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Abstract

In a lattice population model where individuals evolve as subcritical

branching random walks subject to external immigration, the cumu-

lants are estimated and the existence of the steady state is proved.

The resulting dynamics are Lyapunov stable in that their qualitative

behavior does not change under suitable perturbations of the main pa-

rameters of the model. An explicit formula of the limit distribution is

derived in the solvable case of no birth. Monte Carlo simulation shows

the limit distribution in the solvable case.
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migration; correlation functions; steady state; Lyapunov stability
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1 Introduction

The Galton–Watson process is a simple branching process (Watson and Galton,

1875), devoid of spatial dynamic. Models where particles can move randomly are

called branching random walks. Branching random walks can be used, for example,

in the modeling of viral epidemics (Ermakova et al., 2019). To determine the

regime, towards which an epidemic is tending, one computes a limit distribution,

which corresponds to a steady state, associated with the model. The question,

which we address here, of the existence of such a limit distribution, is therefore

fundamental.

Molchanov and Whitmeyer (2017) proved the existence of a steady state for the

critical branching process with binary splitting and transient underlying random

walk on the lattice Zd. Chernousova and Molchanov (2018) extended Molchanov

and Whitmeyer (2017) by considering an arbitrary total number of offspring which

spread randomly in space around the parental particle. These authors proved

the existence of a limit distribution of the population under the following addi-

tional conditions: 1) the tail of the distribution of the total number of offspring

decreases at least geometrically; 2) the sum of the generator associated with migra-

tion of each particle and the generator associated with the spreading of offspring is

a generator of a transient random walk. Critical branching processes are unstable

with respect to small perturbations of the birth and death rates. Han, Molchanov,
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and Whitmeyer (2017) and Han et al. (2017) introduced immigration, which can

stabilize the population size when the birth rate is less than the mortality rate

(subcritical case). These authors proved the existence of limits for the first two

moments, but that does not prove the existence of a steady state. We extend their

analysis of a subcritical random walk with immigration in proving the existence

of a steady state and its stability in the Lyapunov sense. Our proof is based on

Molchanov and Whitmeyer (2017), who estimated limits for all moments of the

total population and used Carleman conditions (Feller, 1971, Sect. VII.3) to estab-

lish a unique limit distribution. For simplicity, we consider binary splitting as in

Han, Molchanov, and Whitmeyer (2017). Based on Chernousova and Molchanov

(2018), we prove a unique limit distribution in the model of Han et al. (2017) with

arbitrary total number of offspring under the additional condition that the tail of

the distribution of the total number of offspring decreases at least geometrically.

Instead of Zd, Chernousova et al. (2019) explored the continuous-time and

continuous-space subcritical branching process subject to immigration in Rd and

proved the existence of a steady state and its stability. The methods used in the

proof are different in a lattice model and in a continuous-space model.

Yarovaya (2013) analyzed the limit behavior of all moments for the total

population in a branching random walk with a finite total number of branching

sources of different types. Khristolyubov and Yarovaya (2019) did the same for
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supercritical branching random walks.

Individuals move on the lattice Zd as independent random walks (Han, Molchanov,

and Whitmeyer, 2017), subject to splitting or duplication at rate β > 0 and mor-

tality at rate µ > 0. The critical case corresponds to β = µ. The random walk X

on Zd is governed by the generator

Laf(x) = κ
∑

z∈Zd\{0}

(
f(x+ z)− f(x)

)
a(z) ,

a(z) ≥ 0 ,
∑

z∈Zd\{0}

a(z) = 1 ,
∑

z∈Zd\{0}

z a(z) = 0 ,

(1)

where a( · ) is a suitable zero-mean probability kernel. The population size at site

y ∈ Zd at time t ≥ 0 is N(t, y).

For β = µ, if X is a transient Markov process, then, as t → ∞, the particle

field N(t, y) converges in law to a limit field N∗(y), which is a steady state (Han,

Molchanov, and Whitmeyer, 2017). If X is recurrent, no steady state exists and,

as t→∞, the field N(t, y) clusterizes: as time goes on, particles form larger and

larger clusters farther and farther away from each other.

Although steady states may exist in the transient case, such critical processes

are unstable under arbitrarily small random perturbations affecting its parameters.

Namely, a statistical equilibrium disappears once the previously constant rates are

replaced by β(x, ω) = β0 + εξ(x, ω) and µ(x, ω) = µ0 + εη(x, ω), where β0 = µ0,
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ε > 0 is a small parameter, and the random pairs
(
ξ(x, ω), η(x, ω)

)
are indepen-

dent of one another for different locations x and have a symmetric distribution

(say, on [−1, 1]2). This phenomenon is related to individual localization theorems

for random Schrödinger operators (Molchanov, 1994; Molchanov and Whitmeyer,

2017).

We address a class of lattice population models with immigration, for which

the steady state exists and is stable in the Lyapunov sense, which means for

sufficiently small (in L∞-norm) perturbations affecting the parameters. Unlike the

continuous-time continuous-space model in Chernousova et al. (2019), here in the

lattice case, several individuals can successively occupy the same location, which

leads to more complex combinations.

After presenting the model in section 2, we solve a case without splitting

mechanism (β = 0) in section 3. For the general case β ≥ 0 in section 4, we rely

on the connection between moments and cumulants. Together with Carleman type

bounds, this connection provides the uniqueness of the limit state. In section 5, we

extend these results to space-dependent bounded rates β(x) and µ(x) satisfying

0 < ∆1 ≤ µ(x)− β(x) ≤ ∆2 <∞ for all x ∈ Zd, where ∆1 and ∆2 are constants.

Thus the steady state is stable in the strongest Lyapunov sense, which means that

the stochastic equilibrium survives under sufficiently small perturbations of the

rates.
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2 Model

We consider the population as a particle field
(
N(t, y)

)
t≥0,y∈Zd . Individual particles

independently of one another die at rate µ or split into two at rate β, and, between

these events, move around as random walks with generator La in Eq. (1) with a

suitable kernel a( · ). The system is subcritical (µ > β) and is subject to external

immigration at rate γ > 0.

The random walk X describes independent movements of individual particles

between death or splitting events. Its generator is La in Eq. (1), where the kernel

a( · ) is symmetric: a(z) = a(−z) for all z ∈ Zd \{0}. X is supported on the whole

lattice, which is equivalent to positivity of the transition probability:

p(t, x, y) = Px (X(t) = y) > 0 , (2)

for all x, y ∈ Zd and t ≥ 0.

In terms of Fourier expansion,

L̂a(k) = κ
(∑
z∈Zd

cos(kz)a(z)− 1
)
, (3)

where k ∈ [−π, π]d =: T d. The transition probability is the inverse Fourier trans-
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form

p(t, x, y) =
1

(2π)d

∫
T d
etL̂a(k)e−ik(y−x) dk. (4)

It satisfies

p(t, x, y) = p(t, y, x) = p(t, y − x, 0) = p(t, x− y, 0) ,

p(t, x, y) ≤ p(t, x, x) = p(t, 0, 0) =
1

(2π)d

∫
T d
etL̂a(k) dk ,

∑
x∈Zd

p(t, x, y) =
∑
x∈Zd

p(t, y, x) = 1 .

(5)

The inequality p(t, x, y) ≤ p(t, x, x) results from the fact that L̂a(k) in Eq. (3) is

real and |L̂a(k)e−ik(y−x)| = L̂a(k).

In the time interval [t, t+dt), each particle can die independently of one another

with probability µ dt or split into two particles with probability β dt at the same

site. The subcriticality assumption

∆ = µ− β > 0 (6)

means that the initial configuration vanishes at a random finite future time: for

each y ∈ Zd, there is a finite random time τy such that N(t, y) = 0 for t ≥ τy.

Indeed, under Eq. (6) and a constant (not random) initial population, say
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N(0, y) ≡ 1,

m1(t, y) = E
(
N(t, y)

)
(7)

solves the forward Kolmogorov equation

∂m1

∂t
= Lam1 −∆m1 , m1(0, y) = 1 , (8)

so that

m1(t, y) = e−∆t → 0 , as t→∞ . (9)

Consider {tk}∞k=1 an increasing sequence tending to infinity fast enough such that

∞∑
k=1

e−∆tk <∞ (10)

and {Ak(Γ)}∞k=1 the sequence of events Ak(Γ) =

{
max
y∈Γ

N(tk, y) ≥ 1

}
. From

Chebyshev–Markov inequality (Feller, 1968, chap. IX) for any t > 0 and y ∈ Zd,

P (N(t, y) ≥ 1) ≤ m1(t, y). (11)

Eq. (9) and (11) lead to

P (Ak(Γ)) ≤ |Γ|e−∆tk , (12)
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and, due to Eq. (10),
∞∑
k=1

P (Ak(Γ)) <∞. (13)

Thus from the Borel-Cantelli lemma (Feller, 1968, chap. VIII.3) events Ak(Γ) occur

with probability one only in finite total number: there is a finite random time τΓ

such that N(t, y) = 0 for all y ∈ Γ and t ≥ τΓ. Equivalently, the particle field

vanishes at a random finite future time.

For each x ∈ Zd, we represent external immigration as a Poissonian point

field
{
τi(x)

}
i>0

on {x} × [0,∞) with parameter γ. Given x ∈ Zd, immigrant

particles arrive at times
{
τi(x)

}
i>0

, where 0 = τ0(x) < τ1(x) < τ2(x) < . . . and the

differences τi+1(x) − τi(x) are independent random variables following an Exp(γ)

distribution. We write ξ ∼ Exp(γ) if P(ξ > a) = e−γa for all a ≥ 0. For different

x ∈ Zd, the corresponding Poissonian point fields are assumed independent of one

another.

Individual sub-populations, each one being generated by an individual existing

at time t = 0, decay exponentially as t→∞. We thus assume that N(0, y) ≡ 0 for

all y ∈ Zd. In the model with immigration, the first moment m1(t, y) = E
(
N(t, y)

)
solves the forward Kolmogorov equation

∂m1

∂t
= Lam1 −∆m1 + γ , m1(0, y) = 0 , (14)
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and thus satisfies

m1(t, y) ≡ γ

∫ t

0

e−∆s ds→ γ

∆
as t→∞ . (15)

For fixed x ∈ Zd and τi(x) < t, n(t− τi(x), x, y) is the total number of individ-

uals at y ∈ Zd at time t descending from the common ancestor who immigrated

to x at time τi(x). Then, with Nx(t, y) denoting the total number of individuals

at y at time t, whose ancestors immigrated to x at s ∈ [0, t):

Nx(t, y) :=
∑
τi(x)≤t

n(t− τi(x), x, y) . (16)

The solution N(t, y) is the independent sum

N(t, y) =
∑
x∈Zd

Nx(t, y)

law
=
∑
x∈Zd

∑
ξ
(x)
1 +···+ξ(x)k ≤t

n
(
t− (ξ

(x)
1 + · · ·+ ξ

(x)
k ), x, y

)
,

(17)

where ξ
(x)
i ∼ Exp(γ) are independent of one another for i > 0 and x ∈ Zd.

For each x ∈ Zd, the sub-population size νx(t) =
∑

y∈Zd n(t, x, y) at time

t ≥ 0 is a Galton–Watson process (Sevastyanov, 1971). Its generating function
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ψz(t) := Ezνx(t) satisfies

∂ψz
∂t

= βψ2
z − (β + µ)ψz + µ = (ψz − 1)(βψz − µ) , ψz(0) = z, (18)

with α = β/µ < 1. Separation of variables gives

ψz(t)− 1

αψz(t)− 1
=

z − 1

αz − 1
e−∆t , (19)

so that

ψz(t) =
(α− e−∆t)z − (1− e−∆t)

α(1− e−∆t)z − (1− αe−∆t)
, (20)

which is the generating function of a generalized geometric distribution. Hence

E νx(t) =
d

dz
ψz(t)

∣∣
z=1

= e−∆t → 0 , as t→∞ . (21)

φz such that φz(t, x, y) := Ezn(t,x,y) is the generating function of the sub-

population n(t, x, y). It satisfies the backward Kolmogorov equation

∂φz
∂t

= Laφz + βφ2
z − (β + µ)φz + µ , φz(0, x, y) =


z x = y ,

1 x 6= y ,

(22)

which is the lattice analogue of the classical Fischer–Kolmodorov–Petrovskii–Piskunov

equation (Fisher, 1937; Kolmogorov et al., 1937). We solve Eq. (22) in the partic-
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ular case µ > β = 0.

3 A solvable case: µ > β = 0

First consider the special case β = 0, µ > 0, and γ > 0 (no birth).

Without random movements, for each fixed point y ∈ Zd, the process N(t, y)

behaves as a queueing system with an infinite number of servers, whose incoming

calls arrive according to a Poisson process with parameter γ. Each call is served

independently of others during exponentially distributed times of mean µ−1. This

queueing system is ergodic and the Poisson process of parameter γ
µ

is at its steady

state (Feller, 1968; Karlin and Taylor, 1975). Lemma 1 states that this steady

state survives under any symmetric random walk.

Lemma 1. If β = 0, as t → ∞, N(t, y) converges in distribution to that of

N(∞, y), which is a Poisson random variable with parameter γ/µ. The limit

random variables
(
N(∞, y)

)
y∈Zd are independent of one another.

Proof. Fix x, y ∈ Zd and 0 ≤ s < t. The random variable n(t− s, x, y) at y ∈ Zd

and at time t has the same distribution as the total number of offspring, whose

ancestor immigrated to x at time s < t. As there are no births (β = 0), the

variable n(t− s, x, y) is Bernoulli distributed with

P
(
n(t− s, x, y) = 1

)
= e−µ(t−s) p(t− s, x, y) , (23)
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because the event is possible only if the ancestor particle survives during the time

interval [s, t] and is located at y at time t. The generating function is

φz(t− s, x, y) = Ezn(t−s,x,y) = 1 + (z − 1) e−µ(t−s) p(t− s, x, y) . (24)

The total number of ancestors who immigrated to x at t is Poisson distributed with

parameter γt. If their total number is fixed, then the descendants are independent

of one another and distributed uniformly over [0, t) (Kingman, 1993):

E zNx(t,y) =
∞∑
m=0

e−γt
(γt)m

m!

(
1

t

∫ t

0

φz(t− s, x, y) ds

)m
= exp

(
γ(z − 1)

∫ t

0

e−µ(t−s)p(t− s, x, y) ds

)
.

(25)

Consequently, the generating function of N(t, y) =
∑

x∈Zd Nx(t, y) satisfies

E zN(t,y) ≡ E z
∑
xNx(t,y) = exp

(
γ(z − 1)

∫ t

0

e−µ(t−s)
∑
x∈Zd

p(t− s, x, y) ds

)
. (26)

By the last property in Eq. (5),

E zN(t,y) ≡ exp

(
γ(z − 1)

∫ t

0

e−µ(t−s) ds

)
= exp

(
γ(z − 1)

µ

(
1− e−µt

))
, (27)

and, as t → ∞, the generating function of N(t, y) converges to exp
(
γ
µ
(z − 1)

)
,
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which is a Poisson distribution with parameter γ/µ. Namely,

P
(
N(∞, y) = k

)
=

(
γ
µ

)k
k!

e−
γ
µ for all k = 0, 1, 2, . . . . (28)

We show now that for distinct y ∈ Zd, the limit random variables N(∞, y) are

independent of one another. For notation simplicity, we consider only the case of

two variables; the general case is similar.

Fix y1 6= y2. As in Eq. (24),

E
(
z
n(t−s,x,y1)
1 z

n(t−s,x,y2)
2

)
= 1 + (z1 − 1) e−µ(t−s) p(t− s, x, y1)

+ (z2 − 1) e−µ(t−s) p(t− s, x, y2) ,

(29)

so that, as in Eq. (25),

E
(
z
Nx(t,y1)
1 z

Nx(t,y2)
2

)
=

∞∑
m=0

e−γt
(γt)m

m!

(
1

t

∫ t

0

Ex
(
z
n(t−s,x,y1)
1 z

n(t−s,x,y2)
2

)
ds

)m
= exp

(
γ

∫ t

0

e−µs
(
(z1 − 1)p(s, x, y1) + (z2 − 1)p(s, x, y2)

)
ds

)
.

(30)
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As descendants are independent of one another,

E
(
z
N(t,y1)
1 z

N(t,y2)
2

)
=
∏
x∈Zd

E
(
z
Nx(t,y1)
1 z

Nx(t,y2)
2

)
= exp

(
γ
∑
x∈Zd

∫ t

0

e−µs
(
(z1 − 1)p(s, x, y1) + (z2 − 1)p(s, x, y2)

)
ds

)

= exp

(
γ

µ

(
(z1 − 1) + (z2 − 1)

)(
1− e−µt

))
= E z

N(t,y1)
1 E z

N(t,y2)
2 ,

(31)

which, when t→∞, gives

E
(
z
N(t,y1)
1 z

N(t,y2)
2

)
→ E z

N(∞,y1)
1 E z

N(∞,y2)
2 . (32)

It is straightforward to extend to any finite collection {y1, y2, . . . , yk}.

4 The general case µ > β ≥ 0

4.1 Growth of moments

The factorial moments of n(t, x, y)

ml(t, x, y) := E
(
n(t, x, y) (n(t, x, y)− 1) . . . (n(t, x, y)− l + 1)

)
≡ E

n(t, x, y)!

(n(t, x, y)− l)!

(33)
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are obtained by successively differentiating in Eq. (22) and using the fact that

ml(t, x, y) =
∂lφz(t, x, y)

∂zl

∣∣∣
z=1

. (34)

For the first moment, as ∆ = µ− β > 0,

∂m1

∂t
= Lam1 −∆m1 , m1(0, x, y) = δx(y) , (35)

where δx(y) = δ(y − x) is the Dirac delta function in 0:

δ(z) =


1 if z = 0 ,

0 , otherwise .

(36)

The solution to Eq. (35) then is

m1(t, x, y) = e−∆tp(t, x, y) , (37)

where p(t, x, y) is defined in Eq. (2) and is the solution of the homogeneous equation

∂p

∂t
= Lap , p(0, x, y) = δx(y) . (38)

It follows from Eq. (5) that m1(t, x, y) ≤ m1(t, x, x) for all y ∈ Zd.
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Likewise, the l-th factorial moment with l ≥ 2 satisfies

∂ml

∂t
= Laml −∆ml + β

l−1∑
i=1

(
l

i

)
miml−i , ml(0, x, y) = 0 . (39)

We first introduce Duhamel’s principle (Vasy, 2015):

Lemma 2. If f(t, x), t ≥ 0, x ∈ Zd, is the fundamental solution of the homoge-

neous equation:

∂f

∂t
(t, x) = Lf(t, x), f(0, x) = δ(x), (40)

then the solution to the non-homogeneous equation

∂F

∂t
(t, x) = Lf(t, x) + g(t, x), F (0, x) = 0, (41)

is

F (t, x) =

∫ t

0

∑
v∈Zd

f(t− s, x− v)g(s, v)ds. (42)

As in Molchanov and Whitmeyer (2017), we have:

Theorem 3. There exists a finite positive constant c such that

ml(t, x, y) ≤ cl l! e−∆t p(t, x, y) (43)
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for all real t ≥ 0, integer l ≥ 1, and x, y ∈ Zd.

By the spatial homogeneity of the dynamic and the first line in Eq. (5), the

distribution of n(t, x, y) coincides with that of either n(t, 0, y − x), n(t, 0, x − y),

n(t, y− x, 0), or n(t, x− y, 0), which are the same by the first property in Eq. (5).

It is thus sufficient to study the behavior of n(t, x, 0), that is, when y = 0.

Proof. Because the case l = 1 results from Eq. (37), we start with l = 2. Differ-

entiating Eq. (22) yields

∂m2

∂t
= Lam2 −∆m2 + 2βm2

1 , m2(0, x, y) = 0 , (44)

whose solution we obtain using Duhamel’s principle recalled in Lemma 2. We get

m2(t, x, 0) =2β

∫ t

0

∑
v∈Zd

p(t− s, x− v, 0) e−∆(t−s) m2
1(s, v, 0) ds

=2β

∫ t

0

∑
v∈Zd

p(t− s, x− v, 0) e−∆(t−s) e−2∆s p2(s, v, 0) ds .

(45)

From p(s, v, 0) ≤ p(s, 0, 0), Eq. (5), and the Chapman-Kolmogorov relation

∑
v∈Zd

p(t− s, x− v, 0) p(s, v, 0) =
∑
v∈Zd

p(t− s, x, v) p(s, v, 0) = p(t, x, 0) , (46)

we get

m2(t, x, 0) ≤ 2β p(t, x, 0) e−∆t

∫ t

0

e−∆sp(s, 0, 0) ds . (47)
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Denoting G∆(x, y) :=
∫∞

0
e−∆sp(s, x, y) ds the Green function corresponding to

the operator La, we deduce that

m2(t, x, 0) ≤ 2βG∆(0, 0) e−∆t p(t, x, 0) . (48)

From now on, we proceed by induction and show that, for all l ≥ 1,

ml(t, x, 0) ≤ Bl−1Dl e
−∆tp(t, x, 0) , (49)

where B = max{1, βG∆(0, 0)} is a finite constant, and the sequence Dl is recur-

rently defined from

D1 = 1 , Dl =
l−1∑
i=1

(
l

i

)
DiDl−i , ∀ l ≥ 2 . (50)

Assume that Eq. (49) holds for all l′ < l. Then, from Eq. (50), we get

l−1∑
i=1

(
l

i

)
mi(s, v, 0)ml−i(s, v, 0) ≤ Bl−2 e−2∆s p2(s, v, 0)

l−1∑
i=1

(
l

i

)
DiDl−i

= Bl−2Dl e
−2∆s p2(s, v, 0)

(51)
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and thus, as for Eq. (46),

∑
v∈Zd

p(t− s, x− v, 0)
l−1∑
i=1

(
l

i

)
mi(s, v, 0)ml−i(s, v, 0)

≤ Bl−2Dl e
−2∆s

∑
v∈Zd

p(t− s, x− v, 0) p2(s, v, 0)

≤ Bl−2Dl e
−2∆s p(s, 0, 0) p(t, x, 0) .

(52)

Therefore, applying Duhamel’s principle to Eq. (39), we deduce

ml(t, x, 0) ≤ β

∫ t

0

e−∆(t−s)Bl−2Dl e
−2∆s p(s, 0, 0) p(t, x, 0) ds

≤ βe−∆tBl−2Dl p(t, x, 0)G∆(0, 0) ,

(53)

so that Eq. (49) holds for all l ≥ 1, by induction.

We finally estimate the sequence (Dl)l≥1. Because, in terms of dl := Dl/l!,

the sum in Eq. (50) is a convolution, the generating function D(z) :=
∑∞

l=1 dlz
l

satisfies the quadratic equation

D(z) = z +D2(z) (54)

which is similar to the generating function for Catalan’s numbers (Flajolet and

Sedgewick, 2009). Only the solution of Eq. (54):

D(z) =
1−
√

1− 4z

2
(55)
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satisfies the condition D(0) = 0. The growth of a coefficient is defined by the radius

of convergence which is equal to the distance from origin to the closest singularity

(Flajolet and Sedgewick, 2009): here R = 1
4
. Then dl ≤

(
1
R

+ ε
)l

= (4 + ε)l for all

ε > 0 and thus Dl ≤ 5l l!. This, together with Eq. (49), implies Theorem 3 for

c = 5B.

4.2 Existence of a steady state

We extend the convergence property of Lemma 1 to the general subcritical case

µ > β ≥ 0. Our main result is:

Theorem 4. There exists a unique particle field
(
N(∞, y)

)
y∈Zd such that, as t→

∞, the distribution of N(t, y) converges in distribution to that of N(∞, y) for all

y ∈ Zd.

We prove the convergence of the moments in terms of cumulants and then use

a priori bounds introduced in Theorem 3 to establish the uniqueness of the limit

distribution.

Y is an integer-valued random variable of generating function φY such that

φY (z) = EzY . The l-th factorial moment of Y is defined as the l-th derivative

of φY (z) at z = 1; the l-th cumulant χl(Y ) is defined as the l-th derivative of

lnφY (z). There is a one-to-one correspondence between moments and cumulants.

Cumulants possess the additivity property: if Y1 and Y2 are independent random
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variables, then χl(Y1 + Y2) = χl(Y1) + χl(Y2) for all l ≥ 1.

By Eq. (17), for all t ≥ 0 and x, y ∈ Zd, this additive property yields

χl
(
N(t, y)

)
= χl

(∑
x∈Zd

Nx(t, y)
)

=
∑
x∈Zd

χl
(
Nx(t, y)

)
. (56)

Lemma 5. For all t ≥ 0 and x, y ∈ Zd,

χl
(
Nx(t, y)

)
= γ

∫ t

0

ml(s, x, y) ds . (57)

Consequently, χl
(
N(t, y)

)
=
∑

x∈Zd χl
(
Nx(t, y)

)
increases with t.

Proof. As in Eq. (25), we have

EzNx(t,y) =
∞∑
m=0

e−γt
(γt)m

m!

(1

t

∫ t

0

Ezn(t−s,x,y) ds
)m

= exp

(
γ

∫ t

0

(
Ezn(s,x,y) − 1

)
ds

)
(58)

so that

lnEzNx(t,y) = γ

∫ t

0

(
Ezn(s,x,y) − 1

)
ds =

∑
l≥1

(z − 1)l

l!
γ

∫ t

0

ml(s, x, y) ds . (59)

By definition of cumulants,

lnEzNx(t,y) =
∑
l≥1

(z − 1)l

l!
χl
(
Nx(t, y)

)
, (60)
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from which the first claim of Lemma 5 follows.

By its definition, ml(s, x, y) ≥ 0 for all s ≥ 0 and x, y ∈ Zd, the integral in

Eq. (57) implies that both the individual cumulants χl
(
Nx(t, y)

)
and their sum

χl
(
N(t, y)

)
are increasing functions of time.

Combining Lemma 5 with Theorem 3, we obtain

Corollary 6. For all integer l ≥ 1, real t ≥ 0 and y ∈ Zd,

χl
(
N(t, y)

)
≤ cll!γ

∫ t

0

e−∆s
∑
x∈Zd

p(s, x, y) ds ≤ cll!
γ

∆
. (61)

It follows from Lemma 5 and Corollary 6 that, for each y ∈ Zd, the limit of

χl
(
N(t, y)

)
exists and satisfies

χl
(
N(∞, y)

)
:= lim

t→∞
χl
(
N(t, y)

)
≤ cll!

γ

∆
(62)

so that the function

lnEzN(∞,y) :=
∑
l≥1

(z − 1)l

l!
χl
(
N(∞, y)

)
(63)

is analytic in a complex neighbourhood of z = 1. By Feller (1971, Sect. VII.3),

it corresponds to a unique probability distribution and thus identifies the limit

random variable N(∞, y).
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This completes the proof of Theorem 4.

A similar argument holds for all joint moments and cumulants. Indeed, fix

t ≥ 0 and lattice nodes x, y1, y2, and consider the joint generating function

φz1,z2(t, x, y1, y2) := E
(
z
n(t,x,y1)
1 z

n(t,x,y2)
2

)
(64)

and the single sub-population joint moment of orders l1 > 0, l2 > 0. Based on

Eq. (33) and (34),

ml1,l2(t, x, y1, y2) := E
( n(t, x, y1)!

(n(t, x, y1)− l1)!

n(t, x, y2)!

(n(t, x, y2)− l2)!

)
≡ ∂l1

(∂z1)l1
∂l2

(∂z2)l2
φz1,z2(t, x, y1, y2)

∣∣∣
z1=z2=1

.

(65)

Then for the corresponding cumulant

χl1,l2
(
Nx(t, y1), Nx(t, y2)

)
:=

∂l1

(∂z1)l1
∂l2

(∂z2)l2
lnE
(
z
Nx(t,y1)
1 z

Nx(t,y2)
2

) ∣∣∣
z1=z2=1

, (66)

the analogue of Lemma 5 holds:

χl1,l2
(
Nx(t, y1), Nx(t, y2)

)
= γ

∫ t

0

ml1,l2(s, x, y1, y2) ds . (67)

Because ml1,l2(s, x, y1, y2) ≥ 0, the cumulant χl1,l2
(
Nx(t, y1), Nx(t, y2)

)
increases

with t and, as t→∞, it converges to a finite limit.
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Extending this argument to all joint moments and cumulants, we deduce the

convergence of all finite-dimensional distributions of the particle field N(t, · ) to

that of N(∞, · ) as t → ∞. As in Chernousova et al. (2019), it follows that the

distribution of N(∞, · ) is the unique steady state of the model.

5 Non-homogeneous dynamics

We extend the argument of section 4 to the case where the space is not homoge-

neous. The birth rate β(x) and the mortality rate µ(x) are bounded functions of

x ∈ Zd, so that the difference ∆(x) := µ(x)− β(x) satisfies

0 < ∆1 ≤ ∆(x) ≤ ∆2 <∞ , ∀x ∈ Zd ,

for suitable constants ∆1 and ∆2. Eq. (35) becomes

∂f̄y
∂t

(t, x) = Laf̄y(t, x)−∆(x)f̄y(t, x) , f̄y(0, x) = δ(y − x) . (68)

Following Chernousova et al. (2019), we can construct the random processes N1

and N2 on the same probability space as the random process N , where the dynamic

of Ni corresponds to ∆i, i = 1, 2, such that the particle field N2 is a subset of the

particle field N and the particle field N is a subset of the particle field N1 using the

coupling argument or the monotonicity properties of the solution to the parabolic
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equation, for each x, we have that m1(t, x, y) ≡ f̄y(t, x) is smaller than the solution

to Eq. (35) with ∆ = ∆1:

m1(t, x, y) ≡ f̄y(t, x) ≤ e−∆1tp(t, x, y). (69)

The distribution of N(t, y) is no longer shift-invariant and the factorial moments

of the sub-populations n(t, x, y) now depend on the pair (x, y), not just on the

difference y − x.

In the non-homogeneous case, the second factorial moment m2(t, x, y) satisfies

the analogue of Eq. (44):

∂m2

∂t
= Lam2 −∆(x)m2 + 2βm2

1 , m2(0, x, y) = 0 , (70)

so that, thanks to the non-homogeneous version of Duhamel’s principle recalled in

Lemma 2, Eq. (45) becomes

m2(t, x, y) = 2β

∫ t

0

∑
v∈Zd

f̄v(t− s, x)m2
1(s, v, y) ds

≤ 2βe−∆1t

∫ t

0

∑
v∈Zd

p(t− s, x, v) e−∆1s p2(s, v, y) ds

≤ 2βe−∆1t p(t, x, y)

∫ t

0

e−∆1s p(s, v, v) ds

≤ 2β G∆1(0, 0) e−∆1t p(t, x, y) .

(71)
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We extend Theorem 3 with the estimate

ml(t, x, y) ≤ cl l! e−∆1t p(t, x, y) , (72)

and deduce the analogue of Theorem 4 for the non-homogeneous case.

6 Monte Carlo Simulation

We present a Monte Carlo simulation. We consider a branching random walk on

Z1. This simple setting is done to focus on the limit distribution. We set the birth

rate to β = 0, the death rate to µ = 0.2, and the external immigration rate to

γ = 0.5. For the random walk, κ = 1, a(1) = a(−1) = 0.5, and for z ∈ Z1\{−1, 1},

a(z) = 0. At initial time t = 0, there is a single population located at the origin

x = 0. We simulate our model in Z1 based on Eq. (17), Eq. (18) and repeat the

simulations 10,000 times so as to obtain an approximation of the population at

t→∞.

Figure 1 shows the limit distribution of the population at x = 0 after large time

t ( t
dt

is ≥ 1000). The left panel in Figure 1 shows the histogram of the population

size at location x = 0, the right panel in Figure 1 allows comparing the fitted with

the theoretical distributions. As indicated in Lemma 1, the limit distribution is a

Poisson distribution with parameter γ
µ
, which is 2.5 in our setting. The simulation
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is consistent with result of Eq. (28) in the solvable case µ > β = 0. Figures 2

and 3 show the limit distributions at x = 4 and x = −5. There is no noteworthy

difference between Figures 2 and 3, because the limit distribution depends only on

the ratio of immigration rate γ and death rate µ and it does not depend on the

location of the population x in the case µ > β = 0.

Figure 1: β = 0, µ = 0.2, γ = 0.5, κ = 1. The left panel is the histogram for

N(∞, 0); the right panel shows that the distribution fitted for the histogram is

close to the theoretical distribution for N(∞, 0).
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Figure 2: β = 0, µ = 0.2, γ = 0.5, κ = 1. The left panel is the histogram for

N(∞, 4); the right panel shows that the distribution fitted for the histogram is

close to the theoretical distribution for N(∞, 4).
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Figure 3: β = 0, µ = 0.2, γ = 0.5, κ = 1. The left panel is the histogram for

N(∞,−5); the right panel shows that the distribution fitted for the histogram is

close to the theoretical distribution for N(∞,−5).

7 Conclusion

We have introduced immigration into a population model in Zd, d ≥ 1, where

individuals evolve independently as branching random walks with simple binary

splitting. In the the stability region where the mortality rate µ is higher than the

birth splitting rate β, for large time, the distribution of the population converges to

a steady state (also called stochastic equilibrium). In the solvable case µ > β = 0,

we have identified the limit distribution as an independent Poisson point field on

Zd (Eq. (28) and (32)).

29



Funding

The study was funded by the Russian Science Foundation (project No. 17-11-
01098).

References

Chernousova, Elena, Hryniv, Ostap, & Molchanov, Stanislav (2019). Population

model with immigration in continuous space. Mathematical Population Studies:

(forthcoming).

Chernousova, Elena, & Molchanov, Stanislav (2018). Steady state and intermit-

tency in the critical branching random walk with arbitrary total number of

offspring. Mathematical Population Studies, 26(1): 47–63.

Ermakova, Elizaveta, Makhmutova, Polina, & Yarovaya, Elena (2019). Branching

random walks and their applications for epidemic modeling. Stochastic Models,

35(3): 300–317.

Feller, William (1968). An Introduction to Probability Theory and its Applications,

Volume 1 (3rd edition). New York: Wiley.

Feller, William (1971). An Introduction to Probability Theory and its Applications,

Volume 2 (2nd edition). New York: Wiley.

Fisher, Ronald Aylmer (1937). The wave of advance of advantageous genes. Annals

of Eugenics, 7(4): 355–369.

Flajolet, Philippe and Sedgewick, Robert (2009). Analytic Combinatorics. Cam-

bridge: Cambridge University Press.

30



Han, Dan, Molchanov, Stanislav, & Whitmeyer, Joseph (2017). Population pro-

cesses with immigration. Modern problems of stochastic analysis and statistics,

Vladimir Panov (ed.). Springer Proc. Math. Stat., 208: 411–434.

Han, Dan, Makarova, Yulia, Molchanov, Stanislav, & Yarovaya, Elena (2017).

Branching random walks with immigration. Modern problems of stochastic anal-

ysis and statistics, Vladimir Panov (ed.). Springer Proc. Math. Stat. 401–408.

Karlin, Samuel and Taylor, Howard (1975). A First Course in Stochastic Processes

(2nd edition). New York-London: Academic Press.

Khristolyubov, Ivan, & Yarovaya, Elena (2019). Limit theorem for super-

critical branching random walks with branching sources of varying intensity.

arXiv:1904.01468v1

Kingman, John Frank Charles (1993). Poisson Processes. Oxford: Clarendon

Press.

Kolmogorov, Andrey, Petrovskii, Ivan, & Piskunov, Nikolai (1937). A study of the

diffusion equation with increase in the quantity of matter, and its application to

a biological problem. Bulletin of Moscow State University. International Series

A, 1(1): 1–25.

Ma, Shixia, Molina, Manuel, & Xing, Yongsheng (2012). Two-sex branching pop-

ulations with progenitor couples in a random environment. Mathematical Pop-

ulation Studies, 19(4): 177–187.

Molchanov, Stanislav (1994). Lectures on random media. In Lectures on prob-

31



ability theory (Saint-Flour, 1992), Lecture Notes in Mathematics 1581. Berlin,

Heidelberg: Springer Berlin Heidelberg, 242–411.

Molchanov, Stanislav and Whitmeyer, Joseph (2017). Stationary distributions in

Kolmogorov-Petrovski-Piskunov-type models with an infinite number of parti-

cles. Mathematical Population Studies, 24(3): 147–160.

Sevast′yanov, Boris Aleksandrovich (1971). Branching Processes. Moscow: Nauka.

Vasy, András (2015). Partial differential equations: An accessible route through

theory and applications, Graduate Studies in Mathematics 169. Providence,

Rhode Island: American Mathematical Society.

Yarovaya, Elena (2013). Branching random walk with several sources. Mathemat-

ical Population Studies, 20(1): 14–26.

Watson, William and Galton, Francis (1875). On the probability of the extinction

of families.The Journal of the Anthropological Institute of Great Britain and

Ireland, 4 : 138–144.

32


