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1 Introduction

In recent years machine learning algorithms, and in particular neural networks, have be-

come increasingly popular in analysing large quantities of data. In the context of particle

physics two main applications are prevalent: the classification of data according to different

hypotheses [1–33] and the regression of data to interpolate and extrapolate object-relevant

properties [34–38].

Using multi-variate analysis (MVA) techniques to classify events into signal and back-

ground classes based on their radiation profiles should improve the LHC’s experiments’

sensitivity in searches for new physics. Machine learning algorithms are able to analyse

multiple observables or inputs simultaneously to find a region in this multi-dimensional

parameter space that shows a relative enhancement of signal over background events. To

find this region in a supervised-learning approach, pseudo-data for signal and background

need to be generated using event generators, e.g. Sherpa [39], Herwig [40] or Pythia [41],

and the respective training samples are made known to the algorithm whether they contain

signal or background respectively. However, as the Monte Carlo event samples are plagued

by theoretical uncertainties, the classification algorithm will be subjected to the same un-

certainties. This issue is amplified by the fact that the MVA method will usually favour

highly-exclusive phase space regions which are poorly understood perturbatively [42, 43],

and often observables that are not even IR-safe are found in experimental measurements to

be most discriminative, e.g. the number of charged tracks [44, 45], thus further questioning

the reliability of theoretically predicted classification efficiencies. Adversarial neural net-

works have been proposed to desensitise classification methods against theoretical [46] and

systematic uncertainties [47] or against certain observables [48].
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One promising approach to overcome deficits from training on pseudo-data is to train

on actual data directly.1 While so-called data-driven methods are not subjected to the-

oretical uncertainties, one has to make sure that signal and background are sufficiently

pure to train the algorithm on well-separated event samples. Most of the time, and in

particular in searches for new physics, this is a highly challenging task. Rare processes,

e.g. the production of di-Higgs final states, or completely unknown processes, e.g. the pro-

duction of a gluino, are of utmost interest to search for at the LHC. However, obtaining a

data-driven training sample for such processes is impossible, thus, limiting the applicability

for data-driven methods. One way around this bottleneck is not to train on signal at all,

but to identify the kinematic features of background samples and to design a method that

flags up events that do not possess the same features, thereby classifying such an event as

signal. The remaining residual experimental problem that remains for such an approach

are the experimental and systematic uncertainties in the measurements of the inputs of a

data-driven anomaly detection method.

Autoencoders [60, 61] have been proposed for denoising [62], generative models [63]

and in particular for anomaly detection [48, 64–66]. They use an information bottleneck to

map an input to a latent-compressed representation and then decode this representation

back. The loss function measures the squared difference between input and decoded output.

By minimising the loss function, the autoencoder learns intrinsic features of the training

samples that survive the information bottleneck. After training the autoencoder on back-

ground samples, it is expected that applying the autoencoder to signal samples will result in

a modified value for the loss function, as some kinematic features differ between signal and

background. The depth of the networks and the width of the bottleneck are hyperparam-

eters of the network that can be optimised for the problem at hand. Using autoencoders

for anomaly detection, we will show that adversarially-trained neural networks can take

systematic uncertainties into account and desensitise the classification performance in data-

driven searches for new physics. To achieve this, we adversarially train an autoencoder on

Monte-Carlo-generated pseudo-data which has been systematically smeared in order for it

to learn to reconstruct the events without using any information about the smearing.

We apply this framework to resonance searches, i.e. a heavy colour-singlet scalar,

colour-octet scalar and colour-singlet vector, that are well-motivated by many new physics

models. This selection allows one to study the impact of the spin and colour quantum

numbers of the resonances on the classification efficiencies.2 The resonances are assumed

to subsequently decay into top quarks [68–71]. Top quark samples are an ideal playground

for anomaly detection, as they can be purified to a very high degree, i.e. the confidence that

one trains on a pure tt̄ sample is very high, in particular when one top decays hadronically

while the other decays leptonically. On the other hand, top final states are complex,

consisting of many jets, leptons and missing transverse energy. Thus, uncertainties on

reconstructed observables due to detector effects can be large.

1If machine learning techniques can be trained on data directly they become independent of theoretical

uncertainties. In such circumstances they can outperform theory-based reconstruction approaches, like the

matrix element method [49–53], which was recently extended to fully exclusive final states [54–59].
2The quantum numbers of the decaying resonances are known to have a strong impact on the recon-

struction efficiencies of boosted top quarks [67].
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The paper is structured as follows: in section 2 we first discuss the analysis setup. To

establish a baseline of what can be achieved by supervised learning, we show the perfor-

mance of a neural network classifier and the effect of combining it with an adversarial neural

network in section 3. In section 4 we extend this approach to an unsupervised autoencoder

for anomaly detection and consider its application to other new physics models and the

effects of an impure training sample. We offer conclusions on our findings in section 5.

2 Analysis setup and smearing procedure

We use MadGraph5 aMC@NLO [72] to generate the events for the study, followed by

Pythia 8.2 for parton shower and hadronisation. The background events consist of pp→ tt̄

at a centre-of-mass energy of 14 TeV, with one top quark forced to decay leptonically and

the other hadronically. The signal events are generated from a heavy Z ′ boson [73] via

pp → Z ′ → tt̄, also with semileptonic decays of the top quarks. As a benchmark for this

study, we select the Z ′ mass to be 2 TeV with a width of 89.6 GeV. A transverse momentum

cut of pT > 500 GeV is applied directly to the top quarks at generator level, for both signal

and background events.

Following the concept of reconstructing highly boosted top quarks with fat jets [74, 75],

the hadrons and non-isolated leptons from the event are initially clustered into jets using

the Cambridge-Aachen algorithm [76] with a radius of R = 1.0. The constituents of the

two hardest fat jets are then reclustered into jets using the kT algorithm with R = 0.2,

implemented in FastJet [77]. Jets are required to have pT > 30 GeV and are b-tagged

through their association to a B-meson. Isolated leptons are required to have pT > 10 GeV.

Events are selected which have a scalar-summed visible transverse momentum of HT >

1 TeV, and which have at least one b-jet inside one fat jet, at least one b-jet and two light

jets inside the other fat jet, and at least one isolated lepton.

The observables that we consider for the analysis are the four-momenta of the two

b-jets, two light jets and isolated lepton, as well as the missing energy ( /ET ) in the event

(21 observables in total). To represent possible systematic uncertainties that can arise in

detectors from jet energy scales, we apply a smearing procedure to the jets and the missing

energy in the events. For the jets and leptons, we use a smearing based on refs. [78, 79]

where the three-momenta of each object is smeared with a Gaussian. In our case, we

take the extremities of this Gaussian so that the smearing is either applied upwards or

downwards for all objects, with the relative width of the smearing envelope being larger

for smaller pT values. Similarly, we apply a shift to the missing energy based on ref. [80],

where the width of the shift is proportional to
√
HT , and use the two extremities of the

envelope. We fix the direction of the missing energy smearing to always be the same as that

of the jets and leptons. For the purposes of this study, we increase the size of the smearing

envelope by a further factor of three, to be conservative on the systematic uncertainties

and highlight the ability of our setup to correct for it.

We apply the smearing to the background sample such that two extra datasets are

created for smearing in the upwards and downwards directions, as well as the unsmeared

central sample. No smearing is applied to the signal sample. The three background samples

– 3 –



J
H
E
P
1
0
(
2
0
1
9
)
0
4
7

0 200 400 600 800 1000
pT,b1

[GeV]

0

0.001

0.002

0.003

0.004
1/
σ
d
σ
/d
p T

,b
1

[G
eV
−

1
]

Signal Central

Background Upper

Background Central

Background Lower

(a)

0 200 400 600 800 1000
pT,j1

[GeV]

0

0.001

0.002

0.003

0.004

1/
σ
d
σ
/d
p T

,j
1

[G
eV
−

1
]

Signal Central

Background Upper

Background Central

Background Lower

(b)

0 200 400 600
/ET [GeV]

0

0.001

0.002

0.003

0.004

1/
σ
d
σ
/d
/ E
T

[G
eV
−

1
]

Signal Central

Background Upper

Background Central

Background Lower

(c)

0 500 1000 1500 2000 2500
mb1 b2 j1 j2 l [GeV]

0

0.001

0.002

1/
σ
d
σ
/d
m
b 1
b 2
j 1
j 2
l

[G
eV
−

1
]

Signal Central

Background Upper

Background Central

Background Lower

(d)

Figure 1. Effect of smearing on (a) the pT of the hardest b-jet, (b) the pT of the hardest light jet,

(c) the missing energy and (d) the invariant mass of the jets and lepton, compared to the unsmeared

background and the signal samples.

are each generated from statistically independent generator samples, and after all cuts we

select 100,000 events from each of the four samples, with 20% of these retained for testing.

In figure 1 we show the effect of smearing on the pT of the hardest b-jet and light jet,

the missing energy in the event and the invariant mass of the jets and lepton, compared to

the equivalent distributions for the signal events. Clearly the smearing of the background

has the potential to make it either easier or harder for a classifier to discriminate between

signal and background, depending on which direction the smearing shifts the background

distribution.

3 Decorrelated jet smearing with supervised adversarial classifier

To set a benchmark for the signal-to-background separation, we first train a simple neural

network classifier to discriminate signal events from the complete set of background events
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Figure 2. Supervised neural network classifier output (a) and ROC curves (b) for a classifier

trained to classify signal and background events. The three background distributions result from

the three different directions of smearing.

(including all three samples). We expect this supervised-learning approach to perform

better than the unsupervised approach which follows.

The network consists of two hidden layers each with 20 nodes, with ReLu activations,

and a final layer with a single sigmoid output. We use a binary cross entropy loss function

since there are two possible classes. A class weighting in the loss function is used to account

for the higher frequency of background events in the training data, i.e. the loss of the signal

events are weighted higher. The network is trained using the Adam optimiser [81] with a

learning rate of 0.01 and a batch size of 500 for 500 epochs. The network is implemented

in Keras [82] with a TensorFlow [83] backend, and we use these throughout the rest

of this paper. The results are shown by the distributions of the classifier outputs and

the corresponding receiver operating characteristic (ROC) curves in figure 2. These are

obtained by testing the network on each of the three background sets separately, and

performing a classification against the central signal sample for each one. Also shown are

the area-under-curve (AUC) scores for each curve as well as the score for all the background

test samples combined. The network performance is strongly dependent on the direction

that the sample has been smeared in. This can be understood from the observables in

figure 1 where there is a larger overlap between the signal distribution and the background

which has been smeared upwards.

We now extend this classifier with an adversarial network which is designed to discrim-

inate the smearing class that the background sample came from, based upon the output of

the classifier. The aim for such an extension to the classifier is to attempt to remove such

a large dependence of its performance on the smearing of the background [46, 47]. The

adversary and classifier are forced to take part in a zero-sum game — the classifier must

learn to make its prediction without using any information derived from the smearing,

in order to make it as hard as possible for the adversary to be able to discriminate the
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background samples. This is achieved by the two networks having opposite optimisation

objectives, so that the classifier is penalised when the adversary performs better.

The adversarial network consists of two hidden layers with 20 nodes and ReLu acti-

vation functions, and takes as an input the output of the classifier. The output of the

adversary has three nodes (one for each smearing class) with a softmax activation function

and a categorical cross entropy loss. The network is then trained as follows:

1. The classifier is trained for three epochs using the Adam optimiser with a learning

rate of 0.01 and a batch size of 500. A class weighting is applied to account for the

higher frequency of background events in the training data.

2. The adversary is trained on background events for three epochs using mini-batch

gradient descent with a learning rate of 0.01 and a batch size of 500.

3. The classifier is trained for one epoch with mini-batch gradient descent with a batch

size of 500 and with a total loss function,

Ltot = Lclass − αLadv . (3.1)

Furthermore, two class weightings are applied: one to account for the higher frequency

of background events that the classifier is trained on, and one to account for the fact

that the signal events are unsmeared, resulting in a higher frequency of unsmeared

events that the adversary is trained on.

4. The adversary is trained on background events for one epoch using mini-batch gra-

dient descent with a batch size of 500.

5. Steps 3 and 4 are repeated until they have been performed a total of 1000 times, with

the learning rate decaying every 100 epochs to a factor of 0.75 of its previous value,

starting from an initial value of 0.01.

The weight factor α in eq. (3.1) determines the relative importance of the two optimi-

sation objectives. If it is set to zero, then the adversary has no effect on the training of the

classifier. If it is too large, however, the performance of the classifier is severely affected.

We find a value of 100 works well for our setup. There is another approach to training

the adversarial network, where one updates the weights of both networks simultaneously.

However, we find the approach of alternating the training — where the classifier is trained

with the adversary weights frozen, and vice versa — to be more stable.

In figure 3, we show the performance of the adversarial classifier through the classifier

output and ROC curves. The adversary has clearly had the effect of shaping the classifier

outputs such that their dependence on the background smearing has been almost entirely

removed. Thus, the ROC curves and AUC scores become very close together since the

classification performance is now barely affected by the smearing.
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Figure 3. Supervised neural network classifier output (a) and ROC curves (b) for an adversarial

classifier trained to classify signal and background events. The three background distributions result

from the three different directions of smearing.
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Figure 4. Autoencoder loss (a) and ROC curves (b) for an autoencoder trained only on background

events. The three background distributions result from the three different directions of smearing.

4 Extension to unsupervised autoencoder

4.1 Adversarial autoencoder

As described earlier, autoencoders are an unsupervised learning algorithm which can be

used as anomaly detectors to search for new physics since they only need to be trained on

the background.

To this aim, we consider an autoencoder constructed from three hidden layers with

10, 3 and 10 nodes respectively, each with sigmoid activation functions. After the hidden

layers, there is a linear output layer with the same dimension as the number of inputs, which
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Figure 5. Architecture of the adversarial autoencoder. The loss function of the autoencoder is

used as an input to the adversary for it to discriminate the smeared background samples.

correspond to the 21 observables. The loss is the mean squared error between the inputs

and outputs — namely, the autoencoder has the goal of reconstructing the inputs as well

as possible, having encoded the information into the latent-compressed layer. We train the

autoencoder on the three background samples using the Adam optimiser with a learning

rate of 0.01 for 500 epochs, and the results are shown in figure 4. Since the autoencoder

is trained only on the background events, it learns how to reconstruct background events

better than the signal events, and so the distribution of the losses for the signal events in

figure 4(a) is at higher values. The ROC curves in figure 4(b) are obtained by performing a

cut on the loss function and labelling all events above the cut as signal events, and all events

below the cut as background events, and then moving this threshold across all values. This

is similar to how the ROC curves are calculated from the output of the classifier, where

the threshold is varied between 0 and 1 instead.

As we saw for the classifier, the smearing of the background has an effect on how well

the autoencoder can be used to classify events, with the events which have been smeared

upwards being mislabelled as signal events more often. It is important to note that the

overall classification performance of the autoencoder is much worse than for the dedicated

supervised classifier in section 3. However, this is not surprising — the autoencoder is only

ever trained on background events, and only sees the signal events during testing. Thus,

for the separation between signal and background it learns the intricate kinematic features

of the background only. Furthermore, the optimisation objective of the classifier is for it

to achieve a strong classification performance, which is not the case for the autoencoder.

We now combine the autoencoder with an adversarial network to improve the relia-

bility and robustness of this unsupervised-learning approach. To achieve the aim of the

autoencoder being able to make its predictions independent of the smearing of the back-
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ground, we use the autoencoder loss as an input to the adversary. Since a threshold on

the autoencoder loss is used to perform the classification between signal and background,

it is completely analogous to the output of the dedicated classifier used above, on which a

cut is placed to classify the events. This input is then followed by two hidden layers each

with 20 nodes and ReLu activation functions, with three softmax output nodes and a cat-

egorical cross entropy loss. This architecture is illustrated by the diagram in figure 5. The

training proceeds similarly to the adversarial classifier, but with only background events

in the training sample:

1. The autoencoder is trained for three epochs using the Adam optimiser with a learning

rate of 0.01 and a batch size of 500.

2. The adversary is trained for three epochs using mini-batch gradient descent with a

learning rate of 0.01 and a batch size of 500.

3. The autoencoder is trained for one epoch with mini-batch gradient descent with a

batch size of 500 and with a total loss function,

Ltot = Lauto − αLadv . (4.1)

4. The adversary is trained for one epoch using mini-batch gradient descent with a batch

size of 500.

5. Steps 3 and 4 are repeated until they have been performed a total of 1500 times, with

the learning rate decaying every 100 epochs to a factor of 0.75 of its previous value,

starting from an initial value of 0.01.

We find this procedure to provide stable and numerically reliable results. Again,

the relative weighting between the autoencoder and the adversary is set to α = 100. The

performance of the adversarially-trained autoencoder is shown in figure 6. The background

distributions shown in figure 6(a) have been shaped such that they are independent of the

direction of smearing, which results in the ROC curves in figure 6(b) becoming almost

identical. This shows that the method has become independent of uncertainties inherent

to the reconstruction of the final-state objects of LHC events.

In addition, we note that our setup also has the ability to interpolate to smaller amounts

of smearing — although we have trained using background data which has been system-

atically smeared by a very large amount, we find that if it is tested on samples which

have been smeared by a much smaller amount (without the increase by a factor of three),

then the output of the adversarially-trained autoencoder (and also for the classifier in the

previous section) is still insensitive to the smearing. Furthermore, we find that the AUC

score increases when it is tested on a smaller amount of smearing, and is similar to the

result of having both trained and tested it on this smaller amount. Therefore, the fact that

the adversary is trained on a larger amount of smearing than is realistic does not adversely

affect its performance.

We will now briefly recap what we have achieved by combining an autoencoder with

an adversarial neural network. We started with three sets of background events — one
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Figure 6. Autoencoder loss (a) and ROC curves (b) for an adversarial autoencoder trained only

on background events. The three background distributions result from the three different directions

of smearing.

which had been smeared upwards, one which had been smeared downwards, and one which

had not been smeared at all. This smearing corresponded to the extremities of a Gaussian

envelope, and was applied to jets, leptons and the missing energy in each event accord-

ingly. Furthermore, we also had a set of signal events which had not been smeared. The

smearing had the effect of shifting the kinematic features of the background such that

the events which had been smeared upwards looked more like signal events, and the ones

which had been smeared downwards looked less like signal events. This can be seen from

the distributions in figure 1.

We then trained an autoencoder on all the background events for the purpose of using

it to detect signal events, which have a higher expected reconstruction loss. In figure 4(b),

the ROC curves are the result of testing the classification performance of the autoencoder

for the signal separately against each background, and as expected, the autoencoder had

a harder time discriminating the signal events against background events which had been

smeared upwards. We then combined this with an adversarial neural network, which had

the objective of recognising which direction each background sample had been smeared in

based upon the loss of the autoencoder. The autoencoder and adversary were trained using

a combined loss function, which penalised the autoencoder for outputting reconstruction

losses from which the adversary could discriminate the samples. The result of this is that

the autoencoder has learnt to reconstruct events without using any information derived

from the smearing, which can be seen from the fact that the ROC curves in figure 6(b)

have converged.

4.2 Corrupted autoencoder and application to other new physics models

Thus far, the analysis has been carried out on training sets consisting of pure background

events. Realistically, data may not actually look like this since if new physics exists, then
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The central line shows the overall AUC score, and the band represents the difference between the

upper and lower AUC scores.

it would also form part of that same data. To begin accounting for this it is possible to

inject into the three background sets appropriately smeared signal events. By training

on these newly contaminated sets we can investigate how sensitive the performance of the

adversarial autoencoder is to an increase in signal corruption in the training set. In figure 7,

we show these results. The band represents the difference between the upper and lower

AUC scores, which shows how well the adversary desensitises the autoencoder from the

smearing, and the central line is the overall AUC score. All model hyperparameters are

left unchanged during the training, with only the relative fraction of corruption changing,

defined as a percentage of the total training set. From the plot it is clear that injecting

signal events during training has little effect on the overall performance until the fraction of

corruption becomes unrealistically large, showing the potential applicability of the method

to real data.

Since the performance is not drastically affected by a corruption of the training data,

we can proceed with a training sample consisting purely of background events. One of the

advantages of the autoencoder only needing to be trained on background events is that it

can then be tested for signal events arising from any model. Here, we test our adversarially-

trained autoencoder on a variety of different new physics models. We aim to quantify the

effect of the resonance’s quantum numbers, i.e. spin, colour and coupling strengths, on the

performance of the autoencoder. The models used are:

• Two further Z ′ cases with widths of 10 GeV and 200 GeV. In both cases the masses

are held at 2 TeV.

• A scalar colour-octet [84], with a mass of 2 TeV and the scalar and axial parameters

fixed to ensure the width is ∼ 89.6 GeV.

• A scalar colour-singlet with a mass of 2 TeV and a width of 89.6 GeV.
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Signal Overall AUC Upper-Lower Difference Cross Section Limit [pb]

Z ′
w=10 GeV 0.662 0.009 0.0101

Z ′
w=89.6 GeV 0.656 0.009 0.0098

Z ′
w=200 GeV 0.650 0.009 0.0105

Scalar 0.654 0.010 0.0104

Octet 0.659 0.010 0.0102

Table 1. The overall AUC score, difference between the largest and smallest AUC scores and the

cross section limits found from using the adversarial autoencoder trained only on background events

and tested on the original Z ′ case and four other signals.

Table 1 shows the results of testing the adversarially-trained autoencoder on the new

signals. In each case the adversary is able to perform well, with the difference between

the upper and lower AUC scores showing that the new signals do not hinder the ability

of adversary to desensitise the autoencoder to the smearing. This behaviour is of course

expected, since the same background samples are used to test against each new signal. We

also show estimates of the potential limits on the cross sections that can be obtained using

the classification performance of the autoencoder. These are calculated by finding the

points on the ROC curves that maximise S/
√
B, then comparing them to the background

cross section and assuming an integrated luminosity of 100 fb−1. We then require that

S/
√
B > 2 to set a 95% confidence limit. The limits we find are insensitive to the nature

of the resonance i.e. with respect to their quantum numbers, and they are comparable to

the limits found by ATLAS in ref. [69].3

5 Conclusions

The ideal scenario for the usage of machine learning methods is when they can be applied

directly on experimental data, without the requirement to train them on pseudo-data or

without theoretically calculated inputs, e.g. as in the Matrix Element Method. In such cir-

cumstances neither theoretical uncertainties that challenge the robustness of the method,

nor a theoretical bias regarding the features of the signal are introduced. Thus, the experi-

mental data alone would be sufficient to identify anomalous events, which could be isolated

and studied further to discover new physics. Such identification of anomalous events can

be realised using an autoencoder, trained on a pure background sample. However, even in

this ideal scenario, residual uncertainties due to the imperfect reconstruction of final-state

objects remain.

Focusing on resonance searches in semileptonic tt̄ final states, we quantified the per-

formance of an adversarially-trained autoencoder. In particular, we compared the perfor-

mance of an autoencoder-based unsupervised-learning approach with a supervised neural

3However, note that we show the new physics cross section after event selection and reconstruction

cuts, while ATLAS shows the inclusive cross section for a specific Z′ model. Furthermore, our analysis

was performed at 14 TeV, while the limits from ATLAS have been obtained at a centre-of-mass energy of

13 TeV.
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network classifier. While the supervised classifier performs significantly better than the

unsupervised-learning approach, the latter still shows a strong aptitude in telling apart sig-

nal from background events. In both cases reconstruction uncertainties show however a big

impact on the evaluated performance of the classifiers, thereby evidencing the need for mea-

sures to desensitise them against such uncertainties for a reliable performance evaluation.

We proposed to combine the autoencoder with an adversarial neural network to re-

alise a robust and reliable unsupervised anomaly detection method that can be readily

applied to experimental data. The classification result is independent of the smearing of

the reconstructed final-state objects over the entire range of the ROC curve and even ex-

tends to training on corrupted backgrounds, i.e. backgrounds with a large admixture of

signal events. Although we applied it to Monte-Carlo-generated pseudo-data, we envisage

that the procedure could be applied analogously to experimental data by creating labelled

datasets that have been systematically smeared. Thus, this setup proves to be a very ro-

bust data-driven way to search for new physics resonances, irrespective of their quantum

numbers, i.e. spin, colour or width.
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[12] H. Lüo, M.-x. Luo, K. Wang, T. Xu and G. Zhu, Quark jet versus gluon jet: fully-connected

neural networks with high-level features, Sci. China Phys. Mech. Astron. 62 (2019) 991011

[arXiv:1712.03634] [INSPIRE].

[13] K. Datta and A.J. Larkoski, Novel jet observables from machine learning, JHEP 03 (2018)

086 [arXiv:1710.01305] [INSPIRE].

[14] A.J. Larkoski, I. Moult and B. Nachman, Jet substructure at the large hadron collider: a

review of recent advances in theory and machine learning, arXiv:1709.04464 [INSPIRE].

[15] C. Shimmin et al., Decorrelated jet substructure tagging using adversarial neural networks,

Phys. Rev. D 96 (2017) 074034 [arXiv:1703.03507] [INSPIRE].

[16] E.M. Metodiev, B. Nachman and J. Thaler, Classification without labels: Learning from

mixed samples in high energy physics, JHEP 10 (2017) 174 [arXiv:1708.02949] [INSPIRE].

[17] T. Roxlo and M. Reece, Opening the black box of neural nets: case studies in stop/top

discrimination, arXiv:1804.09278 [INSPIRE].

[18] J. Brehmer, K. Cranmer, G. Louppe and J. Pavez, Constraining effective field theories with

machine learning, Phys. Rev. Lett. 121 (2018) 111801 [arXiv:1805.00013] [INSPIRE].

[19] J. Brehmer, K. Cranmer, G. Louppe and J. Pavez, A guide to constraining effective field

theories with machine learning, Phys. Rev. D 98 (2018) 052004 [arXiv:1805.00020]

[INSPIRE].

[20] J.H. Collins, K. Howe and B. Nachman, Anomaly detection for resonant new physics with

machine learning, Phys. Rev. Lett. 121 (2018) 241803 [arXiv:1805.02664] [INSPIRE].

[21] J. Duarte et al., Fast inference of deep neural networks in FPGAs for particle physics, 2018

JINST 13 P07027 [arXiv:1804.06913] [INSPIRE].

[22] K. Fraser and M.D. Schwartz, Jet charge and machine learning, JHEP 10 (2018) 093

[arXiv:1803.08066] [INSPIRE].

[23] P.T. Komiske, E.M. Metodiev, B. Nachman and M.D. Schwartz, Learning to classify from

impure samples with high-dimensional data, Phys. Rev. D 98 (2018) 011502

[arXiv:1801.10158] [INSPIRE].

[24] S. Macaluso and D. Shih, Pulling out all the tops with computer vision and deep learning,

JHEP 10 (2018) 121 [arXiv:1803.00107] [INSPIRE].

[25] A. Andreassen, I. Feige, C. Frye and M.D. Schwartz, JUNIPR: a framework for unsupervised

machine learning in particle physics, Eur. Phys. J. C 79 (2019) 102 [arXiv:1804.09720]

[INSPIRE].

– 14 –

https://arxiv.org/abs/1704.02124
https://inspirehep.net/search?p=find+EPRINT+arXiv:1704.02124
https://doi.org/10.1007/JHEP01(2019)057
https://arxiv.org/abs/1702.00748
https://inspirehep.net/search?p=find+EPRINT+arXiv:1702.00748
https://doi.org/10.1007/JHEP05(2017)006
https://arxiv.org/abs/1701.08784
https://inspirehep.net/search?p=find+EPRINT+arXiv:1701.08784
https://doi.org/10.1007/s41781-017-0004-6
https://doi.org/10.1007/s41781-017-0004-6
https://arxiv.org/abs/1701.05927
https://inspirehep.net/search?p=find+EPRINT+arXiv:1701.05927
https://doi.org/10.1007/s11433-019-9390-8
https://arxiv.org/abs/1712.03634
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.03634
https://doi.org/10.1007/JHEP03(2018)086
https://doi.org/10.1007/JHEP03(2018)086
https://arxiv.org/abs/1710.01305
https://inspirehep.net/search?p=find+EPRINT+arXiv:1710.01305
https://arxiv.org/abs/1709.04464
https://inspirehep.net/search?p=find+EPRINT+arXiv:1709.04464
https://doi.org/10.1103/PhysRevD.96.074034
https://arxiv.org/abs/1703.03507
https://inspirehep.net/search?p=find+EPRINT+arXiv:1703.03507
https://doi.org/10.1007/JHEP10(2017)174
https://arxiv.org/abs/1708.02949
https://inspirehep.net/search?p=find+EPRINT+arXiv:1708.02949
https://arxiv.org/abs/1804.09278
https://inspirehep.net/search?p=find+EPRINT+arXiv:1804.09278
https://doi.org/10.1103/PhysRevLett.121.111801
https://arxiv.org/abs/1805.00013
https://inspirehep.net/search?p=find+EPRINT+arXiv:1805.00013
https://doi.org/10.1103/PhysRevD.98.052004
https://arxiv.org/abs/1805.00020
https://inspirehep.net/search?p=find+EPRINT+arXiv:1805.00020
https://doi.org/10.1103/PhysRevLett.121.241803
https://arxiv.org/abs/1805.02664
https://inspirehep.net/search?p=find+EPRINT+arXiv:1805.02664
https://doi.org/10.1088/1748-0221/13/07/P07027
https://doi.org/10.1088/1748-0221/13/07/P07027
https://arxiv.org/abs/1804.06913
https://inspirehep.net/search?p=find+EPRINT+arXiv:1804.06913
https://doi.org/10.1007/JHEP10(2018)093
https://arxiv.org/abs/1803.08066
https://inspirehep.net/search?p=find+EPRINT+arXiv:1803.08066
https://doi.org/10.1103/PhysRevD.98.011502
https://arxiv.org/abs/1801.10158
https://inspirehep.net/search?p=find+EPRINT+arXiv:1801.10158
https://doi.org/10.1007/JHEP10(2018)121
https://arxiv.org/abs/1803.00107
https://inspirehep.net/search?p=find+EPRINT+arXiv:1803.00107
https://doi.org/10.1140/epjc/s10052-019-6607-9
https://arxiv.org/abs/1804.09720
https://inspirehep.net/search?p=find+EPRINT+arXiv:1804.09720


J
H
E
P
1
0
(
2
0
1
9
)
0
4
7

[26] P. De Castro and T. Dorigo, INFERNO: inference-aware neural optimisation, Comput. Phys.

Commun. 244 (2019) 170 [arXiv:1806.04743] [INSPIRE].

[27] R.T. D’Agnolo and A. Wulzer, Learning new physics from a machine, Phys. Rev. D 99

(2019) 015014 [arXiv:1806.02350] [INSPIRE].

[28] J. Brehmer, G. Louppe, J. Pavez and K. Cranmer, Mining gold from implicit models to

improve likelihood-free inference, arXiv:1805.12244 [INSPIRE].

[29] J.W. Monk, Deep learning as a parton shower, JHEP 12 (2018) 021 [arXiv:1807.03685]

[INSPIRE].

[30] L. Moore, K. Nordström, S. Varma and M. Fairbairn, Reports of my demise are greatly

exaggerated: N -subjettiness taggers take on jet images, arXiv:1807.04769 [INSPIRE].

[31] A. De Simone and T. Jacques, Guiding new physics searches with unsupervised learning, Eur.

Phys. J. C 79 (2019) 289 [arXiv:1807.06038] [INSPIRE].

[32] S. Bollweg et al., Deep-learning jets with uncertainties and more, arXiv:1904.10004

[INSPIRE].

[33] O. Cerri et al., Variational autoencoders for new physics mining at the Large Hadron

Collider, JHEP 05 (2019) 036 [arXiv:1811.10276] [INSPIRE].

[34] ATLAS collaboration, Generalized numerical inversion: a neural network approach to jet

calibration, ATL-PHYS-PUB-2018-013 (2018).

[35] ATLAS collaboration, Performance of the ATLAS track reconstruction algorithms in dense

environments in LHC Run 2, Eur. Phys. J. C 77 (2017) 673 [arXiv:1704.07983] [INSPIRE].

[36] CMS collaboration, Performance of the CMS missing transverse momentum reconstruction

in pp data at
√
s = 8 TeV, 2015 JINST 10 P02006 [arXiv:1411.0511] [INSPIRE].

[37] CMS collaboration, Performance of electron reconstruction and selection with the CMS

detector in proton-proton collisions at
√
s = 8 TeV, 2015 JINST 10 P06005

[arXiv:1502.02701] [INSPIRE].

[38] CMS collaboration, Performance of photon reconstruction and identification with the cms

detector in proton-proton collisions at
√
s = 8 TeV, 2015 JINST 10 P08010

[arXiv:1502.02702] [INSPIRE].

[39] T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007

[arXiv:0811.4622] [INSPIRE].

[40] J. Bellm et al., HERWIG 7.0/HERWIG++ 3.0 release note, Eur. Phys. J. C 76 (2016) 196

[arXiv:1512.01178] [INSPIRE].
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