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Abstract

We present pySECDEC, a new version of the program SECDEC, which performs
the factorisation of dimensionally regulated poles in parametric integrals, and the
subsequent numerical evaluation of the finite coefficients. The algebraic part of the
program is now written in the form of python modules, which allow a very flexi-
ble usage. The optimization of the C4++ code, generated using FORM, is improved,
leading to a faster numerical convergence. The new version also creates a library
of the integrand functions, such that it can be linked to user-specific codes for the
evaluation of matrix elements in a way similar to analytic integral libraries.
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1 Introduction

The current experiments at the Large Hadron Collider as well as future collider
experiments will explore TeV energy scales, posing new challenges for both
the experiments and the theoretical predictions. Radiative corrections play an
important role in this situation, making it necessary to develop calculational
methods and tools which can facilitate the task of calculating higher orders in
perturbation theory; both virtual (loop) corrections and real corrections, the
latter of which involve extra radiation leading to infrared singularities when
unresolved.

The analytic calculation of loop integrals beyond one loop has seen an enor-
mous progress in the last few years, to a large extent due to new insights [1]
into the method of differential equations [2,3]. However, as the number of
mass scales increases, the analytic evaluation of two-loop integrals and be-
yond becomes a very challenging and tedious task. At high energies, however,
where massive loops are more likely to be resolved, and where electro-weak
corrections become important, multi-scale problems are ubiquitous.

In such cases, numerical approaches may be the method of choice. A method
which is particularly useful in the presence of dimensionally regulated singu-
larities is sector decomposition [4-7], as it provides an algorithm to factorise
such singularities in an automated way. The coefficients of the resulting Lau-
rent series in the regularization parameter are in general complicated, but
can be integrated numerically. This has been implemented in the program
SECDEC [810], where from version 2.0 [9] the restriction to Euclidean kine-
matics was lifted by combining sector decomposition with a method to de-
form the multi-dimensional integration contour into the complex plane [11/[12].
Other implementations of the sector decomposition algorithm can be found in
Refs. [13-20].

In this paper, we present a completely new version of the SECDEC program,
called pySECDEC. The algebraic part is now coded in python and FORM [21}22]
rather than Mathematica. As a consequence, the new program is entirely
based on open source software and allows maximal flexibility due to its mod-
ular structure. The python code writes FORM files to produce optimized C++



functions which can be numerically integrated with CuBA [23,24]. The C++
functions are by default combined into a library and thus can be linked to
the calculation of, for example, a full amplitude. Therefore pySECDEC can be
used in a similar manner as analytic one-loop integral libraries. This opens up
new possibilities for the calculation of multi-loop amplitudes where analytic
results for most of the master integrals are not known.

The outline of the paper is as follows. In Section [2] we describe the structure of
the program and its new features. In Section [3] we explain the installation and
usage of the program. Section [4 describes a number of examples, before we
conclude in Section[5} An appendix contains an overview of possible parameter
settings, where their default values are also listed.

2 Description of pySecDec
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Fig. 1. Flowchart showing the main building blocks of pySECDEC. Steps 1-6 are
done in python. FORM is used in step 7 to produce optimized C++ code.

The program consists of two main parts, an algebraic part, based on python
and FORM [21},22], and a numerical part, based on C++ code. A flowchart is
shown in Fig. [ The isolation of endpoint singularities and the subsequent
numerical integration can act on general polynomial functions, as indicated
in the box (1b). Loop integrals (after Feynman parametrisation) can be con-
sidered as special cases of these more general polynomial integrands. In the
python code, this is reflected by the following structure: The python function
make_package accepts a list of polynomials raised to their individual powers as
input — corresponding to the box (1b). In contrast, Loop_package takes a loop
integral (e.g. from its graph or propagator representation), which corresponds



to to box (1a). After Feynman parametrizing the loop integral, loop_package
calls make_package for further processing. The steps (1) to (6) are performed
in python and FORM, where FORM, after step (6), produces optimized C++ code.
The compiled integrand functions are by default combined into a library. For
the numerical integration, we provide a simple interface to integrators from the
CuBA [23] library. The user also has direct access to the integrand functions
for example to pass them to an external integrator.

The pySECDEC distribution comes with a very detailed documentation both
in html and in pdf format. The manual is also available in both formats on
the webpage http://secdec.hepforge.org.

2.1 Algebraic part

The algebraic part consists of several modules that provide functions and
classes for the purpose of the generation of the integrand, performing the
sector decomposition, contour deformation, subtraction and expansion in the
regularization parameter(s). The algebra modules contained in pySECDEC use
both sympy and numpy, but also contain the implementation of a computer
algebra system tailored to the sector decomposition purposes, in order to be
competitive in speed with the previous implementation in Mathematica. For
example, since sector decomposition is an algorithm that acts on polynomials,
a key class contained in pySecDec.algebra is the class Polynomial.

Acting on general polynomials, pySECDEC is not limited to loop integrals. It
can take as an integrand any product of polynomials, raised to some power,
provided that the endpoint singularities are regulated by regularisation param-
eters, and that integrable singularities away from the integration endpoints
can be dealt with by a deformation of the integration path into the complex
plane. We should point out that pySECDEC can perform the subtraction and
expansion in several regulators, see the description of example [4.8]

For loop integrals, the program contains the module pySecDec.loop_integral.
There are two ways to define a loop integral in pySECDEC: (a) from the list
of propagators, and (b) from the adjacency list defining the graph, which is
roughly the list of labels of vertices connected by propagators. Examples for
both alternatives to define loop integrals are given in Sections and [

The availability of python functions which can be called individually by the
user allows for a very flexible usage of pySECDEC. The html documentation
describes all the available modules and functions in detail, and also contains
a “quick search” option.



2.1.1 Sector decomposition strategies

When using loop_package, which facilitates the definition and calculation of
Feynman integrals, one can choose between the following sector decomposition
strategies:

e iterative: Default iterative method [6,/7].

e geometric: Algorithm based on algebraic geometry (G2 in SECDEC 3). De-
tails can be found in Refs. [10L25,26].

e geometric ku: Original algorithm based on algebraic geometry introduced
by Kaneko and Ueda (G1 in SECDEC 3) [16}27].

The recommended sector decomposition algorithm based on algebraic geom-
etry is geometric, since it improves on the original geometric algorithm. For
general parametric integrals there are additionally the following options which
can be set in make_package:

e iterative_no_primary: [terative method without primary sector decompo-
sition.

e geometric no_primary: Geometric decomposition according to Kaneko and
Ueda without primary sector decomposition.

2.2 Producing C++ code and numerical results

The module pySecDec.code_writer is the main module to create a C++
library. It contains the function pySecDec.code_writer.make package which
can decompose, subtract and expand any polynomial expression and return
the produced set of finite functions as a C'++ package, where FORM has been
employed to write out optimised expressions. Simple examples of how to use
make_package are described in Sections [£.7] and [4.§]

A more advanced example is given in Section [4.9] which shows how the user
can define any number of additional finite functions. These functions need
not be polynomial. Furthermore, the user is free to define arbitrary C++
code (for example, a jet clustering routine) to be called by the integrand
during the numerical integration. Templates for such user-defined functions
will be created automatically if the field functions, where the names of such
functions are given, is non-empty in make_package .

If a loop integral should be calculated, the function loop_package can be used,
which contains methods specific to loop integrals, for example the construction
of the Symanzik polynomials F and U from the list of propagators or from
the adjacency list of a graph. Examples how to use the loop package are given

in Sections [4.1] to [4.5



Both make_package and loop_package will create a directory (with the name
given by the user in the field name) which contains the main C++ integration
files and a Makefile to generate the C++ source code and the libraries (static
and dynamic) containing the integrand functions.

The library can be linked against a user-specific code, or it can be called via
a python interface, as described in Section [4.1}

2.3 New features

In addition to the complete re-structuring, which opens up new possibilities
of usage, there are various new features compared to SECDEC 3:

e The functions can have any number of different regulators, not only the
dimensional regulator e.

e The treatment of numerators is much more flexible. Numerators can be
defined in terms of contracted Lorentz vectors or inverse propagators or a
combination of both.

e The distinction between “general functions” and “loop integrands” is re-
moved in the sense that all features are available for both general polyno-
mial functions and loop integrals (except those which only make sense in
the loop context).

e The inclusion of additional “user-defined” functions which do not enter the
decomposition has been facilitated and extended.

e The treatment of poles which are higher than logarithmic has been im-
proved.

e A procedure has been implemented to detect and remap singularities at
x; = 1 which cannot be cured by contour deformation.

e A symmetry finder |28] has been added which can detect isomorphisms
between sectors.

e Diagrams can be drawn (optionally, based on neato [29]; the program will
however run normally if neato is not installed).

e The evaluation of multiple integrals or even amplitudes is now possible,
using the generated C++ library, as shown in Example [4.10]

3 Installation and usage

Here we describe briefly the installation and usage of the program. For more
details we refer to the manual and to the examples.



3.1 Installation

The program can be downloaded from http://secdec.hepforge.org.

It relies on python and runs with versions 2.7 and 3. Further the packages
numpy (http://www.numpy.org) and sympy (http://www.sympy.org) are re-
quired. The former is a package for scientific computing with python, the
latter is a python library for symbolic mathematics.

To install pySECDEC, perform the following steps

tar —-xf pySecDec-<version>.tar.gz

cd pySecDec-<version>

make

<copy the highlighted output lines into your .bashrc>

The make command will automatically build further dependencies in addition
to pySECDEC itself. These are the CUBA library [23,24] needed for multi-
dimensional numerical integration, FORM [21,/22] for the algebraic manipula-
tion of expressions and to produce optimized C++ code, and NAUTY [2§]
to find sector symmetries, thereby reducing the total number of sectors to
be integrated. The lines to be copied into the .bashrc define environment
variables which make sure that pySECDEC is found by python and finds its
aforementioned dependencies.

With our effort of shipping external dependencies with our program, we want
to make sure the installation is as easy as possible for the user. The pySECDEC
user is strongly encouraged to cite the additional dependencies when using the
program.

3.1.1 Geometric sector decomposition strategies

The program NORMALIZ [30,31] is needed for the geometric decomposition
strategies geometric and geometric_ku. In pySECDEC version 1.0, the ver-
sions 3.0.0, 3.1.0 and 3.1.1 of NORMALIZ are known to work. Precompiled
executables for different systems can be downloaded from
https://www.normaliz.uni-osnabrueck.de. We recommend to export its
path to the environment of the terminal such that the normaliz executable is
always found. Alternatively, the path can be passed directly to the functions
that call it, see the manual for more information. The strategy iterative can
be used without having NORMALIZ installed.



3.2 Usage

Due to its highly modular structure, modules of the program pySECDEC can
be combined in such a way that they are completely tailored to the user’s
needs. The individual building blocks are described in detail in the manual.
The documentation is shipped with the tarball in pdf (doc/pySecDec.pdf)
and html (doc/html/index.html) format.

We provide python scripts for the two main application directions of the pro-
gram. One is to use pySECDEC in a “standalone” mode to obtain numerical
results for individual integrals. This corresponds to a large extent to the way
previous SECDEC versions were used. The other allows the generation of a
library which can be linked to the calculation of amplitudes or other expres-
sions, to evaluate the integrals contained in these expressions. The different
use cases are explained in detailed examples in Section [4]

To get started, we recommend to read the section “getting started” in the
online documentation. The basic steps can be summarized as follows:

(1) Write or edit a python script to define the integral, the replacement rules
for the kinematic invariants, the requested order in the regulator and some
other options (see e.g. the one-loop box example box1L/generate box1L.py).

(2) Run the script using python. This will generate a subdirectory according
to the name specified in the script.

(3) Type make -C <name>, where <name> is your chosen name. This will
create the C'++ libraries.

(4) Write or edit a python script to perform the numerical integration using
the python interface (see e.g. box1L/integrate box1L.py).

Further usage options such as looping over multiple kinematic points are de-
scribed in the documentation as well as in section [4.1]

The algebra package can be used for symbolic manipulations on integrals. This
can be of particular interest when dealing with non-standard loop integrals,
or if the user would like to interfere at intermediate stages of the algebraic
part.

For example, the Symanzik polynomials F and U resulting from the list of
propagators can be accessed as follows (example one-loop bubble):

>>> from pySecDec.loop_integral import *

>>> propagators = [’k¥*2’, ’(k - p)**2’]

>>> loop_momenta = [’k’]

>>> 1i = LoopIntegralFromPropagators(propagators,loop momenta)



Then the functions U« and F including their powers can be called as:

>>> 1i.exponentiated U
( + x0 + x1)**x(2xeps - 2)
>>> 1i.exponentiatedF
( + (—p**2)*x0*x1)**(-eps)

Numerators can be included in a much more flexible way than in SECDEC 3,
see the example in Section [4.3] and the manual.

An example where F and U are calculated from the adjacency list defining a
graph looks as follows (for a one-loop triangle with two massive propagators):

>>> from pySecDec.loop_integral import *

>>> internal lines = [[’0’,[1,2]], [’m’,[2,3]], [’m’,[3,1]]]
>>> external lines = [[’p1’,1],[’p2’,2],[’-p12’,3]]

>>> 1i = LoopIntegralFromGraph(internal lines, external lines)

Finally, we should point out that the conventions for additional prefactors
defined by the user have been changed between SECDEC 3 and pySECDEC.
The prefactor will now be multiplied automatically to the result. For example,
if the user defines additional prefactor=I'(3 — 2¢), this prefactor will be
expanded in € and included in the numerical result returned by pySECDEC.

4 Examples

All the examples listed below can be found in subdirectories of the examples

folder.

4.1 One-loop box

This example is located in the folder box1L. It calculates a 1-loop box integral
with one off-shell leg (p? # 0) and one massive propagator connecting the
external legs p; and ps.

The user has basically two possibilities to perform the numerical integrations:
(a) using the python interface to call the library or

(b) using the C'++ interface by inserting the numerical values for the kinematic
point into integrate_box1L. cpp.

The commands to run this example in case (a) above are
python generate boxlL.py
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make -C box1L
python integrate_boxlL.py

In case (b) above the commands are

python generate_boxlL.py

<edit kinematic point in box1L/integrate_boxlL.cpp>
make -C boxlL integrate_boxlL
./box1L/integrate box1L

The make command can optionally be passed the jobs (-j) command to run
multiple FORM jobs and then multiple compilation jobs in parallel, for example
make -j 8 -C boxlL

would run 8 jobs in parallel where possible.

Other simple examples can be run in their corresponding folders by replacing
the name box1L in the above commands with the name of the example.

In more detail, running the python script generate_box1L.py will create a
folder called box1L (the “name” specified in generate_box1L.py) which will
contain the following files and subdirectories:

box1L.hpp integrate boxlL.cpp Makefile pylink/
box1L.pdf src/ codegen/ Makefile.conf README

Inside the generated box1L folder typing ‘make’ will create the source files for
the integrand and the libraries ‘libbox1L.a’ and ‘box1L_pylink.so’, which
can be linked to an external program calling these integrals.

Note that pySECDEC automatically creates a pdf file with the diagram picture
if LoopIntegralFromGraph is used as input format.

In case (a) the python file integrate box1L.py is used to perform the nu-
merical integration, the user may edit the kinematic point and integration
parameter settings directly at python level.

In case (b), the user has to insert the values for the kinematic point in
box1L/integrate_box1L.cpp at the line

const std::vector<boxlL::real_t> real parameters = {};

which can be found at the beginning of int main(). Complex parameters
should be given as a list of the real and imaginary part. For box1L, the com-
plex numbers 1+2 i and 2+1 1 are written as

const std::vector<boxlL::complex t> complex parameters={ {1.0,2.0},
{2.0,1.0} };

If no complex parameters are present, the list complex_parameters should
be left empty. The command ‘make -C box1L box1L/integrate box1L’ pro-
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duces the executable integrate box1L which can be run to perform the nu-
merical integration using the C++ interface.

Loop over multiple kinematic points

The file integrate box1L multiple points.py shows how to integrate a
number of kinematic points sequentially. The points are defined in the file
kinematics.input. They are read in by the python script (line by line).

The first entry of each line in the kinematics data file kinematics.input
should be a string, the “name” of the kinematic point, which can serve to label
the results for each point. The results are written to the file results_box1L. txt.

4.2 Two-loop three-point function with massive propagators

The example triangle2L calculates the two-loop diagram shown in Fig. [2]
The steps to perform to run this example (using the python interface) are
analogous to the ones given in the previous section:

python generate_triangle2L.py && make -C triangle2Ll &&

python integrate_triangle2Ll.py

Results for this diagram can be found e.g. in [32-35].

P1

1
- = -
b3 |
3 [
_ L _
5 2 D2
Fig. 2. A two-loop vertex graph containing a massive triangle loop. Solid lines are

massive, dashed lines are massless. The vertices are labeled to match the construc-
tion of the integrand from the topology.

The result of pySECDEC is shown in Tab. [I We would like to point out that
the default accuracy in this example is set to 1072 in order to keep the runtimes
low. This does not reflect the accuracy pySECDEC can actually reach.

A comparison of the timings with SECDEC 3 and FIESTA 4.1 for the evaluation
of the finite part can be found in Table

4.8 Two-loop four-point function with numerators

The example box2L_numerator shows how numerators can be treated in pySECDEC.
It calculates a massless planar on-shell two-loop 7-propagator box in two dif-
ferent ways:

12



Table 1
Result for the two-loop triangle P126 at p% = 9 and m? = 1 compared to the analytic
result of Ref. [33].

€ order | pySECDEC result

€2 (-0.0379735 - 10.0747738) + (0.000375449 + 10.000695892)

et (0.2812615 + 10.1738216) £ (0.003117778 + 10.002358655)

e (-1.0393673 + 10.2414135) + (0.011940978 + 10.004604699)
analytic result

€2 -0.038052884394 - 10.0746553844162

et 0.279461083591 + 10.1746609123993

e -1.033851309109 + i0.2421265865644

(a) with the numerator defined as an inverse propagator (box2L_invprop.py),
(b) with the numerator defined in terms of contracted Lorentz vectors
(box2L_contracted_tensor.py).

This example is run with the following commands

make (will run both python scripts and compile the libraries)
./integrate box2L (will calculate the integral in both ways and
print the results as well as the difference between

the two results, which should be numerically zero).

The result for s = —3 and t = —2 is listed in Tab.

The integral is given by

dPky dPk, 1
]al...(lg :/ iﬁg iﬂ'% [Dl]al[DQ]O‘Q[D3]a3[D4]a4[D5]a5[D6]a6[D7]a7[D8]a8 (1>

Dl = kj%7D2 = (kl +p2)2aD3 = (kl _p1)2aD4 = (kl - k2)27
Ds = (ko + p2)?, Dg = (k2 — p1)*, D7 = (ko + pa + p3)*, Ds = (k1 + p3)*.

In case (a), the integral 11111111 is specified by powerlist = [1,1,1,1,1,1,1,-1]
in box2L_invprop.py.

In case (b), the same integral is specified (in box2L_contracted_tensor.py)

by powerlist = [1,1,1,1,1,1,1,0] and

numerator = ‘k1(mu)*kl(mu) + 2xkl1(mu)*p3(mu) + p3(mu)*p3(mu)’.
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Table 2
Result for the two-loop four-point function with numerators at the kinematic point
§s=—-3,t=-2.

€ order | pySECDEC result

et ] -0.2916 + 0.0022
€3 0.7410 + 0.0076
e? | -0.3056 + 0.0095
e! | -2.2966 + 0.0313
e 1.1460 =+ 0.0504

Fig. 3. Three-loop massless 7-propagator graph.

4.4 Three-loop triangle integral

The example triangle3L demonstrates how the symmetry finder can reduce
the number of sectors. We consider the seven-propagator 3-loop 3-point inte-
gral depicted in Fig. [3] which is the figure that is automatically created by the
code. This integral has been calculated to order € in Ref. [36] and to order €*
in Ref. [37]. Here we also calculate it to order €.

This example is run as usual by the commands

python generate_triangle3L.py && make -C triangle3dL &&

python integrate_triangle3dL.py

It shows that the symmetry finder reduces the number of primary sectors to

calculate from 7 to 3, and the total number of sectors from 212 to 122. For
comparison, SECDEC 3 produces 448 sectors using strategy X.

4.5 Integrals containing elliptic functions

In the examples elliptic2L_euclidean and elliptic2L_physical an inte-
gral is calculated which is known from Refs. [38,[39] to contain elliptic func-
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tions. We consider the integrals I, 49

; _ / APk dPly D5 Dy
e it irs [D1]®[Da]%2 D3] [Dy]*4[ D5 [ Dg)s[ D)o

Dy =ki —m? Dy = (ki +p1 +p2)* —m* D3 = k3 —m?,

Dy = (ka4 p1+p2)* —m* D5 = (k1 + p1)> —m? Dg = (k1 — k2)?,

Dy = (k2 —p3)2 —m?, Dg = (ky +p1)%, Dy = (K1 —p3)2-

(2)

The topology for I 19111100 is depicted in Fig. [l Here we calculate the integral
3
fé% == (—8/7’)’22)§ ]110111100 diSCUSSGd n Ref l38]

In elliptic2L_euclidean we calculate the kinematic point s = —4/3,t =
—16/5,p2 = —100/39, m = 1 (Euclidean point) with the settings epsrel=10"5,
maxeval=10" and obtain
fé =0.2470743601 £ 6.9692 x 107° . (3)
The analytic resuldﬂ is given by
f%analytic = 0.247074199140732131068066 .

In elliptic2L physical we calculate the non-Euclidean point s = 90,¢ =
—2.5,p2 = 1.6,m? = 1 and find with epsrel=10"*, maxeval=10":

_3
(_i) " feb = —0.04428874 4 1001606818 + (2.456 + i 2.662) x 107°) .
m
“0000) (0000
“00007

Fig. 4. Two-loop 6-propagator graph leading to elliptic functions. Curly lines denote
massless particles. The box contains massive propagators with mass m. One leg (p4)
has p? # 0.

4.6 Two-loop vertex diagram with special kinematics

In the example triangle2L split we calculate an integral entering the two-
loop corrections to the Zbb vertex, calculated in Refs. [40,41], where it is called
Ns.

1 'We thank Francesco Moriello and Hjalte Frellesvig for providing us the result.
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This example is run as usual by the commands
python generate_triangle2Ll_split.py && make -C triangle2L_split &&
python integrate_triangle2L _split.py

The diagram produced by pySECDEC is shown in Fig. [5

Fig. 5. The integral N3 with one massive propagator (mz) and s = p3 = m?%.

The kinematic condition s = M2 leads to an integrand which is particularly
difficult for the sector decomposition method because it does not have a Eu-
clidean region. As a consequence, the integral has both endpoint singularities
as well as singularities due to the fact that the second Symanzik polynomial
F can vanish on some hyperplane in Feynman parameter space, rather than
only at the origin. The remappings done by the standard sector decomposition
algorithm would turn this into singularities at x; = 1. In SECDEC 3, singu-
larities at x; = 1 were treated by a split of the integration domain at z; = 0.5
and subsequent remapping to the unit hypercube. However, this can lead to
an infinite recursion of the problem.

pySECDEC can detect and remap such “hyperplane singularities” into singu-
larities at the origin by a dedicated spitting procedure, where a splitting at
the symmetric point x; = 0.5 is avoided.

The results obtained for this example are listed in Table [3|

Table 3
Numerical result from pySECDEC for the integral V3.

€ order | pySECDEC result
€2 (1.23370112 + i5.76 x10~7) 4+ (0.00003623 + i0.00003507)
et (2.89050847 + 13.87659429) £ (0.00060165 + i 0.00070525)
e (0.77923028 + 14.13308243) £ (0.00815782 + i 0.00923315)
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4.7  Hypergeometric function 5Fy

An example of a general dimensionally regulated parameter integral, which
can also have endpoint-singularities at z; = 1, can be found in hypergeo5F4.
We consider the hypergeometric function 5Fy(ay, ..., as; by, ..., by; 5).

This example is run by the usual commands
python generate hypergeobF.py && make -C hypergeobF4 &&
python integrate_hypergeobF.py

The considered function has the integral representation

ﬁ % /1 dz; (1 — Zi)_l_ai+bizf1+ai (1 - 521222324)(15 :
i1 F[al]F[bl - ai] 0 Z

The potential singularities at z; = 1 are automatically detected by the program
and remapped to the origin if the flag split=True is set. Results for values
a5 = —€,09 = —€,a3 = —3€, a4 = —He, a5 = —T€, by = 2¢,by = 4€,b3 = 6e, by =

8¢, 3 = 0.5 are shown in Tab. [4

Table 4
Comparison of the exact result for 5 Fy with the evaluation of pySECDEC, maximally
using 10° integrand evaluations.

e order | Exact result (using HypExp [42]) pySECDEC result
e 1 1+ %1071
el 0.1895324 0.18953239 + 0.0002
€ - 2.2990427 -2.2990377 £ 0.0016
€3 95.469019 55.468712 + 0.084
et - 1014.3924 -1014.3820 + 0.89

4.8  Function with two different regulators

The example two_regulators demonstrates the sector decomposition and in-
tegration of a function with multiple regulators. We consider the integral?]

2 We thank Guido Bell and Rudi Rahn for providing this example.
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This example can be run using the usual commands
python generate_two_regulators.py && make -C two_regulators &&
python integrate_two_regulators.py

The regulators are specified in a list as regulators = [‘alpha’, ‘eps’]. The
orders to be calculated in each regulator are defined in a list where the position
of each entry matches the one in the regulator list. For example, if the integral
should be calculated up to the zeroth order in the regulator o and to first
order in €, the corresponding input would be requested _orders = [0,1].

4.9 User-defined additional functions

The user has several possibilities to define functions which are not included in
the decomposition procedure itself and which can therefore be non-polynomial
or be defined by an arbitrary C'++ function, for example a jet algorithm or
the definition of an event shape variable. Three examples (dummyI, dummyII
and thetafunction) which demonstrate the use of user defined functions are
contained in the subdirectory userdefined_cpp.

4.9.1 Analytic functions not entering the decomposition

The example dummyI demonstrates how a result can be multiplied by an an-
alytic function of the integration variables which should not be decomposed.
The example can be run with the usual commands

python generate_dummyl.py && make -C dummyI &&

python integrate_dummyl.py

The functions which are to be multiplied onto the result are listed in generate_dummyI.py
on the line functions = [‘duml’, ‘dum2’]. The user can give functions any

name which is not a reserved python function name.

The dependence of these functions on a number of arguments is given on the

line

remainder_expression =

‘(dum1(z0,z1,z2,23) + b5*xeps*z0)*x(1l+eps) *

dum2(z0,z1,alpha) ** (2-6%eps) ’.
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Note that the remainder_expression is an explicitly defined function of the
integration variables but that the functions dum1l and dum2 are left implicit in
the python input file.

Any functions left implicit in the python input (in this example duml and
dum?2) are to be defined later in the file <name>/src/functions.hpp. A tem-
plate for this file will be created automatically together with the process direc-
tory. In our example, for the user’s convenience, the appropriate functions are
copied to the process directory in the last line of generate dummyI.py. Note
that the arguments in functions.hpp are the ones that occur in the argument
list of the function in generate dummyI.py, in the same order. The function
arguments can be both integration variables and parameters. Derivatives of
the functions are needed if higher than logarithmic poles appear in the decom-
position of the integrand. The definition of the derivatives are named following
the pattern d<function>d<argument>, for example ‘ddum1d0’ means the first
derivative of the function with name ‘dum1’ with respect to its first argument.

Alternatively, if the extra functions are simple, they can be defined explicitly
in the python input file in remainder_expression = ‘define explicit function
here’. The example dummyII demonstrates this. It can be run with the usual
commands

python generate dummyII.py && make -C dummyII &&

python integrate_dummyII.py

In this case, the definition of functions like dum1,dum2 is obsolete. The def-
initions given in remainder expression will be multiplied verbatim to the
polynomials to decompose.

4.9.2  Non-analytic or procedural functions not entering the decomposition

The user can also multiply the result by C++ functions which are not simple
analytic functions, for example they may contain if statements, for loops,
etc., as may be needed to define measurement functions or observables. An
example of this is given in generate_thetafunction.py which shows how a
theta-function can be implemented in terms of a C++ if statement. This
example can be run with the usual commands

python generate_thetafunction.py && make -C thetafunction &&
python integrate_thetafunction.py

In the python input file the name of the C'++ function is given on the line
functions = [’cutl’]. The line

remainder _expression = ‘cutl(zl,delt)’

instructs pySECDEC to multiply the function onto the result, without de-
composition. Note that the implementation of the function cut1 is not given
in the python input file. Once the process directory is created, the func-
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tion cutl should be defined in <name>/src/functions.hpp. In our example,
the appropriate function is copied to the process directory in the last line of
generate_thetafunction.py for the user’s convenience. The theta-function
may be defined as follows:

template<typename TO, typename T1>
integrand_return_t cutl(TO arg0d, T1 argl)

{
if (arg0d < argl) {
return O.;
} else {
return 1.;
}
};

The first argument (arg0) corresponds to z1, the second one (argl) is the cut
parameter delta.

4.10  Four-photon amplitude

This example, contained in 4photonlLl_amplitude, calculates the one-loop
four-photon amplitude M™**~~. The example may be run using the com-
mands:

make && ./amp

The Makefile will produce the libraries for the two-point and four-point func-
tions entering the amplitude and compile the file amp.cpp which defines the
amplitude. Executing ‘. /amp’ evaluates the amplitude numerically and prints
the analytic result for comparison.

The amplitude for 4-photon scattering via a massless fermion loop can be ex-
pressed in terms of three independent helicity amplitudes, M*T++ M-
M7= out of which the remaining helicity amplitudes forming the full am-
plitude can be reconstructed using crossing symmetry, Bose-symmetry and
parity. Omitting an overall factor of o?, the analytic expressions read (see
e.g. [43])

M-H——H— =8 , M+++— = _8 ,
t— £\ 2+ t\?
M= —8[1 T log () + Tu (log () + 7T2)] : (5)
S U

U 252

Up to an overall phase factor, the amplitude M*™T~~ can be expressed in
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terms of one-loop integrals as

2 + u?
S

M7 = -8 {1 + IPY2 (¢ u) + t;“ (IQD(U) — IZD(t))} . (6)

The purpose of our simple example is to show how pySECDEC can be used to
calculate the master integrals occurring in the amplitude M*+—.

4.11  Comparison of timings

Table 5
Comparison of timings (algebraic, numerical) using pySECDEC, SECDEC 3 and
FIESTA 4.1.

pySECDEC time (s) | SECDEC 3 time (s) | FIESTA 4.1 time (s)
triangle2l (40.5, 9.6) (56.9, 28.5) (211.4, 10.8)
triangle3l (110.1, 0.5) (131.6, 1.5) (48.9, 2.5)
elliptic2L_euclidean (8.2, 0.2) (4.2,0.1) (4.9, 0.04)
elliptic2L physical (21.5, 1.8) (26.9, 4.5) (115.3, 4.4)
box2L_invprop (345.7, 2.8) (150.4, 6.3) (21.5, 8.8)

We compare the timings for several of the above mentioned examples between
pySECDEC, SECDEC 3 and FIESTA 4.1, where we distinguish between the
time needed to perform the algebraic and the numeric part. In Tab. [5 the
compilation of the generated C'++ functions is included in the algebraic part,
because it needs to be done only once. The timings for the numerical part are
the wall clock times for the evaluation of the C'++ functions.

The timings were taken on a four-core (eight hyper-thread) Intel(R) Core(TM)
i7-4770 CPU @ 3.40GHz machine. We set the parameter number_of presamples
in pySECDEC, optlamevals in SECDEC 3 and Lambdalterations in FI-
ESTA 4.1, which controls the number of samples used to optimise the contour
deformation, to the FIESTA 4.1 default of 1000. The default decomposition
strategy of each tool was used, STRATEGY_S for FIESTA 4.1 and X for pySECDEC
and SECDEC 3. The integrands were summed before integrating in the fol-
lowing way: setting together=True in pySECDEC and togetherflag=1 in
SECDEC 3 sums all integrands contributing to a certain pole coefficient before
integrating. SeparateTerms=False in FIESTA 4.1 sums the integrands in each
sector which appears after pole resolution before integrating. For the exam-
ples considered on our test platform these settings were found to be optimal
for all three tools. The integration is performed using the default settings of
pySECDEC and the same settings in SECDEC 3 and FIESTA 4.1. In particular,
this implies a rather low desired relative accuracy of 1072,
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The numerical integration times in pySECDEC are generally reduced with
respect to SECDEC 3, which is mostly due to a better optimization during
the algebraic part, and partly also due to a more efficient deformation of the
integration contour in pySECDEC. For the test cases considered we found that
FIESTA 4.1 is the fastest to perform the algebraic (decomposition) step when
contour deformation is not required. We would like to stress that although
we endeavoured to keep all relevant settings identical across the tools we are
not experts in the use of FIESTA 4.1 and we expect that it is possible to
obtain better timings by adjusting settings away from their default values.
Furthermore, which tool is fastest strongly depends on the case considered
and whether one prefers faster decomposition or numerical evaluation of the
resulting functions.

5 Conclusions

We have presented a new version of the program SECDEC, called pySECDEC,
which is publicly available at http://secdec.hepforge.org. The program
pySECDEC is entirely based on open source software (python, FORM, CUBA)
and can be used in various contexts. The algebraic part can isolate poles in
any number of regulators from general polynomial expressions, where Feynman
integrals are a special case of. For the numerical part, a library of C++ func-
tions is created, which allows very flexible usage, and in general outperforms
SECDEC 3 in the numerical evaluation times. In particular, it extends the
functionality of the program from the evaluation of individual (multi-)loop in-
tegrals to the evaluation of larger expressions containing multiple analytically
unknown integrals, as for example two-loop amplitudes. Such an approach al-
ready has been used successfully for the two-loop integrals entering the full
NLO corrections to Higgs boson pair production. Therefore pySECDEC can
open the door to the evaluation of higher order corrections to multi-scale pro-
cesses which are not accessible by semi-analytical approaches.
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A Parameter settings

A.1 Algebraic part

The settings for the algebraic part are listed and explained in detail in the
section “Code Writer/Make Package” in the documentation, as well as in the
section “Loop Integral” for settings which are specific to loop integrals.

A.1.1 Loop package
The parameters for loop_package are:

name : string. The name of the C++ namespace and the output directory.

loop_integral : The loop integral to be computed, defined via
pySecDec.loop_integral.LoopIntegral (see below).

requested_orders : integer. The expansion in the regulator will be computed
to this order.

real_parameters : iterable of strings or sympy symbols, optional. Parameters
to be interpreted as real numbers, e.g. Mandelstam invariants and masses.

complex_parameters : iterable of strings or sympy symbols, optional. Pa-
rameters to be interpreted as complex numbers, e.g. masses in a complex
mass scheme.

contour_deformation (True) : bool, optional. Whether or not to produce
code for contour deformation.

additional _prefactor (1) : string or sympy expression, optional. An addi-
tional factor to be multiplied to the loop integral. It may depend on the
regulator, the real parameters and the complex parameters.

form _optimization_level (2) : integer out of the interval [0,3], optional.
The optimization level to be used in FORM.

form_work_space (’500M”) : string, optional. The FORM WorkSpace.

decomposition_method : string, optional. The strategy for decomposing
the polynomials. The following strategies are available:
e ‘iterative’ (default)
e ‘geometric’
e ‘geometric_ku’

normaliz_executable (‘normaliz’) : string, optional. The command to run
normaliz. normaliz is only required if decomposition method is set to ‘ge-
ometric’ or ‘geometric_ku’.

enforce_complex (False) : bool, optional. Whether or not the generated
integrand functions should have a complex return type even though they
might be purely real. The return type of the integrands is automatically
complex if contour_deformation is True or if there are complex parame-
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ters. In other cases, the calculation can typically be kept purely real. Most
commonly, this flag is needed if the logarithm of a negative real number can
occur in one of the integrand functions. However, pySECDEC will suggest
setting this flag to True in that case.

split (False) : bool, optional. Whether or not to split the integration domain
in order to map singularities at 1 back to the origin. Set this option to True
if you have singularities when one or more integration variables are equal
to one.

ibp_power_goal (-1) : integer, optional. The power_goal that is forwarded
to the integration by parts routine. Using the default setting, integration by
parts is applied until no linear or higher poles remain in the integral. We
refer to the documentation for more detailed information.

use_dreadnaut (True) : bool or string, optional. Whether or not to use
dreadnaut to find sector symmetries.

The main keywords to define loop integrals from a “graphical representation”
(LoopIntegralFromGraph) are:

internal lines : list defining the propagators as connections between labelled
vertices, where the first entry of each element denotes the mass of the prop-
agator, e.g. [[‘m’, [1,2]], [‘0’, [2,1]1]].

external lines : list of external line specifications, consisting of a string for
the external momentum and a string or number labelling the vertex, e.g.
([‘p1’, 11, [‘p2’, 2]1].

replacement_rules : symbolic replacements to be made for the external
momenta, e.g. definition of Mandelstam variables. Example: [(‘pl*p2’,
‘s?), (‘p1*x2’, 0)] where pl and p2 are external momenta. It is also
possible to specify vector replacements, e.g. [(‘p4’, ‘-(pl+p2+p3)°)].

Feynman_parameters (’x’) : iterable or string, optional. The symbols to
be used for the Feynman parameters. If a string is passed, the Feynman
parameter variables will be consecutively numbered starting from zero.

regulator (¢) : string or sympy symbol, optional. The symbol to be used for
the dimensional regulator. Note: If you change this symbol, you have to
adapt the dimensionality accordingly.

regulator_power (0) : integer. The numerator will be multiplied by the reg-
ulator (¢) raised to this power. This can be used to ensure that the numerator
is finite in the limit € — 0.

dimensionality (4-2¢) : string or sympy expression, optional. The dimen-
sionality of the loop momenta.

powerlist : iterable, optional. The powers of the propagators, possibly de-
pendent on the regulator. The ordering must match the ordering of the
propagators given in internal lines.

For LoopIntegralFromPropagators:
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propagators : iterable of strings or sympy expressions. The propagators in
momentum representation, e.g. [‘k1*x2’, ‘(k1-k2)**2 — ml**2’].

loop_momenta : iterable of strings or sympy expressions. The loop momenta,
c.g. [‘k1’,°k2°].

external momenta : iterable of strings or sympy expressions, optional. The
external momenta, e.g. [‘pl’,’p2’]. Specifying the external momenta is
only required when a numerator is to be constructed.

Lorentz_indices : iterable of strings or sympy expressions, optional. Symbols
to be used as Lorentz indices in the numerator.

numerator (1) : string or sympy expression, optional. The numerator of the
loop integral. Scalar products must be passed in index notation,
e.g. k1 (mu)*k2 (mu)+p1 (mu) *k2 (mu) . All Lorentz indices must be explicitly
defined using the parameter Lorentz_indices.

metric_tensor (’g’) : string or sympy symbol, optional. The symbol to be
used for the (Minkowski) metric tensor g"”.

Note: The parameters replacement_rules, regulator, dimensionality,
powerlist, regulator_power are available for both, LoopIntegralFromGraph
and LoopIntegralFromPropagators.

A.1.2 Make package
The parameters for make package are:

name : string. The name of the C++ namespace and the output directory.

integration_variables : iterable of strings or sympy symbols. The variables
that are to be integrated from 0 to 1.

regulators : iterable of strings or sympy symbols. The (UV/IR) regulators
of the integral.

requested_orders : iterable of integers. Compute the expansion in the reg-
ulators to these orders.

polynomials_to_decompose : iterable of strings or sympy expressions. The
polynomials to be decomposed.

polynomial names : iterable of strings. Assign symbols for the polynomials
to decompose. These can be referenced in the other_polynomials.

other_polynomials : iterable of strings or sympy expressions. Additional
polynomials where no decomposition is attempted. The symbols defined in
polynomial names can be used to reference the polynomials_to_decompose.
This is particularly useful when computing loop integrals where the numera-
tor can depend on the first and second Symanzik polynomials. Note that the
polynomial names refer to the polynomials to_decompose without their
exponents.

prefactor : string or sympy expression, optional. A factor that does not de-
pend on the integration variables. It can depend on the regulator(s) and
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the kinematic invariants. The result returned by pySECDEC will contain
the expanded prefactor.

remainder_expression : string or sympy expression, optional. An additional
expression which will be considered as a multiplicative factor.

functions : iterable of strings or sympy symbols, optional. Function symbols
occurring in remainder_expression. Note: The power function pow and the
logarithm log are already defined by default. The log uses the nonstandard
continuation from a negative imaginary part on the negative real axis (e.g.
log(—1) = —im).

form_insertion_depth (5) :non-negative integer, optional. How deep FORM
should try to resolve nested function calls.

contour_deformation_polynomial : string or sympy symbol, optional. The
name of the polynomial in polynomial names that is to be continued to the
complex plane according to a —id prescription. For loop integrals, this is
the second Symanzik polynomial F, and this will be done automatically in
loop_package. If not provided, no code for contour deformation is created.

positive_polynomials : iterable of strings or sympy symbols, optional. The
names of the polynomials in polynomial names that should always have
a positive real part. For loop integrals, this applies to the first Symanzik
polynomial U. If not provided, no polynomial is checked for positiveness. If
contour_deformation_polynomial is None, this parameter is ignored.

Note: All parameters (except loop_-integral) described under loop_package
are also available in make_package.

A.2  C++ part

The default settings for the numerical integration are listed in the section
“Integral Interface” in the documentation. We also list the defaults and a
short description for the main parameters here. The values in brackets behind
the keywords denote the defaults.

A.2.1 Contour deformation parameters and general settings

real_parameters : iterable of float. The real parameters of the library (e.g.
kinematic invariants in the case of loop integrals).

complex_parameters : iterable of complex. The complex parameters of the
library (e.g. complex masses).

together (True) : bool. Determines whether to integrate the sum of all sec-
tors or to integrate the sectors separately.

number_of_presamples (100000) : unsigned int, optional. The number of
samples used for the contour optimization. This option is ignored if the
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integral library was created with contour deformation set to ‘False’.
deformation_parameters_maximum (1.0) : float, optional. The maximal
value the deformation parameters \; can obtain. If number_of presamples=0,
all \; are set to this value. This option is ignored if the integral library was
created without deformation.
deformation_parameters_minimum (107°) : float, optional. The minimal
value for the deformation parameters \;. This option is ignored if the integral
library was created without deformation.
deformation_parameters_decrease_factor (0.9) : float, optional. If the
sign check (the imaginary part always must be negative) with the optimized
A; fails, all A\; are multiplied by this value until the sign check passes. This
option is ignored if the integral library was created without deformation.
real_complex_together (False) : If true, real and imaginary parts are eval-
uated simultaneously. If the grid should be optimally adapted to both real
and imaginary part, it is more advisable to evaluate them separately.

A.2.2 CUBA parameters

Table 6
Default settings for integrator-specific parameters.

Vegas Suave Divonne Cuhre
nstart (1000) nnew (1000) | keyl (2000) key (0)
nincrease (500) | nmin (10) key2 (1), key3 (1)

nbatch (1000) | flatness (25.0) | maxpass (4)
border (0.0)
maxchisq (1.0)

mindeviation (0.15)

Common to all integrators:

epsrel (0.01) : The desired relative accuracy for the numerical evaluation.

epsabs (1077) : The desired absolute accuracy for the numerical evaluation.

flags (0) : Sets the CUBA verbosity flags. The flags=2 means that the CuBA
input parameters and the result after each iteration are written to the log
file of the numerical integration.

seed (0) : The seed used to generate random numbers for the numerical
integration with Cuba.

maxeval (1000000) : The maximal number of evaluations to be performed
by the numerical integrator.

mineval (0) : The number of evaluations which should at least be done before
the numerical integrator returns a result.

For the description of the more specific parameters, we refer to the CuBa
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manual. Our default settings are given in Table [f] When using Divonne, we
strongly advise to use a non-zero value for border, e.g. 1075,
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