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1 Introduction

It remains a mystery and fundamental open question how our visible Universe to be matter

dominated. The abundance of matter over anti-matter is approximately given by [1]

5.8× 10−10 < ηB ≡
nB − nB

nγ
< 6.6× 10−10 (95% CL) , (1.1)

where nB, nB and nγ are the number densities of baryons, anti-baryons and photons

respectively. Although the Standard Model (SM) provides baryon-number-violating and

lepton-number-violating (LNV) processes while preserving the B − L number, it does not

contain sufficient sources of CP-violation or a sufficiently fast departure from thermal

equilibrium to generate the observed asymmetry. Baryogenesis via leptogenesis, as first
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proposed by Fukugita and Yanagida [2], is one of the most widely studied explanations of

the origin of the matter-antimatter asymmetry in the early universe. In their mechanism,

they proposed that a lepton asymmetry is generated above the electroweak (EW) scale

through the CP-asymmetric decays of heavy Majorana neutrinos. The lepton asymmetry

is subsequently partially converted into a baryon asymmetry via (B − L)-preserving weak

sphaleron processes [3].

A particularly strong motivation for leptogenesis is its connection with small but non-

zero neutrino masses. In order to understand the origin of neutrino masses, most theoretical

studies support that neutrinos are Majorana in nature and their masses are obtained from

the well-known dimension-five Weinberg operator [4]

LW =
λαβ
Λ
`αLHC`βLH +

λ∗αβ
Λ
`αLH

∗C`βLH
∗ , (1.2)

where λαβ = λβα are effective Yukawa couplings with flavour indices α, β = e, µ, τ , C is the

charge conjugation matrix and Λ is the scale of the new physics responsible for neutrino

masses. It is an obvious but important point to note this operator violates lepton number.

After EW symmetry breaking, the Higgs acquires a vacuum expectation value (VEV),

〈H〉 = vH/
√

2 with vH = 246 GeV, and neutrinos gain Majorana masses. The (α, β) entry

of the neutrino mass matrix, mν , given by

(mν)αβ = λαβ
v2
H

Λ
. (1.3)

If we assume a dimensionless coefficient λ ∼ O(1), an O(0.1) eV scale neutrino mass is

naturally obtained for Λ ∼ O(1014) GeV. It is worth stressing, the Weinberg operator

violates lepton number and B − L symmetry. At tree-level, this dimension-five operator

may be ultraviolet (UV) completed through the introduction of fermionic singlets [5–8],

scalar triplets [9–13] or fermionic triplets [14, 15] which are known as the type-I, II and III

see-saw mechanisms respectively. Alternatively, it is possible (Majorana) neutrino masses

are generated via loop induced processes [16–18]. Moreover, there have been proposals that

neutrinos masses derive from effective operators with dimension greater than five [19, 20]

or from large extra-dimensions [21, 22].

For decades various models involving new symmetries have been proposed to address

neutrino properties. Many models related to the neutrino mass generation assume a

U(1)B−L symmetry [6–8, 23] at sufficiently high energy scale. The tiny neutrino masses

are obtained after the breaking of this symmetry. In a series of flavour models, the ob-

served pattern of lepton mixing is generated by the breaking of some underlying flavour

symmetries. A large number of symmetry groups have been considered, from continuous

ones such as U(1) [24], SO(3) [25, 26], SU(3) [27], and also the discrete case Zn [28, 29],

A4 [30–32], S4 [33, 34] ∆(27) [35, 36], ∆(48) [37, 38], etc. For a comprehensive review see

e.g., refs. [39–41]. An important motivation for the current and next-generation neutrino

experiments is the measurement of leptonic CP violation. These experimental endeavours

have triggered many theoretical studies of CP violation in the lepton sector. In particular,

what is the nature of CP violation? Is CP symmetry broken spontaneously [42, 43] or
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explicitly? If spontaneous symmetry breaking occurs is it geometric in nature [44, 45] or

compatible with flavour symmetries [46, 47]?

The implications for leptogenesis, in the context of many of these neutrino mass gener-

ation mechanisms, have been explored in a great number of works. In order to generate a

lepton asymmetry above the electroweak scale, all such mechanisms must satisfy Sakharov’s

three conditions [48]: B−L violation; and C/CP violation; and out-of-equilibrium dynam-

ics.1 There are indirect means of testing these conditions in the lepton sector.

Lepton number violation is inextricably linked to the Majorana nature of neutrinos.

This property of neutrinos will be tested by the undergoing [50–54] and future planned [55–

60] neutrinoless double beta decay experiments. Leptonic mixing and CP violation may

be constrained from the complementarity between reactor neutrino experiments, such as

Daya Bay [61], RENO [62] and Double Chooz [63], and long base-line accelerator exper-

iments such as T2K [64] and NOνA [65] which have shown a slight statistical preference

for maximally CP violation with δ ∼ 3π/2. The next generation of neutrino oscillation

experiments such as DUNE [66] and T2HK [67] will be able to make precision measurement

of this phase.

There are a number of distinct types of leptogenesis and the energy scale of each mech-

anism depends upon the nature of the departure from thermal equilibrium. As previously

mentioned, in the original paper [2] the out-of-equilibrium dynamics are provided by the

CP-asymmetric decays of Majorana neutrinos. The lower bound on the temperature, and

therefore heavy Majorana neutrino mass scale, needed to successfully generate sufficient

lepton asymmetry is above 109 GeV [68].2 Thermal leptogenesis may be lowered to the

TeV scale if the heavy Majorana neutrinos are near degenerate in mass as this causes a

resonant enhancement of the CP asymmetry [69–72]. In addition, the out-of-equilibrium

dynamics may be provided by means other than the decays of heavy see-saw mediators.

In the Akhmedov-Rubakov-Smirnov (ARS) mechanism [73], this is realised by the small-

ness of the Yukawa coupling yD between ` and heavy Majorana neutrinos. For alternative

mechanisms involving heavy seesaw mediators, see e.g., [74, 75].

In [76], we proposed a novel mechanism of leptogenesis which proceeds via a time-

varying Weinberg operator which is present during a phase transition (PT). As explained

therein and shall be discussed in depth later, this mechanism satisfies the three Sakharov

conditions as follows:

• The Weinberg operator violates lepton in addition to B − L number.

• The Weinberg operator is out of thermal equilibrium at temperatures T < 1013 GeV.

• We assume a CP-violating PT (CPPT), which results in a time-varying coefficient in

the Weinberg operator.

1This statement assumes CPT is a conserved symmetry. There are theories which propose CPT-violation

as a means of baryogenesis [49].
2This Davidson-Ibarra bound has several caevats: (i) flavour effects are negligible, (ii) the heavy Majo-

rana mass spectrum is hierarchical and (iii) the lightest heavy Majorana neutrino dominantly contributes

to the lepton asymmetry.
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Using the Weinberg operator to fulfil the Sakharov condition is not new and has been

considered in, e.g., [77–79]. Through the combination of the three Sakharov conditions we

arrive at an out-of-equilibrium spacetime-varying CP-violating Weinberg operator. While

the Weinberg operator induces lepton and anti-lepton production/annihilation processes

in the thermal plasma, the interference of the varying Weinberg operator at two differ-

ent spacetime points generates a CP asymmetry between them. Eventually, a net lepton

asymmetry is generated after the PT. As the lepton asymmetry is increased by the temper-

ature, we found the minimal temperature for successful baryogenesis to be approximately

TCPPT ∼ 1011 GeV. CPPT is crucially reliant upon the scale of the PT to be below the scale

at which the Weinberg operator decouples from the theory, TCPPT < Λ. Otherwise, heavy

particles in the UV sector have not decoupled and may wash out the lepton asymmetry

generated by the PT. Therefore, a key difference between our leptogenesis mechanisms and

all others is that the New Physics responsible for light neutrino mass generation has been

integrated out before the CP-violating processes become active, and consequently CPPT

is independent of the specific neutrino mass model. Moreover, this implies in CPPT the

CP-violation scale is below the neutrino mass generation scale.

The application of a PT in the context of leptogenesis has not been well studied in the

literature. Beyond our work, authors in [80, 81] explored the effects of a phase transition

on the baryon asymmetry generated via out-of-equilibrium decays. In particular, they

discussed the scenario where the parent particle responsible for baryogenesis obtains its

mass via spontaneous symmetry breaking and phase transitions in the early universe gives

rise to a time-dependent mass of the right-handed neutrino. Another scenario, in the

framework of the type-I seesaw with an U(1)B−L symmetry, has recently been discussed

in [82]. They suggested an asymmetry between the heavy Majorana neutrino (N) and its

CP-conjugate is initially generated in front of the bubble wall, where U(1)B−L is preserved

and N is massless. After the heavy Majorana neutrinos diffuse into the U(1)B−L-breaking

bubble and acquire masses, the N -N asymmetry produces a lepton asymmetry through the

decay of heavy Majorana neutrinos. Our mechanism distinctly differs from these models

as the lepton asymmetry is generated after the physics responsible for neutrino masses has

been integrated out. However, the three mechanisms share the common feature that they

proceed via a cosmological phase transition (PT).

The main purpose of this work is to provide a detailed analysis of the mechanism

proposed in [76]. In section 2 we motivate and discuss the mechanism in full generality.

We follow in section 3 with a brief review of the Closed-Time-Path (CTP) formalism used

to obtain the lepton asymmetry via the Kadanoff-Baym (KB) equation. The CTP ap-

proach together with KB equation is a powerful tool to calculate non-equilibrium thermal

processes [83–85]. It has seen wide and successful application in the EW baryogenesis

(EWBG) [86–89], leptogenesis via heavy Majorana neutrino decays [90–94], resonant lep-

togenesis [95–97] and ARS mechanism [98, 99]. Using this approach, we need not consider

individual processes separately, but instead include all processes in the CP-violating self

energy corrections. Moreover, unlike semi-classical calculations, memory effects are prop-

erly accounted for in this formalism. In section 4, we analyse in detail how the generated

lepton asymmetry is influenced by the bubble wall properties and thermal effects of the
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leptons and the Higgs. We assume a single scalar PT to simplify the discussion. Our

numerical analysis is provided in section 4.4. Finally, we summarise and make concluding

remarks in section 5. From appendices A to C, we list examples of the EEV profiles, extend

our discussion to the multi scalar PT and list the details of the element matrix calcula-

tion. We specifically highlight the main differences between our mechanism and EWBG

in appendix D and discuss of the influence the oscillation effect in the varying Weinberg

operator in appendix E. We refer to ref. [100] for a semi-classical approximation of this

mechanism.

2 Varying Weinberg Operator

In the Standard Model (SM), tiny neutrino masses may be explained by introducing higher-

dimensional operators. The simplest operator is the dimension-five Weinberg operator of

eq. (1.2) which violates lepton number and generates Majorana masses for neutrinos. In

many New Physics models, the coefficient of the Weinberg operator λαβ in eq. (1.2) is not

a fundamental parameter; rather is dynamically realised after some scalars acquire VEVs.

In this section, we will discuss how to achieve a varying Weinberg operator and introduce

the mechanism of leptogenesis via the varying Weinberg operator.

2.1 Motivations of the Varying Weinberg Operator

We begin with two UV-complete toy models to illustrate how the varying Weinberg oper-

ator may be obtained. These two models differ from each other in how the scalar VEV

contributes to the neutrino mass. For simplicity, we assume a single scalar, φ. The cor-

responding Lagrangian terms in these two models (referred as Model I and Model II) are

respectively given by

LI =
∑
α,I,J

yαINIRH`αL −
1

2
κ∗IJφ

∗NIRCNJR −
1

2
(M0

N )∗IJNIRCNJR + h.c. ,

LII =
∑

α,a,b,I,J

y0
αINIRH`αL + xαaΨaRH`αL + zaIφNIRΨaL

+(MΨ)abΨbRΨaL −
1

2
(MN )∗IJNIRCNJR + h.c. , (2.1)

where α = e, µ, τ is the charged lepton flavour and N the heavy Majorana neutrino with

index I, Ψ a heavy vector-like fermions with index a, and yαI , xαa and zaI are dimensionless

constant coefficients.

In these two models, φ plays a different role in the light neutrino mass generation as can

be clearly seen if we assume the scalar gets a VEV, vφ, before the decoupling of any heavy

particles. In Model I, φ contributes to the Majorana mass term for the heavy neutrino, N .

After φ acquires a VEV, the mass matrix for N is given by MN = M0
N + κvφ. In Model

II, φ contributes to the Dirac mass term between light neutrinos and heavy neutrinos.

By assuming the Ψ mass is sufficiently heavy, the decoupling of Ψ results in a higher

dimensional operator between ` and N , (xM−1
Ψ z)αIφNIRH`αL, where (MΨ)ab = Maδab.

After φ gets a VEV, we arrive at an effective Yukawa coupling y = y0 + xM−1
Ψ zvφ. After
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the decoupling of heavy neutrinos, we obtain the Weinberg operator with the coefficient of

the Weinberg operator given by λ = yM−1
N yT in both models.

Now let us assume the decoupling of heavy new states occurs before the PT. After

this decoupling, one can effectively express the Weinberg operator with the coefficient λ

given by

λ = y(M0
N + κφ)−1yT = y(M0

N )−1yT −
[
y(M0

N )−1κ(M0
N )−1yT

]
φ+ · · · , (2.2)

for Model I, and

λ = (y0 + xM−1
Ψ zφ)M−1

N (y0 + xM−1
Ψ zφ)T

= y0M−1
N y0T +

[
xM−1

Ψ zM−1
N y0T + y0M−1

N zT (MT
Ψ)−1xT

]
φ+ · · · , (2.3)

for Model II. Before the PT, φ is zero valued, so the coefficient λ is identical to λ0 =

[y(M0
N )−1yT in Model I or λ0 = [y0M−1

N y0T ]∗ in Model II, which is different from the

coefficient after the PT, λ = yM−1
N yT . In other words, we encounter a varying Wein-

berg operator during the PT which is a consequence of the PT occurring after heavy

particle decoupling.

It is straightforward to generalise the above discussion to a PT with multiple scalars.

Assuming the PT happens after the heavy particles decouple, the coefficient of the Weinberg

operator in the most generic case is written

λαβ = λ0
αβ +

n∑
i=1

λiαβ
φi
vφi

+
n∑

i,j=1

λijαβ
φi
vφi

φj
vφj

+ · · · , (2.4)

where n represents the number of scalars, λ0, λi, λij , . . . are a set of constant coupling

matrices in the flavour space with α, β = e, µ, τ are flavour indices. These couplings are

determined by the details of neutrino models, in particular by the assumed new symmetries.

It is worth noting that although we have introduced heavy neutrinos, based on type-I

seesaw, to obtain the Weinberg operator in the toy models; the UV structure is really

irrelevant for us to obtain the varying Weinberg operator. Replacing the heavy neutrinos

of the type-I seesaw with heavy particles from type-II, III seesaws or radiative models, one

can derive similar spacetime-dependent couplings, λαβ , after all heavy particles decouple.

The breaking of the symmetry may be achieved by the scalars acquiring non-zero VEVs,

〈φi〉 = vφi , and in turn the coefficient of the Weinberg operator is dynamically realised,

λαβ = λ0
αβ +

∑
i λ

i
αβ +

∑
i,j λ

ij
αβ + · · · . To generate CP violation in mν , there must be

some phases which cannot be reabsorbed by rephasing in λ0
αβ , λiαβ , λijαβ , · · · . These phases

may arise explicitly or spontaneously and both possibilities have been studied extensively

in many models.

In a thermodynamical system, the ensemble expectation value (EEV) of an operator

A is described by 〈A〉 = Tr(ρA), where ρ is the density matrix of the statistical ensemble.

In the early Universe at high temperature, the EEVs of φi is dependent on the structure of

the scalar potential at finite temperature. In the very early Universe, the vacuum is in the

symmetric phase, 〈φi〉 = 0. As the Universe expands and cools, the vacuum at 〈φi〉 = 0

becomes metastable and the PT proceeds to the true and asymmetric vacuum 〈φi〉 = vφi .

– 6 –
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x1

x2

Lw

Bubble wall

Phase I Phase II

vw

x3

Figure 1. The true vacuum (〈φi〉 6= vφi
) expanding over the false vacuum (〈φi〉 = 0). The width

of the bubble wall and its expansion velocity are denoted as Lw and vw respectively.

In the following, we limit our discussion to a first-order PT, which is not qualitatively

crucial for the mechanism to be successful but allows for straightforward interpretation

and can simplify the calculation as we shall discuss later. During this PT, bubbles of

asymmetric phase (labelled as Phase II) nucleate, via thermal tunnelling [101, 102], and

expand in the symmetric phase (labelled as Phase I). We characterised the width of the

bubble wall as Lw and the expansion velocity as vw in the −x3 direction, as shown in

figure 1. In the bubble wall, the averaged value of λ is a time- and space-dependent value,

which we denote as

λαβ(x) ≡ |λαβ(x)|eiφαβ(x) . (2.5)

2.2 The mechanism of leptogenesis

The Weinberg operator may trigger the following lepton number violating (LNV) processes:

H∗H∗ ↔ `` , `H∗ ↔ `H , `H∗H∗ ↔ ` ,

`↔ `HH , H∗ ↔ ``H , 0↔ ``HH (2.6)

and their CP conjugate processes. Of the processes shown in eq. (2.6), the right pointing

arrow denotes lepton production in the thermal plasma while the left pointing arrow indi-

cates lepton annihilation. The CP conjugation processes lead to the anti-lepton production

and annihilation. Given a fixed spatial point during the PT, the coefficient of the Wein-

berg operator changes with time. Therefore, Weinberg operators at different times may

interact with each other, and through their interference may produce a lepton asymmetry.

However, a departure from thermal equilibrium is necessary and in order to understand

how this is achieved, we may consider the Hubble expansion rate:

• The Hubble expansion scale Hu, represents how fast the early Universe expands and

is given by

Hu ≈
√
g∗
T 2

Mpl
, (2.7)

– 7 –



J
H
E
P
0
1
(
2
0
2
0
)
0
2
2

where Mpl = 1.22 × 1019 GeV is the Planck mass and g∗ is the effective number of

degrees of freedom contributing to the energy density in the early Universe. In the

Standard Model, g∗ = 106.75.

• The Weinberg operator reaction scale ΓW characterises how fast the LNV processes

occur. We assume this mechanism occurs at temperatures much higher than the EW

scale, such that the Higgs has not yet acquired a non-zero VEV and are thermally

distributed. The rate of these processes is approximately

ΓW ≈
3

4π3

λ2

Λ2
T 3 ≈ 3

4π3

m2
ν

v4
H

T 3 , (2.8)

where we have parametrised λ by the neutrino mass mν (mν = λv2
H/Λ).

For temperature T < 1013 GeV, the Weinberg operator reaction scale ΓW is smaller

than the Hubble expansion rate Hu. As a consequence of the smallness of ΓW, any LNV

processes resulted from the Weinberg operator are out of thermal equilibrium. On the other

hand, the washout effects triggered by the Weinberg operator, are not efficient because ΓW

is so small. In conventional methods of leptogenesis, the see-saw mediators may participate

in interactions which washout the lepton asymmetry. In this mechanism the scale of the

PT, triggering the leptogenesis, occurs below the scale of neutrino mass generation and

therefore CPPT does not suffer from this type of washout.

One may wonder if the scalar, φ, modifies the out-of-equilibrium dynamics and con-

tributes to washout processes via the operator λi

Λ
φi

vφi
(LH)2. The reaction rate of this

operator, Γφi , depends on the mass and VEV of φ. Naively, we may assume they are of

the same order as the temperature T . In this case, Γφi � ΓW and as a consequence of

the phase space suppression implies these interactions may be safely neglected. From these

remarks, it is clear that the interactions of the Weinberg operator themselves are out of

thermal equilibrium and the PT is not necessary to satisfy Sakharov’s second condition. A

possible exception to this conclusion is the scenario of the φi mass, mφi , being much larger

than the temperature T . If this is the case, then φi will decay very quickly after the PT,

with decay rate

Γφi ∼
1

8 (4π)5

tr[λiλi∗]

Λ2

m5
φi

v2
φi

. (2.9)

This reaction rate would be much larger than γW or even larger than the Hubble expansion

rate and a net lepton asymmetry may be produced through the decay of φi. However, there

will still be no washout as the backreaction of φi decays are suppressed. This particular

possibility will not be considered further in this paper.

There are other scales in this problem. Although they shall not ultimately determine if

this mechanism works, they will play an important quantitative role in the final calculation

of the lepton asymmetry:

• The damping rate of the Higgs and leptons γH,`. These damping rates are mainly

determined by the SM interactions, γH,` ∼ 0.1T [103]. These rates are related to
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the inverse mean free paths 1/LH and 1/L` and represent how fast these particles

decouple from the LNV interactions.

• The dynamics of the PT. In particular, the bubble wall scale (i.e., the inverse wall

thickness 1/Lw) and the wall velocity, vw, in the case of first-order PT. The parametric

regime of these parameters indicates how fast the bubble wall sweeps over a certain

region, and how quickly the false vacuum is replaced by the true one.

These two important properties of the bubbles will influence both the lepton asymme-

try and the cosmological imprint CPPT leaves in the Universe. There are two parametric

regimes the bubble wall characteristic may assume:

• The nonadiabatic “thin wall” regime: Lw � LH,`. The wall is thinner than the mean

free paths of the relevant particles. We shall mainly focus on this case because it

allows us to integrate out the full lepton asymmetry without considering the detailed

properties of the bubble wall as shown below.

• The adiabatic “thick wall” regime: Lw � LH,`. The thick wall case has been widely

used in the EW phase transition, where the Higgs wall thickness is constrained by the

Higgs mass and EW scale. In the thick wall case, the lepton asymmetry is dependent

upon how the φ VEV evolves in the wall. A brief discussion of this scenario can be

found in appendix B.

Both the thickness of the bubble wall and its velocity are model-dependent features

determined from the scalar potential of φ and thermal corrections from the SM particles

in the thermal plasma [104–106]. The bubble wall velocity is crucially dependent upon the

pressure difference across the wall and the friction induced on the wall by the plasma. The

friction is calculated from a set of Boltzmann equations coupled to the motion of the scalar

field and this effect is related to the deviation from equilibrium in the plasma [107–109]. In

CPPT, φi couples only to the leptons and the Higgs thus we find it a reasonable assumption

that the bubble walls of CPPT are fast moving. For simplicity we assume a thin wall and

relegate more model-dependent studies to future work.

3 Kadanoff-Baym equation in the Closed-Time-Path approach

3.1 Closed-Time-Path formalism

Before we discuss the relevant details of the Closed-Time-Path formalism, we shall motivate

its use through a brief discussion of the semi-classical approach, an alternative method, of

calculating the time evolution of the particle number density for a given process. These

semi-classical kinetic equations are typically derived from Liouville’s equation which states

that the probability distribution function (f) of a system of particles does not change along

any trajectory in phase space. Liouville’s equation details the evolution of an n-particle

system and hence the probability distribution function in 6n-dimensional phase space (three

– 9 –
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tf
Re(t)

Im(t)
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Re(t)
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C�

C = C+ [ C� T :

T :
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< :

Figure 2. Left panel: the CTP time contour. The time runs from an initial time ti to some final

time tf and then returns to ti. Right panel: time ordered (T ), anti-time ordered (T ), t1 → t2 (<)

and t2 → t1 (>) paths defined in the CTP propagators.

position and three momentum coordinates are needed to describe each particle). Using the

Poisson bracket, this equation may be written in the following manner

∂f

∂t
= {H, f} where {A,B} =

∂A

∂ri
.
∂B

∂pi
− ∂A

∂pi
.
∂B

∂ri
, (3.1)

where H is the Hamiltonian of the system, r and p are position and momentum respec-

tively. For generic systems, the distribution function is dependent on a very large number of

variables (∼ 1023) and solving eq. (3.1) quickly becomes intractable. The first step in sim-

plifying these equations is to apply the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY)

hierarchy [110–112] which allows the n-distribution function to be written as a function

of the n + 1 distribution function (essentially f1 = F(f2), f2 = F(f3), . . .). These sets of

recursive equations are just as difficult as eq. (3.1) to solve. However, in the limiting case

where the system of particles may be considered as a dilute gas these equations can be

truncated such that the time evolution of the system is represented by the one-particle

distribution function3 (f1)

∂f1

∂t
= {H1, f1}+

(
∂f1

∂t

)
coll

, (3.2)

where the third term of eq. (3.2) is the collision integral and accounts for scattering between

particles.4 Such scatterings are calculated using S-matrix elements in the usual in-out for-

malism at zero temperature. From the Lehmann-Symanzik-Zimmermann (LSZ) reduction

formula, S-matrix elements are expressed in terms of correlation functions of fields which

are asymptotically free of each other; in a dilute gas this approximation is reasonable given

that the timescale of collisions between particles is significantly shorter than the timescale

of particle propagation and thus the in-coming and out-going are asymptotically free states.

One may question the validity of such a treatment in the finite temperature and den-

sity environment of the Early Universe. Therefore, representing the system as a dilute

gas may not be fully descriptive given that the timescale of particle propagation may not

3In the dilute gas approximation the timescale of the collisions (tCi) is much smaller than the timescale

of the particles propagating between collisions (tprop) i.e. tCi � tprop.
4The semi-classical Boltzmann equation of (3.2) is a standard result of kinetic theory and some standard

steps have been skipped.
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be significantly different from the timescale of the collisions; in such a scenario each sub-

sequent particle collision may be influenced by a history of collisions and therefore the

system becomes non-Markovian in nature. To capture such memory effects amounts to

going beyond the in-out formalism, based on zero-temperature S-matrix elements as dis-

cussed previously, to using the in-in formalism. This formalism may also be known as the

Real-Time, Closed-Time Path (CTP) and Schwinger-Keldysh formalism [83, 84]. Regard-

less of the nomenclature, the benefit of using such an approach allows the assumption of

asymptotically free states to be removed.

Such non-equilibrium dynamics requires the specification of an initial state. This

corresponds to a special choice of the time contour, the Closed-Time-Path C = C+
⋃ C−

with C+ evolving from an initial time ti to some final time tf and then C− evolves backwards,

as shown in the left panel of figure 2. In the CTP approach, propagators are defined

depending upon which contours the spacetime points x1 and x2 are localised. We may

simplify the CTP propagators into four propagators: Feynman (time ordered, represented

by T ), Dyson (anti-time ordered, represented by T ), and Wightman (the order from t1 ≡ x0
1

to t2 ≡ x0
2, represented by < and the order from t2 to t1, represented by >) propagators,

as shown in the right panel of figure 2.

For the Higgs (H), the propagators in the CTP approach is defined as

(∆C)ab(x1, x2) =

(
(∆T )ab(x1, x2) (∆<)ab(x1, x2)

(∆>)ab(x1, x2) (∆T )ab(x1, x2)

)
, (3.3)

where the Feynman, Dyson and Wightman propagators of the Higgs ∆T , ∆T and ∆<,>

are defined to be

(∆T )ab(x1, x2) = 〈T [Ha(x1)H∗b (x2)]〉 , for t1, t2 ∈ C+ ,

(∆T )ab(x1, x2) = 〈T [Ha(x1)H∗b (x2)]〉 , for t1, t2 ∈ C− ,
(∆<)ab(x1, x2) = 〈H∗b (x2)Ha(x1)〉 , for t1 ∈ C+, t2 ∈ C− ,
(∆>)ab(x1, x2) = 〈Ha(x1)H∗b (x2)〉 , for t1 ∈ C−, t2 ∈ C+ , (3.4)

respectively. In non-equilibrium environments, the system is dependent upon both the

relative and average coordinates which are defined by r = x1 − x2 and x = (x1 + x2)/2

respectively. We perform a Wigner transformation to the relative coordinate in the follow-

ing manner

∆k(x) =

∫
d4reik·r∆(x+ r/2, x− r/2) . (3.5)

A general solution for the tree-level propagator is given by

∆<
q (x) = 2πδ(q2)

{
ϑ(q0)fH,q(x) + ϑ(−q0)[1 + fH∗,−q(x)]

}
,

∆>
q (x) = 2πδ(q2)

{
ϑ(q0)[1 + fH,q(x)] + ϑ(−q0)fH∗,−q(x)

}
, (3.6)
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where fH,q(x) and fH∗,q(x) are distribution densities of H and H∗, given by the expectation

values 〈a†a〉 and 〈b†b〉 of free particle and antiparticle mode operators respectively with

energy momentum qµ ≡ (q0,q) and q2 = (q0)2 − q2 [113].

The lepton propagator defined along the CTP contour is defined as

(SCαβ)stab(x1, x2) =

(STαβ)stab(x1, x2) (S<αβ)stab(x1, x2)

(S>αβ)stab(x1, x2) (STαβ)stab(x1, x2)

 , (3.7)

with the Feynman, Dyson and Wightman propagators of the lepton ST , ST and S<,>

given by

(STαβ)stab(x1, x2) = 〈T [`sαa(x1)`
t
βb(x2)]〉 , for t1, t2 ∈ C+ ,

(STαβ)stab(x1, x2) = 〈T [`sαa(x1)`
t
βb(x2)]〉 , for t1, t2 ∈ C− ,

(S<αβ)stab(x1, x2) = −〈`tβb(x2)`sαa(x1)〉 , for t1 ∈ C+, t2 ∈ C− ,

(S>αβ)stab(x1, x2) = 〈`sαa(x1)`
t
βb(x2)〉 , for t1 ∈ C−, t2 ∈ C+ , (3.8)

respectively and the minus sign in S< derives from the anti-commutation property of

fermions. Flavour indices are denoted by α, β while EW gauge and fermion spinor indices

are denoted by a, b and s, t respectively. In the following, we will suppress the EW gauge

indices and fermion spinor indices unless they are stated explicitly.

The tree-level Wigner transformation of the Wightman propagators S<,>(x1, x2)

is [113]

S<k (x) = −2πδ(k2)PLk/PR

{
+ ϑ(k0)f`,k(x)− ϑ(−k0)[1− f`,−k(x)]

}
,

S>k (x) = −2πδ(k2)PLk/PR

{
− ϑ(k0)[1− f`,k(x)] + ϑ(−k0)f`,−k(x)

}
, (3.9)

where f`,k(x) and f`,k(x) are recognised as distributions with energy momentum kµ ≡
(k0,k) at spacetime around xµ of lepton and antilepton respectively and k2 = (k0)2 − k2.

It is useful to define the following propagators for our later discussion,

S+(x1, x2) =
1

2
[S<(x1, x2) + S>(x1, x2)] ,

SH(x1, x2) = ST (x1, x2)− S+(x1, x2) .
(3.10)

These propagators satisfy the following CP properties under the CP transformation,

S<(x1, x2)→ CS>(xP2 , x
P
1 )C−1 , S>(x1, x2)→ CS<(xP2 , x

P
1 )C−1 ,

S+(x1, x2)→ CS+(xP2 , x
P
1 )C−1 , SH(x1, x2)→ CSH(xP2 , x

P
1 )C−1 , (3.11)

where (xP )µ ≡ (x0,−x) for xµ = (x0,x).

In thermal equilibrium, the Higgs and leptons satisfy the Bose-Einstein and Fermi-

Dirac distributions which are respectively

fH,q = fH∗,q = fB,|q0| ≡
1

eβ|q0| − 1
,

f`,k = f`,k = fF,|k0| ≡
1

eβ|k0| + 1
. (3.12)
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The relevant tree-level Wightman propagators become spacetime-independent and may be

rewritten as

∆<,>
q = 2πδ(q2)

{
ϑ(∓q0) + fB,|q0|

}
,

S<,>k = 2πδ(k2)
{
ϑ(∓k0)− fF,|k0|]

}
PLk/PR . (3.13)

The Kubo-Martin-Schwinger (KMS) relations are automatically satisfied, ∆>
q = eβq

0
∆<
q ,

S>k = −eβk0S<k . In the limiting case as T → 0, the statistical factors fB,|q0|, fF,|k0| which

correspond to the thermal contributions tend to zero and hence only the ϑ terms remain.

Thus, the ϑ terms correspond to zero temperature contribution.

3.2 Kadanoff-Baym equation

The key to calculating the lepton asymmetry is the Kadanoff-Baym equation, which is a

component of the Schwinger-Dyson equations based on a 2PI effective action [114, 115] in

the CTP formalism [83, 84]. Assuming a time contour C, the Schwinger-Dyson equation

for the left-handed lepton propagator SC is given by

iγµ
∂

∂xµ1
SC(x1, x3) = iδ4

C(x1 − x3) + i

∫
C
d4x2ΣC(x1, x2)SC(x2, x3) ,

i
∂

∂xµ3
SC(x1, x3)γµ = iδ4

C(x1 − x3) + i

∫
C
d4x2SC(x1, x2)ΣC(x2, x3) , (3.14)

where ΣC is the self-energy correction to the lepton and all the quantities are time-ordered

along the path C.
The Kadanoff-Baym equation is the equation of motion of the Wightman propagators

S<,> and is obtained by decomposing the Schwinger-Dyson equation in the CTP formalism.

Its exact expression is given by

iγµ
∂

∂xµ1
S<,>(x1, x3)−

∫
d4x2

{
ΣH(x1, x2)S<,>(x2, x3)− Σ<,>(x1, x2)SH(x2, x3)

}
= C

iγµ
∂

∂xµ3
S<,>(x1, x3)−

∫
d4x2

{
S<,>(x1, x2)ΣH(x2, x3)− SH(x1, x2)Σ<,>(x2, x3)

}
= C,

(3.15)

with

C =
1

2

∫
d4x2

[
Σ>(x1, x2)S<(x2, x3)− Σ<(x1, x2)S>(x2, x3)

]
,

C =
1

2

∫
d4x2

[
S<(x1, x2)Σ>(x2, x3)− S>(x1, x2)Σ<(x2, x3)

]
. (3.16)

In comparison with the original Schwinger-Dyson equation, the self-energy term ΣCSC has

been divided into three parts in the Kadanoff-Baym equation: (i) ΣHS<,> represents the

self-energy contribution to S<,>; (ii) Σ<,>SH induces broadening of the on-shell dispersion

relation and (iii) C is the collision term, including the CP source term that is used to

generate the lepton asymmetry [114].
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In the non-equilibrium case, using the Wightman propagators in the momentum space

in eq. (3.9), one directly derives

tr[γµiS+
k (x)] = 4πδ(k2)kµ[1− ϑ(k0)f`,k(x)− ϑ(−k0)f`,−k(x)]. (3.17)

From the above equation, we integrate over k0 and the temporal and spatial components

are respectively given by∫
dk0

2π
tr[γ0iS+

k (x)] = −
[
f`,k(x)− f`,−k(x)

]
,∫

dk0

2π
tr[~γiS+

k (x)] = k̂
[
2− f`,k(x)− f`,−k(x)

]
,

(3.18)

where k̂ = k/|k|.
The total difference between lepton number and anti-lepton number ∆N` ≡ N` − N`

in a sufficiently large volume V =
∫
d3x1 is defined by

∆N` =

∫
d3x1d

3k

(2π)3

[
f`,k(x1)− f`,−k(x1)

]
= −

∫
d3x1d

4k

(2π)4
tr[γ0iS+

k (x1)]

= −
∫
d4x1d

4k

(2π)4
tr

[
γ0i

∂

∂x0
1

S+
k (x1)

]
. (3.19)

Note that∫
d4x1d

4k

(2π)4
tr

[
γii

∂

∂xi1
S+
k (x1)

]
=

∫
dt1d

3k

(2π)3

∫
d3x1

∂

∂xi1
k̂i
[
2− f`,k(x1)− f`,−k(x1)

]
. (3.20)

In the rest frame of the plasma, we chose the boundaries perpendicular to the x3 direction

to be far away from the bubble wall, as shown in figure 1, such that the mean value of k̂ is

zero on the boundaries. Using Stokes theorem, the above integration vanishes. Therefore,

the lepton asymmetry is simplified to

∆N` = −
∫
d4x1d

4k

(2π)4
tr

[
γµi

∂

∂xµ1
S+
k (x1)

]
. (3.21)

The lepton asymmetry can be calculated from the Kadanoff-Baym equation. We recall

from eq. (3.15) and consider the limit x3 → x1:

i
∂

∂xµ1
tr
[
γµS+(x1, x1)

]
= tr

[
γµi

∂

∂xµ1
S+(x1, x3) + i

∂

∂xµ3
S+(x1, x3)γµ

]∣∣∣
x3=x1

, (3.22)

where the right-hand side (r.h.s. ) of the above may be rewritten as∫
d4x2

{
tr

[
ΣH(x1, x2)S+(x2, x1)− Σ+(x1, x2)SH(x2, x1)

+S+(x1, x2)ΣH(x2, x1)− SH(x1, x2)Σ+(x2, x1)

]}
+

1

2
tr

[
Σ>(x1, x2)S<(x2, x1)− Σ<(x1, x2)S>(x2, x1)

+S<(x1, x2)Σ>(x2, x1)− S>(x1, x2)Σ<(x2, x1)

]}
. (3.23)
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We integrate the above equation over x1 to find

−∆N` =

∫
d4x1d

4x2

{
2tr
[
ΣH(x1, x2)S+(x2, x1)− Σ+(x1, x2)SH(x2, x1)

]
+tr
[
Σ>(x1, x2)S<(x2, x1)− Σ<(x1, x2)S>(x2, x1)

]}
. (3.24)

We perform a CP transformation, where the CP properties of the lepton propagators are

shown in eq. (3.11) and those for the self-energy corrections preserve a similar transforma-

tion. With the help of the definition of ∆N` in eq. (3.19), eq. (3.24) is CP transformed to

+∆N` =

∫
d4x1d

4x2

{
2tr
[
ΣH(x1, x2)S+(x2, x1)− Σ+(x1, x2)SH(x2, x1)

]
−tr
[
Σ>(x1, x2)S<(x2, x1)− Σ<(x1, x2)S>(x2, x1)

]}
. (3.25)

Combining eqs. (3.24) and (3.25) together, we obtain

∆N`α = −
∫
d4x1d

4x2tr
[
Σ>
αβ(x1, x2)S<βα(x2, x1)− Σ<

αβ(x1, x2)S>βα(x2, x1)
]
, (3.26)

where the flavour indices have been included. The total lepton asymmetry is a sum of

the lepton asymmetry for each single flavour, ∆N` =
∑

α ∆N`α . For convenience, we will

replace
∫
d4x1d

4x2 by
∫
d4xd4r for our later discussion, where again x = (x1 + x2)/2 and

r = x1−x2. We observe that the self-energy term ΣHS<,> and the dispersion term Σ<,>SH

do not contribute to the lepton asymmetry directly. We average ∆N` over a volume V and

obtain the number density of the lepton asymmetry ∆n` = ∆N`/V .

4 Calculation of the lepton asymmetry

In section 4.1 we present a detailed calculation of the lepton asymmetry from the varying

Weinberg operator. We follow in section 4.2 with a discussion of the functional form of the

Weinberg operator coefficient and demonstrate that the spatial contribution to the lepton

asymmetry is negligible. We discuss thermal effects in section 4.3 and finally, in section 4.4,

we present our numerical results.

4.1 Lepton asymmetry in the CTP approach

The two-loop self-energies Σ<,>
k (t1, t2) contributing to lepton asymmetry is schematically

shown in figure 3. The leading contribution to the lepton asymmetry enters at the two-loop

level and the self-energies are given by

Σ<,>
αβ (x1, x2) = 3× 4

Λ2

∑
γδ

λ∗αγ(x1)λδβ(x2)S>,<γδ (x2, x1)∆>,<(x2, x1)∆>,<(x2, x1) , (4.1)

where the factor 3 comes from the SU(2)L gauge space. To simplify our discussion, we

ignore the differing flavours of leptons, i.e., the different thermal widths of the charged

leptons. These differences arise from the different SM Yukawa couplings of e, µ and τ and

at sufficiently high temperatures the leptonic propagators may be well approximated to be
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Figure 3. The CP-violating time-dependent two-loop contribution to the lepton self-energy induced

by the Weinberg operator.

indistinguishable and hence we apply the one-flavoured approximation, S<,>αβ = S<,>δαβ .

Using this simplification, we obtain the total lepton asymmetry summed for all 3 flavours as

∆N` = − 12

Λ2

∫
d4xd4rtr[λ∗(x1)λ(x2)]

×
{

tr
[
S<(x2, x1)S<(x2, x1)

]
∆<(x2, x1)∆<(x2, x1)

− tr
[
S>(x2, x1)S>(x2, x1)

]
∆>(x2, x1)∆>(x2, x1)

}
, (4.2)

where the trace of λ and that of lepton propagators are understood to be performed in the

flavour space and the spinor space respectively.

We perform the following Fourier transformation

∆N` = − 12

Λ2

∫
d4xd4r (−i)tr[λ∗(x1)λ(x2)]M , (4.3)

and introduce a pure propagator function M, given by

M = i

∫
d4k

(2π)4

d4k′

(2π)4

d4q

(2π)4

d4q′

(2π)4
eiK·(−r)

×
{

tr[S<k (x)S<k′(x)]∆<
q (x)∆<

q′(x)− tr[S>k (x)S>k′(x)]∆>
q (x)∆>

q′(x)
}
,

(4.4)

where K = k + k′ + q + q′. As the temperature of the PT is much higher than the

EW scale, it is a sufficiently good approximation to assume thermal distributions of the

propagators on the r.h.s. of the above equation (for the non-equibrium contribution, see

the discussion in appendix D). The space-independent propagators ∆<
q , ∆<

q′ , S
<
k and S<k′ in

eq. (3.13) can be directly taken into the above equation. Then, the propagator combination

∆<
q ∆<

q′S
<
k S

<
k′ −∆>

q ∆>
q′S

>
k S

>
k′ is proportional to

[ϑ(−k0)− fF,|k0|][ϑ(−k′0)− fF,|k′0|][ϑ(−q0) + fB,|q0|][ϑ(−q′0) + fB,|q′0|]

−[ϑ(+k0)− fF,|k0|][ϑ(+k′0)− fF,|k′0|][ϑ(+q0) + fB,|q0|][ϑ(+q′0) + fB,|q′0|] , (4.5)
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which is obviously an odd function under the transformation {q, q′, k, k′} ↔ −{q, q′, k, k′}.
With the help of this property, it is straightforward to obtain

M =
1

2

{
M+M|{q,q′,k,k′}→−{q,q′,k,k′}

}
=

∫
d4k

(2π)4

d4k′

(2π)4

d4q

(2π)4

d4q′

(2π)4
Im
{
eiK·r

} [
tr[S<k S

<
k′ ]∆

<
q ∆<

q′ − tr[S>k S
>
k′ ]∆

>
q ∆>

q′

]
, (4.6)

where we note that M is odd under the exchange x1 ↔ x2. Eventually, we simplify the

lepton asymmetry to

∆N` = − 12

Λ2

∫
d4xd4rIm {tr [λ∗(x1)λ(x2)]}M , (4.7)

where x = (x1 + x2)/2 and r = x1 − x2 represent the average and relative of coordinates

x1 and x2, respectively. The lepton asymmetry has been factorised into two parts: M is a

function the propagators and Im {tr [λ∗(x1)λ(x2)]} contains the couplings.

As previously mentioned, we assume temperatures much higher than the EW scale, and

therefore all propagators for the Higgs and leptons in M are in thermal equilibrium. Thus

KMS relations for Wightman propagators ∆>
q = eβq

0
∆<
q , S>k = −eβk0S<k are satisfied.

We would like to stress although the KMS relation is satisfied, the propagator function

tr[S<k S
<
k′ ]∆

<
q ∆<

q′ − tr[S>k S
>
k′ ]∆

>
q ∆>

q′ of eq. (4.6) does not vanish as the momenta of the

four propagators does not equal zero as shall see shortly. Using the tree-level propagator

given in eqs. (3.6) and (3.9) with distribution functions in eq. (3.12) and assuming thermal

equilibrium in the rest frame of the plasma, we can prove M is an even function of r. To

do so we perform the following parity transformation for M:

r → rP = (r0,−r) , kn → kPn = (k0
n,−kn) , (4.8)

where kn represents each of k, k′q, q′. Note that the tree-level ∆<,>
q is invariant under the

spatial parity transformation, ∆<,>
q = ∆<,>

qP
. Although S<k is not invariant under k → kP ,

the trace is: tr[S<,>
kP

S<,>
k′P

] = tr[S<,>k S<,>k′ ]. From these properties, we directly prove thatM
is invariant under the parity transformation as shown in eq. (4.8) and thereforeM is an even

function of r. Including the SM loop corrections, we will obtain thermal damping effect and

dispersion relations which will be discussed in the next section. The SM loop corrections

modify the tree-level propagators but do not change the properties of M which is an

even function of r because no spatial-specific interactions have been included in the SM.

This schematic discussion demonstrates that although the Weinberg operator is spacetime-

dependent only the temporal component contributes to the final lepton asymmetry. This

will be further elucidated in section 4.2.

In summary, to generate a lepton asymmetry it is necessary to include a CP-violating

spacetime-varying Weinberg operator. If the coupling is spacetime-independent, we imme-

diately arrive at the 4-momentum conservation K ≡ q+q′+k+k′ = 0 from the integration∫
d4r, and obtain ∆<

q ∆<
q′tr[S

<
k S

<
k′ ] − ∆>

q ∆>
q′tr[S

>
k S

>
k′ ] = 0, and thus ∆N` vanishes with

the help of the KMS relation. To generate a non-zero ∆N`, CP violation in the varying

Weinberg operator is also a necessary condition. This comes from the imaginary part of

tr[λ∗(x1)λ(x2)] and leads to the CP violation for the lepton/anti-lepton production and

annihilation processes.
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4.2 Simplification of the phase transition contribution

In general, the dynamics of a PT are complicated. To simplify our discussion, we will

only consider the simplest case that only a single scalar φ ≡ φ1 is involved in the phase

transition and the coefficient of the Weinberg operator is linearly dependent upon φ as

λαβ = λ0
αβ + λ1

αβφ/vφ. We note that we provide an extensive discussion of the multi

scalar PT in appendix B. As we have assumed a first-order PT throughout this work,

λ(x) is determined by the property of the bubble wall. We treat the scalar field φ as a

thermal bath with temperature T = 1/β. The system begins its evolution at t = −∞ in

Phase I, 〈φ〉 = 0. After a certain period, 〈φ〉 varies from 0 to vφ and the system enters

Phase II. During the phase transition, the spacetime-dependent scalar EEV 〈φ(x)〉 can

be parametrised as 〈φ(x)〉 = f1(x′)vφ, where f(x′) represents the EEV shape smoothly

varying from 0 to 1 for x′ ≡ x3 + vwx
0 running from −∞ to +∞. Typical examples of the

bubble profiles are given in appendix A. As a consequence, the coupling λ(x) is given by

λ(x) = λ0 + λ1f1(x′) . (4.9)

Typical examples of the bubble profiles are given in appendix A. Then, Im {tr [λ∗(x1)λ(x2)]}
is simplified to

Im {tr [λ∗(x1)λ(x2)]} = Im
{

tr
[
λ0λ1∗]} [f1(x′1)− f1(x′2)] . (4.10)

By assuming a small difference r′ ≡ x′1 − x′2, the integration∫ +∞

−∞
dx′[f1(x′ + r′/2)− f1(x′ − r′/2)] ≈

∫ +∞

−∞
dx′∂x′f1(x′)r′ = r′, (4.11)

is independent of the scalar EEV profile in the wall, and certainly independent of the wall

thickness Lw.5 Making use of the above integration, we arrive at∫
d4xIm{tr[λ∗(x1)λ(x2)]} = Im{tr[λ0λ∗]}

(
r0 +

r3

vw

)
V , (4.12)

where
∫
d3x = V and Im{tr[λ0λ1∗]} = Im{tr[λ0λ∗]} have been used. In the single scalar

case, the exact functional form of the scalar EEV profile is not important.

From eq. (4.12), we see that the number density of the lepton asymmetry becomes

∆n` = ∆nI
` + ∆nII

` , with

∆nI
` = − 12

Λ2
Im{tr[λ0λ∗]}

∫
d4r r0M ,

∆nII
` =

12

vwΛ2
Im{tr[λ0λ∗]}

∫
d4r r3M , (4.13)

where ∆nI
` and ∆nII

` represent the time-dependent and space-dependent lepton asymmetry

in the rest plasma frame respectively. They correspond to integrations along r0 and r3/vw,

5Taking the examples in appendix A, one can check its validity. However, this result is independent

from these special profiles.
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respectively. We comment that the space-dependent integration ∆nII
` vanishes due to our

assumption of thermal equilibrium of the Higgs and leptons as shown in eq. (4.13). This

is because in thermal equilibrium, there are no preferred momentum and space directions

for the propagators. We perform the following parity transformation:

r → rP = (r0,−r) , kn → kPn = (k0
n,−kn) , (4.14)

where kn represents each of k, k′q, q′. Note that ∆<,>
q is invariant under the spatial par-

ity transformation, ∆<,>
q = ∆<,>

qP
. Although S<k is not invariant under k → kP , but

tr[S<,>
kP

S<,>
k′P

] = tr[S<,>k S<,>k′ ] is satisfied. Therefore M is invariant under the parity trans-

formation in eq. (4.14). In other words, M is an even function of r and consequently the

space-dependent integration
∫
d4r r3M vanishes. The propagators are not invariant under

the time parity transformation r → −rP and kn → −kPn due to the statistical factor. Thus,

M is not an even function of r0, and the time-dependent integration
∫
d4r r0M does not

vanish. Thus, the final lepton asymmetry in the single scalar case is only time-dependent,

∆n` = ∆nI
`, i.e.,

∆n` = − 12

v4
H

Im{tr[m0
νm
∗
ν ]}
∫
d4r yM , (4.15)

where r0 is re-written as y for convenience.

Based on the result in eq. (4.15), we conclude that the lepton asymmetry in the single

scalar case is determined by two parts: 1) the neutrino mass combination Im{tr[m0
νm
∗
ν ]}

and 2) the time-dependent loop integration
∫
d4r yM. Bearing in mind eq. (4.9), the

dependence upon Im{tr[m0
νm
∗
ν ]} means that the lepton asymmetry depends only on an

initial non-zero value of the coefficient of the Weinberg operator with coefficient λ0 and

a relative phase between λ0 and the final value λ. In other words, it does not depend

upon the profile of the φ EEV, f(x′) in eq. (4.9), i.e., the property of the bubble wall,

no matter the thin wall or thick wall. However, this conclusion does not fully hold when

extending to the multiple scalar case. We leave the relevant discussion to the next section.

As will be shown there, the lepton asymmetry is non-trivially determined by the properties

of the bubble wall. The second interesting point is we have proved that in the rest plasma

frame, only the time-dependent loop integration
∫
d4r yM is involved in leptogenesis. We

will prove in the next section that this conclusion is true in the more general multiple

scalar case.

4.3 Inclusion of thermal effects

In the previous section we encountered the time-dependent propagator integration∫
d4ryM, where the Higgs and lepton propagators are assumed to be in thermal distribu-

tion in M. Although, the tree-level propagators have been given in eqs. (3.6) and (3.9),

they are not enough to guarantee a convergence result for the integration. This integration

is strongly dependent upon the thermal properties of the particles, specifically dependent

upon the damping rate.
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Taking the loop correction into account, the resumed Wightman propagators of leptons

and the Higgs in thermal distribution can be expressed in the Breit-Wigner form [116–118]:

∆<,>
q =

−2ε(q0)ImΠR
q

[q2 − ReΠR
q ]2 + [ImΠR

q ]2

{
ϑ(∓q0) + fB,|q0|(x)

}
,

S<,>k =
−2ε(k0)ImΣR 2

k

[k2 − ReΣR
q ]2 + [ImΣR 2

q ]2

{
ϑ(∓k0)− fF,|q0|(x)

}
PLk/PR , (4.16)

where ε(q0) = ϑ(q0)− ϑ(−q0), ΠR
q , ΣR

k are retarded self-energies of the Higgs and leptons

respectively. Replacing the tree-level propagators with eq. (4.16), we recoverM in eq. (4.6).

All equilibrium propagators are spacetime-independent. In the limit ΠR
q ,Σ

R
k → 0 and by

using the representation of the delta function

δ(a) =
1

π
lim
γ→0

γ

a2 + γ2
, (4.17)

we recover the free propagators in eq. (3.13) with equilibrium distributions. The thermal

masses and widths are defined from the real and imaginary parts of self energies as ReΠ =

m2
th and ImΠ = 2mthγ respectively and therefore eq. (4.16) becomes

∆<,>
q ≈

(
coth

βq0

2
∓ 1

)
2q0γH

[(q0)2 − |q|2 −m2
H,th]2 + (2q0γH)2

,

S<,>k ≈
(

tanh
βk0

2
∓ 1

)
2k0γ`

[(k0)2 − |k|2 −m2
`,th]2 + (2k0γ`)2

PLk/PR . (4.18)

As discussed earlier, we do not distinguish thermal corrections to different flavours. All

lepton doublets have the same thermal widths, γe = γµ = γτ ≡ γ`,k, which is a function of

the momentum k. In the SM, the processes which dominantly contribute to the leptonic

thermal widths are EW gauge interactions and the thermal width at zero momentum

γ`,k=0 ≈ 6/(8π)g2T ≈ 0.1T [103], where g is the SU(2)L gauge coupling. For the Higgs,

both EW gauge interaction and the top quark Yukawa coupling contribute to the Higgs

thermal width, thus γH,q=0 ≈ 3/32πg2T + 3/8πy2
t T ≈ 0.1T [119] where yt is the top quark

Yukawa coupling. In this paper, we shall fix γ` and γH at certain constant values. For non-

vanishing momentum, the thermal width is in general momentum-dependent and BSM

interactions may modify their values. These effects may quantitatively modify the final

generated lepton asymmetry and will be discussed elsewhere.

In the following, we will calculate d4ryM using linear response limit. Such a treat-

ment originates from the time-dependent coupling of the Weinberg operator. The latter

corresponds to energy transfer between particles and the background which leads to en-

ergy non-conservation of particles [118]. In order to deal with this scenario, we simplify

our discussion in the narrow-width limit. The final result has already been shown in our

former work ref. [76].
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Firstly, we would like to integrate over the time-difference y ≡ r0. This can be done

with the help of the following Fourier transformations

∆<,>
q (t1, t2) =

∫
dq0

2π
e−iq

0y∆<,>
q ,

S<,>k (t1, t2) =

∫
dk0

2π
e−ik

0yS<,>k . (4.19)

Since the width γH,q, γH,k � T we may safely ignore the terms O(γ2
H,q/T

2, γ2
`,k/T

2) and we

find the propagators for the Higgs and leptons as ∆<,>
q (t1, t2) = ∆T

q (t1, t2) + ∆0<,>
q (t1, t2)

and S<,>k (t1, t2) = STk (t1, t2) + S0<,>
k (t1, t2), where

∆T
q (t1, t2) = fB,|q|

1

2ωq
(eiωqy + e−iωqy)e−γ`,k|y|

∆0<,>
q (t1, t2) =

1

2ωq
e±iωqy−γ`,k|y| ,

STk (t1, t2) = fF,|k|
1

2
(PLk̂/+e

iωky + PLk̂/−e
−iωky)e−γ`,k|y|

S0<,>
k (t1, t2) = −1

2
PLk̂/±e

±iωky−γ`,k|y|, (4.20)

and ωq =
√
m2
H,th + q2, ωk =

√
m2
`,th + k2, k̂/± = ±γ0 + k̂ · ~γ with k̂ ≡ k/ωk [91].

As expected, the thermal components, labeled by T , are the same for < and >, and

the zero temperature parts, labeled by 0, are different. After performing these Fourier

transformations and integrating over the spatial component,
∫
d3r, we obtain a Delta

function δ(3)(k + k′ + q + q′). This corresponds to the three-dimensional momentum

conservation.6 We integrate over k′ and simplify the time-integration to∫
d4r yM = 2

∫
d3k

(2π)3

d3q

(2π)3

d3q′

(2π)3

∫ +∞

−∞
dy yM , (4.21)

where

M = tr[S<k (t1, t2)S<k′(t1, t2)]∆<
q (t1, t2)∆<

q′(t1, t2)

− tr[S>k (t1, t2)S>k′(t1, t2)]∆>
q (t1, t2)∆>

q′(t1, t2),
(4.22)

and k′ is fixed at k′ = −(k + q + q′).

Following appendix C, we represent the propagators as

∆<,>
q (t1, t2) =

cos(ωqy
∓)

2ωq sinh(ωqβ/2)
e−γH,q|y| ,

S<,>k (t1, t2) = −PL
γ0 cos(ωky

∓) + i~γ · k̂ sin(ωky
∓)

2 cosh(ωkβ/2)
e−γ`,k|y| , (4.23)

where y∓ ≡ y ∓ iβ/2. Then, M is simplified to

M =
Im{[c(ωky

−)c(ωk′y
−) + k̂ · k̂′s(ωky

−)s(ωk′y
−)]c(ωqy

−)c(ωq′y
−)}

8ωqωq′ch(ωkβ/2)ch(ωk′β/2)sh(ωqβ/2)sh(ωq′β/2)
e−γ|y| , (4.24)

6Note that the spatial integration
∫
d4rr3M can lead to momentum non-conservation along r3 direction.

This effect, as discussed above, does not contribute to the lepton asymmetry.
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where γ = γH,q + γH,q′ + γ`,k + γ`,k′ and we have changed to the notation cos ≡ c, sin ≡ s,
cosh ≡ ch and sinh ≡ sh for brevity. Note that some additional details may be found in

appendix C. In this form, we can straightforwardly prove that M is an odd function of y,

and we can integrate over y in the following way:∫ +∞

−∞
dyyM

= 2

∫ +∞

0
dyyM (4.25)

= 2

∫ +∞

0
dyy

Im{[c(ωky
−)c(ωk′y

−) + k̂ · k̂′s(ωky
−)s(ωk′y

−)]c(ωqy
−)c(ωq′y

−)}
8ωqωq′ch(ωkβ/2)ch(ωk′β/2)sh(ωqβ/2)sh(ωq′β/2)

e−γy

=
∑

η2,η3,η4=±1

[1− η2k̂ · k̂′]Kη2η3η4γ

16ωqωq′(K2
η2η3η4 + γ2)2

sh(βKη2η3η4/2)

ch(ωkβ/2)ch(ωk′β/2)sh(ωqβ/2)sh(ωq′β/2)
,

where Kη2η3η4 = ωk + η2ωk′ + η3ωq + η4ωq′ .

In the semi-classical point of view, each Kη2η3η4 corresponds to the energy transfer

from the bubble wall to different processes by the Weinberg operator, in detail,

K+++ : vacuum energy transfer to 0→ ``HH

K++− & K+−+ : · · · H∗ → ``H

K+−− : · · · H∗H∗ → ``

K−++ : · · · `→ `HH

K−+− & K−−+ : · · · `H∗ → `H

K−−− : · · · `H∗H∗ → `. (4.26)

During the PT, the false vacuum, which carries higher energy than the true vacuum,

releases energy to the true vacuum. This energy is partially transferred to the kinetic

energy of the lepton and Higgs via the Weinberg operator. In the limit of zero energy

transfer, Kη2η3η4 → 0, the integration in eq. (4.25) is zero and no lepton asymmetry is

generated. This is to be anticipated as the distribution functions of the leptons and Higgs

remains thermal. This transfer of energy between the leptons, Higgs and bubble wall can

be understood in terms of the interactions between these particles with the scalar field,

φ. Deep inside the bubble the scalar is massive, while in the symmetric phase the scalar

remains massless and rather obviously the scalar mass varies across the bubble wall. For a

very fast moving bubble wall expansion, these scalars in the bubble wall are highly off-shell

because of the large spacetime gradient of the VEV in the bubble wall. The momentum of

the off-shell scalars may be transferred to the leptonic doublets and Higgses via scatterings

mediated by the dynamically-realised Weinberg operator. Here, we do not fix the energy

transfer but assume an upper bound of the energy transfer around the temperature. We

address this issue in details in appendix E.

These scatterings may cause the necessary perturbations of the leptons, anti-leptons

and Higgs distribution functions from equilibrium. There will be interference between this
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process and those mediated by the dimension-five operator which will result in a non-zero

lepton asymmetry.

The energy transfer is, in principle, not free, but dependent upon interactions between

the scalar and other particles. In this paper, we only include the effective interaction in the

Weinberg operator, which is very weak. If any additional interactions of the scalar with

lepton or with the Higgs are stronger than it, the energy transfer will be determined by the

new interactions. Furthermore, the lepton and Higgs released from the bubble wall may

be off-shell and followed up with transition radiation [108], which complicates the energy

transfer from the bubble wall to the plasma. Instead of discussing these processes in details,

we simplify their contributions by adding an upper bound Kcut, i.e., a cut of the transfer

energy |Kη2η3η4 | . Kcut for all Kη2η3η4 . This is realised by including ε(Kη2η3η4 ,Kcut) ≡
ϑ(Kη2η3η4 +Kcut)− ϑ(Kη2η3η4 −Kcut) in eq. (4.25), where ϑ(x) is the Heaviside function.

We estimate the maximum of this momentum transfer to be of the order of the temperature

i.e. Kcut ∼ O (1)T and relegate a more detailed calculation for future work. This simplified

treatment is also supported by the numerical calculation: as we vary Kcut around T and

observe that the integration, shown later in eq. (4.32), is not strongly dependent upon

the exact value of Kcut. However, for Kcut � T , the phase space is enlarged, and our

calculation is not applied.

To calculate the momentum integration, we follow the technique in [91]. Assuming

p ≡ k − q, we replace the momentum integration d3qd3q′ to d3k′d3p, where p = k′ + q′

holds obviously and

k̂ · k̂′ =
(|k|2 + |p|2 − |q|2)(|k′|2 + |p|2 − |q′|2)

4ωkωk′ |p|2
. (4.27)

With the help of the following parametrisation

p = |p|(0, 0, 1) ,

k = |k|(sin θ, 0, cos θ) ,

k′ = |k′|(sin θ′ cosϕ′, sin θ′ sinϕ′, cos θ′) , (4.28)

we derive∫
d3k

(2π)3

d3q

(2π)3

d3q′

(2π)3

=

∫
d3k

(2π)3

d3k′

(2π)3

d3p

(2π)3
, (4.29)

=
2

(2π)6

∫ +∞

0
d|p|

∫ +∞

0
|k|d|k|

∫ +∞

0
|k′|d|k′|

∫ |k|+|p|∣∣|k|−|p|∣∣ |q|d|q|
∫ |k′|+|p|∣∣|k′|−|p|∣∣ |q′|d|q′| ,

where

|q|2 = |k|2 + |p|2 − 2|k||p| cos θ , |q′|2 = |k′|2 + |p|2 − 2|k′||p| cos θ′ (4.30)

have been used.
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Analytically, the integration can be represented by a five-variable integration. To

simplify our discussion, we neglect the contribution from the small thermal mass, which is

of the order gT for the gauge coupling g or ytT for the top quark Yukawa coupling, i.e.,

setting ωk = |k|, ωq = |q|. As mentioned previously, we neglect the momentum-dependent

contribution of the thermal width, i.e., γ = 2(γH + γ`) is taken to be constant. We rescale

the momentum in the unit of temperature, x1 = |k|β/2, x2 = |k′|β/2, x3 = |q|β/2,

x4 = |q′|β/2, xγ = γβ/2, x = |p|β/2, and Xη2η3η4 = x1 + η2x2 + η3x3 + η4x4. Finally, we

arrive at the expression ∫
d4r yM =

4T 5

(2π)6
F (xγ , xω), (4.31)

where

F (xγ , xcut) =

∫ +∞

0
dx

∫ +∞

0
x1dx1

∫ +∞

0
x2dx2

∫ x1+x

|x1−x|
dx3

∫ x2+x

|x2−x|
dx4∑

η2,η3,η4=±1

[
1− (x2

1 + x2 − x2
3)(x2

2 + x2 − x2
4)

4η2x1x2x2

]
× ε(Xη2η3η4 , xcut)Xη2η3η4xγ sinhXη2η3η4

(X2
η2η3η4 + x2

γ)2 coshx1 coshx2 sinhx3 sinhx4
. (4.32)

In the thin wall case, we directly take the propagator integration to eq. (4.13) and

obtain the lepton asymmetry as

∆n` = −3 Im{tr[m0
νm
∗
ν ]}T 5

4π6v4
H

F (xγ , xcut) . (4.33)

We also present the lepton asymmetry distribution per momentum k:

Lk = −3 Im{tr[m0
νm
∗
ν ]}T 2

(2π)4v4
H

F (x1, xγ , xcut), (4.34)

F (x1, xγ , xcut) =
1

x1

∫ +∞

0
dx

∫ +∞

0
x2dx2

∫ x1+x

|x1−x|
dx3

∫ x2+x

|x2−x|
dx4∑

η2,η3,η4=±1

[
1− (x2

1 + x2 − x2
3)(x2

2 + x2 − x2
4)

4η2x1x2x2

]
× ε(Xη2η3η4 , xcut)Xη2η3η4xγ sinhXη2η3η4

(X2
η2η3η4 + x2

γ)2 coshx1 coshx2 sinhx3 sinhx4
. (4.35)

It follows that

∆n` =

∫
d3k

(2π)3
Lk ,

F (xγ , xcut) =

∫ +∞

0
x2

1dx1F (x1, xγ , xcut), (4.36)

are satisfied and these results are compatible with our former work [76].
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The initial lepton asymmetry generated during the PT is not conserved but par-

tially converted into the baryon asymmetry via the EW sphaleron processes which are

unsuppressed above the EW scale. The B − L asymmetry is a good symmetry and

nB−L ≡ −∆nL(T ) is always conserved after the PT. The final baryon symmetry is ap-

proximately given by nB ≈ 1
3nB−L. The baryon-to-photon ratio ηB is defined as

ηB ≡
nB
nγ
≈ Im{tr[m0

νm
∗
ν ]}T 2

8π4ζ(3)v4
H

F (xγ , xcut), (4.37)

where nγ = 2ζ(3)T 3/π2 with ζ(3) = 1.202 have been used. In order to generate more

baryon than anti-baryon, Im{tr[m0
νm
∗
ν ]} should take a minus sign and it is worthnoting

the lepton asymmetry is independent of the flavour basis we choose. A basis transformation

m0
ν → m0

ν = Um0
νU

T , mν → mν = UmνU
T has no influence on the final lepton asymmetry

since Im{tr[Um0
νU

TU∗m∗νU
†]} = Im{tr[m0

νm
∗
ν ]} as expected.

4.4 Numerical analysis

The only factor which cannot be determined analytically is the loop factor F (xγ , xcut).

In figure 4, we fix xcut = 1/2 and show F (xγ , xcut) as a function of thermal width xγ ≡
γ/(2T ). Keeping in mind that xcut means the energy transfer from the vacuum to the

Higgs and leptons less than xcut × 2T . xcut = 1/2 corresponds to the upper bound of

energy transfer being T . For the phase transition at temperature T , it is natural to make

such an assumption. The exact upper bound of the energy transfer may be different for

this value. Indeed, we have varied xcut around 1/2, and found the integration F (xγ , xcut)

is insensitive to the value xcut. For xγ ∼ O(0.1) and xcut ∼ O(1), F (xγ , xcut) generally

provides an O(10) factor enhancement. However, in some special PT, the energy transfer

between the bubble wall and the plasma could be much smaller than the temperature. In

that case, the value of the integration could be significantly suppressed and much smaller

than 10.

We show the momentum distribution F (x1, xγ , xcut) as a function of x1 with xγ fixed

at 0.05, 0.1, 0.2, 0.5 in figure 5, respectively. In the Standard Model, the xγ ≈ 0.1, mostly

originating from the contribution of EW gauge couplings [103].

We estimate the temperature of successful leptogenesis. As discussed above, we can

assume that the loop function F (xγ , xω) provides an O(10) factor enhancement for xγ ∼
O(0.1) and xω ∼ O(1). Therefore, the final baryon asymmetry

ηB ∼
Im{tr[m0

νm
∗
ν ]}T 2

v4
H

10−2 . (4.38)

Since ηB > 0, more baryon than anti-baryon, Im{tr[m0
νm
∗
ν ]} must take a minus sign. In

most cases, Im{tr[m0
νm
∗
ν ]} is in the same order of m2

ν . Then, we derive the PT temperature

T ∼ 10
√
ηB

v2
H

mν
≈ 1011 GeV . (4.39)

In our formalism, we do not consider the influence of temperature variation during the

expansion of the Universe. This is valid if and only if the Hubble expansion rate H is much
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Figure 4. The loop factor F (xγ , xcut) as a function of xγ ≡ γ/(2T ), where xcut is fixed at 1/2,

corresponding to the energy transfer from the vacuum to the plasma being smaller than T .
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Figure 5. The loop factor F (x1, xγ , xcut) as a function of xγ ≡ γ/(2T ), where xcut is fixed at 1/2,

corresponding to the energy transfer from the vacuum to the plasma being smaller than T .

smaller than the bubble wall expansion. The Hubble expansion rate is given by

H =
8π

3m2
pl

=
1.66
√
g∗T

2

mpl
, (4.40)

where in the SM g∗ = 106.75; at such high scales it is possible g∗ may be larger due to

new degrees of freedom. Nevertheless, in general g∗ is a O(100) number and therefore
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H ∼ O(10)
√
g∗T

2/mpl. The bubble expansion rate is characterised by vw/Lw which is

correlated with the bubble wall dynamics of the scalar φ1. To satisfy the requirement

H � vw/Lw assuming vw/Lw ∼ O(0.01)T , we find T � O(0.1)mpl which is easily satisfied.

The final result of the lepton asymmetry is crucially dependent upon the thermal

width. In the limit xγ → 0, F (x1, xγ) does not converge. This can be simply understood

as follows. As previously discussed, CP violation is generated by the interference of two

Weinberg operators at different times. To see more clearly where the divergence emerges,

we consider a simplified case of the PT where the bubble wall is vanishingly thin: Lw → 0.

Thus, given a fixed spatial point, the coefficient behaves as a step function along time where

the Weinberg operators have steady coefficients λ0 and λ0 + λ1 before and after the PT

respectively and the functional form of the coefficient is given by: λ(t) = λ0 + λ1θ(t− t0).

Any interference between the Weinberg operator at time t1 < t0 and t2 > t0 may generate

a CP asymmetry no matter how large the time difference, |y| = |t1 − t2|. The thermal

damping width corresponds to the decoherence effect of the Weinberg operator at a large

time difference. In other words, as the thermal width becomes smaller, interference for

larger |y| will become increasingly significant. In the limit of a zero-valued thermal width,

interference between Weinberg operators in the infinite past and infinite future can also

generate a lepton asymmetry, in addition to the lepton asymmetry generated at very short

time differences. The size of the generated lepton asymmetry is almost the same but differs

by a phase of the time difference. The total lepton asymmetry is obtained by the summation

along time difference y from 0 to ∞, which does not converge but rather oscillates with y.

Alternatively, one may consider the two-loop diagram of figure 3 as a self-energy correction

to the lepton propagator. As the damping rate is proportional to the imaginary component

of the self-energy correction, taking the unphysical zero damping rate limit implies the

two-loop correction vanishes and hence no lepton asymmetry is produced. We would like

to emphasise that the treatment of the thermal widths we applied throughout this work

constitute an effective treatment as the imaginary part of self-energy at finite temperature

is infrared divergent and gauge-dependent. Generally, one has to consider gauge-field loops

that generate the width explicitly, along with other possible diagrams at the same order in

the SM coupling and we relegate this particular issue for future study.

5 Conclusion

In this work we have provided a detailed discussion of leptogenesis via a varying Weinberg

operator. The Weinberg operator violates lepton number and B − L, which triggers pro-

cesses of lepton-antilepton transition, di-lepton/di-antilepton annihilation and di-lepton/di-

antilepton production. Motivated by tiny neutrino masses, the Weinberg operator is very

weakly coupled. Thus, the triggered processes are slow and cannot reach thermal equilib-

rium for temperature below 1013 GeV. The spacetime variation of the Weinberg operator

is fulfilled by including a CP-violating phase transition (CPPT).

The novelties of this mechanism are:

1. The realisation that the very weakly coupled Weinberg operator can fulfil the out-of-

equilibrium condition.
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2. The lepton asymmetry is generated via a phase transition and not via the decay of

heavy particles. Consequently, a unique feature of the mechanism is the independence

from a specific neutrino mass model because all heavy particles have decoupled from

the plasma before the phase transition. Therefore the Weinberg operator, obtained

after all heavy particles are integrated out, is the only interaction violating B − L.

The weakness of this operator also leads to the tiny washout effect which can be

safely neglected.

In this paper we have presented the calculation of the lepton asymmetry from first

principles, i.e., in the framework of non-equilibrium quantum field theory. Our calculation

is entirely based on Green’s functions. Such an approach avoids the need to separately

calculate relevant processes as in the case of semi-classical Boltzmann equations. Our

starting point was a non-homogeneous scalar background in the rest plasma frame where

we obtained the general expression of the lepton asymmetry in terms of the Wightman

functions in the Closed-Time-Path formalism.

The feebly coupled Weinberg operator allowed us to analytically obtain the result of

lepton asymmetry without considering time evolution. A non-zero lepton asymmetry is

generated from the interference of spacetime-dependent Weinberg operators at different

times. We provided an in depth derivation of the lepton asymmetry generated by the

varying Weinberg operator. In our calculation, two main contributions are specified: the

dynamics of the PT and the thermal properties of the Higgs and leptons. We demonstrated

the lepton asymmetry factorises into a part proportional to the time-dependent coupling

(the prefactor) and another part which involves integrating the finite-temperature matrix

element over phase space.

Although the nature of the PT does not alter the mechanism qualitatively, it influences

the lepton asymmetry quantitatively. The contribution of the PT dynamics is represented

as EEV profiles of some scalars 〈φi(x)〉. The spacetime-varying coupling of the Weinberg

operator is further represented as

λαβ(x) = λ0
αβ +

n∑
i=1

λiαβ
〈φi(x)〉
vφi

+
n∑

i,j=1

λijαβ
〈φi(x)φj(x)〉

vφivφj
+ · · · . (5.1)

These scalars may have complicated contributions to the final lepton asymmetry. To sim-

plify the discussion, we calculated the lepton asymmetry in the simplest sceanrio, the single

scalar case where the coupling is represented as λαβ(x) = λ0
αβ+λ1

αβ〈φi(x)〉/vφi . To evaluate

the prefactor, we changed variables from times t1, t2 to the relative and average coordinate

r = x2 − x1 and x = (x1 + x2)/2 and completed the spacetime integration. In the rest

plasma frame, we separated the time and spatial integrations and proved that the latter

is negligible. Therefore, the lepton asymmetry is mainly generated via the interference of

Weinberg operator at different times.

We discovered the connection between lepton asymmetry with neutrino masses, ∆nL ∝
Im{tr[m0

νm
∗
ν ], where m0

ν is the initial neutrino matrix before CPPT and mν is identical

to the neutrino mass matrix we are to measure in neutrino experiments (ignoring RG

effect running from the scale ΛCPPT which have been shown to be small [120, 121]). We
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also considered non-standard properties of the bubble, such as a slow-moving bubble with a

thick wall, and the implications for this mechanism. However, we relegate a more extensive

study of such cases for future work.

Thermal properties of the Higgs and leptons, in particular their damping rates, are

important. The interference of two Weinberg operators is dependent upon these damping

rates. In order to generate a non-zero lepton asymmetry, the energy transfer between the

leptons, Higgs and background must not conserved. This is unsurprising because there is

a net energy transfer from the bubble wall to the Higgs and leptons.

We have estimated the temperatures for successful leptogenesis. At high temperatures,

the reaction rate of Weinberg operator is enhanced by T 3. Although this rate is small it

is still sufficient to generate enough baryon yield for a given temperature. By assuming

the prefactor of the same order of the neutrino mass, i.e., Im{tr[m0
νm
∗
ν ]} ∼ 0.1 eV2 and the

damping rates of the Higgs and leptons are approximately their SM values, we obtain that

the phase transition at temperature TCPPT ∼ 1011 GeV can generate nB ∼ 10−10nγ .

Compared with the well-known EWBG, the PT in our mechanism plays a very differ-

ent role. While the PT is essential to generate the non-equilibrium state in EWBG, the

Weinberg operator plays the key role in the departure of equilibrium in our mechanism.

Such differing dynamics leads to many differences in the calculation and features of the final

results, e.g., the spatial-independence in the integration in the rest plasma frame and the

requirement of types of the PT, etc. However, these two mechanisms shares one similarity:

the CP violation is generated by the PT.

Finally, we comment that a first order PT has been assumed to simplify the calculation,

although it is not a necessary condition to generate lepton asymmetry in the mechanism.

If the PT is first ordered in nature, bubbles of the true vacuum nucleate and expand

amongst the sea of the metastable phase in the universe. These bubbles finally meet and

collide with each other giving rise to a significant stochastic background of gravitational

waves [122, 123]. This background resides today with the spectral shape peaked at a

frequency related to the temperature of the PT. While eLISA [124] will be capable of

measuring EW-scale PT [125], LIGO, Virgo and KAGRA has the potential to probe PT

for higher temperatures ∼ 107 − 1012 GeV [126–128].
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A Examples of the EEV profile

The exact expression for λ(x) as a function of x is determined by the properties of the PT.

Here we introduce some specific types of profiles for λ(x) in the bubble wall:

• Linear profile, where f(x′) linear changes from 0 to 1 for x′ varying from 0 to Lw:

f(x′) =


0 , x′ < 0

x′/Lw , 0 < x′ < Lw

1 , x′ > Lw

. (A.1)

From this simple case, we can obtain steady spatial gradient of λ, ∂3λ = λ1/Lw. We

note that a sudden change the scalar VEV can be triggered by dynamics other than

a first order PT such as a quench in the context of cold EWBG [129, 130].

• Hyperbolic profile, where the φ VEV takes the form of a hyperbolic function:

f(x′) =
1

2

[
1 + tanh

(
x′

Lw

)]
. (A.2)

This case has been widely used as a numerical approximation of the Higgs VEV in

EWBG [131].

In the thin wall limit, ignoring the thickness of the bubble wall, i.e., Lw → 0, we arrive at

a Heaviside step function in both cases.

B Extensive discussion on the role of the phase transition

In the main text, we calculated the lepton asymmetry with the assumption of a single scalar

involved in the phase transition. Now we shall generalise this discussion to the multi-scalar

case. Such an extension is necessary because many neutrino mass or flavour models involve

more than one scalar. Multi-scalar phase transitions are the widely discussed in the context

of the EW phase transition, which usually assumes additional scalar involving with the

Higgs during the phase transition. Although a phase transition is necessary in CPPT to

generate the matter-antimatter asymmetry, the phase transition plays a very different role

here in comparison with EWBG. In the following, we will first discuss how the conclusion

will be modified once extended to the multiple scalar case.

We extend our discussion to the two-scalar case. Ignoring the cross coupling between

two scalars, the coupling matrix λ(x) taking the following form

λ(x) = λ0 + λ1f1(x′) + λ2f2(x′) , (B.1)

Here, f1(x′) and f2(x′) correspond to EEV shapes of φ1 and φ2 respectively with f1(−∞) =

f2(−∞) = 0 and f1(+∞) = f2(+∞) = 1. It is important that λ2 takes a different relative

phase compare with λ1 and f2 has a different profile from f1. Otherwise, λ2 and f2 may be
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redefined to absorb λ1 and f1 respectively. With this consideration, Im {tr [λ∗(x1)λ(x2)]}
is simplified to

Im {tr [λ∗(x1)λ(x2)]} = Im
{

tr
[
λ0λ1∗]} [f1(x′1)− f1(x′2)]

+Im
{

tr
[
λ0λ2∗]} [f2(x′1)− f2(x′2)]

+Im
{

tr
[
λ1λ2∗]} [f1(x′2)f2(x′1)− f1(x′1)f2(x′2)] . (B.2)

The first line on the r.h.s. will finally gives the same contribution to the lepton asymmetry

as that of the r.h.s. of eq. (4.15), Im{tr[m0
νm
∗
ν ]}, which is independent of the shapes f1(x′)

or f2(x′). The second and third lines represents the interference between the two scalar

EEV profiles. Therefore, the lepton asymmetry generated by this term depends on the

EEV shapes.

In the case of vanishing initial coupling of the Weinberg operator λ0 = 0, the lep-

ton asymmetry can only be generated from the interference term. Typical examples are

U(1)B−L models, where the symmetry forbid the initial coupling λ0. Therefore, one has

to introduce at least two scalars to generate a non-zero ∆n`. It is a possibility that there

are more scalar EEV varying during the phase transition. Typical examples are flavour

models. The inclusion of additional scalars into the system does not qualitatively alter the

discussion but complicates the interference term. A careful discussion of the scalar contri-

bution is related to detailed properties of the model, i.e., which symmetry is introduced,

how many copies of scalars are in the model, coupling textures in the Weinberg operator,

etc. We leave the relevant interesting studies to our future work.

The interference terms usually have very complicated contributions. We discuss two

simplified cases where the first example is the multi-step phase transition. In other words,

there exists a point x′0, f1(x′) varies from 0 to 1 for x′ running from −∞ to x′0 and f2(x′)

varies from 0 to 1 for x′ running from x′0 to +∞. The second line contributes a term

Im{tr[λ1λ2∗]}, and mν = (λ0 + λ1 + λ2)v2
H/Λ.

A second example is the thick wall limit where the following expansion is applied∫
d4rIm{tr[λ∗(x1)λ(x2)]}M =

∫
d4rIm{tr[λ∗(x+ r/2)λ(x− r/2)]}M

≈ Im{tr[λ∗(x)∂µλ(x)]}
∫
d4rrµM . (B.3)

For µ = 0 and µ = 3, we get the time- and space-dependent lepton asymmetries.

∆nI ∝ Im{tr[λ∗(x)∂tλ(x)]} ≡
∑
αβ

|λαβ(x)|2∂tφαβ(x) ,

∆nII ∝ Im{tr[λ∗(x)∂zλ(x)]} ≡
∑
αβ

|λαβ(x)|2∂zφαβ(x) , (B.4)

respectively where t = x0 and z = x3. The CP source of ∆nII takes a similar form as that

in EWBG, which is proportional to Im{tr[m∗q∂zmT
q ]}, where mq is the quark mass matrix

in the flavour space [114, 115]. At lower temperatures, where the deviation from thermal

equilibrium grows, ∆nII has an enhanced contribution. However, as we are considering
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temperatures much higher than the EW scale, where the equilibrium distributions for the

Higgs and leptons are assumed in M, we find that the space-dependent lepton asymmetry

is vanishing. Therefore, the total lepton asymmetry is proportional to

∆n` ∝
1

v4
H

∫ +∞

−∞
dt Im{tr[m∗ν(x)∂tmν(x)]}

∫
d4ryM

∝ vw
v4
H

∫ +∞

−∞
dt Im{tr[m∗ν(x)∂zmν(x)]}

∫
d4ryM, (B.5)

where mν(x) ≡ λ(x)v2
H/Λ and ∂0 = −vw∂3 have been used. It is useful to define the CP

sources per unit volume per unit time S`(x) as

S`(x) = − 12

v4
H

Im{tr[m∗ν(x)∂tmν(x)]}
∫
d4ryM

= vw
12

v4
H

Im{tr[m∗ν(x)∂zmν(x)]}
∫
d4ryM . (B.6)

Naively, we find nL ≈ Lw
vw
S`, where S` is the mean value of S`(x) in the wall. In our work,

we assume the bubble expansion is sufficiently fast that the effect of Hubble expansion,

i.e., the evolution with temparature/time, may be ignored. In the slow bubble expansion

case that Lw/vw & 1/Hu, the effect of Hubble expansion should be included.

C Matrix element

In this appendix, we provide some additional details on the calculation of the matrix

element. It may be shown that the matrix element, M , of eq. (4.22) may be rewritten

such that

M = Im
{

∆<
q (t1, t2)∆<

q′(t1, t2)tr
[
S<k (t1, t2)S<k′(t1, t2)PL

]}
. (C.1)

We apply the CTP Feynman rules and use the free equilibrium propagators of the massless

leptons and Higgs field which are given by [91]

∆<
q (y) =

1

2ωq

[
coth

(
βωq

2

)
cos (ωqy) + i sin(ωqy)

]
, (C.2)

S<k (y) = −γ
0

2

[
cos (ωky) + i tanh

(
βωk

2

)
sin (ωky)

]
−~γ · k

2ωk

[
tanh

(
βωk

2

)
cos (ωky) + i sin (ωky)

]
, (C.3)

where β = 1/T and have applied the notation of the relative coordinate, y, for brevity.

These propagators may be simplified using the redefinition of the relative coordinate y− =

y − iβ/2

∆<
q (y) =

1

2ωq

[
coth

(
βωq

2

)
cos

(
ωqy

− +
iβωq

2

)
+ i sin

(
ωqy

− +
iωqβ

2

)]
=

1

2ωq

cos (ωqy
−)

sinh
(
ωqβ

2

) ,
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S<k (y) = −γ
0

2

[
cos

(
ωky

− +
iβωk

2

)
+ i tanh

(
βωk

2

)
sin

(
ωky

− +
iβωk

2

)]
−~γ · k̂

2

[
tanh

(
βωk

2

)
cos

(
ωky

− +
iβωk

2

)
+ i sin

(
ωky

− +
iβωk

2

)]
= −γ

0 cos (ωky
−) + i~γ · k̂ sin (ωky

−)

2 cosh
(
βωk

2

) , (C.4)

where we have applied the notation k̂ = k/ωk. Naturally, for left-handed fermions S<k →
PLS

<
k . Multiplying out these propagators we find

∆<
q′∆

<
q tr
[
S<k S

<
k′

]
=

cos (ωqy
−) cos

(
ωq′y

−)
4ωqωq′ sinh

(
ωqβ

2

)
sinh

(
ωq′β

2

)
×
[

Tr

(
γ0γ0

4

)
cos (ωky

−) cos (ωk′y
−)

cosh
(ωkβ

2

)
cosh

(ωk′β
2

) − Tr

(
γiγj

4

)
k̂ik̂
′
j sin (ωky

−) sin (ωk′y
−)

cosh
(ωkβ

2

)
cosh

(ωk′β
2

) ]

=
1

8ωqωq′

cos (ωqy
−) cos

(
ωq′y

−)
sinh

(
ωqβ

2

)
sinh

(
ωq′β

2

)
cosh

(
ωkβ

2

)
cosh

(
ωk′β

2

)
×
(

cos
(
ωky

−) cos
(
ωk′y

−)+ δijk̂ik̂
′
j sin

(
ωky

−) sin
(
ωk′y

−)) . (C.5)

Taking the imaginary part and appending the above with the appropriate thermal damping

rates (e−γ|y|), we recover eq. (4.23). The matrix element can be further expanded and to

do so we denote the numerator of tr
[
S<k S

<
k′

]
∆<

q′∆
<
q as

cos
(
ωqy

−) cos
(
ωq′y

−)︸ ︷︷ ︸
f1

[
cos
(
ωky

−) cos
(
ωk′y

−)︸ ︷︷ ︸
f2

+δijk̂ik̂
′
j sin

(
ωky

−) sin
(
ωk′y

−)︸ ︷︷ ︸
f3

]
.(C.6)

Multiplying out f1 × f2 we find

f1 × f2 =

[
ei(ωq+ωq′)y− + ei(ωq−ωq′)y− + ei(ωq′−ωq)y− + e−i(ωq+ωq′)y−

4

]

×
[
ei(ωk+ωk′ )y

−
+ ei(ωk−ωk′ )y

−
+ ei(ωk′−ωk)y− + e−i(ωk+ωk′ )y

−

4

]
=

1

16

[
ei(ωq+ωq′+ωk+ωk′)y− + ei(ωq−ωq′+ωk+ωk′)y− + ei(−ωq+ωq′+ωk+ωk′)y−

+ei(−ωq−ωq′+ωk+ωk′)y− + ei(ωq+ωq′+ωk−ωk′)y− + ei(ωq−ωq′+ωk−ωk′)y−

+ei(−ωq+ωq′+ωk−ωk′)y− + ei(−ωq−ωq′+ωk−ωk′)y−
]

+ c.c. . (C.7)

Recalling y− = y − iβ/2, we may make the expansion ei(xy−ixβ/2) ≡ eixyeβx/2. To find

the imaginary part this implies Im[eixyeβx/2] ≡ sin(xy)eβx/2. Applying this to eq. (C.7)
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we find

f1 × f2 =
1

16

[
sin
(
ωq + ωq′ + ωk + ωk′

)
eβ/2(ωq+ωq′+ωk+ωk′)

+ sin
(
ωq − ωq′ + ωk + ωk′

)
eβ/2(ωq−ωq′+ωk+ωk′)

+ sin
(
−ωq + ωq′ + ωk + ωk′

)
eβ/2(−ωq+ωq′+ωk+ωk′)

+ sin
(
−ωq − ωq′ + ωk + ωk′

)
eβ/2(−ωq−ωq′+ωk+ωk′)

+ sin
(
ωq + ωq′ + ωk − ωk′

)
eβ/2(ωq+ωq′+ωk−ωk′)

+ sin
(
ωq − ωq′ + ωk − ωk′

)
eβ/2(ωq−ωq′+ωk−ωk′)

+ sin
(
−ωq + ωq′ + ωk − ωk′

)
eβ/2(−ωq+ωq′+ωk−ωk′)

+ sin
(
−ωq − ωq′ + ωk − ωk′

)
eβ/2(−ωq−ωq′+ωk−ωk′)

]
+ c.c. . (C.8)

The complex conjugate from above is treated in the following way: e−ixy
− ≡ e−i(xy−iβx/2) =

e−ixye−βx/2 =⇒ Im[e−ixye−βx/2] = − sin (xy) e−βx/2. There adding to its complex conju-

gate, we find sin (xy) eβx/2− sin (xy) e−βx/2 = 2 sin (xy) sinh (βx/2). This implies eq. (C.7)

may be written as

f1 × f2 =
2

16

[
sin (K+++y) sinh

(
βK+++

2

)
+ sin (K++−y) sinh

(
βK++−

2

)
+ sin (K+−+y) sinh

(
βK+−+

2

)
+ sin (K+−−y) sinh

(
βK+−−

2

)
+ sin (K−++y) sinh

(
βK−++

2

)
+ sin (K−+−y) sinh

(
βK−+−

2

)
+ sin (K−−+y) sinh

(
βK−−+

2

)
+ sin (K−−−y) sinh

(
βK−−−

2

)]
, (C.9)

where we have applied the following definitions for ease of notation

K+++ = ωk + ωk′ + ωq + ωq′ ,

K++− = ωk + ωk′ + ωq − ωq′ ,

K+−+ = ωk + ωk′ − ωq + ωq′ ,

K+−− = ωk + ωk′ − ωq − ωq′ ,

K−++ = ωk − ωk′ + ωq + ωq′ ,

K−+− = ωk − ωk′ + ωq − ωq′ ,

K−−+ = ωk − ωk′ − ωq + ωq′ ,

K−−− = ωk − ωk′ − ωq − ωq′ , (C.10)

where Kη2η3η4 = ωk + η2ωk′ + η3ωq + η4ωq′ and ηi = ±1 for i = 1, 2, 3. Applying the same

procedure, we calculate f1 × f3

f1 × f3 =
k̂ · k̂′

16

[
− sin (K+++y) eβK+++/2 − sin (K++−y) eβK++−/2

− sin (K+−+y) eβK+−+/2 − sin (K+−−y) eβK+−−/2
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+ sin (K−++y) eβK−++/2 + sin (K−+−y) eβK−+−/2

− sin (K−−+y) eβK−−+/2 + sin (K−−−y) eβK−−−/2 + c.c.
]
. (C.11)

Adding the complex conjugate part in the same way as before we find

f1 × f3 =
2k̂ · k̂′

16

[
− sin (K+++y) sinh

(
βK+++

2

)
− sin (K++−y) sinh

(
βK++−

2

)
− sin (K+−+y) sinh

(
βK+−+

2

)
− sin (K+−−y) sinh

(
βK+−−

2

)
+ sin (K−++y) sinh

(
βK−++

2

)
+ sin (K−+−y) sinh

(
βK−+−

2

)
+ sin (K−−+y) sinh

(
βK−−+

2

)
+ sin (K−−−y) sinh

(
βK−−−

2

)]
.

(C.12)

Collecting all the terms and using the following relation∫ ∞
0

dy y sin (Ky) e−γy =
2Kγ

(K2 + γ2)2 , (C.13)

to complete the integration over y, we recover eq. (4.25).

It is worthwhile to note that this integration is only valid in the case of the finite width,

namely γ > 0. In the limit γ → 0, we encounter the oscillating problem of the integral.

A physical interpretation of this behaviour has been given at the end of section 4.4. To

see this more clearly, we go back to the initial integration
∫
d4x1d

4x2 and replace the

interval of the time component from (C.13) from (−∞,+∞) to [−t/2, t/2]. We further

follow the technique use in [91] (see the discussion from eq. (5.41) and therein) by defining

the integrals

Ĩ(t) =

∫ t/2

−t/2
dt1

∫ t/2

−t/2
dt2 (t1 − t2) e−iΩ1t1+iΩ2t2e−γ(t1+t2) , (C.14)

where Ωi is a function of particle energies. It is useful to parameterise Ωi = ziγ for later

use. While Ĩ(t), which involves time-difference t1 − t2 ≡ y, is the key integral in our

mechanism, I(t) as defined in [91] (see eq. (6.2)) does not include this factor. It has been

rectified in [91] (see appendix E) that the CTP result of thermal leptogenesis can recover the

Boltzmann result in the zero-width limit. The main point is that the integral I(t) + I∗(t),
after integrating times, contains (z2

i + 1) in the denominator. Thus I(t) has simple poles

at zi = ±i. In the limit γ/K → 0 with τ = γt fixed, integration along zi is expanded to the

interval (−∞,+∞), which can be further spanned to the closed path encircling the whole

upper complex plane or lower complex plane. In this case, the Cauchy’s theorem applies

and the integral convergences to a finite value. We are going to check the behaviour of our

mechanism from the same mathematical point of view. We straightforwardly yield

Ĩ(t) + Ĩ∗(t) =
2t3z2

1z
2
2(sin z1 − sin z2)− e−τ (z1 + z2) sin(z1 − z2) + · · ·(

z2
1 + 1

)2 (
z2

2 + 1
)2 . (C.15)
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As the numerator is irrelevant for our discussion we do not provide the full expression.

The most important feature we highlight here is that Ĩ(t) + Ĩ∗(t) has poles of order 2 at

zi = ±i. Thus we cannot apply Cauchy’s theorem and we encounter a divergence. We

have also checked if (t1 − t2) in the integrand in eq. (C.14) is abandoned, zi = ±i turn to

simple poles, and the integration along zi is finite.

D Comparison with EWBG

The best known mechanism of PT-induced baryogenesis is EWBG. Although our mecha-

nism shares a common feature with EWBG, that being a PT driving the generation of the

baryon asymmetry, CPPT differs greatly from EWBG. The differences between these two

mechanisms originate from how the three Sakharov conditions are satisfied. The essential

differences are listed as follows.

• In EWBG, the baryon number violation is provided by sphaleron transitions in the

symmetric phase. Both the out-of-equilibrium condition and C/CP violations are

induced by EW phase transition [132]. In the EWBG, the phase transition is key

to the generation of the non-equilibrium evolution. In order to achieve this, rapidly

expanding bubble walls are required such that the backreactions are not efficient to

wash out the generated baryon asymmetry.

• As originally considered in ref. [76], and further elucidated in section 1, the B − L
number violation and departure from thermodynamic equilibrium are directly pro-

vided by the very weakly coupled Weinberg operator. The PT is only necessary to

provide a source of C/CP violation and is not needed for the efficiency of reactions

in the system. Consequently, successful leptogenesis in this setup does not necessar-

ily require a first-order PT and it is possible a CP-violating second-order PT would

also generate a lepton asymmetry. The purpose of assuming the first-order phase

transition in the former sections is to simplify the discussion and derive the lepton

asymmetry quantitatively.

With reference to the differing non-equilibrium dynamics provided in these two mecha-

nisms, the method of calculation varies. For example, in our mechanism it is not necessary

to boost to the rest wall frame as in the case of EWBG. In the rest frame of the wall, the

particle distribution is not isotropic thus both the time-dependent and space-dependent

integration will be non-zero. In EWBG, the non-isotropic component of the particle (e.g.,

the top quark and Higgs) distribution in front of the bubble wall is much larger. Thus, the

space-dependent integration in the rest frame of the plasma may have a sizeable contribu-

tion to the baryon asymmetry.

One may wonder to what extent the non-equilibrium distribution may give rise to

a non-zero spatial-dependent integration and the subsequent contribution to the lepton

asymmetry. To estimate this effect let us assume, in the rest frame of the plasma, there

is a small non-isotropic deviation the equilibrium for leptons, i.e., replacing fF,|k0|(x) in
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eq. (3.12) by

f`,k(x) = fF,|k0|[1 + ε`,k(x) + · · · ] ,
f`,k(x) = fF,|k0|[1 + ε`,k(x) + · · · ] , (D.1)

where the dots are irrelevant isotropic corrections. The bubble wall is the only source of

non-isotropy and influences the distribution of leptons only via the Weinberg operator

ε`,k(x), ε`,k(x) ∼ |λ|
2

Λ2
T 2 . (D.2)

Then, the spatial integration ∆nII
` ∼ λ2T 2/Λ2∆nI

` � ∆nI
`.

With reference the discussion shown there, the space integration in the rest frame

of the plasma is zero. This result is obtained from the assumption that the Higgs and

leptons are almost in thermal equilibrium in the source term which is justifiable at such

temperatures. While in the case of EWBG, charge separation induced by the Higgs may

lead to non-negligible spatial distribution.

Finally, we draw a comparison between the contribution of the PT in both mech-

anisms. To further elucidate, we assume a two-scalar phase transition with λ0 = 0,

λ(x) = λ1φ1/vφ1 + λ2φ2/vφ2 . Then, the CP source is

S`(x) = − 12

v4
H

Im{tr[m1∗
ν m

2
ν ]} ×

[
f1(x′)∂tf2(x′)− f2(x′)∂tf1(x′)

]
×
∫
d4ryM. (D.3)

The middle term on the right hand side shows the dependence of the first derivative on the

VEV profile. This property has been obtained in supersymmetric EWBG in the approxi-

mation of VEV insertion [87, 89].

E Leptogenesis via oscillating Weinberg operator

In the main body of the text, we have assumed the scalar φ EEV varies smoothly from

0 to vφ, which should be understood as the “macroscopic” behaviour of φ during the

vacuum transition. At the “microscopic scale”, the scalar φ may oscillate, which leads to

fluctuations in addition to the “macroscopic” behaviour. In this appendix, through the

inclusion of the oscillation effect, we provide additional details of the energy transfer from

the vacuum to the plasma and discuss the validity of setting the upper bound of the energy

transfer to approximately the plasma temperature.

We begin with applying the EEV profile of an oscillating field as shown in refs. [133, 134]

in the quasiparticle approximation, and write the EEV profile in the form

〈φ(t)〉 = [〈φ(t)〉|t=t0 cos(mφ(t− t0)) +m−1
φ ∂t〈φ(t)〉|t=t0 sin(mφ(t− t0))]e−γφ(t−t0) (E.1)

for t > t0. The solution to the above equation describe the oscillation of φ near the

minimum of its potential. The plasma frequency, mφ, is the thermal mass which is found

by evaluating the dispersion relation of this scalar near zero momentum. As in [134], we

assume a narrow damping rate γφ with γφ � mφ which corresponds to φ scattering with
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the thermal bath and its decay. We do not consider spatial variation in order to limit the

complexity of the discussion. This profile is obtained by assuming the initial deviations

〈φ(t)〉 − vφ and ∂t〈φ(t)〉 after t0 are small [133], such that the mass terms dominates the

variation of the scalar EEV. Therefore, it is only valid if the profile of 〈φ〉 varies slowly in a

certain regime, e.g., towards the end of the phase transition, as well as the end of reheating

processes.7 For the entire period of phase transition, quartic terms are crucial and affect

the running of the scalar mass and thus we cannot apply this approximation. Therefore,

the lepton asymmetry generated from this EEV profile should not be understood as the

entire lepton asymmetry.

Following the oscillating EEV profile, the effective profile of λ may be written as

λ(t) = λ+ [(λ0 − λ) cos(mφ(t− t0)) +m−1
φ λ̇0 sin(mφ(t− t0))]e−γφ(t−t0) , (E.2)

where λ0 and λ̇0 are abbreviations of λ(t) and ∂tλ(t) at t = t0, respectively. We apply

this profile to demonstrate how the energy transfer from the false vacuum to the plasma

is related to the oscillation frequency, mφ.

We remind the reader that the profile λ(t) is only valid at the end of the bubble

wall with t > t0. This implies that only lepton asymmetry for x′ from x′0 to infinity can

be calculated. Thus, the limits of the integration should be replaced,
∫∞
t0
dt1
∫∞
t0
dt2 =

2
∫∞

0 dy
∫∞
t0+y/2 dt. The integration

∫∞
t0+y/2 dtIm[λ∗(t1)λ(t2)] is simplified to

∫ ∞
t0+ y

2

dtIm[λ∗(t1)λ(t2)] =
Im[λ0λ

∗]mφ

m2
φ + γ2

φ

{
sin(mφy)e−γφy +

γφ
mφ

[
1− cos(mφy)e−γφy

]}
︸ ︷︷ ︸

g1(y)

+
Im[λ̇0λ

∗]

m2
φ + γ2

φ

{
1− cos(mφy)e−γφy − γφ

mφ
sin(mφy)e−γφy

}
︸ ︷︷ ︸

g2(y)

+
Im[(λ0 − λ)λ̇∗0]

2mφγφ
sin(mφy)e−γφy︸ ︷︷ ︸

g3(y)

. (E.3)

In the limit y � m−1
φ , g1,3(y) ' mφy, g2(y) ' 0, and we recover the result of eq. (4.12).

7Our calculation has assumed thermal distribution for the lepton and Higgs. Thus, by applying the

mechanism to reheating processes, one has assumed leptogenesis take places at the very end of reheating

when bath has been produced thermally. One could also consider a scenario in which, during reheating, the

Higgs or lepton are not fully thermalised. In this case, if the spatial isotropy is still satisfied, we could simply

introduce new parameters ξ` = n`/n
eq
` and ξH = nH/n

eq
H , representing the ratio of the true number density

to its thermalised number density [135]. In this way, the generated lepton asymmetry could be modified

by timing a factor ξ2` ξ
2
H . To generate energy baryon asymmetry, the energy scale should be enhanced by a

factor ξ`ξH .
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The lepton asymmetry in this case is replaced by

∆n` = − 12

v4
H

Im[mν,0m
∗
ν ]

mφ

m2
φ + γ2

φ

∫
d4rg1(y)M

− 12

v4
H

Im[ṁν,0m
∗
ν ]

1

m2
φ + γ2

φ

∫
d4rg2(y)M

− 12

v4
H

Im[(mν,0 −mν)ṁ∗ν,0]
1

2mφγφ

∫
d4r g3(y)M , (E.4)

where
∫
d4r =

∫
d3r×2

∫∞
0 dy. Here, the effective neutrino mass matrices mν,0 = λ0v

2
H/Λ,

ṁν,0 = λ̇0v
2
H/Λ are understood. Compared with ∆n` in eq. (4.15), the main difference in

eq. (E.4) in addition to the neutrino mass combinations, is the integrand yM replaced by

g1,2,3(y)M, where g1,2,3(y) have been defined in eq. (E.3). We follow the same procedure

as applied in section 4.3 to integrate out d3r and d3k′ and then arrive at the integration

2
∫ +∞

0 dyg1,2,3(y)M . The integral
∫ +∞

0 dy cos(my)e−γφyM and
∫ +∞

0 dy sin(my)e−γφyM ap-

pear to take a common factor, which can be rewritten in the following form

K sinh(βK/2)

[(K −m)2 + γ̃2][(K +m)2 + γ̃2]
=

1

4m

(
sinh(βK/2)

[(m−K)2 + γ̃2]
+

sinh(β(−K)/2)

[(m+K)2 + γ̃2]

)
, (E.5)

where K represents any of Kη2η3η4 and γ̃ = γ + γφ is the total summed damping rate of

the leptons, Higgses and the oscillating scalar φ(t). By defining

∆γ(m−K) =
γ

(m−K)2 + γ2
, (E.6)

this common factor is reexpressed as

1

4mγ̃

∑
η1=±1

sinh(βη1K/2)∆γ̃(m+ η1K) . (E.7)

Taking into account of the sign η1, we can expend Kη2η2η3 to

Kη1η2η3η4 = η1ωk + η2ωk′ + η3ωq + η4ωq′ . (E.8)

With this treatment, the integrals 2
∫ +∞

0 dyg1,2,3(y)M are simplified into forms∫ +∞

0
dyg1(y)M ≈

∫ +∞

0
dyg3(y)M

≈
∑

η1,η2,η3,η4=±1

[1− η1η2k̂ · k̂′]
128ωqωq′A

sinh(βKη1η2η3η4/2)∆γ̃(m−Kη1η2η3η4) ,

∫ +∞

0
dyg2(y)M ≈ lim

ε→0

∑
η1,η2,η3,η4=±1

[1− η1η2k̂ · k̂′]
256ωqωq′A

×
{
K2
η1η2η3η4 − ε2 + γ2

εγ
sinh(βKη1η2η3η4/2)∆γ(ε−Kη1η2η3η4) (E.9)

−
K2
η1η2η3η4 −m2

φ + γ̃2

mφγ̃
sinh(βKη1η2η3η4/2)∆γ̃(mφ −Kη1η2η3η4)

}
,
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where

A = cosh(ωkβ/2) cosh(ωk′β/2) sinh(ωqβ/2) sinh(ωq′β/2) . (E.10)

Here, we have ignored terms of higher orders of γφ, and

K sinh(βK/2)

K2 + γ2
= lim

ε→0

(K2 − ε2 + γ2)K sinh(βK/2)

[(K − ε)2 + γ2][(K + ε)2 + γ2]

= lim
ε→0

∑
η1=±1

K2 − ε2 + γ2

4εγ̃
sinh(βη1K/2)∆γ̃(ε+ η1K) , (E.11)

Again in the limit y � m−1
φ , we recover eq. (4.25) from the integrals involving g1(t)

and g3(t), while the integral involving g2(t) vanishes. Thus, this result is compatible with

that in the main text.

We would like to explore the case of vanishing damping rates as this will illustrate

a limit (albeit unphysical) of energy transfer between the scalar field and the thermal

plasma. Although this case is unphysical, it is instructive to start from this limit as it

shows similarities and differences of our work with the classical QFT, where incoming and

outing particles are treated as free particles. By setting γ, γ̃ → 0, we arrive at

lim
ε→0

∆γ(ε−Kη1η2η3η4) = lim
ε→0

πδ(ε−Kη1η2η3η4) = πδ(Kη1η2η3η4) ,

∆γ̃(mφ −Kη1η2η3η4) = πδ(mφ −Kη1η2η3η4) , (E.12)

respectively. The first δ function implies energy conservation during the scattering of

leptons and the Higgses via Weinberg operator. The second δ function leads to Kη1η2η3η4 =

mφ. This shows the energy transfer between φ and thermal bath particles (i.e., leptons

and Higgses) is mφ. Although, consideration of zero limit of the damping rates may be

helpful for understanding the energy transfer, it conceals some crucial contributions in our

mechanism of leptogenesis:

• By setting the lepton and Higgs damping rates (γ`, γH) to zero, all off-shell processes

related to these particles, e.g., transition emission from a lepton after it is produced

by the Weinberg operator, are forbidden. The energy transfer between the scalar and

the thermal bath has to be fixed at 0 or mφ, refer to the first and second δ functions

in eq. (E.12), respectively.

• By setting the damping rate of the scalar EEV (γφ) to zero, the scalar has a stable

oscillating profile with no damping. Therefore, processes of the scalar releasing energy

to the plasma take place in half of one period and the reverse processes take place

in the other half period with the same strength. As a consequence, a positive lepton

asymmetry is generated in one half period, while the same amount of negative lepton

asymmetry is generated in the other half period. Therefore, the lepton asymmetry

oscillates (does not converge) with time. We note that this divergent behaviour is

also reflected in eq. (4.25) in the zero-width limit.
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For illustration, we calculate the integrals 2
∫ +∞

0 dyg1,2,3(y)M in the limit of zero damping

widths. It is straightforward to obtain∫ +∞

0
dyg1,3(y)M →

∫ +∞

0
dy sin(mφy)M |γ=0∫ +∞

0
dyg2(y)M → 0 , (E.13)

from the definitions of g1,2,3(y) in eq. (E.3). Then, following eq. (4.25), we arrive at∫ Y

0
dy sin(mφy)M |γ=0

=

∫ Y

0
dy sin(mφy)

Im{[c(ωky
−)c(ωk′y

−) + k̂ · k̂′s(ωky
−)s(ωk′y

−)]c(ωqy
−)c(ωq′y

−)}
8ωqωq′ch(ωkβ/2)ch(ωk′β/2)sh(ωqβ/2)sh(ωq′β/2)

=
∑

η1,η2,η3,η4=±1

[1− η1η2k̂ · k̂′] sin[(Kη1η2η3η4 −mφ)Y ] sh(βKη2η3η4/2)

16ωqωq′(Kη1η2η3η4 −mφ) ch(ωkβ/2)ch(ωk′β/2)sh(ωqβ/2)sh(ωq′β/2)
.

(E.14)

This result oscillates with time difference Y , as we already mentioned above. It does not

converge when Y →∞ except including the damping effect. In the limit Y → 0, we cover

a momentum conversation Kη1η2η3η4 −mφ with the help of δ(x) = 1
π limY→0

sin(xY )
x . We

emphasise that the zero width limit is an unphysical if we do not set λ = λ0 = 0 (otherwise

the coupling to leptons and Higgses would cause φ to have a non-zero width). Consis-

tently taking these limits together causes the integral eq. (E.3) to be zero and therefore

not divergent.

To summarise, we introduce a non-zero damping rates of the lepton and Higgs to

parametrise off-shell effects related to these particles. As the leptons or Higgses may

transfer their energy to other degrees of freedom in the thermal bath, the energy released

to the plasma (Kη1η2η3η4) does not need to be mφ, but be in a range around mφ. A naive

estimation of the scalar mass is that it is in the same order of the temperature T . Thus, we

set an upper bound for the energy transfer around T . We note that this effective treatment

is adopted in order to remain agnostic about details of the scalar, φ, such as its mass and

its precise microphysical interactions with the leptons and Higgs.

We include a non-zero damping rate for the scalar EEV to drive the EEV in a definite

direction, i.e., 〈φ(t)〉 varying from 〈φ(t)〉|t=t0 to 0, as well as λ(t) varying from λ0 to λ,

as well as to obtain a net energy transfer from the vacuum to the plasma. While the

oscillating damping EEV profile does not apply to the whole period of phase transition,

an alternative effective treatment is to consider only the “macroscopic” behaviour of λ(t):

running definitely from initial value λ0 to final value λ.
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