were loaded and the rock matrix 

eluted in 1.5M HBr (Zn
2+

 is strongly absorbed onto the resin in this medium) and the purified Zn 

fraction was then collected in 0.5M HNO3. Column yields were checked with each batch of 

samples and were consistently >99%. Total procedural blanks were <50 ng for Fe and <5 ng for 

Zn and were negligible compared to the quantities of analyte processed. 

All isotope ratio measurements were carried out on a Thermo Scientific NeptunePlus 

multiple-collector inductively coupled plasma mass spectrometer (MC-ICPMS) in wet plasma 

mode using a glass cyclonic spray chamber and a PFA 50 µl/min nebuliser. Isotope ratios are 

presented using conventional delta (δ = ‰) notation and are reported relative to internationally 
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accepted reference solutions. Iron isotope ratios are normalised relative to IRMM-014, while Zn 

data were bracketed using Alfa Aesar standard solution (Ponzevera et al. 2006), renormalized to 

JMC 3-0749 (offset = +0.27‰) commonly known as JMC-Lyon (Maréchal et al., 1999).  

Iron isotopes were measured in medium resolution mode (a mass resolution >8000 was 

consistently achieved during instrument tuning) with six masses monitored during analysis (
53

Cr, 

54
Fe, 

56
Fe, 

57
Fe, 

58
Fe and 

60
Ni), 

53
Cr was monitored to correct for any isobaric interference on 

54
Fe. Sample solutions were diluted to 5-8 ppm Fe (depending on instrument sensitivity) in 0.3 

M HNO3 and measured for 50 cycles with an integration time of 4 S.  Data were processed using 

standard– sample bracketing where the sample and standard Fe beam intensities (typically 40–45 

V 
56

Fe using a 10
10

 Ω resistor in the axial cup) were matched to within 5%. Long-term 

reproducibility and accuracy were evaluated by analysis of an in-house FeCl2 salt standard (δ
56

Fe 

= −0.722 ±0.046‰ 2s.d., n = 130) and the USGS rock standard BIR-1 (δ
56

Fe = 0.054 ±0.039‰; 

2s.d., n = 23) and are within error of previous studies (Inglis et al., 2017; Millet et al., 2012; 

Williams et al., 2005). 

Zinc isotopes were measured in low resolution mode, with seven masses monitored 

during analysis (
62

Ni, 
63

Cu, 
64

Zn, 
65

Cu, 
66

Zn, 
67

Zn and 
68

Zn); 
62

Ni was monitored to correct for 

any isobaric interference on 
64

Zn. Solutions were diluted to 1.5 ppm Zn in 0.5 M HNO3 and 

doped with 0.5 ppm Cu to correct for mass bias fluctuations during analysis. Each analysis 

consisted of 50 cycles with an integration time of 4 S. We used NIST-SRM 976 for Cu doping 

and an exponential law to correct for mass bias fluctuations (Mason et al., 2004). A constant 

Zn/Cu ratio of 3:1 was used for normalising standards and unknowns to remove variations in 
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mass fractionation induced by variable sample matrices (Archer and Vance, 2004; Chen et al., 

2009). Long-term reproducibility and accuracy were evaluated by analysis of the USGS rock 

standards BIR-1 (δ
66

Zn = 0.247 ±0.030‰; 2 s.d., n = 16) and BHVO-1 (δ
66

Zn = 0.307 ±0.016‰; 

2s.d., n = 13) which are within error of previous studies (Chen et al., 2013; Sossi et al., 2015), 

and the JMC-Lyon solution (δ
66

Zn = 0.009 ±0.022‰; 2 s.d., n = 19). All of the Fe and Zn 

isotope data presented here are mass dependent (Fig. A3); each individual analysis was checked 

for mass dependence prior to being included in the calculated means.  

 

4. RESULTS 

4.1. Whole rock Fe and Zn isotope data 

Whole rock Fe stable isotope variations in Baffin Island picrites are limited to 0.15‰ with δ
56

Fe 

ranging from −0.025‰ to 0.125‰ (Fig. 3; Table 1). As MgO content increases from 11 to 20 wt 

%, δ
56

Fe values increase gradually from 0.035 ± 0.020‰ to 0.069 ± 0.015‰, with one exception 

sample DI-27 (MgO = 18.6 wt %) that has a significantly higher δ
56

Fe of 0.125 ± 0.030‰. 

Although these values are within error of each other, a good correlation is observed between 

MgO and δ
56

Fe (Fig. 3a; r
2
 = 0.50).  At MgO contents above 21 wt %, δ

56
Fe displays a broad 

negative array against MgO (r
2
 = 0.29), with δ

56
Fe values as light as −0.025 ± 0.012‰ seen in 

MgO-rich samples (up to 27 wt %). The highest MgO sample PI-40 (MgO = 29.2 wt %) has a 

slightly heavier Fe isotopic composition, at δ
56

Fe = 0.018 ± 0.009‰, than the other samples with 

MgO contents >25 wt %. The Zn stable isotopic compositions of the same rocks are even more 

restricted with δ
66

Zn, varying from 0.178‰ to 0.283‰. Although more scatter is observed in 
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δ
66

Zn the same general inflection point can be distinguished as for Fe isotopes. With increasing 

MgO contents up to 20 wt %, δ
66

Zn values are scattered and range from 0.210 ± 0.003‰ to 

0.283 ± 0.003‰.  At MgO contents >21 wt % MgO, δ
66

Zn displays a negative array with MgO 

(Fig. 3b; r
2
 = 0.16) with δ

66
Zn values as low as 0.178 ± 0.004‰ observed in some high-MgO 

samples. Similar inflections in Fe and Zn isotopic data are seen when they are also plotted 

against both compatible and incompatible trace elements (e.g. Cr and V, respectively; Fig. 4). 

When plotted against Cu content, Fe and Zn isotope signatures appear to behave slightly 

differently and become progressively heavier as Cu contents increase from 60 to 100 ppm (Fig. 

4e-f), with the most evolved magma (PI-28: MgO = 11.3 wt %) having a significantly higher Cu 

concentration but intermediate stable isotope compositions (Cu = 121 ppm; δ
56

Fe = 0.053 ± 

0.030‰; δ
66

Zn = 0.210 ± 0.008‰). No correlations are observed between both stable Fe and Zn 

isotope data and a wide range of other geochemical parameters including: 1) FeOT or Zn contents 

(see Fig. A4), respectively; 2) indicators of mantle source enrichment and unique source 

composition (e.g. (La/Sm)N or 
3
He/

4
He; Fig. 5a-b); or 3) isotopic trackers of crustal 

contamination including Sr-Nd-Os isotopes (Fig. 5c).    

4.2. Olivine Fe and Zn isotope data 

The isotopic composition of bulk olivine separates and individual crystals were investigated from 

three picrites with variable petrography and MgO contents (DI-24 = 24.5 wt %; DI-27 = 18.6 wt 

%; PI-40 =29.2 wt %). Picrites DI-24 and DI-27 are representative of the majority of Baffin 

Island samples; they possess a variably sized population of olivine phenocrysts up to 3 mm in 

length that comprise 20-25% by volume of the rock, situated in a fine-grained groundmass 
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consisting of plagioclase, pyroxene and olivine. Sample PI-40 contains smaller euhedral 

relatively equigranular olivine crystals between 0.5 and 1.2 mm in size that comprise c. 30% by 

volume of the rock, interspersed in a coarser matrix composed of olivine, pyroxene and 

plagioclase (see Fig. A5 for comparison).   

The olivine fractions in picrites DI-24 and DI-27 possess significantly lighter Fe isotope 

compositions than their corresponding whole rocks (Δ
56

Feol-WR = δ
56

Feol - δ
56

FeWR ~−0.66‰; 

Fig. 6), with δ
56

Feol = −0.532 ± 0.020‰ and −0.616 ± 0.023‰, respectively (Table 2). The bulk 

olivine separate from sample PI-40 is significantly heavier at δ
56

Feol = −0.073 ± 0.011‰ and 

only slightly lighter (Δ
56

Feol-WR ~−0.09‰) than the whole rock composition. The Zn isotopic 

compositions of the bulk olivine separates follow a similar pattern with more negative values 

seen in the samples with larger olivine phenocrysts: δ
66

Znol in DI-24 = −0.147 ± 0.012‰ and DI-

27 = −0.221 ± 0.017‰. Sample PI-40 has the isotopically heaviest bulk olivine separate with 

δ
66

ZnOl = 0.037 ± 0.024‰. The offset between the whole rock and olivine fractions is more 

variable for Zn isotopes than for Fe with Δ
66

Znol-WR varying from −0.16‰ to −0.50‰.   

Analyses of individual olivine phenocrysts were undertaken in two samples (DI-24 and 

PI-40), with individual grains possessing extremely variable Fe isotope compositions with δ
56

Fe 

ranging from −0.011‰ to −0.797‰ (n = 14; Table 2). In sample DI-24, there is a bimodal 

distribution of Fe isotope compositions with four larger crystals (>1.3 mm) having very light 

δ
56

Fe values from −0.665 ± 0.024‰ to −0.797 ± 0.019‰, another three smaller crystals and one 

relatively large crystal (ol8) have heavier compositions with δ
56

Fe = −0.248 ± 0.034‰ to −0.356 

± 0.025‰ (Fig. 7). In sample PI-40, all the analysed olivine crystals are <1.2 mm in length, and 
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they possess a more restricted and heavier range of Fe isotope compositions with δ
56

Fe from 

−0.011‰ to −0.318‰ (n = 6). Similarly, a split distribution of the Fe isotope compositions is 

observed, with three crystals having δ
56

Fe = −0.275 ± 0.039‰ to −0.318 ± 0.053‰, and another 

three at significantly heavier values with δ
56

Fe = −0.011 ± 0.028‰ to −0.088 ± 0.033‰ similar 

to the bulk olivine fraction from the sample (PI-40 δ
56

Feol = −0.073 ± 0.011‰; Fig. 7). Two of 

the largest individual olivine grains in sample DI-24 were also measured for Zn isotopes. Both 

crystals are isotopically light relative to the whole rock, with δ
66

Zn values of 0.045 ± 0.033‰ 

and −0.308 ± 0.015‰, bracketing the bulk olivine fraction in this sample (Table 2; Fig. 8b).   

5. DISCUSSION   

5.1. Constraining the primitive magma composition 

5.1.1. The MgO content of the Baffin Island parental melt 

The effects of magmatic differentiation must be accounted for before the isotopic composition of 

the Baffin Island mantle source can be assessed. Magnesium-rich magmas, such as komatiites 

and picrites, primarily differentiate through olivine crystallisation because with falling pressure 

during magma ascent the primary phase field of olivine expands making olivine the sole 

crystallising phase at atmospheric pressure to 200ºC below the liquidus (Arndt, 1976; Kinzler 

and Grove, 1985). The simple and predictable composition of olivine places constraints on the 

chemical evolution of the magmatic system and allows correction back to a parental melt 

composition. For picritic magmas this can be achieved using two approaches:  

1) The well constrained partitioning of Fe and Mg between olivine and melt (KD
Fe–Mg

; Roeder 

and Emslie, 1970; Sossi and O’Neill, 2016; Toplis, 2005) may be used to calculate the Fe/Mg 
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ratio of the primary liquid, assuming that the most magnesian olivine observed was in 

equilibrium with the parental melt. The resulting Fe/Mgliquid can then be converted to FeO and 

MgO of the melt following back calculation along the olivine control lines.  

2) In high-MgO magmatic systems dominated by olivine, incompatible trace element abundances 

can be used to estimate the composition of the parental melt (e.g. Norman and Garcia, 1999; 

Rhodes, 1995). When modelling incompatible trace element concentrations, olivine 

accumulation can be approximated as a simple linear addition (e.g. Cbulk = Cliquid x fliquid + Csolid x 

fsolid; where C is concentration and f is the proportion of each phase), whereas fractional 

crystallisation is an exponential process following a Rayleigh fractionation curve (i.e. Cliquid = 

Coriginal x F
(D-1)

; where F is the fraction of liquid remaining, and D is the bulk solid-liquid 

partition coefficient). Therefore, on a log-log plot in which compatible elements (e.g. MgO) are 

plotted against highly incompatible elements (where D <<1; e.g. Y or Yb; Fig. 2), the 

composition of the parental melt is given by the break in slope of the data array. 

 The MgO contents of Baffin Island picrites vary from 9 to 30 wt % (Starkey et al., 2009; 

Fig. 1), thus some of the most magnesian lavas probably contain accumulated olivine crystals. 

Using an olivine–liquid KD
Fe–Mg

 of 0·33, the most forsterite-rich olivines observed [Fo92–93 = 100 

x atomic Mg/(Mg +Fe)] are in equilibrium with melts with mg-number 79–81·5, which led 

Clarke (1970) and Francis (1985) to argue that some Baffin Bay rocks with 19–20 wt % MgO 

represent primary liquids. However, the observed modal proportions of Mg-rich olivine (>Fo90;  

<1 %) in rocks with c. 20 wt % MgO are far less than the proportions expected for those melts 

(>10 %; Larsen and Pedersen, 2000). Furthermore, on the basis of Ni partitioning between 
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olivine and melt, Hart and Davis (1978) argued that rocks with >13 wt % MgO are olivine 

accumulative. Following a detailed petrologic study of the coeval West Greenland picrites, 

Larsen and Pedersen (2000) showed that the Mg-rich olivines are a fundamental part of the 

mineral assemblage and estimated that the parental melt had 20‒21 wt % MgO on the basis of 

the most Fo-rich olivines. To reconcile these observations requires that the ultramafic parental 

melts fractionated olivine with Fo86–93 at depth until there was 10–14 wt % MgO in the residual 

melt, a large proportion of the early-formed high-Mg olivines were then left at depth. Upon 

ascent the melts subsequently stagnated again, accumulated olivine with Fo86–89, and were 

eventually erupted charged with this later-formed olivine, thus shifting the bulk compositions 

back to the high MgO contents observed in some samples (Larsen and Pedersen, 2000; Starkey et 

al., 2012). The Baffin Island lavas thus form a simple crystallisation sequence that is controlled 

by olivine, and so by interrogating the bulk rock compositions it is possible to establish which 

lavas have accumulated olivine. A small magmatic gap occurs in the Baffin Island lava sequence 

between 20.6 and 21.4 wt % MgO, this coincides with a clear inflection in the slope of 

incompatible element arrays (Fig. 2) that is observed at c. 21 wt % MgO, thus henceforth we 

adopt this as the composition of the Baffin Island parental melt (i.e. the original composition of 

the magmas from the mantle source region corrected for olivine accumulation). This estimate is 

in excellent agreement with previous approximations using olivine composition (e.g. Larsen and 

Pedersen, 2000).   
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5.1.2. Olivine accumulation and the Fe and Zn isotope composition of the Baffin Island parental 

melt 

For both Fe and Zn isotopes it has previously been shown that the accumulation of olivine will 

shift magmas to lighter isotopic compositions due to the preferential incorporation of isotopically 

light Fe and Zn in this phase (Chen et al., 2013; Dauphas et al., 2010; Hibbert et al., 2012; Teng 

et al., 2008). The olivine fractions measured here possess Fe and Zn isotope compositions that 

are significantly lighter than their respective whole rocks (e.g. DI-24: δ
56

FeWR = 0.05 vs. δ
56

Feol 

= −0.53 and δ
66

ZnWR = 0.22 vs. δ
66

Znol = −0.15; Fig. 6). Furthermore, the excellent correlation 

between the Fe and Zn isotope compositions in the Baffin Island samples (r
2
 = 0.78; Fig. 8a), 

suggests that this covariance is a consequence of a single process controlling the isotope 

systematics. Therefore, after correcting for the obscuring effects of secondary magmatic process 

it is possible to determine the true Fe and Zn isotope composition of the Baffin Island melt. As 

olivine accumulation can be treated as a simple linear addition process, its contribution can be 

easily removed. For example, a significant break in slope is observed on the Cr versus MgO plot 

at 21 wt % MgO (Fig. 1c), which is consistent with olivine being the only accumulative phase at 

higher MgO contents. Thus, simply by calculating a regression line through the data for Baffin 

Island samples with > 21 wt % MgO, the composition of the Baffin Island parental melt can be 

calculated at 21 wt % MgO as δ
56

Fe = 0.076 ± 0.04‰ and δ
66

Zn = 0.242 ± 0.03‰ (Fig. 3). This 

parental melt composition can then be used to model the evolution of the Baffin Island system 

and compare it globally to other large-degree partial melts.   
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Using the calculated parental melt and the measured olivine and whole rock isotope 

compositions, the amount of olivine accumulation can be quantified. Due to the variable isotopic 

composition of the olivine populations observed in the lavas (e.g. δ
66

Zn = 0.04 to −0.22‰; Fig. 

6b), the samples with >21 wt % MgO spread out forming a mixing array with the different 

endmember average olivine compositions that they contain. This modelling shows that for both 

Fe and Zn isotopes the majority of Baffin Island lavas have <20% accumulated olivine, with a 

few samples containing close to 30% olivine (Fig. 6). For example, in sample PI-40 

accumulation of the relatively isotopically heavy bulk olivine of this sample (δ
56

Fe = −0.07‰; 

δ
66

Zn = 0.04‰; Table 2) requires c. 30 % olivine accumulation. This estimate is in excellent 

agreement with those generated using major element composition and the petrography of the 

sample (i.e. 30% olivine phenocrysts; Fig. A5).   

 

5.1.3. Reconciling the isotopic effects of magmatic differentiation  

Fractional crystallisation can modify the stable isotope composition of an evolving melt due to 

differences in the bonding environment between mineral phases and liquid melt (Polyakov and 

Mineev, 2000; Teng et al., 2008; Weyer et al., 2005; Williams et al., 2005). With MgO content 

decreasing, Baffin Island samples with <21 wt % MgO, have slightly decreasing and invariant Fe 

and Zn isotope compositions, respectively (Fig. 3). As the measured olivine has consistently 

lighter δ
56

Fe and δ
66

Zn relative to the parental melt (Fig. 6), crystallisation and removal of pure 

olivine will rapidly drive the evolving melt to heavier Fe and Zn isotope compositions (Fig. 9). 

Therefore, to maintain the relatively invariant isotope compositions observed the fractionating 
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assemblage must contain an additional phase that preferentially incorporates isotopically heavy 

Fe and Zn. The crystallization assemblage at Baffin Island is dominated by olivine with minor 

chrome spinel (Francis, 1985). The presence of spinel in the fractionating assemblage is 

consistent with the steeper negative slope on a Cr concentration versus MgO content plot, in 

samples with <21 wt % MgO (Fig. 1c). While the incompatible behaviour of CaO throughout 

magmatic evolution (Fig. 1a) is consistent with the absence of clinopyroxene and plagioclase 

from the liquidus.    

 The proportions of phases in the crystallising assemblage may be calculated using major 

element systematics. Taking Baffin Island lavas with <21 wt % MgO and average mineral 

compositions based on Spice et al. (2016) and using a Cr2O3 versus MgO plot the fractioning 

mineral assemblage required to produce the variability seen in Baffin Island lavas consists of 

98.6 % olivine and 1.4% Cr-spinel (Fig. A6). To check the validity of this fractionation 

assemblage trace element modelling (Cr, Ni and Sc; Fig. A7) was also undertaken with an 

excellent fit observed to the variability seen in Baffin Island magmas.  Using this mineral modal 

assemblage, it is then possible to undertake Rayleigh stable isotope fractionation modelling 

through the differentiation sequence (samples with <21 wt % MgO). Spinel does indeed 

preferentially incorporate heavy Fe iron isotopes as required; based on previous measurement in 

Gorgona komatiites spinel-whole rock fractionation factors range from Δ
56

Fesp-melt = 0.15-0.22 

(Hibbert et al., 2012). However, due to mass balance olivine still overwhelmingly dominates the 

total Fe budget, (97.5% ol and 2.5% sp; calculated based on the mineralogical data in Spice et al. 

(2016)). To produce the best fit to the data array we have assumed a Δ
56

Feol-melt of 0.048 ‰ 
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(calculated at equilibrium conditions from force constants for tholeiite and olivine at 

intermediate oxygen fugacity; Dauphas et al. (2014)), and used a Δ
56

Fesp-melt of 0.22 resulting in 

a bulk Δ
56

Femix-melt of 0.052 in our preferred model (Fig. 9). This model reproduces the general 

concave downwards trend and variability observed in the Baffin Island lavas within the long-

term error (±0.04‰). The large discrepancy between the models based on the olivine Fe isotope 

compositions measured herein (Δ
56

Feol-melt can be > −0.3; Figs. 6a and 9) and the observed whole 

rock compositions suggests that a disequilibrium process has affected the olivine phenocrysts.  

The Zn isotope data show the same general trend as the Fe isotopes, although as the 

samples show significantly more variable behaviour no further modelling was undertaken.  The 

underlying cause for the increased level of Zn isotope variability is uncertain. But this could 

reflect the more compatible nature of Zn in spinel relative to olivine (DZn
sp-melt

 = 4.6-5.2 > DZn
ol-

melt
 ≈ 1 (Davis et al., 2013; Horn et al., 1994; Le Roux et al., 2011) which will be accompanied 

by a resolvable isotope fractionation, as seen between mantle spinel and olivine (Δ
66

Znsp-ol = 0.12 

± 0.07‰; Wang et al., 2017).  

 

5.2. Distinguishing between kinetic and equilibrium fractionation in olivine  

The variable but generally very light Fe and Zn isotope compositions of olivine phenocrysts 

measured here (Fig. 6; δ
56

Feol = −0.01 to −0.79‰; δ
66

Znol = 0.04 to −0.22‰) may be the result 

of two differing magmatic processes: 1) crystallisation from an evolving melt that was initially 

isotopically light; or 2) diffusion of Fe between olivine and the coexisting melt.   
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Hypothetically, the range of δ
56

Feol values observed could be the result of magmatic 

differentiation from an initially isotopically light melt. The largest and isotopically lightest high-

Fo olivine crystals (e.g. DI-24; Fig. 6) may have formed in a deep magma chamber, with the 

removal of these crystals driving the residual melt to heavier values (see modelling in Fig. 9; 

10% fractionation of olivine of Δ
56

Feol-melt = −0.38 will make the residue 0.04‰ heavier). After 

significant crystal segregation, if this melt was subsequently transported to a shallower magma 

chamber where the smaller and lower-Fo olivine (e.g. PI-40) formed, it would have significantly 

heavier isotope compositions.  

However, the existence of a relationship between Fe isotope composition and crystal size 

(Fig. 7a), with the largest crystals containing the lightest values, suggests that some sort of 

disequilibrium process where the largest olivine crystals have not fully equilibrated with the 

melt. Previous studies using a combination of bulk digestions and modelling (Dauphas et al., 

2010; Teng et al., 2011) and in situ analyses (Oeser et al., 2015; Sio et al., 2013) have shown that 

the extremely negative Fe isotope compositions of olivine crystals (δ
56

Feol ≥ −1.7‰) are the 

result of Fe-Mg inter-diffusion. In silicate liquids, and presumably olivine, light isotopes of an 

element diffuse faster than their heavier counterparts (Richter et al., 2003; Richter et al., 2009), 

with diffusive exchange of Fe and Mg between olivine and melt being driven by compositional 

gradients induced through magma mixing or magmatic differentiation. In the Baffin Island 

system high-forsterite olivines (up to Fo93; Fig. 7b) formed in deeper magma chambers are 

mixed into lower Mg# melts (in equilibrium with Fo86–89 olivine), providing an ideal 

environment for diffusion-based re-equilibration. The majority of olivine phenocrysts at Baffin 
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Island and in the coeval West Greenland picrites are normally zoned with compositional 

gradients towards the margins (Larsen and Pedersen, 2000; Lass-Evans, 2004; Spice et al., 2016; 

Starkey et al., 2012). In the absence of major element analyses for the individual crystals 

analysed here, we can only make inferences based on the petrographic observations and previous 

compositional data. A weak negative correlation is observed between average olivine forsterite 

contents and the δ
56

Fe of the bulk olivine separates of the three samples investigated here (see 

Fig. A8), although there is significant overlap in the populations for both parameters. This 

correlation becomes significantly stronger (r
2
 = 0.97) if only considering the upper quartile value 

of the forsterite contents for the different olivine populations. We can surmise, based on 

petrographic observations, that these high-Fo olivine are the largest grains (e.g. Starkey et al., 

2012), and consequently as seen in Figure 7 have the lightest δ
56

Fe, and thus we infer that 

crystals further from equilibrium with melt possess the most extreme δ
56

Fe values. This scenario 

would be expected given that the higher the concentration gradient (i.e. further from 

compositional equilibrium) at a diffusional boundary the greater the rate of diffusion. Ultimately, 

in the absence of diffusion profiles here we must rely on the isotope data to distinguish between 

equilibrium and kinetic isotope fractionation processes.  

To distinguish between these hypotheses it may be possible to compare the behaviour of 

Fe in three-isotope space because the mass-dependent fraction laws that describe isotope 

partitioning are different for kinetic and equilibrium reactions (Young et al., 2002). This 

methodology has previously been successfully applied to Mg isotopes (Olsen et al., 2013; Young 
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and Galy, 2004). For Fe isotopes at equilibrium conditions the fractionation factors (α) between 

two materials are related by the following equation: 

α
57/54

Fe = (α
56/54

Fe)
β
     (1) 

where the exponent β is: 

  
 

 

  
  

 

  
   

 
 

  
  

 

  
  

       (2) 

m1 is the atomic mass of 
54

Fe (53.93961), m2 is the atomic mass of 
56

Fe (55.93494) 

and m3 is the atomic mass of 
57

Fe (56.93540). Equation 2 is the high temperature limit for the 

exponent under the equilibrium fractionation law. However, kinetic isotope fractionation obeys a 

different fractionation law (Young et al., 2002), therefore during kinetic fractionation the 

exponent β is instead: 

    
   

  

  
   

   
  

  
   

           (3) 

where M1, M2, and M3 refer to the masses in motion associated with kinetic processes. Using 

these equations there is a small difference in the calculated β exponent for Fe isotopes (δ
57

Fe vs 

δ
56

Fe) during equilibrium (β = 1.4750) and kinetic (β = 1.4881) mass-dependent fractionations. 

To facilitate comparison between the fractionation laws it is convenient to magnify the miniscule 

differences in β factors using Δ
57

Fe´ notation:   

Δ
57/54

Fe´ = δ
57/54

Fe´ − 1.475 x δ
56/54

Fe´   (4) 
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where 1.475 refers to the equilibrium value for β and Δ
57/54

Fe´ is defined in terms of the linear 

form of δ values, δ´. The measured δ values are converted to linearized δ´ values using the 

following equation:  

          
          

            (5) 

Values are linearized so that the calculated equilibrium β value applies for all values of δ
56

Fe´, 

meaning they can be plotted in three-isotope space, where equilibrium processes, by definition, 

will lie on a flat line. Using the non-linear form of δ
56

Fe would cause Δ
57

Fe´ to fluctuate because 

of the “curvature of the fractionation relationships” in δ
56

Fe − δ
57

Fe space (e.g. Young and Galy, 

2004) 

Conservatively, this approach can successfully (at the 2σ level) resolve kinetic versus 

equilibrium processes for the most fractionated samples with δ
56

Fe´ ≤ −0.40‰, using the median 

error on Δ
57/54

Fe´ determinations herein (±0.0053). For the Baffin Island olivine there is a 

general increase in Δ
57

Fe´ from −0.02 to 0.01 as δ
56

Fe´ becomes heavier (Fig. 10), with most of 

the larger olivine grains in DI-24 with light δ
56

Fe compositions on the kinetic mass fractionation 

line. Taking regressions through the olivine dataset, independent of the points excluded, 

produces statistically resolvable slopes (Slope = 0.017−0.023 ± 0.012; Figs. 10 & A9) consistent 

with kinetic isotope fractionation having played a role in the formation of the Baffin Island 

olivine. Samples that diverge from the predicted mass fractionation laws are probably the 

product of a multistage history, as in situ isotope analyses have shown that olivines are often 

normally zoned with light Fe isotopes restricted to a Fe-rich region near the crystals rims, while 
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the cores of the crystals do not show chemical or isotopic zoning (Oeser et al., 2015; Sio et al., 

2013). Therefore, even single grains will be mixtures of domains that have experienced 

equilibrium and kinetic mass-dependent isotope fractionations. This multistage history 

contributes to the variability seen in the whole-rock data with potential causes of isotopic 

variation including: variable proportions of melt and crystal cargo, the amount of partial melting, 

and the residence time of those olivine crystals at disequilibrium conditions. The fact that the 

generally isotopically heavier olivine in sample PI-40 falls closer to the equilibrium mass 

fractionation line (Fig. 10) is a consequence of these olivine forming closer to equilibrium with 

the melt (~Fo89; Fig. 7b) later in the magmatic sequence and subsequently having less time to re-

equilibrate with the melt prior to eruption. On balance the olivine data are consistent with the 

notion that large isotope fractionations require chemical diffusion in crystals, whereas fractional 

crystallization will only generate minor isotopic fractionations.  

 

5.3. Constraints on the Baffin Island mantle source: Secular variations or lithological 

heterogeneity in the mantle? 

5.3.1. The behaviour of sulfur in the Baffin Island melt 

The onset of sulfide saturation can drastically affect the mineralogy and thus the stable isotope 

composition of an evolving magmatic system. Stable isotope fractionation between silicate and 

sulfide phases is expected due to the contrast in bonding environment (McCoy-West et al., 2017; 

Polyakov, 2009), with sulfide preferentially incorporating light isotopes due to their low force-

constant bonds. Light Fe isotopes have been predicted for magmatic sulfides (Schuessler et al., 
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2009; Williams et al., 2018) and measured in some hydrothermal sulfides (Dziony et al., 2014), 

but are yet to be confirmed for Zn isotopes. Iron is the most abundant transition metal, with 

multiple valance states and strong siderophile/chalcophile affinities, whereas Zn is monovalent 

(only Zn
2+

) and a moderately chalcophile (sulfur-loving) element. However, both elements 

remain relatively constant in concentration throughout the development of the Baffin Island 

magmatic system (MgO = 7-30 wt %; Fig. 1e). It is notable that Cu, a highly chalcophile element 

continues to increase in concentration as MgO contents fall (Fig. 1d) because if immiscible 

sulfide-melt was present in the magmatic system, Cu concentrations would be expected to 

decrease (Fig. 11). To test the incompatible behaviour of Cu we have modelled the evolution of 

Cu using S-free partition coefficients (Liu et al., 2014) and the crystallisation assemblage 

obtained earlier (Fig. A6). When plotted against an incompatible lithophile element (e.g. Y) the 

model reproduces the evolution of the Baffin Island magmas well (Fig. 11). Sulfur-saturation of 

an evolving magma is extremely complex (Mavrogenes and O’Neill, 1999; O’Neill and 

Mavrogenes, 2002; Smythe et al., 2017) with the solubility of sulfur being sensitive to 

temperature (increases at higher temperature), pressure (increases at lower pressure) and melt 

composition (e.g. increases at higher FeO). Thus, the high temperature and low pressure 

conditions at Baffin Island (Hole, 2015; Spice et al., 2016) should promote the high solubility of 

S in the melt (technically a high S content at sulfide saturation) which is consistent with the 

incompatible behaviour of Cu. Furthermore, the excellent covariation between Fe and Zn 

isotopes because of magmatic processes dominated by olivine (Fig. 8) is consistent with the 

sulfide-undersaturated nature of the magmas and the purely lithophile behaviour of Zn at Baffin 
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Island. Ultimately, the absence of sulfide segregation means that estimates of the Fe or Zn 

isotope compositions of bulk Earth based on Baffin Island should be robust.  

 

5.3.2. Do mineralogical variations contribute to Baffin Island’s unique mantle composition? 

It is well established that the source regions of some MORB and ocean island basalts (OIB) are 

characterised by trace element and isotopic variations that are difficult to reconcile with the 

melting of “normal” peridotite mantle alone (e.g. Eiler et al., 2000; Hauri, 1996; Hirschmann and 

Stolper, 1996; Humayun et al., 2004; Prytulak and Elliott, 2007; Sobolev et al., 2007; Williams 

and Bizimis, 2014). However, there is presently no consensus as to the extent or spatial 

distribution of these lithological heterogeneities within the mantle. The Baffin Island and West 

Greenland picrites possess some of the highest 
3
He/

4
He ratios so far measured from the terrestrial 

mantle (up to 50 Ra; Graham et al., 1998; Starkey et al., 2009; Stuart et al., 2003) and radiogenic 

isotopic compositions that are very similar to those in North Atlantic MORB (
87

Sr/
86

Sr <0.7034; 

εNd > +6; 
187

Os/
188

Os =0.127-0.129) (Dale et al., 2009; Ellam and Stuart, 2004; Kent et al., 

2004; Starkey et al., 2009). These lavas also preserve elevated 
182

W/
184

W isotope signatures 

consistent with an ancient component that recorded mantle-core interaction very early in Earth’s 

history (Rizo et al., 2016), although no corresponding 
142

Nd/
144

Nd isotope anomaly, a tracer of 

early silicate-silicate differentiation, is observed in the same samples (de Leeuw et al., 2017). 

Due to the unusual characteristics of the Baffin Island mantle the possibility that lithological 

heterogeneities could have contributed to this unique source region must be considered.  
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Detecting lithological heterogeneities in the mantle relies on using the differences in 

elemental partitioning between the major phases in peridotite (olivine-orthopyroxene) and 

pyroxenite (clinopyroxene-garnet) mantle domains. Both Zn/Fe and Fe/Mn ratios have been 

investigated to distinguish between melting regimes (Humayun et al., 2004; Le Roux et al., 

2010), on the basis that these element ratios are not significantly fractionated during melting of 

peridotite residues or any subsequent magmatic differentiation events. Le Roux et al. (2011) 

showed experimentally that during melting olivine and orthopyroxene do not significantly 

fractionate Mn, Fe and Zn, and because these minerals dominate the elemental budget in 

ultramafic systems, peridotite melts should have similar Mn/Fe and Zn/Fe as their source 

regions. By contrast, clinopyroxene and garnet display contrasting patterns of Zn, Mn and Fe 

elemental fractionation (Pertermann et al., 2004), and therefore melts of pyroxenites or eclogites 

would be expected to have low Mn/Fe and high Zn/Fe relative to peridotite melts. Here we have 

chosen to focus on the Zn/Fe ratio because it is relatively invariant during magmatic 

differentiation at Baffin Island ((Zn/Fe) ×10
4
 = 8.5-10.7; MgO = 7-29 wt %). After correction to 

12 wt % MgO to allow direct comparison with other geochemical reservoirs, the (Zn/Fe) ×10
4
 of 

the Baffin Island suite is 9.69 ± 0.86; which is identical within error with estimates of MORB 

and the peridotite mantle (see Table 3; 9.39 ± 1.37 and 8.5 ± 2, respectively; Le Roux et al., 

2010) although significantly lower than some OIB basalts with recycled components (e.g. 

Samoa; Fig. 12b) or the inferred composition of a pyroxenite melt ((Zn/Fe) ×10
4
 = 14; (Le Roux 

et al., 2010). Consequently, we surmise that the Baffin Island mantle source is dominated by 

normal peridotite mantle. This finding is unsurprising given that incorporation of recycled crustal 
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materials with high time-integrated Th and U abundances would be irreconcilable with the high 

3
He/

4
He signatures preserved at Baffin Island that require derivation from an unmixed and 

undegassed mantle source region. In contrast, a major element such as Fe is likely to participate 

in melting across the entire melting column and its contribution would be weighted according to 

where the greatest extent of melting is taking place. At Baffin Island the thinned lithosphere 

overlying the locus of melting would have resulted in additional melting at shallower depths and 

therefore “normal” Fe and Zn isotope signatures represent an integrated average of the entire 

melting column.  Conversely, the unique geochemical signatures (e.g. He and W) displayed by 

the Baffin lavas are inferred to solely originate from the lowermost mantle and will be 

continuously diluted upon magma ascent.  

 

5.3.3. The Zn isotope composition of the silicate Earth 

Disparate estimates of the Zn isotope composition of the silicate Earth have been reported over 

recent years. Calculations based on basalts and continental mantle xenoliths suggest a relative 

heavy δ
66

Zn of 0.28-0.30 ‰ (Chen et al., 2013; Doucet et al., 2016), whereas approximations 

based on the depleted MORB mantle and ancient komatiites and global peridotite data suggest 

that the Earth’s primitive mantle has a significantly lighter Zn isotope composition at 0.16-0.20 

‰ (Sossi et al., 2018; Wang et al., 2017). The Baffin Island picrites are pristine, high degree 

partial melts of the mantle and thus provide an ideal suite with which to test these previous 

estimates. Given that Zn has a bulk partition coefficient near unity in mantle assemblages 

(DZn
mantle-melt

 ≈ 1; Davis et al., 2013; Le Roux et al., 2011), during partial melting Zn is only 
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weakly enriched in the melt phase. However, it has been inferred and modelled that Zn isotope 

fractionation of up to 0.1‰ accompanies this melting (Doucet et al., 2016; Sossi et al., 2018; 

Wang et al., 2017). By constructing a non-modal melting model (see Table 4) we can quantify 

the degree of fractionation between the Baffin Island melt and its mantle source. Assuming the 

Baffin parental melt is the result of 25% partial melting in the garnet stability field at 1400 ºC 

(average temperature in Spice et al., 2016), the fractionation between the resulting melt and its 

complementary residue would be Δ
66

Znmelt-mantle = 0.042‰ (Fig. 13b). Using the δ
66

Zn 

composition of Baffin parental melt calculated previously of 0.242‰ suggests that the original 

mantle reservoir had a δ
66

Zn of 0.20 ± 0.03‰, in agreement with the two lower estimates for the 

Zn isotope composition of the mantle (Sossi et al., 2018; Wang et al., 2017). The degree of 

fractionation observed in the garnet stability field model is very similar to that estimated for 

spinel facies melting (Sossi et al., 2018). Changing the mineral-melt partition coefficients or 

isotope fractionation factors has minimal effect on the modelled Zn isotope composition of the 

melt, with temperature being a far more sensitive parameter for driving fractionation. In 

summary, the Baffin Island picrites provide confirmation that the mantle has maintained a 

constant Zn isotope composition from at least 3.5 Ga to the present day and the δ
66

Zn of the bulk 

silicate Earth is around 0.2‰ (Fig. 12b).   

 

5.3.4. Variations in the Fe isotope composition of the mantle through time? 

Determining whether the δ
56

Fe of mantle has varied through geological time is complicated 

because partial melting, crystal fractionation processes and source mineralogy can all affect the 
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Fe isotope composition of a magma. During partial melting the more incompatible Fe
3+

 

(Mallmann and O’Neill, 2009) is preferentially extracted from the residue resulting in an 

isotopically heavier melt. Based on the modelling presented in Dauphas et al. (2009) at ~1300ºC, 

assuming a primitive mantle Fe
3+

/Fe
2+

 ratio of 0.037 (Canil et al., 1994) and 25% equilibrium 

melting, the degree of isotopic fractionation δ
56

Femelt−δ
56

Fesource is <0.04‰. Because komatiites 

are the results of large degrees of melting (25-40%; Sossi et al., 2016a) at elevated temperatures 

(>1400-1580 ºC; Nisbet et al., 1993), and both of these factors will minimise the magnitude of 

isotope fractionation (which is proportional to 1/T
2
), we can effectively assume that these high-

degree partial melts faithfully inherit their source compositions within the current analytical 

errors. 

As demonstrated here for Baffin Island fractional crystallisation or accumulation of 

olivine can significantly perturb the Fe isotope composition of a magma. Therefore, to allow 

direct comparisons between high-degree partial melts, the Fe isotope compositions of different 

komatiite suites have been corrected for magmatic differentiation/olivine accumulation to their 

respective primitive MgO contents (Table 3; Fig. 12a). The Baffin Island and post-3 Ga 

komatiites (Gorgona, Alexo and Vetreny; Dauphas et al., 2010; Hibbert et al., 2012) have δ
56

Fe 

values that fall within error of estimates of the Earth’s upper mantle Fe isotope composition 

(Weyer and Ionov, 2007). However, the pre-3 Ga komatiites (Regal and Coonterunah; Nebel et 

al., 2014) have resolvably lighter δ
56

Fe values. Nebel et al. (2014) explained the light δ
56

Fe 

values (corrected for olivine accumulation) of the Pilbara komatiites in terms of an early 

refractory reservoir formed due to previous episodes of melt extraction (i.e. Fe
3+

 is more 
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incompatible thus the residue of melting will be isotopically light). Alternatively, it could be 

speculated that the mantle became more oxidised post 3 Ga following the onset of plate tectonics 

and that this is reflected in a greater magnitude of mineral melt isotopic fractionation (as the 

latter correlates with Fe
3+

) and hence heavier Fe isotope compositions in the melt. The Baffin 

Island picrites possess a “primitive” and relatively undegassed source (unradiogenic lithophile 

isotopes and high 
3
He/

4
He) that has “normal” δ

56
Fe and δ

66
Zn, whereas if the Regal and 

Coonterunah komatiites sampled a source that had already experienced melt extraction (thus 

light δ
56

Fe) this would presumably be degassed in terms of noble gases (unfortunately this 

cannot be tested for such old samples).  Further evidence that the Baffin Island source has not 

experienced any previous melt extraction/degassing events within the first ~ 500 Myr of Earth 

history comes from the absence of 
142

Nd/
144

Nd anomalies (de Leeuw et al., 2017). Future 
142

Nd 

analyses of the Pilbara komatiites may be able to confirm the existence of a previous Hadean 

melting event, as has been observed for some Archean komatiites (Puchtel et al., 2016; Touboul 

et al., 2012), which would enable this scenario to be tested. To resolve this conundrum further, 

detailed analyses of the Fe isotope composition of mantle melts through space and time will also 

be required.  

 

6. CONCLUSIONS 

The Baffin Island picrites represent an unusual mantle endmember that has undergone limited 

degassing and preserves primitive radiogenic isotope signatures. Here we present Fe and Zn 

stable isotope compositions of these unaltered picrites and demonstrate that:   
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1) Using the inflection method, the Baffin Island parental melt is considered to contain 21 

wt % MgO. After correction for the effects of magmatic differentiation the Baffin Island 

parental melt has a δ
56

Fe of 0.08 ± 0.04‰ and δ
66

Zn of 0.24 ± 0.03‰.  

2) The incompatible nature of Cu and an excellent covariation between Fe and Zn isotopes, 

consistent with Zn behaving as a lithophile element, attest to the sulfide-undersaturated 

nature of the Baffin Island samples during the whole magmatic sequence. 

3) On the basis of Zn/Fe ratios the Baffin Island mantle source is considered to be composed 

entirely of normal peridotite mantle. This is what would be expected for the preservation 

of extremely elevated 
3
He/

4
He signatures and primordial radiogenic isotope signatures.  

4) By undertaking three-isotope-space modelling we have shown that the very negative Fe-

isotope ratios of olivine phenocryst (δ
56

Feol = −0.8‰), are the result of kinetic isotope 

fractionation from disequilibrium diffusional processes.  

5) After correcting for the effect of partial melting, the Zn isotope composition of the Baffin 

Island mantle source is δ
66

Zn = 0.20 ± 0.03‰ consistent with some recent similar 

estimates of the composition of the bulk mantle (Sossi et al., 2018; Wang et al., 2017).   

6) Although the Baffin Island picrites sample a primordial and undegassed source region 

they are entirely unremarkable in their Fe and Zn isotope compositions. These magmas 

are consistent with both the Fe and Zn isotope ratios of the mantle being constant from at 

least 3 Ga to the present day.  
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Figure Captions 

Figure 1: Variation of selected major and trace elements versus MgO content in Baffin Island 

picrites. Whole rock data (n = 94) are from Starkey et al. (2009). Samples are distinguished 

based on their MgO content, with samples with >21 wt % MgO having accumulated olivine 

crystals and samples with <21 wt % MgO having undergone crystal fractionation.  Samples 

analyzed in this study (circles) are distinguished based on location.  

 

Figure 2: The variation of Y (a) and Yb (b) versus MgO plotted on a logarithmic scale. The 

break in slope of the magmatic evolution line of a suite is considered to mark the parental 

magma composition. Whole rock data are from Starkey et al. (2009). 

 

Figure 3: Whole rock variations of δ
56

Fe (a) and δ
66

Zn (b) versus the MgO content of Baffin 

Island samples.  Separate regression lines are plotted through the samples with >21 and <21 wt 

% MgO.  Two sample are excluded because they are mineralogically distinct; PI-40 due to its 

lack of large inherited olivine phenocrysts like those observed in the other olivine-accumulative 

samples; and DI-27 because of the abundant large olivine phenocrysts not seen in other samples 

with <21 wt % MgO (see Table A1 for complete descriptions). Regression lines and error 

envelopes (shaded area) are calculated using Isoplot (Ludwig, 2008) using the long-term 

analytical errors and assuming a Model 2 fit (which assigns equal weight avoiding the mistake of 

weighting the points according to analytical errors). The regression lines from the samples with 

>21 wt % MgO are used to calculate the parental isotopic composition of the Baffin Island melt 
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at 21 wt % MgO. Throughout this paper error bars on individual points are the 95% s.e. on that 

sample, with the error on the parental melt composition taken as the long-term 2 s.d. on the 

basaltic reference standard BIR-1 (δ
56

Fe = ± 0.04‰; δ
66

Zn = ± 0.03‰). MgO contents are from 

Starkey et al. (2009). The weak correlation probabilities in samples with >21 wt % MgO are the 

result of the slightly stochastic nature of olivine accumulation in these samples, because the 

olivines are variably isotopically heterogeneous due to diffusional processes (see text for further 

discussion). 

 

Figure 4: Whole rock variations of δ
56

Fe and δ
66

Zn versus the Cr (a-b), V (c-d) and Cu (e-f) 

concentrations of Baffin Island samples.  The parental melt composition is calculated at 21 wt % 

based on a regression through the samples with >21 wt % MgO as shown in Figure 2.Trace 

element data are from Starkey et al. (2009). 

 

Figure 5: Whole rock variations in δ
56

Fe versus La/SmN, 
87

Sr/
86

Sr and 
3
He/

4
He, respectively. (a) 

Elemental values are from Starkey et al. (2009) and are normalized to CI chondrite values 

(Palme and O'Neill, 2014). (b) Comparative data for West Greenland (Lightfoot et al., 1997) 

show the limited extent of crustal contamination in the Baffin Island suite. An additional 14 of 

53 analysed West Greenland lavas plot off the graph with 
87

Sr/
86

Sr values up to 0.7122 observed. 

(c) The measured 
3
He/

4
He of all other Baffin Island and West Greenland lavas are shown for 

comparison (Starkey et al., 2009; Stuart et al., 2003).  An estimate for MORB is also plotted 

(
3
He/

4
He = 8 ± 1 and δ

56
Fe = 0.105 ± 0.04 ‰ (Graham, 2002; Teng et al., 2013). 
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Figure 6: Comparison of whole rock and olivine mineral separate δ
56

Fe (a) and δ
66

Zn (b) isotope 

data.  Larger symbols are bulk olivine analyses (c. 40 mg), with smaller symbols representing 

individual phenocrysts (0.2-9.2 mg). Best-fit lines are drawn through the composition of the 

parental melt (see Fig. 2), the whole rock composition and that of the bulk olivine separate. The 

numbers indicate the amount (wt. %) of olivine accumulated.  MgO contents are from Starkey et 

al. (2009) and (Lass-Evans, 2004). 

 

Figure 7: (a) Iron isotopic composition of individual olivine phenocrysts versus crystal size. 

Larger symbols are bulk (multi-grain) olivine analyses. The size of the bulk fraction is based on 

the average of the individual crystals, or for DI-27 the description in Lass-Evans (2004).  Grain 

ol8 in sample DI-24 appears to be an outlier with a large size and relatively heavy δ
56

Fe (further 

discussion later). (b) Box and whisker plot of the forsterite composition (Fo = molar ((Mg/ (Mg 

+ Fe)) * 100) of olivine cores from the studied Baffin Island samples using data are from Lass-

Evans (2004). Compositional data are not available for PI-40 so data from PI-41 are used 

instead: both samples come from the chilled margins of adjacent lava flows, and have similar 

sized olivine, olivine proportions and bulk rock compositions. Published data for Baffin Island 

olivines (n = 246; 17 lava flows) are from Starkey et al. (2012) and Spice et al. (2016).  

 

Figure 8: The correlation of δ
56

Fe and δ
66

Zn in simple magmatic systems controlled by olivine 

crystallisation. (a) Whole rock Baffin Island and Kilauea Iki lava lake samples; and (b) with the 
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addition of olivine separates from Baffin Island. Regression lines and error envelopes (shaded 

area) were calculated using Isoplot (Ludwig, 2008). Kilauea Iki lava lake data come from Teng 

et al. (2008) and Chen et al. (2013). 

 

Figure 9: Rayleigh fractionation model of the δ
56

Fe evolution of Baffin Island lavas as fractional 

crystallization proceeds. Modelling starts from the parental melt where δ
56

Fe = 0.076‰. Two 

olivine-only models (diamonds) are presented with Δ
56

Feol-melt of −0.38 and −0.15 representing 

the median olivine (δ
56

Feol = −0.31‰) composition measured here, and average PI-40 olivine 

(δ
56

Feol = −0.07‰), respectively. A single spinel only (circles) crystallization model with 

Δ
56

Fesp-melt of 0.22 is shown. A mixed assemblage model (squares) comprising 98.6% olivine, 

and 1.4% spinel reproduces all of the data points within long-term error (± 0.04‰; the shaded 

field). This model assumes a Δ
56

Feol-melt = 0.048‰ (equilibrium value calculated from Dauphas 

et al. (2014) and Δ
56

Fesp-melt = 0.22‰ (Hibbert et al., 2012). The mixed assemblage and 

proportion of crystallization in the Baffin Island lavas is calculated based on MgO and Cr2O3 

systematics (see Fig. A6). 

 

Figure 10: Resolving mechanisms of isotope fractionation using a three-isotope diagram.  Baffin 

Island olivine and whole rock data are plotted relative to the predicted equilibrium (β = 1.4750; 

Slope = 0) and kinetic (β = 1.4881; Slope = 0.0267) mass fractionation laws. The symbols 

representing the olivine crystals are scaled relative to the individual crystals size.  Bulk olivine 

fractions are represented with a cross. Regression line and error envelope (shaded area) is 
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calculated through the olivine data using Isoplot (Ludwig, 2008). Data points are plotted with 

long-term error on δ
56/54

Fe´ (±0.039) and the median error on Δ
57/54

Fe´ (±0.0053) unless the 

measured errors are larger (errors where propagated as described in Young and Galy (2004).  

The two points that fall furthest from the correlation line (uncoloured symbols) have been 

excluded from the regression. However, independent of the points included the regression 

produces a non-zero slope consistent with kinetic isotope fractionation having affected the 

olivines (see Figure A9). Grain ol8 in sample DI-24 does not fit the broad correlation between 

δ
56

Fe and crystal size seen in the other grains (Fig. 7) and falls significantly outside error of the 

predicted mass fractionation lines, thus it is not considered a good representation of the major 

processes we are attempting to understand. 

 

Figure 11: Determining the effect of S using trace element modelling to examine the 

fractionating assemblage in the Baffin Island lavas with <21 wt % MgO. Trace element data are 

from Starkey et al. (2009). The silicate only (squares) fractionating assemblage assumes 98.6% 

olivine and 1.4% spinel (see Figs. A6 and A7) and uses partition coefficients from Liu et al. 

(2014) and Mallmann and O’Neill (2009). A second model (triangles) shows the effect 0.5% 

sulfide being removed with the fractionating silicate assemblage using a DCu sulfide-melt of 380 

taken from picrite lavas (Pedersen, 1979). The pure sulfide model (crosses) shows the result of 

efficient removal sulfide melt assuming a lower estimate of DCu sulfide-melt of 180 (Rajamani 

and Naldrett, 1978). The composition of the parental melt is determined using the inflection 
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method (Y = 16.1 ppm; Cu = 91.5 ppm). For the silicate models the symbols represent 5% 

crystallization increments, whereas in the sulfide only system they represent 0.1% increments.   

 

Figure 12: (a) The Fe isotope composition of selected mantle melts with time. All data have 

been corrected for magmatic differentiation using regressions to the primitive MgO content of 

the respective melt (Dauphas et al., 2010; Hibbert et al., 2012; Nebel et al., 2014). Fertile upper 

mantle composition (Weyer and Ionov, 2007) and selected ocean island basalt data (Konter et al., 

2016; Teng et al., 2013) also shown. (b) The Zn/Fe (x 10
4
) ratios of mantle melts calculated at 12 

wt% MgO against time. Data are from a compilation presented in Le Roux et al. (2010) or 

calculated herein see Table 3.  

 

Figure 13: (a) The change in δ
66

Zn as a function of MgO of a range of rock types. Data plotted 

include Baffin Island picrites and rock standards (this paper), unmetasomatised peridotites (Sossi 

et al., 2018; Wang et al., 2017), mid ocean ridge basalts (Wang et al., 2017) and ocean island 

basalts (Chen et al., 2013; Wang et al., 2017), and spinifex-texture basalts and komatiites (Sossi 

et al., 2018). Two disparate estimates of bulk silicate Earth composition from Chen et al. (2013) 

and Sossi et al. (2018) are also shown. (b) The variation in δ
66

Zn relative to Zn concentration in 

mantle-derived melts. Two non-modal fractional melting models with residues (filled) and melts 

(hollow symbols) are shown: the spinel facies model, ranging from 0.5-30% melting in 10% 

increments, comes directly from Sossi et al. (2018) and assumes an initial δ
66

Zn of 0.16‰ and 



  

 

48 

 

 

 

melting at 1300ºC; the garnet facies model, ranging from 0.5-30% melting in 5% increments, 

derived herein (Table 4), assumes an initial δ
66

Zn of 0.2‰ and melting at 1400ºC. 

 

Table Footnotes 

Table 1 

() Numbers in parentheses represent a separate digestion. n is the number of replicate analyses on the 

mass spectrometer. Every sample was measured during multiple analytical sessions. To represent 

measurement uncertainty both the two-standard deviation (2 s.d.) and 95% standard errors (95% s.e. =t x 

s.d./(n)
1/2

, where t = inverse survival function of the Student’s t-test at the 95% significance level and (n 

−1) degrees of freedom) are presented. MgO and Cu data is from Starkey et al. (2009). 

 

Table 2 

a) Individual unbroken olivine grains were hand-picked and photographed using a binocular microscope 

(Fig. A2), sizes were measured digitally and represent the maximum length in the long dimension. Other 

parameters as in Table 1. 

 

Table 3 

a) MgO contents are the parental melt compositions reported (Dauphas et al., 2010; Nebel et al., 2014; 

Puchtel et al., 1996; Sossi et al., 2016a) or where missing calculated herein using the inflection method. 

(b) Fe isotope data for Komatiites (Dauphas et al., 2010; Hibbert et al., 2012; Nebel et al., 2014) have 

been corrected for magmatic differentiation to their primitive MgO contents using linear interpolation. 

Ocean island basalt data as also corrected to primitive melt compositions (Konter et al., 2016; Teng et al., 

2013). c) To simplify comparison Zn/Fe ratios are predicted at 12 wt% MgO based on regression line 

equations (i.e. Le Roux et al., 2010). Due to the near unity of DZn in olivine large amounts of olivine 

accumulation have no significant effect on Zn/Fe ratios. Errors herein have been calculated conservatively 

using 2 standard deviations on Zn/Fe ratios of samples with 10-14 wt% MgO or have been assumed to be 

1.2 where insufficient data is available. No Zn concentration data was found for the Alexo samples. d) 

Peridotite mantle values come from Sossi et al. (2016b) and Le Roux et al. (2011). 

 

Table 4 

a) Melting assemblage from (Walter, 1998); b) Partition coefficients from Davis et al. (2013); c) Olivine-

orthopyroxene-clinopyroxene isotope fractionation factors are taken from Sossi et al. (2018); garnet 
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fractionation factor has been estimated assuming that light Zn isotopes partition into garnet analogous to 

Fe isotopes (An et al., 2017). 
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Table 1: The Fe and Zn isotope composition of Baffin Island picrites and selected rock standards  

Sample 

MgO 

(wt 

%) 

Cu 

(ppm) 

ẟ
56

Fe 

(‰) 

2 s.d. 95% s.e. n 

ẟ
66

Zn 

(‰) 

2 s.d. 

95% 

s.e. 

 

n 

            

Baffin Island Samples          

Padloping Island           

PI-22 13.72 95.5 0.060 0.069 0.026 9 0.269 0.017 0.007  8 

PI-24 26.10 89.5 0.046 0.065 0.023 10 0.262 0.017 0.008  7 

PI-24 (2)       0.236 0.042 0.019  7 

PI-24 Av.       0.249 0.041 0.013  14(2) 

PI-25 27.69 64.8 −0.017 0.086 0.027 12 0.191 0.017 0.009  6 

PI-26 25.09 87.3 0.076 0.058 0.024 8 0.262 0.021 0.010  7 

PI-26 (2)       0.233 0.035 0.019  6 

PI-26 Av.  87.1     0.248 0.041 0.012  13(2) 

PI-27 23.20  0.069 0.082 0.027 11 0.274 0.022 0.010  7 

PI-27 (2)   0.098 0.049 0.031 5 0.237 0.042 0.033  4 

PI-27 Av.   0.078 0.077 0.020 16(2) 0.261 0.047 0.007  11(2) 

PI-28 11.33 121.1 0.053 0.071 0.030 8 0.210 0.020 0.008  8 

PI-31 22.64 90.1 0.044 0.047 0.020 8      

PI-37 26.57 67.5 −0.025 0.036 0.012 11 0.181 0.014 0.006  7 

PI-37 (2)       0.174 0.045 0.023  6 

PI-37 Av.       0.178 0.031 0.004  13(2) 

PI-40 29.24 73.6 0.023 0.030 0.013 8 0.203 0.023 0.009  8 

PI-40 (2)   0.013 0.034 0.016 7 0.205 0.020 0.008  8 

PI-40 Av.   0.018 0.032 0.009 15(2) 0.204 0.021 0.006  16(2) 

PI-43 24.58 80.2 0.043 0.056 0.023 8 0.231 0.013 0.008  5 

PAD-6 17.20 97.0 0.065 0.034 0.016 7 0.231 0.028 0.014  6 
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Durban Island           

DI-22 12.75 92.2 0.035 0.044 0.020 7 0.236 0.017 0.007  8 

DI-23 24.14 65.6 −0.005 0.058 0.024 8 0.192 0.020 0.010  6 

DI-24 24.46 86.8 0.050 0.059 0.025 8 0.222 0.013 0.005  8 

DI-26 15.92 100.2 0.070 0.040 0.017 8 0.235 0.018 0.008  7 

DI-26 (2)       0.210 0.037 0.019  6 

DI-26 Av.       0.224 0.037 0.006  13(2) 

DI-27 18.62 101.1 0.125 0.071 0.030 8 0.283 0.008 0.003  8 

DUR-8 22.89 75.5 0.029 0.016 0.010 5 0.209 0.052 0.028  7 

Cape Searle           

CS-7 20.18 86.4 0.073 0.046 0.019 8 0.231 0.030 0.016  6 

CS-7 (2)   0.063 0.056 0.035 5      

CS-7 Av.   0.069 0.049 0.015 13(2)      

            

Rock Standards           

AMH-1       0.243 0.025 0.011  7 

BCR-2       0.234 0.018 0.009  6 

BIR-1   0.052 0.050 0.019 9 0.237 0.013 0.005  8 

BIR-1 (2)   0.054 0.031 0.012 9 0.257 0.031 0.013  8 

BIR-1 (3)   0.055 0.039 0.024 5      

BIR-1 Av.   0.054 0.039 0.009 23(3) 0.247 0.030 0.008  16(2) 

BHVO-2   0.095 0.029 0.015 6 0.307 0.016 0.005  13 

DNC-1   0.066 0.021 0.010 7 0.242 0.029 0.013  7 

RGM-1       0.353 0.025 0.013  6 

            

Mass Spectrometry Solutions          

FeCl   −0.722 0.046 0.004 130      

JMC-Lyon       0.009 0.022 0.007  19 
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Table 2: The Fe and Zn isotope composition of bulk and individual olivine phenocrysts  

Sample 

Weight 

(mg) 

Size
a
 

(mm) 

ẟ
56

Fe 

(‰) 

2 s.d. 

95% 

s.e. 

n 

ẟ
66

Zn 

(‰) 

2 s.d. 

95% 

s.e. 

n 

           

DI-24_Bulk 41.3 1.59 −0.532 0.056 0.020 10 −0.147 0.026 0.012 7 

DI-24 ol-1 9.17 2.56 −0.797 0.047 0.019 8 −0.308 0.015  3 

DI-24 ol-2 1.70 1.38 −0.756 0.064 0.027 8     

DI-24 ol-3 4.76 2.67 −0.680 0.044 0.020 7     

DI-24 ol-4 0.86 1.14 −0.356 0.060 0.025 8     

DI-24 ol-5 0.90 0.91 −0.295 0.053 0.022 8     

DI-24 ol-6 0.60 1.32 −0.665 0.058 0.024 8     

DI-24 ol-7 0.36 0.86 −0.330 0.043 0.018 8     

DI-24 ol-8 4.44 1.91 −0.248 0.065 0.034 6 0.047 0.033  2 

           

DI-27_Bulk 43.5 2.00 −0.616 0.064 0.023 10 −0.221 0.042 0.017 8 

DI-27_Leach   −0.504 0.050 0.026 6     

           

PI-40_Bulk 39.5 0.80 -0.073 0.030 0.011 9 0.037 0.053 0.024 7 

PI-40 ol-1 1.40 1.15 -0.013 0.061 0.026 8     

PI-40 ol-2 0.26 0.63 -0.275 0.074 0.039 6     

PI-40 ol-3 0.23 0.72 -0.318 0.086 0.053 5     

PI-40 ol-4 0.36 0.73 -0.287 0.079 0.036 7     

PI-40 ol-5 0.38 0.80 -0.088 0.053 0.033 5     

PI-40 ol-6 0.25 0.77 -0.011 0.045 0.028 5     
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Table 3: Age, MgO contents and Fe isotopes compositions and Zn/Fe ratios of mantle melts. 

Location  Age (Ga) MgO (wt %)
a
 δ

56
Fe (‰)

b
 Zn/Fe x 10

4c
 

     

High degree partial melts     

Baffin Island 0.069 21 0.076 ± 0.04 9.67 ± 0.86 

Gorgona 0.091 23 0.054 ± 0.04 8.18 ± 1.15 

Vetrney 2.41 18 −0.021 ± 0.04 10.25 ± 0.92 

Alexo 2.7 29.1 0.044 ± 0.03 -- 

Regal 3.16 29 −0.093 ± 0.03 13.29 ± 1.2 

Coonterunah 3.515 23 −0.064 ± 0.03 11.02 ± 1.2 

     

Ocean Island Basalts     

Samoa <0.005  ≥0.19 12.99 ± 1.22 

Society Islands <0.003 10 0.136 ± 0.03 13.31 ± 0.79 

     

MORB   0.105 ± 0.04 9.39 ± 1.37 

Peridotite Mantle
d
   0.033 ± 0.04 8.50 ± 2.0 
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Table 4: Model parameters for the calculation of Zn isotope fractionation during non-modal 

fractional melting in the garnet facies mantle. 

Phase Starting fraction
a
 Melting reaction

a
 Partitioning DZn

b
 Δ

66
Zn (‰)

c
 

      

Olivine 0.52              0.08 ol-melt 0.96 −0.17 x 10
6
/T

2
 

Orthopyroxene 0.22             −0.19 opx-melt 0.451 −0.17 x 10
6
/T

2
 

Clinopyroxene 0.16              0.81 cpx-melt 0.333 −0.17 x 10
6
/T

2
 

Garnet 0.1              0.30 grt-melt 0.213 −0.20 x 10
6
/T

2
 

   mantle-melt 0.67 −0.178 x 10
6
/T

2
 

      

 

 

 


