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Abstract

Dependent failures impose severe consequences on a complex system’s reliability and overall performance, and
a realistic assessment, therefore, requires an adequate consideration of these failures. System survival signature
opens up a new and efficient way to compute a system’s reliability, given its ability to segregate the structural from
the probabilistic attributes of the system. Consequently, it outperforms the well-known system reliability evaluation
technigues, when solicited for problems like maintenance optimization, requiring repetitive system evaluations.
The survival signature, however, is premised on the statistical independence between component failure times
and more generally, on the theory of weak exchangeability, for dependent component failures. The assumption
of independence is flawed for most realistic engineering systems whilst the latter entails the painstaking and
sometimes impossible task of deriving the joint survival function of the system components. This paper, therefore,
proposes a novel, generally applicable, and efficient Monte Carlo Simulation approach that allows the survival
signature to be intuitively used for the reliability evaluation of systems susceptible to induced failures. Multiple
component failure modes, as well, are considered, and sensitivities are analysed to identify the most critical
Common-Cause Group to the survivability of the system. Examples demonstrate the superiority of the approach.
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Introduction

Dependent failures are failure events affecting multiple
components simultaneously. Their origin is traceable
to entities external to the system or to the system
components themselves. The proper consideration and
modelling, therefore, of these failures is essential in
complex systems reliability analysis, as they may impose

adverse effects on a system’s overall functionality.

Interdependencies in engineering systems are man-
ifested at two levels; between components (inter-
component), which can be functional or induced and
between systems/subsystems (inter-system). Functional
dependencies are due to the topological and/or functional
relationships between components. For instance, a motor-
operated valve would not work if the electric motor
controlling its actuator stopped due to a breaker failure.
In this case, the valve is said to be functionally dependent
on the breaker through the motor. Induced dependencies,
on the other hand, are due to a state change in one
component (the initiator) triggering a state change in
another (the induced), such that even when the initiator is
reinstated, the induced does not reinstate, unless manually
made to do so. In the valve-motor-breaker example, for
instance, the valve would resume its normal operation,
once the faulty breaker is replaced, highlighting the
dichotomy between functional and induced dependencies.
Functional dependencies are intrinsically accounted for
by the innate attributes of the system reliability technique
while induced dependencies require explicit modelling.
Inter-system dependencies, on the other hand, are due
to functional or induced couplings between multiple sys-
tems. Unlike standalone systems, functional dependencies
in these systems may require explicit modelling. This is
the case especially for components relying on material
generated and transmitted by the components of another

system, under which condition the reliability modelling
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technique used may prove inadequate. The modelling of
this type of dependency is outside the scope of this work.
divided
Common-Cause Failures (CCF) and cascading failures,

Induced dependencies are further into

as illustrated in Figure 1. Common-Cause Failures
(CCF) are the simultaneous failure of multiple similar
components due to the same root cause '~. Their origin
is traceable to a coupling that normally is external to
the system. Notable instances are shared manufacturing
lines/materials, shared maintenance teams, shared
environments, and human error. A group of components
susceptible to the same CCF event is called a Common-
Cause Group (CCG). An important point to note about
CCEF is that, on occurrence of the failure event, there is
a probability associated with multiple component failure
and that the affected components only fail in the same
mode. A CCF may affect an entire system or only a
fraction of its components. Consequently, the number of
components involved in a CCF event ranges from 1 to the
total number of components in its CCG. CCF have been
shown (in Ref.*, for instance) to decrease the reliability
and performance of multi-component systems. They,
therefore, must be given due consideration.

CCF modelling and quantification has always attracted
keen interest from both researchers and practitioners
of system reliability and safety engineering. A total
of five parametric models have been put forward to
express the CCF probability of a CCG. The original
model, the Basic Parameter Model (BPM), expresses the
probability of a basic failure event involving a specific
number of components. The other models, the S-factor
model, the Multiple Greek Letter Model (MGL), the
a-factor model, and the Binomial Failure Rate model,
are only a mere reparameterization of the BPM. Of
these, the MGL and the «a-factor models are the most
widely used in the reliability and risk assessment of

systems. See Refs.!? for details on these models and
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Interdependencies

Inter-component

Common-Cause Failures

Figure 1. Forms of interdependencies in engineering systems

their relationships. Rasmuson and Kelly also reviewed,
in their work?, the basic concepts of modelling CCF in
systems. Rausand and Arnljot® proposed the square-root
method, a simple bounding technique that estimates the
effects of CCF on a system but which, however, has no
mathematical support for application. A robust Bayesian
approach for quantifying the a-factor parameters of a
CCG in the presence of epistemic uncertainties has also
been put forward by Troffaes et al.” Their approach,
however, is limited to component level reliability and,
therefore, requires a second approach to obtain the
system level reliability indices. For this, Fan’s stochastic
hybrid systems model®, O’Connor’s general cause-
based methodology’, or Ramirez-Marquez’s reliability
optimization approach'’ would do. Of course, only if
the reliability analyst is willing to turn a blind eye to
their respective drawbacks. These models are built on
reliability evaluation techniques that do not segregate the

topological from the probabilistic attributes of the system.
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Cascading Failures

As such, they are computationally expensive for problems

involving multiple reliability analysis of the same system.

Cascading failures are those with the capacity to trigger
the instantaneous failure of one or more components
of a system. They can originate from a component or
from a phenomenon outside the system boundary. The
likelihood of the initiating event originating from within
the system, distinguishes them from CCF. Another point
of dichotomy is that the affected components do not
necessarily have to be similar or fail in the same mode.
In addition, at the occurrence of the initiating event, the
probability of all the coupled components failing is unity,
save for the case when they are in a state rendering them
immune. A few prominent examples of initiating events
external to the system are extreme environmental events,
natural disasters, external shocks, erroneous/malicious
human-system interactions, and terrorist threats (see
e.g.'!). Various models have been developed to study

the effects of cascading failures on complex systems (see
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Ref.!? for a detailed review). Again, like the existing CCF
modelling techniques, these models, including the load-
flow simulation proposed by George-Williams et al.'?,
consider the probabilistic and topological attributes of the
system as a unit. They, therefore, are computationally
expensive for certain system reliability problems.

The system survival signature segregates the structure
function of a system from the probabilistic properties
of its components. Since a system’s structure function
changes only with changes in its topology, survival
signature-based approaches are a computationally effi-
cient alternative for maintenance optimization, uncer-
tainty, and sensitivity analysis problems, where only the
probabilistic attributes of the system change. For these
problems, the system’s survival signature is computed
just once and reused in multiple reliability analyses.
Other techniques, however, would require the evaluation,
directly or otherwise, of both the probabilistic and topo-
logical attributes of the system, on every analysis.

Since its introduction, the survival signature has
been invoked in various ways, and it is gradually
gaining popularity in system reliability analysis. Aslett
et al.'*, for instance, incorporated it into their Bayesian
framework for system reliability analysis. Reed> used
BDD to develop an efficient and exact algorithm to
compute system survival signatures. Feng et al.'® went
a step further by proposing an analytical approach
for analysing systems with imprecision in component
failure time distributions. Patelli et al.'’, on the other
hand, proposed a generic simulation approach for
computing the reliability of complex systems, using the
survival signature. However, these works assume full
independence between the component failure times. In
fact, only Coolen, Eryilmaz, and Coolen-Maturi have
made realistic attempts at extending the notion of survival
signature to systems with interdependencies. In 2014,

Coolen and Coolen-Maturi proposed a predictive model '
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that deduces the number of components that fail, as well
as the subsequent reliability of the system, following
a CCF event. Their model, however, stops short at
computing the overall effect of CCF on the system and is
applicable only to systems with a single component type.
Most importantly, it does not consider cascading failures.
Eryilmaz, Coolen, and Coolen-Maturi later adapted the
survival signature to compute the importance measures '°
and mean residual life?® of coherent systems with
dependent components. Their adaptations were based
on the theory of weak exchangeability?' of component
failure times. With this theory, components of the same
type can be dependent and have exchangeable failure
times while components of different types may or may
not be dependent. The only downside to its use, however,
is the need for knowledge of the joint survival function of
the components, prior to system analysis. While this is not
impossible, it is in no way straight-forward for complex
systems with nested cascade failures.

In this work, therefore, we extend the survival
signature-based approach to complex systems exhibiting
susceptibility to various forms of interdependencies.
We will consider induced dependencies in standalone
systems, with the assumption that the relevant CCF
parameters and cascading dependencies are known.
Functional dependencies will be implicitly accounted for
by the proposed reliability framework while inter-system
dependencies are outside the scope of this work. We will
also perform a series of computational experiments to
validate the framework and compare its computational

efficiency with the load-flow simulation technique.

Overview of Proposed Approach

We harness the existing survival signature-based mod-
elling formalism to propose a more realistic approach

to system reliability analysis. In the proposed approach,
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the survival signature of the system is obtained prior
to system analysis, using its topological attributes only.
An efficient event-driven Monte Carlo simulation is then
invoked to recreate the failure of the components and
propagate the ensuing dependencies, where necessary.
The number of operating components is determined for
each component type, with the corresponding system sur-
vival signature directly read off from a predefined register
and saved as a function of time. These stored values are
later used to compute the time-dependent reliability of the
system, using basic probabilistic principles.

Since the survival signature of a system is fixed so long
as its topology does not change, the proposed approach
makes an efficient alternative. Its efficiency particularly
stands out in maintenance optimization problems,
sensitivity & uncertainty analyses, and other problems
requiring multiple system reliability evaluations. Also,
because it is simulation-based, it can accommodate
any component failure time distribution type, including
user-defined distributions. In summary, the proposed
approach inherits the desirable attributes of both the
survival signature-based and Monte Carlo simulation-
based approaches. It is, to the best of our knowledge,
the first documented extension of the survival signature-
based approach to the complete system level reliability
evaluation of complex systems susceptible to both

common-cause and cascading failures.

Theoretical Basics

The operating status of an M-component system at
time, ¢, can be deduced from its state vector, & =
(1,22, ...,207), where x; is the state of the i'"
component at that time. For binary-state systems, x; =
1, if the 3t component is working and 0, if failed.
Consequently, z € {0,1} and z, € {0,1}, z5 being
the state of the system. By considering all the possible
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state vectors of the system, a function that maps the
states of the components to the states of the system
can be obtained. This mapping, otherwise known as the
structure function, ¢ (x), of the system, is an algebraic
expression taking the value 1 when the system works,
and 0, when it is failed. It is an algebraic representation
of the system topology and dissociates the connectivity
of the components from their probabilistic attributes.
Given its structure function alone, the reliability of a
system can be computed from the reliabilities of its
components directly. The structure function also finds
use in system indexing and comparison’’. However,
being an algebraic expression, the possibility of multiple
equivalent expressions for the same system exists.
This is the case especially for topologically complex
systems, which was why Samaniego®’> proposed an
alternative representation of the system structure. This
new representation, which he called the system signature,

is an M-dimensional probability vector whose i'"

element denotes the probability of the "

component
failure leading to system failure. It is hinged on the
assumption that all the components of the system are
identical, with independently distributed failure times.
This assumption, however, is unrealistic in two ways;
first, most practical systems are composed of a variety of
components. Second, as discussed in the previous section,
interdependencies are an inevitability in most systems,
rendering their component failure times correlated.

In response, Coolen et al.>* proposed a new formalism,
the survival signature, to generalise Samaniego’s system
signature. With the survival signature, the assumption
of identical components is no longer mandatory, only,
they too must fail independently. The survival signature,
S: (li,la, ..., k), of a system with K different types of
components, is the probability that the system will work
when [, components of type 1, [ components of type 2,

l3 components of type 3, and so on, are working.
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Mathematical Formulation

Consider a system with K component types, with
M), components of type k€ {1,2,..., K}, such that
Zszl M, = M. Let the random failure times of compo-
nents of the same type be identical and independently dis-
tributed. Consequently, components of the same type can
be grouped and defined by the set p{¥}. Each ptF}vEk e
{1,2,...,K} is considered an independent subsystem,
which gives rise to a total of K subsystems, at the system
level. The system state vector can then be written as,
x ={xy,&y,..., Ly}, Where x, is the state vector for

subsystem k (type k components).

Now, let’s modify  to denote the actual number
of available components of each component type, at a
given instance. The modified system state vector, x’,
),

where x, the number of available type k components, is

is a K-element vector, such that ' = {2}, ), ...

equivalent to ) &,.. Since components of the same type
are similar, there are (]; 2’”) state vectors, x,;,, where exactly
x}, of the M}, components are working. Therefore, there
are HkK:1 (]ff) system state vectors, x, corresponding to
. If this set of vectors is denoted by X, following from
the definition of the survival signature and the fact that all

the state vectors in X are equally likely to occur,

S, (2') = Lf[l <];ik)]

where S () is the system survival signature, given &’.

x> ()

zeX

ey

Let Fj (t) be the cumulative failure time distribu-
tion (CDF) for type k components, then the probabil-
ity of exactly zj components being in operation and
My — xje, failed, is deduced from the binomial the-
ory as, (A,f;) [Fy (8)]M5 %% [1 — F, (¢)]°F. Hence, the
occurrence probability, P (z’), of the state vector, &, is
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expressed as,
) [Fi (8] 7" [1 = B, ()] ()

Therefore, the expected survival function of the system,
given &', is the product, S, (x’) x P (z’). The survival
function or the reliability, R (t), of the system, is the
sum of the expected survival functions yielded by all its
modified state vectors. For a system with K component

types, there are Hle (M}, + 1) such state vectors and,

R(t)= ) [S: (@) x P ()]

z'eX’

3

where X' is the global set containing all the modified
state vectors, &', of the system.

Modelling & Simulating the System

Consider the system described in the previous section,
and suppose the random failure of a component of type
k may trigger the failure of one or more components.
In addition, let one or more components have multiple
total failure modes, which in turn may have different
effects on the system. By total failure we mean, the
component is completely failed and its output/structure
function is 0. The component, in other words, is still
deemed binary-state. Suppose also that the system is
not only susceptible to cascading failures emanating
from within its boundaries but to cascading failures
triggered by external factors, as well. Clearly, the existing
survival signature-based reliability evaluation approaches
are inadequate for such a system. This section provides
a detailed description of the modelling approach for such

systems.
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Components with Multiple Failure Modes

The survival signature, by default, is suited to binary-state
components and systems. Therefore, when the system
being modelled also contains components with multiple
failure modes, the analyst would need to make these

compatible with the signature-based approach.

Consider a component with two failure modes, and
which occurrence times follow the CDF, Fy (¢) and F5 (¢),
respectively. If these failure modes have the same effect
on the system, then, they can be merged. Two total failure
modes have the same effect on a system if they do
not trigger dependent failures or if they have an equal
likelihood of affecting the same set of components. The
effective CDF, F; (), of the component is computed from
the probability, P (min (T1,T2) < t), where T} and T5
are the random occurrence times of failure modes 1 and
2, respectively. This relation follows from the reasoning
that the component is failed on the occurrence of any of
the failure modes. The resulting probability could also
be viewed as the complement of the probability that
none of the failure modes occurs, yielding, F; (t) =1 —
[1—Fy(¢)][1 — F>(t)]. Generally, the effective CDF,
F; (t), of an n failure mode component is given by
F;(t)=1-T[,-, 1 = F,(¢)], so long as the failure

modes are total and impose the same effect on the system.

There are times when a set of component failure
modes do not satisfy the condition for merging. Currently,
such a scenario cannot be solved analytically, and we
will, therefore, not bother ourselves with computing
the effective CDF of the component. Instead, we will
propose a set of procedures to segregate the component
into several binary-state elements, which then can
be easily implemented by a Monte Carlo simulation
algorithm. It should be noted that this segregation is only
required to enhance the intuitive representation of the

inter-component dependencies and ensure a simplified
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simulation algorithm. The system, otherwise, could still
be analysed, only the sampling algorithm and dependency
matrix proposed in Ref.?* and Ref. '?, respectively will be
required, complicating an otherwise simple solution.

An n failure mode component, ¢, is segregated by
redefining its state-space to contain the working state
(conservatively assumed to be state 1), and one of the
failure modes (assumed to be state 2). The remaining n —
1 failure modes (assumed to be state 3 to state n) are each
then assigned to a virtual binary-state node. Component
¢ retains the failure time distribution to state 2 while
the virtual nodes inherit the failure time distributions to
their respective failure modes. The virtual nodes, as their
name implies, are not really a part of the system, and
should, therefore, be considered external factors/nodes.
External nodes are not considered when deriving the
survival signature set, S, of the system, which is why
their numbering starts from M + 1, M being the number
of system components. Since in practice, the virtual
nodes, together with the parent node, 7, represent the same
component, the failure of any of these nodes denotes the
failure of the component. Hence, each virtual node is a
dual of the parent node, .

When a node fails, its duals can no longer affect
the system, since the failure modes of a component
are mutually exclusive and in this work, non-repairable.
Consequently, the system simulation algorithm should be
equipped with a special routine to ensure affected dual
nodes are removed, following a failure event. For this,
we propose an efficient recursive algorithm. It takes the
current values of ', pt*} for all k € {1,2,..., K}, the
set, F, of failed components, and the set, D;, of duals of
component i forall i € {1,2,..., M + M'}, returning /,
p{k}, and FF, where M’ is the number of external nodes.
Following the failure of a component, the algorithm first
removes all its duals that are not in operation, from

D;. The component type, k, of the first active dual is
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Algorithm 1 Procedure for removing dual nodes

Algorithm 2 Procedure for cascading failures

Require: z',F, p, D, i

1: function REMOVEDUALNODES(z', F, p, D, ©)

2 D; <D, —F > Remove failed nodes
3 if D; < () then

4: go to line 13 > Exit algorithm if 7 has no duals
5: end if

6 for j € D; do > Loop over dual nodes
7 k <—component type of node j

8 plFt  plkt — > Remove j from set
9: (', k) «| pt*t | > Update state vector
10: F = FF U j > Update failed nodes/components
11: (z',F, p) < REMOVEDUALNODES(Z/, ..., j)
12: end for

13: return (', F, p)
14: end function

determined, following which it is removed from the set
of components, p{¥}, in that group, and the k' element
of the modified system state vector, ', replaced with the
cardinality of p{¥}, which in other words is written as
(z', k) =| p{*} |. Due to the possibility of a dual node
possessing its own duals, the algorithm is recursively
applied to the node, as highlighted on line 11 of
Algorithm 1. The sequence is repeated for the remaining
active duals, adding each to set IF before moving on
to the next. Algorithm | summarises the procedure for
removing the duals of component ¢, following its failure.
In the algorithm and the remainder of this paper, D
denotes the global set of D, Vi € {1,2, ..., M + M'}, such
that D = {Dy, Do, ..., Dps4 pr - Similarly, p denotes the
global set of plFVk € {1,2,...,K}, such that p =
{p1, p2t . ptEHY

Cascading Failure Modelling and Propagation

We represent the cascading dependency between compo-
nents by the cascading matrix, C. The cascading matrix,

which can be a sparse matrix, is an (M + M’) order
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Require: z',F, p, D, C, ¢

. function CASCADEFAILURE(Z', F, p, D, C, 7)

I; +—induced components obtained from C

IL+<I,-F > Remove failed nodes

if I; < () then
go to line 15 o Exit if ¢ cannot induce failure

end if

for j €I, do > Loop over induced components
k +—component type of node j
plFt — ptht — > Remove j from set
(z', k) «| pt*t | > Update state vector
F = IF U j > Update failed nodes/components
(z',F, p) <+ REMOVEDUALNODES(Z/, ..., j)
(z',F, p) < CASCADEFAILURE(Z/, ..., j)

14: end for

15: return (', F, p)

16: end function

R A A ol S

_ e e
bl

square matrix which elements denote whether or not the
failure of a component can trigger the almost instanta-
neous failure of another component. The element in row
¢ and column j of the matrix is assigned the value 1 if
the failure of component ¢ can induce failures (in the
cascading failure sense) in component 7, and 0, otherwise.
Therefore, the set, I;, of components which failure is
induced by component ¢ is given by the column indices
of the non-zero elements of row ¢ of C.

To account for these cascading dependencies in the
operation of the system, we propose a second recursive
algorithm to propagate their effects across the system
during simulation. The algorithm takes in the same input
set required by Algorithm 1 in addition to the cascade
matrix and returns z’, p{k}, and FF. Following the failure
of a component, the algorithm first deduces the possible
set of components that can be affected. From this set,
currently inactive components are removed, and the rest
of the procedure is similar to what obtains in Algorithm

1. Since an induced component can also induce failures in
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other components, the algorithm recursively calls itself,
this time, to propagate any failures the induced may

induce. The procedure is summarised by Algorithm 2.

CCF Modelling and Propagation

For non-repairable binary-state systems, a CCG is
characterised by a set of probabilities. This set defines
the likelihood of a given number of components being
involved in any random failure event affecting the group.

Let the CCF probability for component type k
be defined by O{k}, such that @1} = {t9}{k}}M’c =
{Hi{k}, Gé{k}, - 6}2 }, r being the total number of compo-
nents affected by the failure event, and Zf}fl o = 1.
In effect, Gik} denotes the probability of an additional
r — 1 components failing, following the failure of a type
k component, in conformity with the a-factor model.
A key requirement, therefore, is that CCF probabili-
ties are expressed according to this model. Probabilities
expressed according to the Multiple Greek Letter model

would need to be converted as outlined in Ref. !

ol 1t < M,
H = {Hkr}meax{A} | Hkr —

0 otherwise

“

In the most general sense, the notation established
in the preceding paragraph could as well be used for
component types immune to CCF. For this special case,
6%} = 1 and 9" = 0 for all r > 1, which by definition,
means, the probability of no additional component failing,
following the failure of a type k component is 1. Leaning
on this fact, we introduce the CCF matrix, H, to define the
CCF characteristics of a system with a mix of component
types susceptible and immune to CCE. H is a K X
max{A} matrix, where A = {My, Mo, ..., Mg_1, Mk}
is the set of number of components, My, | k= 1,2, ..., K,

in each group. Each row of H, therefore, defines the CCF
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characteristics of the component type corresponding to
the index of that row, as outlined as in Equation 4. The

attributes of H impose two constraints;

1. A component can only belong to one CCG. This
implies, CCF events in one CCG are independent of
the CCF events in other CCGs. They can, however,
still induce cascading failures in these CCGs.

2. For a given component type k, all its M}, components
must belong to the same CCG. What this means is,
no component should be immune to a CCF to which
some components of the same type are susceptible.
Strictly speaking, in real life, it is unlikely to have
a CCF affecting only a fraction of the components
of a given type. However, on its unlikely occurrence,
we suggest the components be segregated into two
component types, based on susceptibility to CCF.

These constraints should, therefore, be kept in mind when
defining component types. As a rule-of-thumb, every
component type should be viewed as a CCG, and defined
as such, whether or not it is susceptible to CCF. This,
indeed, is logical, since components of the same type
have similar characteristics, and would, therefore, be
influenced by the same common-cause event.

With the CCF modelling procedure outlined, the
remainder of this section details CCF propagation during
system simulation. Recalling simulation entails recreating
the actual operating principles of a system, we propose
a very simple procedure for propagating CCF, following
the failure of a component. When a member of a CCG
fails, there could be 0,1,2 up to My — 1 additional
component failures. The total number of component
failures is determined by the CCF matrix, as discussed
earlier. Therefore, following a component failure, the
number of additional components to fail is first deduced.
This is achieved by generating a uniform random number,

U, between 0 and 1 and comparing it to the cumulative
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Algorithm 3 Procedure for propagating CCF
Require: 2/, p, F, D, H', C, k

1: function PROPAGATECCF(z/, p, F, D, H', C, k)
2 if ], < 1Lor p{*} « () then

3 go to line 16 > Exit if CCF is not possible
4 end if

5: getr > Get number of components to fail
6 if » > 1 then > Multiple components affected
7 Z < set of (1 — 1) components from pt*}
8 pl¥t — plkt — Z > Remove components
9: (z', k) «| plFt | > Update state vector
10: F=FuZ > Update failed nodes
11: for j € Z do > Loop over components
12: (z/,F, p) < REMOVEDUALNODES(..., j)
13: (z',F, p) < CASCADEFAILURE(Z/, ..., j)
14: end for

15: end if

16: return (z’, F, p)
17: end function

sum, H', of H. H’ is the cumulative sum of the elements

of H along each row, from left to right. Thus,

W = {(H}, POt =S

r=1

&)

The total number, r, of components involved in the CCF
of a type k component is equal to the index of the smallest
element of the k*" row of matrix H' greater than or equal

to U. This is expressed as,

r=min{n,n+ 1,n+2,...,max{A}} | H;, > U
(6)

If r>1, r—1 components, excluding the one
initiating the CCF, are randomly chosen from the set,
plF}, of components of type k. The selected components
are those affected by the CCF event. The condition r =
1 denotes the scenario when no additional components

are affected by the failure of the first component. On
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the other hand, if the cardinality of p{k} is less than or
equal to r — 1, all the active type & components would
fail. As in Algorithms 1 and 2, each failed component is
removed from p{¥}, with F and &’ updated accordingly.
Algorithms 1 and 2 are also applied to the component, to
ensure dual nodes and cascading failures are accounted
for, respectively. Since all the components affected by
the CCF event belong to the same component type (see
the assumptions in this section), they can be removed
from p{¥} and added to F, each in just one step, without
needing a for or while loop. Algorithm 3 summarises
CCF propagation following the failure of a component. Its
second line checks whether or not the component failure
can induce CCF in other components. The condition
Hj,; = 1 means type k components are not susceptible to
CCF while pt*} = () suggests none of these components

is active, which is why the algorithm is terminated.

The Simulation Algorithm

Prior to simulation, each system component is assigned
a positive integer, i | i € {1,2,..., M}, representing its
index in the system. The numbering starts with the
components that actually make up the topology of the
system, ending with external nodes. These components
are then segregated into groups, according to their
similarities. For the purpose of this work, the words,
component and node, will be used interchangeably to
refer to any element that effects the system.

Let fi(t) denote the common failure time distribution
for all components of type k£ and f, the global set
containing fr(¢) for all k € {1,2, ..., K'}. To prepare the
system for simulation, set the initial state vector, z’,
to {My, Ma,..., Mg_1, Mk} and the set, IF, of failed
components to (), since all the components are initially
working. For the same reason, the survival signature,

S (z'), at the initial time step, jo = 1, is assigned a value
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of 1. The set, p, the CCF matrix, H, the cascade matrix,
C, and the global set of duals, D, are also defined. Finally,
the mission time, T,, is divided into equal time steps of
magnitude ¢, and the survival function, R(t), preallocated
as a vector of zeros, with each element corresponding to a
time step. The survival function, in other words, is defined
as, R(t) = {0}™, where n; is the number of time steps.

At time ¢ = 0, the failure time of each of the M + M’
components of the system is sampled from its appropriate
distribution and stored in 7. From 7, the next transition
time, t, and the component, ¢, to fail are deduced. ¢
is equivalent to the minimum element of 7 and ¢, its
index in the set. The simulation is then shifted to this
time, at which point the number of time steps, j, ¢
represents is computer as [t/d]. Elements jo to j of
the survival function, R (t), are each incremented by
S, (z’). The type, k, of the component is determined,
the component is removed from p{*}, added to the set of
failed components, and =’ modified to reflect the changes.
Where necessary, Algorithms 1, 2, and 3 are invoked to
remove dual nodes, cascade failures, and propagate CCF
across the system, respectively. The next transition times
of the failed components are set to infinity and jo set to
7 + 1. Again, the next transition time, ¢, and component,
1, are determined and the cycle restarts. This procedure
continues until ¢ > T,,, or S, (') = 0, which ever occurs
first. The second condition is satisfied only when the non-
repairable system is certainly failed, explaining why the
simulation is terminated on its occurrence.

The sequence of events described in the preceding
paragraph accounts for only one simulation sample. Since
component failures are random in nature, this sequence
should be repeated for an appreciable number of times.
The effective survival function of the system is obtained
by dividing the final value of R(¢) by the number of
simulation samples, V. It is, however, worthwhile noting

that the accuracy of the outcome is influenced by the

Prepared using sagej.cls

Algorithm 4 System simulation procedure
Require: H', N, p, f,C, D

1: function SIMULATE(H', N, p, f, C, D)

2: x' +— {M;,Ms,...,Myk_1, Mg} v Initialise
3 R(t) + {0}™ > Initialise survival function
4 T {OpMEM > Initialise 7
5: Jo+1 > Define initial time step
6 F < @ © Define initial set of failed components
7 Sy ()« 1 > Set survival signature to 1
8 for k < 1 to K do > Loop over component type
9: (7, ) < fi(t)®my, > Sample failures
10: end for

11 [t,i] < min{T} > Get next failure time and i
12: while ¢t < T, and S (') > 0do

13: j+ [t/8] > Get the number of time steps
14: (R(t),jo = 7) < (R(t),jo — j) + S~ (')
15: k +—component type of node i

16: plkt — ptkt > Remove 7 from set
17: (z', k) «| pt*t | > Update state vector
18: F=FU: > Update set of failed nodes
19: (z',F, p) + REMOVEDUALNODES(Z/, ..., %)
20: (z',F, p) < CASCADEFAILURE(Z/, ..., %)
21: (z',F, p) < PROPAGATECCF(/, ..., k)
22: (1,F) + o0 > Update transition times
23: Jo+—gj+1 > Set next initial time step
24: [t,i] + min{T} > Get next failure time and ¢

25: end while

26: if jo <nand S, (z’') > 0 then

27, (R(t),jo = n) < (R(t),jo — n) + S- ()
28: end if

29: Repeat lines 5 to 28 N times

30: R(t) = %

31: return (R(t))

32: end function

values of N and J. A large N and a small § (relative to
the mission time), guarantee an accurate R(¢). Algorithm
4 summarises the simulation procedure, which is different
from the Algorithms proposed by Patelli and Feng'’, as
the proposed procedure considers dependencies, as well
as multiple failure modes. The block of code between

lines 26 and 28 updates the survival function after the
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Figure 2. An arbitrary multi-component complex system
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last component failure. The notation, fx(¢)®Mj, on line

9 denotes M}, random failure times sampled from f ().

Sensitivity Analysis

Sensitivity analysis is the study of how the variation
in the output of a mathematical model is apportioned
to variations in its inputs.”> In a complex system with
multiple CCGs, each CCG may have a unique effect
on the system’s survivability. Therefore, the relative
influence of the various CCGs on the reliability of the
system is a vital decision-support information. >°
Consider a complex system with K component types
and its CCG matrix, H. The computation of the relative
sensitivity of the CCGs entails analysing the system with
only one CCG active, for all the CCGs. To compute the
effect of CCG 4, Hy; is setto 1 and Hya, Hs, ..., Hi
to 0, for all k£ # 4. This is equivalent to replacing all rows
other than ¢, of H, with the y-element vector, [1,0, ..., 0],
where y = max{A}. The most critical CCG is the one
producing the least deviation from the reliability of the
system with all CCGs active. Since simulation provides
the time-dependent system reliability, the proposed
approach can reveal the evolution, over time, of the
relative criticality of the CCGs. The sensitivity of this
relative criticality to the Mean-Time-To-Failure (MTTF)

of the component groups can also be investigated.

Prepared using sagej.cls

Case Studies

To illustrate how the proposed modelling and simulation
approach is applied in practice, two case studies will
be considered in this section. Though only numerical
examples, the case studies have been carefully designed
to reflect the every-day problems encountered by the
system engineer in industry. We, therefore, believe they
set the tone for the applicability of the proposed approach
to realistic problems. To validate the approach, we
compare the solutions to the existing analytical survival
signature-based approach,'®?® as well as a simulation
approach based on a modification of the load-flow
approach. '*?* The modified load-flow simulator is the
same as Algorithm 4, save for the replacement of S (z')
with a structure function that is assigned the value 1 for

non-zero flows across the system and 0, otherwise.

Case Study 1: A Complex Bridge System

Shown in Figure 2 is an arbitrary 13-component complex
system, which components are arranged into five groups.
The number within each box denotes which group the
component belongs to while the number outside defines
the index of the component in the system. Components of
the same group are assumed to have the same failure time
distribution, as defined in Table 1. The CCF parameters
define the probabilities of a given number of components
being affected by a CCF event and correspond to the a-
factor CCF model. In the table, an exponential distribution
is defined by its mean (in hours) while a Weibull
distribution is defined by a set in which the first element
is its scale parameter (in hours) and the second element,

its shape parameter.

Analyses and Results: The system was first analysed
with and without CCF, using the proposed simulation
model and the data presented in Table 1. For this
system, A = {2,4,1,2,4} and the CCF matrices, with
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Table 1. Failure time distribution data and CCF parameters of component groups.

Component Type Distribution Type Distribution Parameters CCF Parameters
1 Weibull (1.8,2.2) {0.95,0.05}
2 Exponential 1.2 {0.8, 0.1, 0.05, 0.05}
3 Weibull (2.3,1.6) {1}
4 Weibull (3.2,2.6) {0.9,0.1}
5 Exponential 2.1 {0.75,0.1, 0.1, 0.05}
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Figure 3. System reliability with dependencies ignored.

Figure 4. System reliability with dependencies considered.
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Figure 5. System reliability sensitivity to CCGs.
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Time(hrs)

Figure 6. Sensitivity of critical CCG to component MTTF.
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Table 2. Comparison between the computation time (in seconds) of the proposed and the existing techniques.

Dependencies Ignored With Dependencies

Survival Signature computation
Analytical technique

Proposed technique

Load-Flow simulation

92.00 92.00
0.29 n/a
32.50 32.80
2300.00 1654.00

and without CCF, are as expressed in Equations 7 and 8§,

respectively.
095 0.05 0 0
0.8 0.1 0.05 0.05
H = 1 0 0 0 (N
0.9 0.1 0 0
0.75 0.1 0.1 0.05
1 0 00
1 0 00
H=|1 0 0 0 ®
10 00
1 0 00

The system was then re-analysed, in separate instances,
using load-flow simulation and an analytical survival
signature algorithm. The analytical algorithm was used
only for the case without dependencies, due to its
inapplicability to dependent systems. Figures 3 and 4
show the system reliability plots for a mission time of 3.5

hours and 5 x 10* samples.

The relative sensitivity of the system survival
function to the Common-Cause Groups (CCG) was also
investigated. The system was analysed considering CCF
in all the CCGs (designated full CCG), with no CCF,
and CCF in only one group at a time, for all the
CCGs. The results obtained are plotted in Figure 5,
from which the critical CCG is deduced, as described

in Section “Sensitivity Analysis”. Figure 6 shows the
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variation of this CCG with component Mean-Time-To-
Failure (MTTF), as a function of time. The factor,
ks, denotes the number by which the nominal MTTF
presented in Table | is multiplied. For an exponential
distribution, the new mean becomes Agky, where \g is
its nominal mean. The MTTF of a component with a
failure time following a Weibull distribution is varied by
keeping the shape parameter constant, while varying the
scale parameter. If g is the nominal scale parameter, the

new scale parameter becomes aoky.

Discussions: The accuracy and generality of the pro-
posed simulation approach are validated by the plots in
Figures 3 and 4, given the agreement between the results
yielded by the various techniques. As highlighted in
Figure 5, the reliability of the system reduces drastically
when the effects of CCF are factored into the analysis.
It exemplifies the need to consider this realistic aspect
of a system’s operation in its reliability evaluation. The
figure also reveals CCG-2 as the most critical and CCG-
3, the least critical. The latter, however, is not surprising,
as CCG-3 is made up of only one component, inferring
its immunity to CCF. Figure 6 shows that the criticality
of a CCG may or may not remain fixed during the
mission, depending on the MTTF of its components. For
instance, for ky = 1, corresponding to the nominal values
presented in Table 1, CCG-2 is initially the most critical
until at time, ¢ = 2.5 hours, when it is overtaken by CCG-
5. A different trend, however, is realised with ky = 0.5,
for instance. The essence of the results presented in Figure

6 could be appreciated on two fronts;
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1. Since the most critical CCG is a function of the
MTTF of its components, there is sufficient incentive
for the system operator to re-identify the most
critical CCG after every component replacement.

2. In the face of limited resources, the operator can
efficiently allocate CCF mitigating resources during
the mission. For instance, with k; = 0.5, resources
should be allocated to CCG-2 for 0 <t < 1.36,
CCG-5for1.36 <t < 1.57, and CCG-1 for ¢t > 2.

Though the proposed approach yields the same
outcome as the load-flow simulation and analytical
techniques, it requires less computational effort than
the former but more than the latter, as summarised in
Table 2. The table provides the recorded wall clock
times (in seconds) for each approach, when the system
was analysed on a 2GHz Intel(R) Core(TM) i5-4590T
computer. The system with dependencies is less reliable,
and, therefore, has a shorter life span. Since a simulation
sample is terminated when the system is completely failed
or the mission is completed, more samples are computed
within a given wall clock time. It is, therefore, easy to
realise that the difference in computation time between
the system with dependencies and that with dependencies
ignored, depends on the mission time. Row 1 of the table
provides the time it took to derive the survival signature
of the system, for all its possible state vectors. This time
is fixed, with or without dependencies, since the survival

signature depends only on the system topology.

In survival signature-based techniques, the structure
function of a system is computed once for each of
its state vectors. In load-flow simulation, however, the
simulation computes the flow through the system for
every component failure. Therefore, there could be up to
N load-flow calculations per state vector, in an [N sample

simulation. This explains why the proposed approach
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Figure 7. Schematic of a 50MW hydroelectric power plant.
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Figure 8. Condensed block diagram of the plant in Figure 7.

is more efficient, even when both are simulation-
based. Its computational superiority is most appreciated
when employed to solve a problem requiring repeated
system evaluations. For instance, if the system under
consideration were analysed n times with dependencies
ignored, the proposed approach would take 92 + 32.5n

seconds and the load-flow simulation, 23007 seconds.

Case Study 2: A Hydroelectric Power Plant

In this case-study, a two-unit hydroelectric power plant

f.27, and which schematic is shown in

adapted from Re
Figure 7, is analysed. It is a slightly modified model of
the Bumbuna hydroelectric power plant; a 5S0MW plant
in Sierra Leone. Its two units are similar, and each,

rated 25MW consists a butterfly valve, turbine, generator,
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Table 3. Failure time distribution data and CCF parameters of plant component groups.
Component Type Components Distribution Type Distribution Parameters CCF Parameters
1 1 Weibull (3,1.8) {1,0}
2 2,3 Weibull (1.8,2.3) {0.9,0.1}
3 4,5 Weibull (4,3) {0.8,0.2}
4 6,7 Weibull (2.1,2.6) {0.85,0.15}
5 8,9 Exponential 4 {0.8,0.2}
6 10 Exponential 3.85 {1,0}
7 11,12 Gamma (3,1) {0.82,0.18}
8 13 Hazard Function 2t {1,0}
9 14 Hazard Function t2 +t/100 {1,0}

Table 4. Comparison between the computation time (in seconds) of the proposed approach and the existing techniques.

Dependencies Ignored With Dependencies

Survival Signature 34.20 34.20
Analytical technique 0.07 n/a

Proposed technique 29.00 32.80
Load-Flow simulation 757.70 486.40

A@® - >----@B Cascade failure of B due to A

D

®B A & B are dual nodes

~

Figure 9. Plant block diagram showing interdependencies.

and circuit breaker. The power generated by the units is
synchronized in the synchronizing unit and fed to the step-
up transformers for onward transmission. The reliability
block diagram of the plant is presented in Figure 8, where
the Penstock and Synchronising unit have been neglected

due to their very high reliability. CB3, which has two

Prepared using sagej.cls

failure modes, is of a make different from that of CB1
and CB2. Its failure in mode 1 forces the failure of CB1
while its failure in mode 2 forces the failure of TX2. The
dam is contaminated with impurities that induce failure
in CG and T2, at a rate of 2t per year, where t is the
time spent in operation. T1, however, is conservatively
assumed immune to this impurity. The goal of this case
study is to compute the reliability of the plant for a

mission time of two years.

Analyses and Results: The impurity affecting CG &
T2 and the second failure mode of CB3 can each
be represented by an external node, as proposed in
Section “Components with Multiple Failure Modes”. The
impurity is assigned a component ID of 13 and failure
mode 2 of CB3, a component ID of 14. The latter is also
the dual of node 10, since they both represent different
failure modes of the same component, CB3. In Figure 9 is
the final block diagram of the plant showing cascading
dependencies. The components, including the external

nodes have been organised into 9 component groups/types
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depending on their similarity in functionality, make, and
failure characteristics. Table 3 presents these component
groups, their composition, failure time distribution (in
years), and CCF parameters. In the table, “Hazard
Function” as a distribution type suggests only the hazard
rate, hy, (t), of failures is known for that component type.
Given hy (t), however, the probability density function,
fx (t), and the cumulative density function, Fj (t), for
type k can be obtained thus;

Tk (t) = hg (t) e~ I3 hi(u)du

Fo(t) = 1 ¢ Ji hutwrin )
1 0
09 0.1
0.8 02
0.85 0.15
H = 0.8 0.2 (10)
1 0
0.82 0.18
1 0
1 0

For the plant, A =1{1,2,2,2,2,2,2,1,1}, Dyp =
{14}, D14 = {10}, and D; = (Vi & {10, 14}. The CCF
matrix is given by Equation 10 and the cascade matrix, C,
which is defined as a sparse matrix to conserve memory,

by,

e e

As in the first case study, the plant was first analysed
using 5 x 10* simulation samples and the same reliability

modelling and evaluation techniques used in that case
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Figure 10. Plant reliability with dependencies ignored.

study, with dependencies neglected. It was then re-
analysed using the proposed technique and load-flow
simulation, but this time considering CCF and cascading
failures. The computation time in each case, in seconds
of wall clock time, was recorded as presented in Table
4 while Figures 10 and 11 show the plots of the results
obtained. The plant was also analysed separately, with
CCF neglected (denoted “Cascade only”) and then with
cascading failures neglected (denoted “CCF only”). The
results obtained were plotted on the same axes, as shown
in Figure 12, to lay bare, the effects of dependencies,
as well as the relative influence of CCF and cascading
failures on the reliability of the plant.

The plant was re-analysed with 5 x 10® samples using
the load-flow and the proposed techniques in order to
investigate the uncertainties in the simulation approaches
and how the variance of the estimators vary with the
number of samples. The proposed approach took a wall-
clock time of 6.95s with dependencies ignored and 5.22s,
with dependencies. Similar to the Case Study 1, the
system with dependencies is less reliable, and, therefore

less transitions are required to analyse the system.
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Table 5. Comparison between the accuracy of the proposed approach and the existing techniques.A, B, and C represent
the analytical approach, the proposed method, and the load-flow technique, respectively.

System Reliability
0.5 yrs 1.0 yrs 1.5 yrs
Number of Samples A B C A B C A B C
Without Dependencies 5 x 103 0.8152 0.8247 0.8132 0.5083 0.5048 0.5100 0.1938 0.1882 0.1941
P 5 x 10% 0.8152 0.8156 0.8159 0.5083 0.5092 0.5078 0.1938 0.1934 0.1940
With Dependencies 5 x 103 n/a 0.5767 0.5778 n/a 0.1193 0.1134 n/a 0.0070  0.0036
P 5 x 10% n/a 0.5717 0.5714 n/a 0.1145 0.1133 n/a 0.0050  0.0050
Coefficient of Variation (%)
Without Dependencies 5 x 10° n/a 0.49 0.67 n/a 0.70 2.22 n/a 1.10 2.05
P 5 x 10% n/a 0.33 0.33 n/a 0.52 0.76 n/a 0.72 1.47
With Dependencies 5 x 103 n/a 0.45 0.85 n/a 0.73 1.60 n/a 2.44 4.65
P 5 x 10% n/a 0.30 0.36 n/a 0.38 1.00 n/a 0.89 2.23
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Figure 11. Plant reliability with dependencies considered.

With the same number of initial samples, the load-
flow approach took 25.15s and 13.66s, without and with
dependencies, respectively. The reliability of the plant at
0.5, 1.0, and 1.5 years into the mission were deduced from
the results and compared with the values obtained with
5 x 10% samples, as shown in Table 5. The coefficient
of variation has been used as a measure of uncertainty
in the system reliability at the selected times chosen to
cover as much as possible the useful life of the system.
The effect of the number of simulation samples on the

variance of the reliability etimator is shown in Figure 13.
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Figure 12. The effects of dependencies on plant reliability.

The plots are based on the proposed approach applied to
the system with dependencies ignored. A similar trend is
portrayed by the system with dependencies considered -

which observation is also true for the load-flow approach.

Discussions: Figures 10, 11, and Table 5 further validate
the accuracy and generality of the proposed approach. As
in case study 1, Table 4 shows the proposed approach
to be somewhere between the analytical and load-flow
techniques, in terms of computational efficiency. This
assertion, too, is further ascertained by the outcome

yielded with 5 x 103 simulation samples. As expected,
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Figure 13. Variation of uncertainty in system reliability with
number of simulation samples, plotted on a log scale.

the reliability of the plant is maximum, with dependencies
neglected and least, otherwise. The effects of cascading
failures, however, are prominent, according to Figure 12.
This can be attributed to the effects of the contamination
of the dam on the control gate (CG), since the failure of

the latter induces the failure of the plant.

It can be deduced from Table 5 that both the proposed
and load-flow approaches improve in accuracy with
increase in the number of simulation samples used. Their
inaccuracy, however, is prominent in the tail region of
the system reliability plot. This, in our opinion, can be
best explained by the fact that toward the end of the
useful life of the system, its survival is a rare event. Its
survival function in this region, therefore, requires a large
number of samples for an accurate estimate. In essence,
the optimal number of samples, as shown in Figure 13,
would depend, amongst other factors, on the time (s)
into the mission for which the analyst is computing
the system reliability. Ensuring system analysis with
an optimal number of samples requires first defining a

threshold uncertainty for the result. The system is then
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analysed with an initial number of samples, and the
uncertainty in the result computed. If this value is below
the threshold, the analysis is terminated, otherwise the

number of samples is increased, and the cycle is restarted.

Table 5 also reveals that for the same number of
simulation samples and time into the mission, the
coefficient of variation of the proposed approach is
smaller than that of the load-flow approach. This implies
that the system reliability value yielded by the former
is more reliable than that yielded by the latter and that
for a given threshold uncertainty, the proposed approach

requires a fewer simulation samples to converge.

Conclusion

Dependent failures can impose adverse effects on the
reliability and performance of a multi-component system.

In this work, we have proposed an approach that
extends the applicability of the system survival signature-
based approach to system reliability evaluation to
systems susceptible to dependent failures. Being a
hybrid technique, it inherits the desirable attributes of
both the system survival signature and Monte Carlo
Simulation. Consequently, it overcomes the issues of
topological complexity, diversity in component failure
time distributions, and complexities in inter-component
interactions. Since the survival signature of a system
is computed prior to its reliability evaluation and given
this signature is static for a fixed system topology, the
proposed approach is ideal for reliability/maintenance
optimization and sensitivity/uncertainty analyses. The
approach has been shown to be computationally efficient,
albeit less efficient than the analytical approach, which,
however, is inapplicable to systems with dependent
failures. This leaves the proposed approach the most

efficient alternative for realistic engineering systems.
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We have shown how the approach is used to obtain key
system reliability indices. Knowledge of the most critical
Common-Cause Group, for instance, and how it varies
with time and component Mean-Time-To-Failure, could
influence the limited resource allocation in the mitigation
of Common-Cause Failures. The proposed approach,
therefore, can be used as a decision-support tool in the

operation and management of complex systems.
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