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ABSTRACT 

This paper studies the behaviour of the error incurred when numerically integrating the 

elasto-plastic mechanical relationships of a constitutive model for soils using an explicit 

substepping formulation with automatic error control. The consistent update of all the 

variables involved in the numerical integration of the incremental strain-strain 

relationships is central to the accuracy and performance of the integration scheme and, 

although often missed in the literature, all variables (including specific volume and, for 

the case of unsaturated soils, also degree of saturation) should be explicitly considered 

in the algorithmic formulation. This is demonstrated in the paper by studying, in the 

context of the Cam clay formulations for saturated soils, the influence that the updating 

of the specific volume has on the accuracy of the numerical solution. The fact that the 

variation of the local error with the size of the integrated strain depends on the order of 

local accuracy of the numerical method is also used in the paper to propose a simple 

and powerful strategy to verify the correctness of the implemented mathematical 

formulation.  
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INTRODUCTION 

When using the finite element (FE) method with elasto-plastic constitutive models in 

geotechnical engineering, the local (i.e. within the element) integration of the 

incremental stress-strain relationships plays a central role because it is used repetitively 

within each finite element ([1-2]). During a typical iteration in a coupled FE analysis 

under fully saturated conditions, the nodal displacement and pore fluid pressure 

increments are usually found from the discretized global stiffness equations and these 

are combined with the strain-displacement relations to find the corresponding strain 

increments at a finite number of Gauss points within each element. The known strain 

and pore water pressure increments are then used at the local level to find the 

corresponding increments of the effective stresses (i.e. difference between total stress 

and pore water pressure) by integrating the mechanical constitutive model via a 

numerical integration scheme. In this type of formulation, the local integration 

algorithm is expressed in terms of the known strain increments and is, hence, typically 

referred to as a strain-driven algorithm. Various strategies have been proposed for the 

numerical integration of the stress-strain relations and these are typically classified as 

explicit algorithms (stresses are determined from the stress state at the start of the strain 

increment, i.e. integration at a given step/iteration progresses forward), implicit 

(stresses are determined from the stress state at the end of the increment, i.e. integration 

at a given step/iteration progresses backward with the need of an iterative scheme) or 

mixed formulations combining features from both schemes. The work presented here 

focuses on explicit formulations applied to saturated soils and, more specifically, on the 

family of explicit substepping algorithms with automatic error control proposed in 

Sloan et al. [3]. Discussions on the advantages and disadvantages between implicit and 

explicit integration schemes can be found elsewhere [3-6].  

Substepping schemes with error control are particularly suited for FE applications 

because they control the local error in the computed variables (i.e. the effective stresses 

and hardening parameters) that arise due to the inexact integration of the mechanical 

constitutive relationships when using a numerical integration method. In this family of 

integration schemes the error is controlled by using a measure of the local truncation 

error, which is estimated as the difference between the approximate solutions from two 

integration schemes of different order. How much these two approximations differ from 
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each other is indicative of the deviation of the numerical solution from the true solution 

and, consequently, such a difference can be used to estimate the local truncation error. 

This local error estimate is then employed in the algorithm to automatically adjust the 

size of the integration step by reducing/increasing its current size (i.e. substepping) 

when the local error estimate is larger/smaller than a specified tolerance. Since the early 

work of Sloan [7], substepping schemes with error control have been used to integrate 

a large number of elasto-plastic constitutive models for saturated (e.g. [3, 8-12]) and 

unsaturated soil behaviour (e.g. [13-20]).  

Before implementing a constitutive model into a FE code, it is advisable to verify the 

computational performance of the strain-driven algorithm. Such a verification process 

commonly compares the numerical outcomes against available analytical solutions. 

This task, however, is not always simple due to the scarcity of analytical solutions when 

employing complex constitutive relationships. Thus, a common alternative is to 

compare of the numerical outcomes against a reference solution which has been 

obtained using a high order substepping integration scheme with very stringent 

tolerances. Because in such cases the comparison is not carried out against the correct 

solution, it is advisable to perform a further verification and check if the local error in 

the numerical approximation converges with its expected order of accuracy.  

Surprisingly, studies of the error incurred in the explicit substepping schemes are rarely 

available in the literature, even though they provide a simple complementary alternative 

to verify the correctness of the implemented mathematical formulation. The fact that 

the variation of the local error with the size of the integrated strain depends on the order 

of local accuracy of the numerical method suggests, as demonstrated in this paper, that 

such information can be used to verify not only that the method has been properly 

formulated but also that the algorithm is performing correctly. In light with this, the 

anticipated knowledge of the order of local accuracy of the numerical method to be 

used is employed in this paper to assess the importance of consistently updating all the 

variables involved in the numerical integration of the stress-strain relationships. In 

particular, in the context of the modified Cam clay model of Roscoe and Burland [21], 

the correct update of the specific volume plays a crucial role on the accuracy of the 

numerical solution and this is demonstrated in the paper by investigating the error 

incurred by two different substepping strategies (the second order modified Euler and 
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the fifth order Runge-Kutta-Dormand-Prince schemes with substepping) during the 

integration of the mechanical relations. 

Finally, the information regarding the known order of local accuracy of the numerical 

method is also used in the paper to propose a new form of plotting the numerical 

outcomes of the explicit substepping algorithms with automatic error control and its 

effectiveness is demonstrated for various axisymmetric compression paths.  

STRESS-STRAIN RELATIONSHIPS 

This section gives a brief summary of the equations involved in the elasto-plastic 

integration of critical state constitutive models for saturated soils with a hardening law 

depending on plastic volumetric strains. The notation adopted generally follows that 

employed by [3] but makes explicit the dependence of the response on the specific 

volume v. As demonstrated later, a consistent update of the specific volume v when 

integrating a critical state model becomes important in numerical methods whose order 

of accuracy is larger than one and, although often missed in the literature, such 

dependence of the problem on v should be included in the formulation. It is worth 

mentioning here that, in general, equivalent comments should apply to the explicit 

integration of more advanced constitutive models as, for example, those used for 

unsaturated soils, in which the consistent update of all internal variables involved in the 

constitutive model, such as the degree of saturation or bonding variables, will play a 

key role in the accuracy of the solution.   

In this context, the mechanical behaviour of a saturated soil can be characterized by the 

following ordinary differential equation (ODE) (the superior dot represents a derivative 

with respect to time): 

' σ Dε           (1) 

where 'σ  is a vector of effective stress rate components (defined as the difference 

between the total stress and pore water pressure rates), ε  is a vector of strain rate 

components, and D  is the elastic matrix 
eD  (if no plastic yielding occurs) or the elasto-

plastic matrix epD  when the given strain increment causes plastic yielding (see the 
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Appendix for the specific forms of 
eD  and epD ). If plastic yielding occurs, an 

additional ODE needs to be solved accounting for the evolution of the yield surface:  

H B            (2) 

where H  is the rate of the hardening parameter (in the context of critical state models 

it usually corresponds to the pre-consolidation pressure p0′),   is an unknown scalar 

often referred to as the plastic multiplier, and B is a scalar function for the evolution of 

the yield surface during yielding (see the Appendix).  

For critical state models the elastic/elasto-plastic matrices are typically assumed to 

depend on the tangential bulk modulus K which, in turn, is assumed to depend on the 

mean effective stress p′ and specific volume v:  

d ' '

d e

v

p vp
K  

 
         (3) 

where 
e

v  is the elastic volumetric strain and κ is the slope of the unload/reload line on 

the v: lnp′ plane. 

In addition to the tangential bulk modulus K, the elastic/elasto-plastic matrices 
eD  and 

epD  also depend on the elastic shear modulus G (see Appendix). G can either be 

assumed constant, or it can be calculated from the variable elastic tangential bulk 

modulus K by the assumption of a constant value of Poisson’s ratio υ:  

 

 

 

 

3 1 2 ' 3 1 2

2 1 2 1

vp K
G

   
 

  
       (4) 

Although the use of a variable elastic shear modulus of the form shown in Equation 4 

is not strictly acceptable from a theoretical point of view (because it leads to the 

generation of deviatoric strain for certain types of closed stress path, [22] Zytynski et 

al. [22]) it often gives better fits with experimental data than a constant value of G [23].  

Alternatively to the use of K and G, the elastic/elasto-plastic matrices can be expressed 

in terms of the secant bulk and secant shear moduli K  and G  respectively. The use of 
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K  and G  in an explicit integration scheme is needed to compute the correct stress state 

at the intersection with the yield surface when the stress point passes from an elastic to 

a plastic state (Sheng et al., [22]), because an analytical expression for K  (and, 

equivalently, also for G  if a constant value of Poisson’s ratio is assumed, see Equation 

4) can be found by integrating Equation 3 for p′ and 
e

v  in combination with the 

definition of specific volume in terms of volumetric strain (see Appendix): 

  0
0

1 exp'
exp 1

e

l v
l

e

v

vp
K




   
   
   

  

      (5) 

where 
0 'lp 

 and 
0lv 

 are the mean effective stress and specific volume, respectively, at 

the start of the volumetric strain increment 
e

v . The expression for K  varies slightly 

from that presented in [3] because it is not assumed here that dv v   (see Appendix). 

The secant shear modulus G  can be computed from Equation 4 by inserting K  to 

replace K. It is important to emphasize that the elastic matrix forms considered here 

(and, in turn, the elasto-plastic matrix) depend not only on the current value of the mean 

effective stress p′ but also on the current value of the specific volume v (see Appendix). 

Consequently, the update of p′ in the numerical method to solve Equations 1 and 2 

should be in agreement with the update for v. Such consistency avoids a potential source 

of error and is described in the following.  

EXPLICIT SUBSTEPPING FORMULATION FOR CRITICAL STATE MODELS 

This section summarises the substepping strategy with automatic error control to solve 

the system of ordinary equations (ODE) defined by Equations 1 and 2. Full description 

of the algorithm including the numerical aspects of how to handle elastic-plastic 

transitions, yield surface intersections and correction of stresses back to the yield 

surface (see Potts & Gens [25]) is given in [3].  

In the formulation of a substepping algorithm, it is useful to consider a pseudo-time T, 

defined by:  
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 0t t
T

t





          (6) 

where t = t0 is the time at the start of the strain increment ∆ε (i.e. T = 0), 
0t t t   is 

the time at the end of the strain increment (i.e. T = 1) and 0 1T  . Equations 1 and 2 

can be expressed in terms of the pseudo-time T (note that in the following equations, 

the superscript T denotes transposed):  

d '
'

dT
    ep e e

σ
D ε σ D b         (7) 

d

d

H
tB B

T
             (8) 

where,  

'T T

T TA A

 
  

 

e e

e e

a D ε a σ

a D b a D b
        (9) 

where a and b are vectors giving, respectively, the derivatives of the yield surface and 

plastic potential with respect to effective stress and A is a scalar containing information 

on the hardening law (see Appendix). The system of ODEs specified by Equations 7 

and 8 define an initial value problem (IVP) that can be integrated over T knowing the 

initial effective stresses σ0′, initial hardening parameter H0 and initial specific volume 

v0 at T = 0 (or, equivalently, the intercept N of the saturated normal compression line), 

together with the imposed strain increment ∆ε (∆ε are the fixed strains to be integrated 

over ∆t.). Equations 7-9 depend on the specific volume and, as such, v may vary within 

the substepping integration of ∆ε (in addition to σ′ and H). This variation in v influences 

both dσ′ and dH through the elastic matrix De and the scalar functions A and B.  

Modified Euler scheme with substepping 

As detailed in [3], the modified Euler (ME) with substepping estimates the relative local 

error by taking the difference between the first order accurate forward Euler and the 

second order accurate modified Euler approximations for the effective stresses (and 

hardening parameter) and dividing this difference by the corresponding higher order 
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approximation. This relative measure of the local error (i.e. REL) is used to 

automatically adjust the size of the integration step, by reducing/increasing its current 

size (i.e. substepping) when REL is larger/smaller than a specified tolerance (i.e. STOL). 

Such a criterion for adjusting the step size is known as error per step EPS and, when 

the update of the integrated variables after a successful step is carried out using the 

higher order approximation (an approach called local extrapolation), the criterion is 

typically referred to as XEPS  (Shampine [26]). Local extrapolation is adopted in [3] 

and also followed here.   

Given a pseudo-time step/substep ∆Tn with 0 1nT   , the forward Euler updates for 

σ′ and H are (with the subscripts n-1 and n denote quantities evaluated at pseudo-times 

Tn-1 and 
1n n nT T T   respectively) :  

1 1' ' 'n n σ σ σ         (10) 

1 1n nH H H          (11) 

 1 expn n n vv v T          (12) 

where, 

 1 1 1 1' ' , ,n n n nH v    epσ D σ ε       (13) 

   1 1 1 1 1 1' , , , ' ,n n n n n nH H v B v       σ ε σ     (14) 

and 

n nT   ε ε          (15) 

The inclusion of 
1nv 
 in the forward Euler update of σ′ and H makes the dependence of 

the elastoplastic relations on v explicit, whilst also accounting for the dependency on σ′ 

and H. Assuming that ∆ε is known, the value of the specific volume at the end of the 

step/substep given by Equation 12 is exact because it is possible to integrate the 

volumetric strains analytically over ∆Tn to find the precise value of v at n. The 
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corresponding second order accurate updates for σ′ and H, and exact update for v, are 

given by:  

1 1 2

1 1
ˆ ' ' ' '

2 2
n n    σ σ σ σ        (16) 

1 1 2

1 1ˆ
2 2

n nH H H H            (17) 

 1
ˆ expn n n vv v T          (18) 

where 
1'σ  and 

1H  are computed using the forward Euler update (Equations 13 and 

14, respectively) and 

 2' ' , ,n n n nH v  epσ D σ ε        (19) 

   2 ' , , , ' ,n n n n n nH H v B v   σ ε σ      (20) 

with 'nσ , Hn and vn being computed using the forward Euler update (Equations 10-12).  

If the step/substep is accepted, the values of the effective stresses ˆ 'nσ  and hardening 

parameter ˆ
nH  at n (end of the step/substep) are updated using the higher order 

approximation with the elasto-plastic matrix Dep computed using the appropriate 

specific volume, consistent with all the other variables as shown in Equations 13, 14, 

19 and 20. Similar comments also apply to the update of the hardening parameter 

(Equations 14 and 20).  

Runge-Kutta-Dormand-Prince scheme with substepping  

The explicit Runge-Kutta-Dormand-Prince (RKDP) with substepping estimates the 

relative local error (REL) by taking the difference between the approximations for the 

stresses (and hardening parameter) given by fourth and fifth order accurate schemes, 

and then dividing this quantity by the fifth order approximation. This estimate is then 

compared against STOL to adjust the size of the integration step as discussed for the 

ME case. This integration scheme results in very accurate values for σn′ and Hn at the 
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end of each step/substep at the expense of additional evaluations of the constitutive 

relations. In the absence of an analytical solution, the highly accurate 5th order RKDP 

approximations can be used as a reference to check the accuracy of lower order methods 

as discussed in [3] and demonstrated in the next sections. Applying this scheme to 

Equations 7 and 8, the fourth and fifth order accurate approximations for σ′ and H, 

together with the exact updates for v, at the end of a pseudo-time step/substep ∆Tn are 

given by:   

1 1 3 4 5 6

31 190 145 351 1
' ' ' ' ' ' '

540 297 108 220 20
n n          σ σ σ σ σ σ σ   (21) 

1 1 3 4 5 6

31 190 145 351 1

540 297 108 220 20
n nH H H H H H H             (22) 

 1 expn n n vv v T          (23) 

and 

1 1 3 4 5 6

19 1000 125 81 5
ˆ ' ' ' ' ' ' '

216 2079 216 88 56
n n          σ σ σ σ σ σ σ   (24) 

1 1 3 4 5 6

19 1000 125 81 5ˆ
216 2079 216 88 16

n nH H H H H H H             (25) 

 1
ˆ expn n n vv v T          (26) 

where 

 

   

' ' , ,

' , , , ' ,      for  1,2,...6

i i i i n

i i i i n i i

n n

H v

H H v B v i

T

  



    


    

ep
σ D σ ε

σ ε σ

ε ε

   (27) 

and 
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1 1

1 1

1 1

' 'n

n

n

H H

v v







 


 
 

σ σ

         (28) 

2 1 1

2 1 1

2 1

1
' ' '

5

1

5

1
exp

5

n

n

n n v

H H H

v v T








   




   

 

    
 

σ σ σ

       (29) 

3 1 1 2

3 1 1 2

3 1

3 9
' ' ' '

4 40

3 9

4 40

3 9
exp

4 40

n

n

n n v

H H H H

v v T








     




     

  

      
  

σ σ σ σ

      (30) 

4 1 1 2 3

4 1 1 2 3

4 1

3 9 6
' ' ' ' '

10 10 5

3 9 9

10 10 40

3 9 9
exp

10 10 40

n

n

n n v

H H H H H

v v T








       




       

  

       
  

σ σ σ σ σ

     (31) 

5 1 1 2 3 4

5 1 1 2 3 4

5 1

226 25 880 55
' ' ' ' ' '

729 27 729 729

226 25 880 55

729 27 729 729

226 25 880 55
exp

729 27 729 729

n

n

n n v

H H H H H H

v v T








         




         

  

         
   

σ σ σ σ σ σ

   (32) 

6 1 1 2 3 4 5

6 1 1 2 3 4 5

6 1

181 5 226 91 189
' ' ' ' ' ' '

270 2 297 27 55

181 5 226 91 189

270 2 297 27 55

181 5 226 91 189
exp

270 2 297 27 55

n

n

n n v

H H H H H H H

v v T








           




           

  

           
   

σ σ σ σ σ σ σ

  (33) 
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PERFORMANCE OF INTEGRATION SCHEMES  

This section studies the behaviour of the local error when numerically integrating the 

stress-strain relationships of critical state constitutive models. The study involves a 

comparison, for a specified problem, of the approximations given by various explicit 

integration schemes with and without substepping. To assess the error incurred by each 

integration scheme, the corresponding approximations for (effective) stresses are 

compared against an analytical solution (or a reference approximation if needed).  

In general, two primary sources of error exist in a numerical solution of an IVP: the 

error that relates to the precision of the computer/machine to perform the calculations 

(rounding error) and the local truncation error incurred by the numerical method. This 

work relates only to the truncation (relative) error which is quantified in a manner which 

is consistent with the way the local error is controlled in the substepping strategy. 

Following [3], the relative local error in the stresses can be computed from:   

    
    

1/2

1/2

' ' ' '

' '

T

ref ref

T

ref ref

REL
 


σ σ σ σ

σ σ

      (34) 

where σ′ref is the reference (or analytical) solution and σ′ is the numerical 

approximation. The numerical approximation here is found from the numerical 

integration of a single strain increment (input), the size of which is varied in each 

simulation. To minimise the influence of rounding error, a lower-bound on the value of 

the local error investigated is set in the range 10-12 and 10-13. This lower-bound is 

considered suitable for the numerical results presented, as double precision real 

variables in FORTRAN ® with 15 significant digits were used. Note that the numerator 

of Equation 34 can be used for analyses which aim to measure the absolute error. In 

these cases, it is important, for consistency, that the numerical approximations are 

computed by a substepping algorithm that also controls the absolute error in the stresses 

(i.e. the denominator is set to unity in Equation 34 when computing REL). 

Three analyses are carried out, all adopting the modified Cam clay model (MCC) of 

[21] and assuming axisymmetric conditions. All three analyses assume an initial stress 

state on the yield surface with zero deviatoric stress. The soil constants and initial state 
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considered in all the simulations are summarised in Table 1, where N and λ are 

respectively the intercept at p′ = 1 kPa and the gradient of the NCL in the v:lnp′ plane. 

The tolerance associated with the yield surface intersection and the correction of the 

stresses back to the yield surface, FTOL, is assumed equal to 10-12 and the maximum 

number of substeps is limited to 10+06 in all the analyses. The values considered for 

STOL vary from 1 to 10-08. 

In the first analysis, the local error is calculated using Equation 34 with the 

correct/analytical solution for an isotropic loading increment together with the 

corresponding numerical approximation obtained by the integration scheme 

considered. Conversely, the second and third analyses use Equation 34 to compare the 

numerical approximation against a reference solution (obtained by using the RKDP 

scheme with substepping and very stringent tolerances) for an axial loading increment 

(with no radial strains) and for an undrained shear loading increment, respectively. In 

all analyses, the size of the assumed strain increment is varied to study how this 

influences the error in the solution. For the isotropic and zero radial strain loadings, the 

strain increment size analysed varies from ∆εv =10-06 to 0.1, corresponding to a 

maximum variation in the sample volume of 10%. For the case of undrained shear 

loading, the axial strain analysed varies from ∆εa =10-06 to 0.01, corresponding to a 

maximum sample height reduction of 1%.  

Consistent update of specific volume in an integration scheme 

Probably the clearest comparison between different integration schemes is to consider 

the solution for stresses approximated by each numerical method for a single elasto-

plastic isotropic loading increment starting at a known initial isotropic stress state A on 

the yield surface. The simplicity of this stress path is chosen because, in the context of 

the MCC model, it corresponds to stress states lying on the saturated normal 

compression line (NCL) and, hence, exact values of the effective stress under 

axisymmetric conditions for any given increment of volumetric strain ∆εv can be found 

(see Appendix), provided that the initial values of the effective stress σ′A (σ′r = σ′a = p′A, 

where σ′r and σ′a are the radial and axial effective stress respectively) and the specific 

volume vA are also known, together with the model parameter values (Table 1). The 

example provides a clear and unambiguous quantification of the errors in the computed 

solution for σ′ at the end of the step for each integration scheme when the size of ∆εv is 
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varied because, in addition to the comments above, no correction of the stresses back 

to the yield surface (drift correction) was needed for the strain step sizes considered, 

which does not cloud the interpretation of the errors measured. 

The local truncation error refers, hereafter, to the error incurred by the numerical 

scheme in a single substep (or step in the case of no substepping) whereas the global 

error is interpreted as the local error accumulated over a number of substeps. In this 

context, it is important to note that the error control in the substepping strategy only 

controls the local truncation error (in a single substep), with the aim of controlling the 

global error over many steps. The effectiveness of this technique can be measured by 

comparing the computed solution with the exact solution for a variety of imposed 

strains.  

To assess the accuracy and convergence of each numerical method, the local error in 

stresses is plotted against the size of the volumetric strain using logarithmic scales. This 

facilitates a partial verification of the substepping strain-driver algorithm because, by 

definition, the gradient obtained for the best-fitted straight line through a particular set 

of results (i.e. all belonging to approximations from the same integration scheme) 

should correspond to the order of accuracy of the numerical integration method. This 

follows from the fact that a numerical method has order of accuracy p if the local 

truncation error e (i.e. the error incurred in a single step of the integration scheme) is 

O(hp+1) for h sufficiently small, where h is the step/substep size being integrated and 

O(hp+1) refers to those terms of the Taylor’s series expansion of order higher than p. 

Interestingly, for a sufficiently small value of h, O(hp+1)  chp+1 (where c is a constant) 

and, hence, when plotting e against h on a log-log scale the gradient observed should 

be approximately p + 1 [26].  

In addition to the ME and RKDP schemes with substepping introduced earlier, four 

other single step explicit integration methods (without substepping) are considered in 

the analysis to support the discussion: the first order forward Euler (FE 1st) scheme, 

the second order modified Euler scheme (ME 2nd), and the fourth and fifth order 

Runge-Kutta-Dormand-Prince schemes (RKDP4 and RKDP5, respectively). Each of 

these schemes is formulated in a strain-driven algorithm following two different 
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approaches: (i) updating the specific volume only at the end of the step, and (ii) updating 

the specific volume consistently with all the other variables involved.  

Note that updating the specific volume only at the end of the step n (using the analytical 

solution given by Equation 12) also provides the correct value of the specific volume 

at step n, because the strain increment considered is assumed to be known/correct. 

However, in such a case, the incurred local error in the updated stresses (and hardening 

parameter) may be larger than that which corresponds to the theoretical order of 

accuracy of the numerical method used. In other words, the order of accuracy of the 

numerical scheme is reflected in how the error responds to changes in the size of h. As 

demonstrated in the following, this information can be used not only to verify the 

correctness of the algorithmic formulation but also to check and discuss its 

performance. 

Table 2 shows the relative local errors incurred by single step explicit integration 

schemes (with no substepping) when the specific volume is updated only at the end of 

a given step size. Table 3 shows equivalent computations for the case where the specific 

volume is updated consistently with the effective stress and hardening parameter during 

the integration of the strain increment. The results from these two tables are illustrated 

in Figures 1a and 1b respectively.  

Inspection of Figure 1a shows a number of inconsistencies in the results from the 

algorithms in which the specific volume is updated only at the end of the step. Even 

though all the simulations plotted in this Figure show linear convergence (i.e. the 

relative local error in the stresses decreases linearly with decreasing step size) they do 

not converge at the expected rate (i.e. the decrease in error for a given decrease in ∆εv 

is less than expected). In fact, in Figure 1a, the best-fit straight line for the first order 

forward Euler scheme (indicated by the thicker dashed line) is roughly parallel to the 

results for the other integration schemes. This suggests that the order of accuracy 

achieved by the ME, RKDP4 and RKDP5 schemes is approximately the same as that 

for a first order accurate scheme (i.e. having a gradient of two). In contrast Figure 1b, 

which shows results for the case where the specific volume is updated consistently with 

the effective stress and hardening parameter, has error plots whose gradients match the 

expected order of accuracy of the numerical method. For example, a gradient of 5 is 

obtained when best-fitting a straight line through the computed error values 
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corresponding to the RKDP4 method. Note that the inconsistencies in Figure 1a are 

evident only for methods with an order higher than one because, when using the first 

order forward Euler method, the update of v is always carried out at the end of the step. 

Another interesting feature illustrated in Figure 1b is how the vertical distance between 

the different best-fitted straight lines varies with the size of imposed strain increment. 

In particular, the vertical distance between the best-fit lines for the first and second 

order Euler schemes (or, similarly, for the RKDP4 and RKDP5 schemes) may be used 

to assess the likely influence that the error tolerance STOL would have in the 

computations with a substepping scheme. In general, for a given step size, a large 

number of substeps will be required to fulfil a stringent STOL when the vertical distance 

between the two methods involved in the substepping is large. Conversely, if the 

vertical spacing is small (relative to the specified STOL) only a few (or no) substeps 

will be activated during the integration. Indeed, for these cases, a stringent value of 

STOL will be required to improve the accuracy of the solution compared to that which 

is achievable from a single step integration using the highest order method. In light of 

this, the results shown in Figure 1a indicate a major potential problem with the RKDP 

subs-stepping schemes when the specific volume is not updated consistently with the 

effective stress and hardening parameter during the integration process. Not only are 

the solutions shown in Figure 1a extremely close for both the RKDP4 and RKDP5 

schemes, but they also correspond to first order accurate approximations (and not the 

fourth and fifth order approximations that they should be).  

To investigate also how the error behaves in the substepping schemes (in addition to 

the conventional one step schemes studied above) the integration of one single 

volumetric strain increment of 0.1 is analysed by using the ME and RKDP schemes 

with substepping for three different values of STOL. The different values of STOL 

considered (10-04, 10-06 and 10-08) correspond to Figures 2, 3 and 4 respectively. Parts a 

(Figures 2a, 3a and 4a) plot the substepping approximations with no update of v during 

each substep (i.e. v is only updated at the end of the entire increment) whereas parts b 

(Figures 2b, 3b and 4b) show the approximations from the same integration schemes 

but updating v consistently throughout the substepping. Note that the values of relative 

error plotted in the figures, correspond to the accumulated contributions of local error 

at each substep and, hence, represent the global error behaviour. Consequently, at the 
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end of the substepping, the sum of all the substep sizes integrated should be equal to 

the volumetric strain increment prescribed 0.1. The previously best-fitted straight lines 

in Figures 1a and 1b have been also included in the plots to provide a reference for the 

discussion.  

Tables 4 and 5 present the global errors incurred by the substepping schemes to 

integrate the imposed volumetric strain increment of 0.1 for STOL = 10-04, 10-06 and 10-

08. The results in Table 4 correspond to substepping schemes without update of v during 

the substepping whereas Table 5 shows approximations given by substepping schemes 

with a consistent update of v. In the tables, the total number of substeps required in the 

algorithm is indicated by TS whereas the total number of failed substeps (substeps 

requiring a further subdivision in size) is indicated by TF. For the elasto-plastic 

isotropic loading considered, no drift correction of the stresses back to the yield surface 

was needed.   

As expected, more accurate approximations are obtained when using more stringent 

tolerances, and these typically involve a larger number of substeps (see Tables 4 and 

5). The arrows in Figures 2 to 4 indicate the optimal strain size at which the substepping 

is performed. When updating v correctly, this optimal size approximately corresponds 

to the intersection between the considered value of STOL and the best-fitted line for the 

lower order scheme within the substepping algorithm (which, in turn, corresponds to 

the dominant term of the local error). For strain increment sizes smaller than that 

indicated by the arrows in Figures 2, 3 and 4 no substepping is performed. In such cases, 

the accuracy of the solutions converges to that from the highest order single step method 

used in the corresponding substepping algorithm. As expected, the increment size 

below which no substepping is needed decreases with decreasing values of STOL (see 

Figures 2, 3 and 4).  

During the numerical integration of ∆εv = 0.1, the actual substep size being integrated 

is quite regular in all the schemes considered. Consequently, a roughly vertical increase 

of the global error during the integration is observed in Figures 2, 3 and 4. There is 

often one single substep size considerably smaller than the other the sizes used by the 

algorithm corresponding to the last remaining part for the full integration of ∆εv = 0.1 

(this has almost no influence on the final global error).  
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Figures 2a, 3a and 4a show the substepping schemes that only update v at the end of the 

given step successfully control the error, but the error response is not in agreement with 

the expected gradients of the numerical method used (see earlier comments on Figure 

1a). Not surprisingly, the ME with substepping scheme without the correct update of v 

achieves, in general, more accurate results than the RKDP substepping scheme in 

Figures 2a, 3a and 4a. This is a direct consequence of the larger vertical distances 

observed between the forward Euler and ME approximations in Figure 1a, compared 

with their RKDP counterparts.  

Figures 2b, 3b and 4b show that the solutions are more accurate than those above when 

the correct update for update for v is employed. As indicated in Tables 4 and 5, this 

increase in accuracy is achieved with a similar number of failed substeps (TF) and 

without increasing the number of substeps (TS).  

Some useful information underlying the vertical response of the global error should be 

further discussed. In general, the global error, E, incurred by a substepping scheme is 

the result of adding each amount of local truncation error e incurred in each substep 

(assuming no cancellation). For sufficiently small step sizes h, it was shown that e  

O(hp+1)  chp+1 and, consequently, for n equal-sized h, the global error can be 

approximated by E  nchp+1  Hchp, where H is the total strain increment size integrated 

and n is the total number of substeps used to integrate H. This means that, for 

approximately equal sized h (as it is the case in Figures 2, 3 and 4) the final global error 

(for this particular value of h) should lie on a straight line when plotted in a log-log 

scale, having gradient 2 and 4 for the ME and RKDP with substepping schemes 

respectively. Furthermore, the intercepts of these global error lines are Hc where c is 

the intercept of the best-fitted line for the higher order method approximations. This 

means that the distance between the best-fitted straight line for the higher order scheme 

(i.e. O(hp+1)  chp+1) and one of these global error lines is (at a particular h) h/H or, 

equivalently, 1/n. This type of response is illustrated in Figure 3 for three different 

values of H = 0.1, 0.01 and 0.001, when using the ME with substepping and is further 

discussed in the next section.  

The values of the global error at the end of the integration of the entire volumetric strain 

considered (i.e. 0.001, 0.01 or 0.1) are indicated in Figure 3 by a light-grey symbol. 
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When using the ME substepping scheme with the correct update of the specific volume, 

10 substeps are needed to integrate the volumetric strain size of 0.001, 96 for 0.01 and 

910 for 0.1 (Figure 3b). In such cases, the final value of global error resulting from the 

integration of the corresponding number of substeps converge to a point lying, in fact, 

on a straight line of gradient two as indicated in Figure 3b by a chain-dotted line. This 

means that the order of accuracy of the global error in the ME method with substepping 

and the consistent update of v is one order lower than the accuracy of its local truncation 

error (see the parallel lines in Figure 3). It is interesting to verify that the distances 

between these chain-dotted parallel lines and the best-fitted straight line for the single 

step ME scheme are indeed equal to 1/n for each particular H as discussed above. In 

contrast, Figure 3a show equivalent results but using the ME with substepping with an 

incorrect update of v. As discussed earlier, the computations from this method result, 

incorrectly, in a first order local error (see Figure 1a) and, consequently, the 

accumulated first order local error (over the imposed H) leads to a global error of one 

order of accuracy less (demonstrating that the substepping strategy itself is performing 

correctly even though the incorrect update of v leads to imprecise approximations 

having one order of accuracy less than expected). Indeed, when using the ME 

substepping scheme without a consistent update of v, 10 substeps are needed to 

integrate the volumetric strain size of 0.001, 100 for 0.01 and 950 for 0.1 (Figure 3a). 

In these cases, the final value of the global error resulting from the integration of the 

corresponding number of substeps also converges to a point lying on a straight line 

(also indicated by a chain-dotted line), but having now a gradient of one (Figure 3a). 

This is agreement with the reduction in order of the global error just mentioned but in 

disagreement with the expected order of accuracy of this method.  

Error behaviour and numerical performance  

Now that the importance of updating consistently the specific volume during the 

numerical integration of the stress-strain relations of the MCC has been demonstrated, 

the next analyses concentrate only on approximations from numerical schemes that 

update v correctly. The computational aspects for the isotropic loading conditions are 

discussed first followed by the analyses involving axial loading at zero lateral strains 

and shearing under undrained loading conditions.  
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Figures 5 and 6 show a complete picture of the error behaviour when numerically 

integrating the MCC mechanical relationships for isotropic stress paths involving 

different volumetric strain loads. Approximations given by the ME with substepping 

are plotted in Figure 5 whereas the substepping RKDP solutions are presented in Figure 

6. 

These forms of plotting the results are suitable to assess how the local error propagates 

as the integration progresses for various values of STOL. As discussed in Figure 3, 

during a typical substepping integration of a prescribed strain size H with n substeps, 

the local error incurred in each of these substeps (all fulfilling the imposed STOL) 

accumulates in subsequent iterations and such local error accumulation corresponds to 

the global error. Figures 5 and 6 show how these final values of accumulated local error 

(once the entire H has been integrated) approximately lie on a straight line of gradient 

two for the ME with substepping and four for the RKDP with substepping. This 

behaviour is true for all values of STOL used (Figures 5 and 6) and is consistent with 

the previous comments on Figure 3. There is remarkable consistency in the distances 

between each best fitted line through the global error results, showing good agreement 

between their intercepts and the inverse of the number of substeps used to integrate H 

for any prescribed STOL, in correspondence with earlier comments. These conclusions 

are less apparent in Figure 6a as a consequence of both the small number of substeps 

typically used in the RKDP scheme together with the high accuracy of the method 

(resulting in larger gradients and smaller distances between the best fitted lines).    

Closer inspection of Figures 5a and 6a shows that, for the larger sizes of h plotted, the 

error response of the substepping scheme with STOL = 1 diverges slightly from its 

corresponding best-fitted straight line. This result indicates that the earlier assumption 

of h being sufficiently small is not fulfilled and, consequently, for this value of h and 

larger the approximation O(hp+1)  chp+1 becomes less accurate. Not surprisingly, this 

affects the quality of the estimate for the local error used in the algorithm to accept or 

reject the step size h, and is illustrated in the figures by the progressive loss of verticality 

observed in the global error plots when h increases. Because of the higher accuracy of 

the method, the values of h at which this behaviour becomes more apparent are slightly 

larger for the RKDP substepping scheme (with an approximate value of h  0.05) than 

in the ME with substepping scheme (h  0.02).  
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Figure 7 shows the relative local error for stresses incurred in the same isotropic loading 

simulations discussed in Figures 5 and 6, but now plotted against the number of 

substeps required for the integration of the entire strain increment. Figure 8 plots the 

same relative local error against STOL for each integrated size of volumetric strain. In 

these figures, parts b indicate the results for the ME with substepping and parts b present 

their RKDP substepping counterparts. 

A further verification of the correctness of the algorithmic formulation can be checked 

when plotting the relative local error against the number of substeps on a log-log scale. 

In the substepping methods described by [3], the size of the n + 1 substep (hn+1) is 

assumed to vary proportionally to the size of the current step at n i.e. ∆Tn+1  q·∆Tn 

where q is estimated from the local order as follows. Given that the forward Euler 

approximations have a local truncation error O(h2), these are the dominant terms of the 

local error incurred when using the modified Euler with substepping. Consequently, 

RELn+1  q2·RELn where REL is the measure of the local error estimated from the 

difference between the first and second order accurate approximations. Combining this 

constraint with the assumption in the substepping strategies that RELn+1 ≤ STOL gives 

q ≤ (STOL/RELn)
1/2. Sloan et al. [3] suggests that a suitable choice for computing q in 

the ME with substepping is q  0.9(STOL/RELn)
1/2. Similarly, the RKDP with 

substepping adopts q  0.9(STOL/RELn)
1/5. As a consequence, the gradient of the best-

fitted straight lines plotted in Figure 7 have an approximate negative gradient of -2 for 

the ME with substepping (Figure 7a) and -5 for the RKDP with substepping (Figure 

7b).   

Inspection of Figure 8 shows the influence of STOL in the relative local error. As 

expected, a reduction in the values of STOL leads to a reduction in the relative local 

error incurred in the computations. However, this reduction of the local error with 

decreasing STOL is limited for small sizes of volumetric strain and becomes almost 

negligible for the smallest step sizes considered in this analysis (Figure 8). As discussed 

earlier, this is because for small step sizes the difference between the two solutions of 

different order within the substepping scheme tends to be very small and, if it is less 

than the STOL considered, the substepping strategy is not activated. In fact, for a given 

volumetric strain step size of 10-02, values of STOL smaller than 10-02 are required to 

activate the substepping strategy with the ME scheme (Point Y in Figure 8a). The 
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RKDP with substepping, on the other hand, needs values of STOL smaller than 10-07 

(Point Y in Figure 8b). Moreover, for the same volumetric strain size of 10-02, 952 

substeps are required for the ME substepping scheme (with STOL = 10-08) to reach a 

relative local error of about 10-10. In contrast, for the RKDP substepping scheme, only 

2 substeps are required to reach a similar (even slightly smaller) value of the relative 

local error (see Figure 8).  

The specific form of plotting the results in Figures 7 and 8 provides an ideal platform 

to assess the computational performance of the substepping algorithms. They show not 

only how the error behaves but also how it is influenced by STOL and the number of 

substeps (or, similarly, the prescribed increment strain size). These performance maps 

are also very useful from a practical point of view, as they can be used to assess the 

value of STOL that is best suited to reach a prescribed level of accuracy while also 

anticipating the associated approximate computational cost.  

Similar responses to those just discussed for isotropic loading conditions are also 

observed in the remaining figures covering axial loading with zero radial strains 

(Figures 9 and 10) and undrained shear stress paths (Figures 11 and 12). Even in the 

case of not using a correct solution to compute the local error, the error behaviour for 

axial loading under zero radial strain and undrained-shear conditions illustrated in their 

respective performance maps is consistent with that shown in the previous section for 

isotropic stress conditions. The similarities between both analyses provide support to 

the strategy of using such forms of plotting to check the performance of explicit 

algorithms and verify that, if a substepping strategy is used, the automatic error control 

is working correctly.  

Further computational aspects: cost and efficiency 

In the examples presented here, the CPU time used is typically very small and, hence, 

the number of evaluations of the constitutive relations that a substepping scheme needs 

during the integration of a particular problem, can be employed to assess the 

computational cost of the integration scheme. Given a single strain increment with no 

substepping, two evaluations of the constitutive relations are needed in the ME 

substepping scheme whereas six are required in the RKDP substepping scheme. 

Additionally, each time a step size is rejected, the previous number of evaluations is 
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repeated and, furthermore, each iteration within the drift correction subroutine can be 

considered as one more evaluation of the constitutive relations.  

Figure 13 shows the computational cost as a function of STOL (i.e. for STOL = 10-02, 

10-04, 10-06 and 10-08) and the strain size for the three types of loading analysed. On the 

right, the plots correspond to the ME substepping scheme whereas the graphs on the 

left show the approximations for the RKDP substepping scheme. In general, for large 

sizes of h (from 0.01 to 0.1), the larger number of substeps required in the ME 

substepping scheme to satisfy all values of STOL typically leads to a largest number of 

evaluations of the constitutive relationships. Conversely, for small sizes of h (0.00001), 

the number of evaluations required is larger in the RKDP substepping scheme. For 

intermediate sizes of h (from 0.0001 to 0.001), the best computational efficiency 

depends on the level of accuracy specified. Thus, for problems in which stringent values 

of STOL are specified, the RKDP substepping scheme is probably the most efficient. 

On the other hand, if looser values of STOL are tolerable, the ME substepping scheme 

is possibly the best choice. In the analysis of a practical boundary value problem with 

finite elements, the size of the strain increments will typically vary widely at each 

integration point. For this reason, the ME substepping scheme is often used in practice. 

CONCLUSIONS 

The dependence on specific volume of the critical state stress-strain relations for 

saturated soils is central to the accuracy achieved when integrating the model via a 

numerical method whose order of accuracy is higher than one. This dependence should, 

therefore, be included in the substepping schemes by using a consistent update of 

specific volume during the numerical integration.   

By noting the fundamental nature of explicit integration, a direct methodology to verify 

and assess the computational performance of any integration scheme has been 

developed. All that is required is to plot the error incurred by the numerical scheme 

against the size of the strain increment (i.e. the known or driven variable of the problem) 

for various input increment sizes and verify that the rate of convergence is in 

correspondence with the order of local/global accuracy of the numerical method used. 

This way of plotting the results is also useful to select the optimal step size for an 

explicit substepping strategy when error control is to be used.  
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Additionally, a new form of plotting the computational outcomes for explicit 

substepping algorithms is proposed and its applicability to check certain computational 

aspects of these explicit algorithms is successfully demonstrated for different stress 

paths. More specifically, these new plots represent an ideal platform for assessing the 

performance of the substepping method, as they do not only provide information on the 

accuracy achieved by the algorithm but also advise on how the internal substepping 

tolerance STOL influences this accuracy. Consequently, these performance maps may 

be employed to assess the value of STOL that the user must prescribe to reach a 

particular value of the local error, while also providing information for an estimation of 

the corresponding computational cost.  

Finally, the results show that the substepping methods are capable of controlling the 

global error so that it satisfies the stress error tolerance STOL for all the cases 

considered.  

APPENDIX 

The incremental form of Equation 1 expresses the increments of effective stresses in 

terms of the increments of strains:  

'  σ D ε          (A1) 

where D  is the elastic matrix 
eD  (if no plastic yielding occurs) or the elasto-plastic 

matrix epD  when the given strain increment causes plastic yielding.  

In the context of the modified Cam clay model, the symmetric elastic matrix 
eD  and 

the elasto-plastic matrix epD  can be expressed as: 
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where the specific forms of the scalar function A and the gradient vectors a and b are, 

respectively: 
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where f is the yield function and g is the plastic potential.  

The incremental form of Equation 2 expresses the increments of the hardening 

parameter H during yielding: 

H B            (A7) 

where,  
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The expression of the secant bulk modulus is obtained using the elastic relationship 

between specific volume and mean effective stress given by the MCC model: 

d '
d

'

e p
v

p
           (A10) 

and integrating it to give: 
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where the subscripts i and f indicate initial and final respectively. Equation A11 can be 

expressed, after some manipulation, as:  
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The relationship between the specific volume and volumetric strains is given by: 

d
v

v
d

v
            (A13) 

Integrating Equation A13 over the same increment:  

  exp 1i vv v           (A14) 

Equation 5 for the secant bulk modulus is obtained by combining (A13) and (A14).  

Similarly to the derivation of Equation 5, it is trivial to derive an analytical expression 

for stresses for an isotropic elasto-plastic strain compression of a cylindrical soil sample 

in which ∆εa = ∆εr (where subscripts a and r indicate axial and radial directions 

respectively). In the context of the MCC model, if the initial stress state i of a cylindrical 

soil sample lies on the yield surface with zero deviatoric stress, the final mean effective 

stress, 'fp , corresponding to an isotropic elastoplastic strain compression of magnitude 

v  will be given by:  
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Table 1. Soil parameter values and initial state used in the simulations 

λ = 0.12 υ = 0.3 p′0 = p′A = 50 kPa 

κ = 0.05 M = 1.2 N = 2.0 

Table 2. Relative error on effective stress for a single elasto-plastic isotropic loading 

step (single step explicit integration schemes with update of specific volume only at the 

end of the integration increment) 

∆εv FE1 ME2 RKDP4 RKDP5 
061 10  7.50·10-11 6.38·10-12 6.38·10-12 6.38·10-12 

1·10-05 7.50·10-09 6.37·10-10 6.38·10-10 6.38·10-10 

1·10-04 7.49·10-07 6.34·10-08 6.38·10-08 6.38·10-08 

1·10-03 7.43·10-05 6.03·10-06 6.38·10-06 6.38·10-06 

1·10-02 6.84·10-03 3.21·10-04 6.36·10-04 6.36·10-04 

1·10-01 3.24·10-01 8.24·10-02 6.31·10-02 6.31·10-02 

Table 3. Relative error on effective stress for a single elasto-plastic isotropic loading 

step (single step explicit integration schemes with consistent update of v) 

∆εv ME2 RKDP4 RKDP5 
061 10  4.26·10-16 -- -- 

1·10-05 3.46·10-13 -- -- 

1·10-04 3.48·10-10 -- -- 

1·10-03 3.44·10-07 2.34·10-13 5.61·10-16 

1·10-02 3.12·10-04 1.87·10-08 6.35·10-10 

1·10-01 1.25·10-01 1.53·10-04 3.94·10-04 

Table 4. Relative error on effective stress for a single elasto-plastic isotropic loading 

step (substepping integration schemes with update of specific volume only at the end 

of the integration increment, ∆εv = 0.1) 

STOL ME with substepping  TS TF RKDP with substepping  TS TF 
041 10  5.77·10-04 95 2 6.31·10-02 1 0 

1·10-06 6.05·10-05 950 3 1.19·10-02 5 3 

1·10-08 6.07·10-06 9505 5 4.64·10-03 13 2 

 

 



 32 

Table 5. Relative error on effective stress for a single elasto-plastic isotropic loading 

step (substepping integration schemes with consistent update of specific volume during 

the substepping, ∆εv = 0.1) 

STOL
 

ME with substepping  TS TF RKDP with substepping  TS TF 
041 10  3.58·10-05 91 2 4.46·10-05 2 2 

1·10-06 3.58·10-07 910 3 1.99·10-07 5 2 

1·10-08 3.58·10-09 9105 4 1.71·10-09 13 2 
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Figure 1. Relative error in stresses for single step explicit integration schemes against 

strain increment size for a single elasto-plastic isotropic loading increment: (a) with 

update of specific volume only at the end of the integration increment; (b) with 

consistent update of specific volume during the integration increment.  

  

Figure 2. Relative error in stresses for substepping integration schemes with STOL = 

10-04 against strain increment size for a single elasto-plastic isotropic loading increment: 

(a) update of specific volume only at the end of the integration increment; (b) with 

consistent update of specific volume during the integration increment. 
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Figure 3. Relative error in stresses for substepping integration schemes with STOL = 

10-06 against strain increment size for a single elasto-plastic isotropic loading increment: 

(a) update of specific volume only at the end of the integration increment; (b) with 

consistent update of specific volume during the integration increment. 

  

Figure 4. Relative error in stresses for substepping integration schemes with STOL = 

10-08 against strain increment size for a single elasto-plastic isotropic loading increment: 

(a) update of specific volume only at the end of the integration increment; (b) with 

consistent update of specific volume during the integration increment. 
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Figure 5. Relative error behaviour in stresses for ME with substepping integration 

scheme with different STOL values against strain increment size for a single elasto-

plastic isotropic loading increment. 

 

Figure 6. Relative error behaviour in stresses for RKDP substepping scheme with 

different STOL values against strain increment size for a single elasto-plastic isotropic 

loading increment. 
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Figure 7. Relative error behaviour against number of substeps for a single elasto-plastic 

isotropic loading increment: (a) ME substepping scheme; (b) RK substepping scheme. 
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Figure 8. Relative error behaviour against STOL for a single elasto-plastic isotropic 

loading increment: (a) ME substepping scheme; (b) RK substepping scheme. 
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Figure 9. Relative error behaviour against number of substeps for a single elasto-plastic 

axial loading increment with zero radial strains (a) ME substepping scheme; (b) RK 

substepping scheme. 
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Figure 10. Relative error behaviour against STOL for a single elasto-plastic axial 

loading increment with zero radial strains (a) ME substepping scheme; (b) RK 

substepping scheme. 
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Figure 11. Relative error behaviour against number of substeps for a single elasto-

plastic undrained shear loading increment: (a) ME substepping scheme; (b) RKDP 

substepping scheme. 
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Figure 12. Relative error behaviour against STOL for a single elasto-plastic undrained 

shear loading increment: (a) ME substepping scheme; (b) RKDP substepping scheme. 
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Figure 13. Computational cost for different STOL values against strain increment size: 

(right) ME substepping scheme; (left) RK substepping scheme. 

 

 

 


