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ABSTRACT
The point spread function (PSF) plays a very important part in image post-processing and
high-precion astrometry and photometry. It is necessary to analyse the properties of the PSF
before we use it to process data. However, in real observations, the PSF is affected by many
different factors and the shape of it has inevitable spatial and temporal variations that can be
hard to describe. In this paper, we propose a clustering method to evaluate the shape variations
of PSFs. We analyse the performance of this method with simulated PSFs under different
observation conditions. Then, we process two observational data sets with this method. The
PSF clustering results can provide a reference for checking observation conditions and can be
used for astrometry based on PSF fitting. In general, our method can reveal the morphologic
similarities of different PSFs and can provide a reference for observations. The cluster revealed
by our method can provide a reference for the evaluation of observation conditions and for the
post-processing of astronomical observation data.
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1 IN T RO D U C T I O N

For optical observations, the point spread function (PSF) describes
the reponse of the whole optoelectronic system to a point source. For
a given telescope, during the design procedure, the PSF can be cal-
culated using some mature optical design software, such as ZEMAX

or Code V. Through suitable spatial sampling and noise adding, we
can simulate the images of stars that would be obtained by photo-
sensors. These are relatively stable and can be used as a reference to
evaluate the performance of telescopes or to design post-processing
algorithms (Gai & Cancelliere 2007; Krist, Hook & Stoehr 2011;
Perrin et al. 2014). However, during the observation stage, the PSFs
of a telescope have an inevitable spatial and temporal variation. In
the temporal domain, for space telescopes, PSFs vary because of
thermal deformation; for ground-based telescopes, the variations
of PSFs are mainly induced by atmospheric turbulence, thermal
deformation, gravitational deformation, pointing and tracking er-
ror. In the spatial domain, for wide-field telescopes or telescopes
with refractive elements, field-dependent aberrations (such as coma,
astigmatism, distortion) and chromatic aberrations couple with dy-
namical aberrations and make the shape of the PSFs very complex
and hard to describe.

The reasons discussed above make it hard to evaluate the vari-
ations in PSF and limit further increments of the performance of
image processing algorithms (Desiderà & Carbillet 2009), astrom-
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etry based on PSF fitting and the photometry method (Diolaiti et al.
2000; Gai, Busonero & Cancelliere 2013; Bradley et al. 2016). As a
first-order approximation, a commonly accepted assumption is that
the PSF is stable during some time-scales and a mean PSF or an
artificial PSF can be used as PSF template (Schechter, Mateo &
Saha 1993; Kuijken 2008; Li et al. 2016). However, the validity of
this assumption depends significantly on the observation tactic and
observation site. Because space telescopes have very stable obser-
vation conditions, the PSF can be generated from observation data
(Anderson & King 2000). However, for ground-based telescopes,
the temporal and spatial variations mean that it is hard to apply this
method. In these circumstances, mean PSFs obtained directly from
an epoch of all the observation data are widely used (La Camera
et al. 2015). As the mean PSF is generated from observation data
and reflects the common property of all the PSFs in the relevant
epoch, it is necessary to analyse the property of these PSFs before
we apply this method. However, because of the huge number of
stars that can be used as a PSF reference, it is better to use an
unsupervised classification method to analyse PSFs.

In this paper, we propose a new PSF classification method based
on a cluster algorithm to reveal the temporal and spatial variations
of PSFs. The PSF clusters obtained by our method can help us to
analyse the distribution of PSFs with different morphological pat-
terns and can further improve PSF-based post-processing methods.
In Section 2, we give the basic theory and process of our method.
In Section 3, we analyse the performance of our classification al-
gorithm with PSFs generated from Monte Carlo simulations under
different observation conditions, such as PSFs obtained from a tele-
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scope with field-dependent aberrations, PSFs with different spatial
sampling rates and PSFs with different signal-to-noise (S/N) ratios.
In Section 4, we use observation data from two different telescopes
to show the improvement of the observation results obtained using
our classification algorithm. In Section 5, we make conclusions and
anticipate our future work.

2 BA S I C T H E O RY A N D M E T H O D

PSFs obtained from observational data can be seen as images with
particular structures. These structures are important for data pro-
cessing and analysis. However, during observations, they are always
affected by the presence of photon–electronic noise and finite spa-
tial discrete sampling of detectors. The noise smears the wings of
PSFs and the finite discrete sampling reduces the details of the PSFs.
To be able to classify PSFs according to their structural variations,
it is necessary to design a classification algorithm that includes
data cleaning and pre-processing, feature selection, classification,
cluster evaluation and representation of classification results in a
data cube. Before applying this classification algorithm, we need to
define what we mean by a PSF.

2.1 PSF definition

A PSF is the response of an imaging system to a point source. The
imaging process can be expressed by

I (x, y, t0) =
∫ t0+δt

t0

[O(x, y, τ ) ∗ g(x, y, τ )] dτ (1)

where O(x, y, τ ) is the original image, g(x, y, τ ) is the spatial and
temporal variable PSF and ∗ represents convolution. In general,
stars are point sources, so that O(x, y, τ ) is unit pulse function. I(x,
y) represents the PSF of the whole imaging system. If the CCD is
considered as part of the imaging system, then the imaging process
will also include the effects brought about by the photon–electronic
noise and the finite spatial discrete sampling of detectors as defined
by

I (x, y, t0) =
∫ t0+δt

t0

{
[O(x, y, τ ) ∗ g(x, y, τ )]pixel(x,y)

+N (x, y, τ )
}

dτ. (2)

Here, [ ]pixel represents the point response of the CCD, N(x, y, τ )
is the noise from the CCD and the sky background and I(x, y, t0)
is the observation image in t0 with an exposure time of δt. For
astronomical observations, images of stars can be viewed as noisy
realizations of PSFs with a particular pixel sampling rate. In this
paper, we use flux-normalized star images with enough S/N ratio
and a moderate shape as adequate representations of PSFs. This
is because with ground-based wide-field observations, we find it
harder to reconstruct PSFs directly from observation data than with
space telescopes (Anderson 2016). It should be mentioned that these
PSFs will include both the optical imaging and the CCD sampling
effects, which is different from the commonly accepted definition.

2.2 Data cleaning and pre-processing

The PSF classification results are affected by many different fac-
tors and we propose our data cleaning and pre-processing steps as
follows.

First, images with different S/N ratios have strong effects on the
PSF classification results, so we need to restore the PSF along with

Table 1 The information for two PSFs in the PSF data cube. The grey-scale
images are modified with the zscale algorithm in DS9 (Joye et al. 2003) for
a clearer demonstration.

Parameters PSF A PSF B

PSF image
PSF size 9 pixels 9 pixels
Position on X-axis 253 246
Position on Y-axis 546 235
Eccentricity 0.9 0.6
S/N ratio 33 46
Exposure time 5 s 5 s
Observation time in
UTC

2017/02/10 2017/02/10

Observation time (to
seconds)

13:06:23 15:08:24

the S/N ratio of the original star’s image. The S/N ratio we use in
this paper is defined by

SNR = signal − noise

σnoise

(3)

where noise represents the mean value of the background, σ noise is
the standard deviation of the background and signal is the mean
value of the star.

Secondly, to remove the images of moving targets or overex-
posed images, we extract images of stars with a predefined size (in
general, we set the size to be 9 pixels) using SEXTRACTOR (Bertin &
Arnouts 1996) and we delete images with extraordinary eccentricity
as defined by

eccentricity = lengthX

lengthY

. (4)

Here, lengthX and lengthY are the length of the star’s image along
the X-axis and Y-axis, respectively. We fit an ellipse to the star’s
image to calculate its lengthX and lengthY. The stars whose images
have eccentricity between 0.5 and 2 are accepted as ordinary stars.

Then, the images of ordinary stars that we select are normalized
by the total flux as shown in

StarImgnormalized = StarImg

sum(StarImg)
, (5)

where sum(StarImg) is the summation of grey values for each pixel
from the extracted star image. The normalized star image will be
treated as an acceptable PSF representation and used for further
PSF classification and analysis.

Finally, we also save the spatial and temporal positions of the
extracted star images and we store all this information in a data
cube. The PSF data cube is a sparse cube with three dimensions to
mark the position of PSFs in the spatial–temporal domain. These
three dimensions are the coordinates of the PSF in one frame of the
images and the number or exposure time of that frame. One point
in the data cube stands for a PSF with the information as shown in
Table 1. After classifying PSFs in the data cube, we can draw the
visibility graph of the data cube to observe the distribution of PSFs.

2.3 Feature selection of a PSF

The PSFs we have obtained are continuous grey images with a rela-
tively large size and are contaminated by noise. These problems will
increase computation intensity and reduce classification efficiency
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Table 2 The parameters of the principal components of PSFs. Each PSF
can be presented by fewer dimesions. We show the first four coefficients of
the principal components in this table.

PCA basis

N = 0 N = 1 N = 2 N = 3

PSF1 0.00287 –0.04781 0.01961 0.00733
PSF2 –0.00728 0.01216 –0.03250 0.00410
PSF3 0.01019 0.03281 0.00517 0.01198
PSF4 –0.03896 –0.00431 –0.01705 –0.02793
PSF5 0.00585 –0.05870 0.03324 –0.00128
...

...
...

...
...

if we directly classify these images. Besides, the complex structure
of the PSFs makes it hard to describe them with an analytical func-
tion (Piotrowski et al. 2013; Janout et al. 2016). We need to design
a proper presentation method for the PSFs according to their data
properties.

Direct classification in the original data cube will cost huge
amount of memory and computation resources, when the data di-
mension increases, which is called dimension curse. We need to
reduce the data size through feature selection. Feature selection
refers to a process whereby a data space is transformed into a fea-
ture space that has almost the same information as the original data
space, yet the transformation is designed in such a way that the data
set can be represented by a reduced number of effective features.

In this paper, we use the principal component analysis (PCA)
method to generate PSF features (Jee et al. 2007; Bailey 2012).
PCA is a statistical procedure that uses orthogonal transformation
to convert a set of possibly correlated observational variables into
a set of linearly uncorrelated variables called principal components
(Hotelling 1933). After obtained the data cube, which contains N
PSFs, each of which has m × m pixels, we can transform the PSF
data cube into a two-dimensional (2D) PSF matrix with a size N ×
M, where N is the number of PSFs and M is the size of the image of
the PSF after being stretched into vector (M =m × m) as shown in

xi = [p1 · · · pM ]T, i = 1, . . . , N. (6)

First, we subtract the mean PSF from all the PSFs. The mean PSFs
can be calculated by

mean = 1

N

N∑
i=1

xi (7)

and we define wi as the mean-subtracted PSF as shown in

wi = xi − mean. (8)

In PCA, we need to find the eigenvectors ei and eigenvalues λi of
the covariance matrix C defined in

C = WW T (9)

through singular value decomposition (SVD), where W is a ma-
trix composed of the column vectors wi placed side by side. The
eigenvectors ei correspond to non-zero eigenvalues of the covari-
ance matrix. They produce an orthogonal basis for the subspace
within which most PSF data can be represented with fewer dimen-
sions and small errors. The eigenvectors are stored according to
their corresponding eigenvalues in descending order. The eigen-
vector corresponding to the largest eigenvalue reflects the greatest

variance of PSFs. Through this step, PSFs can be projected on to
spaces with N

′
(<<N) dimensions as shown in

� = [v1v2 · · · vN ′ ]T , (10)

where vi = eT
iwi and vi is the ith coordinate of the PSFs in the new

feature space, which is the value of the principal component ei.
By decomposing PSFs with PCA, it is possible to reduce the noise

effects, because the noise in the final images is a random variable
and does not have a fixed structure in all PSFs. Besides, PCA can
generate an orthogonal basis that can represent PSFs with fewer
dimensions, which makes it easier to design the following classi-
fication algorithm. The PSFs represented by principal components
are shown in Table 2.

With this method, we can generate features that will enable us
to investigate PSF clustering according to the morphological vari-
ations of PSFs, as defined in Section 2.4. Generally, we calculate
the sum of the eigenvalues and choose these vi corresponding to
more than 85 per cent of the sum of eigenvalues. According to our
experience, for wide-field refractive telescopes (e.g. the flat-field
Schmit telescope) with a diameter of 450 mm, a field of view of 2
deg and a pixel scale of 6.8 arcsec, the number of effective principle
components N

′
is less than 10 when the observation band is 500 nm.

2.4 Feature analysis of PSFs using self-organized maps

After PCA decomposition, the PSF features are transformed to a
space with fewer dimensions. We classify these PSFs in this space.
For a well-behaved telescope, there is morphological similarity be-
tween PSFs with adjacent spatial or temporal coordinates and we
classify these PSFs as one cluster. We can use the features presented
by PCA components to find these clusters, if these clusters between
parameters (or combinations of parameters) exist. These clusters
can be used to divide the whole data cube into small slices that have
very similar PSFs.

Because there are a large number of PSFs that need to be clas-
sified, compared with traditional unsupervised learning algorithms
such as K-means clustering, we use the Kohonen self-organizing
map (SOM; Kohonen 1982) for PSF classification in this paper,
because the SOM is faster and needs less computer memory.

The SOM is a fully connected single-layer neural network, as
shown in Fig. 1, where the network defines a mapping from the
input data space (PCA coefficients for each PSF) on to a regular 2D
array of nodes (map grid). A parametric reference vector mi ∈ Rn is
associated with every node i in the map, as shown in

Rn = [m1, m2, . . . , mi]
T. (11)

The array of nodes can be projected on to a rectangular or hexag-
onal lattice. Every input vector x, which corresponds to the PCA
coefficients of a PSF, will be compared with mi. According to the
results, the inputs will be mapped to a node that has maximal sim-
ilarity between the PCA coefficients of the PSF. The SOM works
with the following steps.

First, the newtwork is initialized with synaptic weights mi. This
can be done by assigning them random values. After the network
has been initialized, the spatial locations of neurons in the lattice
are indicative of the essential statistical features contained in input
patterns. For each input pattern x, we calculate the values of these
synaptic weights between different neurons to find a winner neuron
c, as shown in

‖x − mc‖ = min
i

‖x − mi‖. (12)
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Figure 1. The structure of the SOM, which is a fully connected single-layer
neural network.

After we select the winning neuron, we repeat the above process
for the rest of the PSFs, as defined by

mi(t + 1) = mi(t) + hc,i(t)[x(t) − mi(t)], (13)

where t is the discete-time coordinate and hc, i is the function defin-
ing the neighbourhood. The neighbourhood function is defined over
the lattice points in the map and represents the stiffness or elasticity
between different data points, as shown in

hc,i = exp

[
−||rc − ri ||2

2σ 2(t)

]
, (14)

where rc is the location of unit c on the map grid and the σ t is the
neighbourhood radius at time t. The SOM repeats the above process
in several iterations until t up to a predefined value tmax (in general,
we set tmax to 200).

Finally, the SOM outputs the specific topological feature map of
the data set and returns different labels that represent different PSF
clusters. In general, the SOM can generate PSF clusters from the
PSF data cube. We can use PSFs with the same label as indicators
of the PSF uniform area inside which the PSFs are similar to each
other in the PCA space.

The number of groups and the learning rate are super parameters
for the SOM that should be manually defined. In this paper, we
classify PSFs with different numbers of clusters and we compare
distributions of PSFs in the SOM with different numbers of clusters.
For a well-behaved data set of PSFs, as the number of clusters
increases, one cluster has a greater probability of breaking into
small pieces and these small pieces have a very low probability
of joining together. Therefore, we observe the behaviour of the
classification results as the cluster number increases and we select
the cluster number when it reaches the maximal number of clusters
that we want or when the small clusters begin to merge again, as
shown in Section 2.6. For the learning rate, we classify the same
data set with different learning rates and we find the optimal value
according to the evaluation factor that we define in Section 2.5.

2.5 Evaluation of clusters

To evaluate classification results with the same number of clusters,
we use the Davies–Bouldin index (Davies & Bouldin 1979) defined

Figure 2. A flowchart of the PSF classification method.

in

DB = 1

k

k∑
i=1

max
j �=i

[
avg(Ci) + avg(Cj )

dcen

(
μi, μj

)
]
, (15)

where k is the number of clusters, avg(C) represents the average
distance for each data point in group C and dcen(μi, μj) is the
distance between two centres in the Ci and Cj groups. For the
same number of clusters, the Davies–Bouldin index is lower, the
difference of each cluster is larger and the difference inside clusters
is lower, so the effectiveness of clustering is better. We observe
each result of the DB index with different learning rates to find the
optimal learning rate of the SOM, which has the lowest DB index.
Moreover, because of the randomness of the SOM, we classify the
same data set with the same number of clusters many times and we
choose the classification results with the minimal DB index.

2.6 Data processing and representation

PSFs can be classified with different clusters according to their
morphological variations, as shown in the flowchart in Fig. 2. There
are two points that should be noted during the application.

First, after extracting PSFs from images, we should perform back-
ground subtraction so that the background is not a part of the PSFs.
For our data sets, however, we do not subtract the background.

To better explain this issue, we draw the cross-sectional view
along the X-axis of stars with different magnitudes from the same
image. We use an annulus that is far from the position of the stars
and we calculate the average grey values of these areas as the
background of the PSF. As shown in Fig. 3(a), the area we use to
calculate the background is located outside both sides of the dashed
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Figure 3. One-dimensional curve from images of stars with different magnitudes. Panel (a) is the cross-sectional view along the X-axis of stars with magnitudes
between 8 and 12.Panels (b) and (c) represent flux-normalized PSFs with and without background subtraction, respectively.

Figure 4. Panels (a) and (b) show the PSF distributions with and without background subtraction, respectively, and also the visibility graphs in the data cube.
The X-axis and Y- axis are the coordinates of the PSFs in one frame of image, and the Z- axis is the frame number. Panel (c) represents the cumulative weight
percentage of the principal components for the PSFs obtained by two methods. It is evident that background subtraction will bring addtional noise and the
percentage of the first primary component will decrease. Panels (d) and (e) show the mean PSFs with and without background subtraction, respectively. Each
mean PSF corresponds to the cluster with the same colour in panels (a) and (b).

line. The sections of these PSFs are shown in Figs 3(b) and (c) with
and without background subtraction, respectively. It is important
to emphasize that subtraction of the background would be able to
exclude the influence of the magnitude if the PSF is well sampled
and has a high S/N ratio. However, PSFs from our data sets have
low sampling rates and S/N ratios, so the background subtraction
will introduce additional errors and the PSF differences that can be
revealed by the PCA components will be affected by the background
subtraction method.

As shown in Figs 4(a) and (d), for the same data set, the cluster
will break into small pieces because of the randomness created by

background subtraction. Besides, according to our experience, the
lower the percentage of the high-order principal components, the
lower the noise level. In Fig. 4(c), we find that after background
subtraction, the number of high-order principal components will
increase, which indicates that the noise level will increase. Although
the classification results are related to the S/N ratio, the distribution
of PSFs can be excavated by continuous classification of stars with
the same S/N ratio.

Secondly, as the number of clusters is hard to define before clas-
sification, we choose two categories at first and increase the number
of clusters. As the number of clusters increases, the number of PSFs
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Figure 5. This figure shows how we choose the number of clusters according to the PSF distribution. Panels (a)–(c) show PSF distributions when we classify
PSFs as 2, 3 and 4 clusters separately. Different colours represent different clusters. Panels (d)–(f) show the cross-section along the X-axis of each mean PSF,
corresponding to each cluster in panels (a)–(c), respectively.

Table 3. Parameters of the flat-field Schmidt telescope.

Parameter Value

Diameter of primary mirror 0.75 m
Wavelength 500 nm
Field of view
Pixel size 0.1–1.7 arcsec
Spherical aberration coefficient 1.3065
Coma coefficient −0.0044
Astigmatism coefficient −0.0162
Field curvature coefficient −0.0328
Distortion coefficient −0.0332

in each cluster decreases. We check the mean PSF and the number
of PSFs of each cluster. When the difference between the mean
PSFs of two clusters is small and the number of PSFs in one of the
clusters is small, we merge these two clusters into one cluster and
stop increasing the cluster number, as shown in Fig. 5. When we
increase the number of clusters from 3 to 4, only a small number
of PSFs are classified as a new cluster and the difference between
the mean PSF of this new cluster and that of another cluster is very
small. Therefore, three is the proper number of clusters for this data
set.

3 TH E P E R F O R M A N C E O F T H E PS F
CL ASSIFICATION A LGORITHM

The SOM is a clustering algorithm and it belongs to unsupervised
learning. For unsupervised learning, one of the most important prob-
lems is to restrict the classification results according to our needs,
or at least to understand when the classification results can satisfy
our demand. In real applications, PSF variations are interrupted by

finite CCD spatial sampling rates and stars with different S/N ra-
tios, as described in Section 2.2. To understand our classification
algorithm performance, in this section we generate different sets of
PSFs with different parameters using Monte Carlo simulations for
algorithm tests.

3.1 Simulation of PSFs

Our simulations are divided into two separate parts. For the optical
part, we simulate all physical propagation (Cain & Watts 2016)
within the telescope optic system to generate optical PSFs, which
have very high sampling rates and different aberrations (Perrin et al.
2012). For the electronic part, we simulate the photosensor at a
high level and we under-sample the optical PSFs according to real
observation conditions (Konnik & Welsh 2011).

PSFs from the flat-field Schmidt telescope are simulated. The
flat-field Schmidt telescope is widely used for sky surveys and has
a wide field of view, as shown in Table 3. We add different levels of
wavefront aberrations to its primary mirror to generate PSFs with
different aberrations and sampling rates.

3.2 Classification performance with different CCD sampling
rates

To analyse the classification performance with PSFs in different
CCD sampling rates, we simulate the PSFs of the wide-field Schmidt
telescope with different CCD sampling rates and we set all the
noise values to be zero to avoid other influences on the classifica-
tion results. The flat-field Schmidt telescope has very small field-
dependent aberrations and in most parts of its field of view, the PSFs
can be assumed to be one category. The shape of the cluster should
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Figure 6. The distribution of PSFs in the whole field of view with different sampling rates. Different colours represent different categories and these colours
are arbitrary. One block in this figure represents the area sampled by one PSF, whose size is 1 × 1 pixel2. The size of each pixel varies from 0.1 to 1.7 arcsec.
The X- axis is the percentage of the whole field of view between –100 and 90 per cent, and the Y- axis is the same. The centre of the focal plane is in the centre
of the diagram. As the sampling rate increases, the PSF clusters will merge into a big cluster and then break into small pieces. For the low and high sampling
rates, the clusters of different PSFs are very similar.

Figure 7. PSF with different sampling rates. Top: simulation PSFs are in
centre of the field with pixel scale of 0.3, 1.0 and 1.3 arcsec respectively.
Bottom: these PSFs are in the edge of the field with the same sampling rate
of that in the top frames. It can be seen that with the high sampling rate
(less than 0.5 arcsec in this telsescope), the wings of the PSFs dominate the
difference between them and PSFs are clustered mainly depending on their
wings. In contrast with the low sampling rate (bigger than 1.5 arcsec in this
telescope), the disparity of these PSFs in different spatial field is so unclear
that these PSFs are classified as one cluster.

be a circle and the centre of this cluster should be in the centre of
the field of view.

In Fig. 6, as the sampling rate increases from 0.1 to 1.7 arcsec, the
PSFs merge into a cluster in the centre of the field of view and then
break into small pieces. Between 0.5 and 1.3 arcsec, our algorithm
will give the same results as predicted by our assumptions at the start
of this section. When the sampling rate is high or low, the cluster will
be different from our prediction. This is for the following reasons.

For a high sampling rate, the wings of the PSFs introduce large
differences and the clusters exist only in very small areas, as shown
in two left panels in Fig. 7. For a low sampling rate, the differences
of the PSFs are smoothed by the spatial discrete sampling. The
cores of the PSFs are alike and only their wings are considered
for classification, as shown in two right panels in Fig. 7. For this
reason, the clusters of PSFs in low and high sampling rates are alike.
Besides, for the low sampling rate, when the aberrations increase,
the PSFs will merge into a big cluster again, as shown in Section 3.3.
Hence, there exists a range inside which our classification algorithm
can reveal the clusters best, and we need to consider this problem
during real applications of our method.

3.3 Classification performance with different levels of
aberrations

According to Section 3.2, we know that for a particular telescope,
there is a limitation of the classification algorithm: we cannot effec-
tively extract the clusters when the CCD sampling rate is too low or
too high. In this subsection, we fix the sampling rate to the critical
value for the flat-field Schmidt telescope (0.3 and 1.5 arcsec for
high and low sampling rates, respectively) and we change the val-
ues of aberrations to test our classification algorithm performance
with different levels of aberrations.

We separately set coefficients of the aberrations to 1.3, 1.5, 2 and
3 times the default values of the flat-field Schmidt telescope for
PSFs in 1.5 arcsec and we decrease the values of the aberrations to
0.8, 0.6, 0.4 and 0.2 times the default values for PSFs in 0.3 arcsec.
The variations of the clusters of PSFs are different, as shown in Fig.
8. The aberrations and sampling rates are shown below each figure
and the initial aberration coefficients are defined in Table 3.

For a low sampling rate, as the coefficients of the aberrations
increase, our method can identify PSF clusters to some extent. The
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Figure 8. PSF distributions in the whole of field of view with different aberration coefficients for low and high sampling rates. Different colours represent
different categories and these colours are arbitrary. One block in this figure represents the area sampled by one PSF, whose size is 1 × 1 pixel2. The size of
each pixel lies between 0.3 and 1.5 arcsec. The X-axis is the percentage of the field of view between –100 and 90 per cent, and the Y -axis is the same. The
centre of the focal plane is in the centre of the diagram.

Figure 9. The panels show that various noise levels influence PSF classification and different (arbitrary) colours represent different categories. The S/N ratio
is (a) 20, (b) 30, (c) 40 and (d) 49. The centre of the focal plane is in the centre of the diagram. One block represents the area sampled by one PSF, whose size is
1 × 1 pixel2. Each pixel corresponds to 1.0 arcsec. The X-axis is the percentage of the field of view between –100 and 90 per cent, and the Y-axis is the same.

main variation of clusters occurs first in the corner of the field of
view. However, when the values of the aberrations are too big, the
difference of PSFs is so large that the cluster breaks into small pieces
again, which indicates high spatial variations. We infer that this
phenomenon might result from variations of the wings of the PSFs.
However, for a high sampling rate, the variation of PSF clusters
occurs mainly in the centre of the field of view. As the aberrations
decrease, the small pieces of clusters join to make a bigger cluster,
which indicates small spatial variations.

Above all, our classification algorithm can reveal the relationship
between different aberrations and sampling rates. In real applica-
tions, we need to pay special attention to PSFs with low sam-
pling rates and high aberrations or high sampling rates and small
aberrations, because the boundaries of clusters will change sig-
nificantly when the aberrations and sampling rates are in that
range.

3.4 Classification performance with different S/N ratios

During real observations, the images of PSFs are affected by the
S/N ratio of the images. We need to investigate the classification
performance of our methods for images of PSFs with different S/N
ratios. To fully test the classification performance, we simulate the
CCD with a Monte Carlo simulation by adding different types of
noise including Poisson photon noise, dark current noise, readout
noise, etc.

We set the pixel scale to be 1.0 arcsec, as shown in Fig. 6(d).
With this sampling rate, PSFs can be classified and a major cluster
exist in the centre of the field of view with the default value of the
aberrations. We generate PSFs with different S/N ratios. The PSFs
with the same S/N ratio are classified to different clusters as shown
in Figs 9(c) and (d). When the S/N ratio is lower than 30, the shapes
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Figure 10. The figure represents the classification results of PSFs in the
whole of field of view with different levels of CCD noise. The centre of the
focal plane is in the centre of the diagram. The Z- axis is the level of the S/N
ratio between 20 and 50.

of the PSFs are significantly affected by the random noise and the
cluster breaks into small clusters, as shown in Figs 9(a) and (b).

During real applications, stars with different S/N ratios would be
used as PSF references. To test the robustness of the classification
algorithm, we classify all the PSFs with different levels of back-
ground, as shown in Fig. 10. We can see that PSFs with the same
S/N ratio are classified as one cluster, which indicates that stars
with different magnitudes introduce high bias to the classification.
Therefore, we need to strictly distinguish the S/N ratio of stars that
are used for PSF classification.

4 A PPLICATION O F PSF CLASSIFICATION
WITH OBSERVATION DATA

4.1 Observation instruments and data set

To test the performance of our algorithm, we obtained two series
of images from two different small-aperture telescopes. Telescope
A is operated by the School of Astronomy and Space Sciences,
Nanjing University, and it is focused on exo-planet photometry. All
the PSFs can be extracted directly from images of stars. We use
these data to check the variations in observation conditions and
to provide reference for further data processing and observation
strategy planning for photometry. Telescope B is used for space
debris astrometry (Sun & Zhao 2013; Sun, Zhao & Zhang 2014).
Space debris consists of fast moving objects and we can observe
these objects using the same observation strategy as that used for
observation of asteroids and comets (Sun et al. 2015). This telescope
is operated by Purple Mountain Observatory (PMO) and works
under sidereal-tracking mode. The images of space debris are line-
like and the images of celestial objects are point-like. We are able
to obtain PSFs from the images of celestial objects and to use these
data for PSF-fitting astrometry. The details of two telescopes are
listed in Table 4.

4.2 Evaluation of observation conditions

With our classification algorithm, we classify 20 000 PSFs obtained
by telescope A. These PSFs are randomly selected from all the
observational data. We use the methods discussed above and find
that the optimal number is 2. As shown in Fig. 11(a), images from
one slice (from 2017 February 14–28) are classified as a different

Table 4. Parameters of telescopes.

Telescope A Telescope B

Diameter 300 mm 450 mm
Field of view 8◦ × 8◦ 1.9◦ × 1.9◦
Image size 1024 × 1024 1024 × 1024
Pixel scale 7.2 arcsec 6.68 arcsec
Exposure time 30 s 4 s

cluster and the rest of the images from the whole data cube are
classified as another cluster. After analysing these PSFs, we find
that these PSFs have a lower S/N ratio than those from the other
clusters. In Fig. 11(d), it can be seen that the flux of each mean PSF
is different. Additionally, we choose images on the specific date
(i.e. on February 10 and 23) to classify them independently and we
find that their distributions are very different. The PSFs obtained on
February 10 can be regarded as the same cluster in Figs 11(b) and
(e), compared with the data obtained on February 23 in Figs 11(c)
and (f). According to the classification results, this could indicate
that the observation conditions have changed between February 14
and 24. We have checked the weather conditions, the phase of the
moon and the telescope observation catalogue. During that period,
we suspect that the full moon in the sky introduces very strong bias
to the observation data. For differential photometry, if using the
PSF model to fit different stars, we need to use two different models
for these two days. If we use that telescope for transient detection
through image difference (Alard & Lupton 1998; Zackay, Ofek &
Gal-Yam 2016), we have to convolve the reference image with the
mean PSF of different clusters for observation data obtained on
different days.

4.3 Evaluation of PSF-fitting astrometry performance

We classify PSFs using all the data from telescope B, as shown in
Figs 12(a) and (d). As we discussed in Section 3.4, the classification
results are correlated with the S/N ratio of stars. Then, we classify
PSFs from stars with different magnitudes separately, as shown in
Figs 12(b) and (c).

PSFs from stars with a magnitude of 10 have apparently spatial–
temporal related distributions and, for different clusters, the mean
PSFs are apparently different, as shown in Fig. 12(e). This can be
caused by the aberrations and we anticipate good astrometry results
with the mean PSFs of each cluster. However, PSFs from stars with
a magnitude of 11 have small and almost randomly distributed clus-
ters. Although the mean PSFs of two different clusters are almost
the same in Fig. 12(f), this might be induced by the average of many
different PSFs.

To fully reflect the classification performance, we perform PSF-
fitting astrometry in these data, using the Fourier-based registration
method (Stone et al. 2001) with the mean PSFs obtained from our
method. This method assumes that the PSFs in the same cluster are
morphologically similar and only have a different subpixel shift.
We can obtain this subpixel shift by maximizing the correlation
coefficients between the stamp images of stars and the mean PSFs in
an oversampled Fourier domain. The subpixel shift and the position
of the brightest pixels in the images of the celestial objects can then
be used to calculate the star’s position in the image.

For comparison, we also use the Gaussian function as a PSF
template and we calculate the positions of stars with the least-
squares fitting method (Stone 1989). The Gaussian function has a
FWHM of 2 pixels. The positions we calculated with the above two
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Figure 11. PSF classification results of telescope A. Panel (a) shows the result of 20 000 PSFs in all the observation data from 2017 February 10–28 and panel
(d) shows the mean PSFs corresponding to each cluster in panel (a). Panels (b) and (c) show the PSF classification results on February 10 and 23, respectively.
Panels (e) and (f) show the cross-section of each mean PSF corresponding to each cluster in (b) and (c), respectively. The colours also correpond to each cluster
in the upper panels.

Figure 12. PSF classifcation results from telescope B. Panel (a) gives the results for all stars with PSFs and panel (d) shows the mean PSFs corresponding to
each cluster. Panels (b) and (c) are the distributions of stars with magnitudes of 10 and 11 (results of other stars are the same as for stars with a magnitude of
11) and panels (e) and (f) correspond to each mean PSF. The mean PSF is the mean PSF of a cluster with the same colour. It can be seen that their stars relate
to position differences for the magnitude of 10, while other stars with magnitude of 11 do not relate apparently.
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methods are compared with the Tycho-2 catalogue (Høg et al. 2000)
as follows.

We obtain the star positions (αi, ξ i) from the Tycho-2 catalogue
as the theoretical positions of these stars and we construct the asso-
ciation between that position and the position of these stars in the
image using

ξ = cos δ sin(α − α0)

sin δ sin δ0 + cos δ cos δ0 cos(α − α0)

ζ = sin δ cos δ0 − cos δ sin δ0 cos(α − α0)

sin δ sin δ0 + cos δ cos δ0 cos(α − α0)
(16)

ξ = a + bx + cy

ζ = d + ex + fy (17)

as proposed in Sun, Zhao & Zhang (2013). Here, (α0, δ0) is the
corresponding equatorial position of the frame centre. With this
association, the observed position (αc, ξ c) of these stars can be
obtained from the pixel position (xc, yc), and the residual position
errors of each star (αc − αi, δc − δi) are obtained.

The astrometry error of these two methods from the Tycho-2
catalogue is shown in Fig. 13. The systematic errors of Tycho-2 are
nearly 0.01 arcsec so this does not have an effect on the calculation.
Compared with the Gaussian fitting method, we can see that stars
with a magnitude of 10 have better astrometric accuracy with the
mean PSF and stars with a magnitude of 11 have almost the same
astrometric accuracy.

It is worth noting that PSF classification is a clustering problem
and for stars with the magnitude of 11, we do not know why the
PSFs are not clustered distinctly. There are two possibilities: (i)
these PSFs are nearly the same essentially, so applying the average
of these PSFs for subsequent processing is a sound method (Sun
& Jia 2017); (ii) the classification algorithm failed for stars with a
magnitude of 11 so we should attempt to optimize the method.

5 C O N C L U S I O N S A N D F U T U R E WO R K

In this paper, we propose a clustering-based PSF evaluation method
and we analyse the performance of our method with PSFs under
different CCD sampling rates, levels of aberrations and S/N ratios.
Moreover, we analyse data from two different telescopes and we
use the classification results to evaluate observation conditions and
PSF-fitting based astrometry.

For almost all observations, PSFs exhibit subtle differences, and
we suggest that it is possible to find particular spatial and temporal
regularities in order to increase scientific output. However, it is
not always possible to find that distribution with the PSF clustering
method. In the future, we should try to use a stronger neural network
to classify PSFs and to generate the PSF model from observational
data directly.

AC K N OW L E D G E M E N T S

The authors would like to thank the anonymous referee for com-
ments and suggestions that greatly improved the quality of this
manuscript. We would like to thank the Key Laboratory of Space
Object and Debris Observation, Purple Mountain Observatory, Chi-
nese Academy of Sciences, for providing observation data for this
paper. We would also like to thank the School of Astronomy and
Space Sciences, Nanjing University, for providing observation data.
We are grateful to Danfen Liu and Liwen Wang from Taiyuan Uni-
versity of Technology for providing suggestions for this paper. This

Figure 13. Astrometric residuals of stars with magnitudes of 10 and 11
of telescope B. The number of stars with the magnitude of 10 is 517 and
the number with the magnitude of 11 is 737. Top: the residuals of right
ascension. Bottom: the residuals of declination. Crosses indicate Gaussian
PSF-fitting centroid and circles indicate mean PSF fitting.

work is supported by the National Natural Science Foundation of
China (NSFC; grant no. 11503018) and the Joint Research Fund in
Astronomy (U1631133) under cooperative agreement between the
NSFC and Chinese Academy of Sciences (CAS), Scientic and Tech-
nological Innovation Programs of Higher Education Institutions in
Shanxi (2016033). PJ is supported by the China Scholarship Coun-
cil to study at the University of Durham.

REFERENCES

Alard C., Lupton R. H., 1998, ApJ, 503, 325
Anderson J., 2016, Technical report, Empirical Models for the WFC3/IR

PSF
Anderson J., King I. R., 2000, PASP, 112, 1360
Bailey S., 2012, PASP, 124, 1015
Bertin E., Arnouts S., 1996, A&AS, 117, 393
Bradley L. et al., 2016, preprint (ascl:1609.011)
Cain S. C., Watts T., 2016, Opt. Eng., 55, 085104

MNRAS 478, 5671–5682 (2018)Downloaded from https://academic.oup.com/mnras/article-abstract/478/4/5671/5047274
by University of Durham user
on 09 August 2018

http://dx.doi.org/10.1086/305984
http://dx.doi.org/10.1086/316632
http://dx.doi.org/10.1086/668105
http://dx.doi.org/10.1051/aas:1996164
http://dx.doi.org/10.1117/1.OE.55.8.085104


5682 W. Wang et al.

Davies D. L., Bouldin D. W., 1979, IEEE Trans. Pattern Anal. Mach. Intell.,
PAMI-1, 224
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