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Abstract. Finding maximum-cardinality matchings in undirected graphs is arguably one of the
most central graph problems. For general m-edge and n-vertex graphs, it is well known to be solvable
in O(m

\surd 
n) time. We present a linear-time algorithm to find maximum-cardinality matchings on

cocomparability graphs, a prominent subclass of perfect graphs that strictly contains interval graphs
as well as permutation graphs. Our greedy algorithm is based on the recently discovered Lexicographic
Depth First Search (LDFS).
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1. Introduction. The problem Matching (or Maximum-Cardinality
Matching) is, given an undirected graph, to compute a maximum-cardinality set of
disjoint edges. Matching is arguably among the most fundamental graph-algorithmic
primitives that can be computed in polynomial time. More specifically, the asymp-
totically fastest known algorithm for computing a maximum-cardinality matching
(subsequently called maximum matching) on an n-vertex and m-edge graph runs
in O(m

\surd 
n) time [44]. No faster algorithm is known, even when the given graph is

bipartite [24]. Improving this running time, either on general graphs or on bipartite
graphs, resisted decades of research. In terms of approximation, it is known that
the O(m

\surd 
n) algorithm of Micali and Vazirani [44] implies a (1  - \epsilon )-approximation

computable in O(m\epsilon  - 1) time [13]. For the weighted case, Duan and Pettie [13] pro-
vided a linear-time algorithm that computes a (1 - \epsilon )-approximate maximum-weight
matching (the constant running time factor depending on \epsilon is \epsilon  - 1 log(\epsilon  - 1)). In this
work we take a route different from approximation and identify a large graph class,
namely cocomparability graphs, on which we show that an optimal solution can be
computed in linear time.

Identifying more efficiently solvable special cases for finding maximum match-
ings has quite some history. Yuster [56] developed an algorithm with running
time O(rn2 log n), where r denotes the difference between maximum and minimum
vertex degree of the input graph. Moreover, there are (quasi)linear-time algorithms
for computing maximum matchings in several special classes of graphs, including in-
terval graphs [30], convex bipartite graphs [51], strongly chordal graphs [10], and
chordal bipartite graphs [3]. We refer the reader to Table 1 for a more thorough
overview, also including results with superlinear running times. See Figure 1 for an
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MAXIMUM MATCHING ON COCOMPARABILITY GRAPHS 2821

Table 1
Fastest algorithms for Matching on special graph classes; \omega < 2.373 is the matrix multiplica-

tion exponent, that is, two n\times n matrices can be multiplied in O(n\omega ) time.

Graph class Running time

general O(m
\surd 
n) [44], O(m

\surd 
n log(n2/m)/ log(n)) [22], O(n\omega ) (rand.) [46]

bipartite O(m
\surd 
n) [24], O(n\omega ) (rand.) [46, 49], O(m1.43) [33]

interval O(n logn) (given an interval representation) [30, 45]
circular arcs O(n logn) [30]
cointerval O(n logn+m) [19]
convex O(n) [51]

planar O(n\omega /2) (rand.) [47]
strongly chordal O(n+m) (given the strong perfect elimination order) [10]
chordal bipartite O(n+m) [3]
regular O(n2 logn) [56]
cographs O(n) (given a cotree) [55]

cocomparability O(n+m) (Theorem 2.12 in section 2)

planar perfect

bipartite circular arc strongly chordal cointerval cocomparability

convex interval cograph

Fig. 1. Overview of most of the graph classes mentioned in Table 1. An edge indicates that
the class above strictly contains the class below.

overview concerning the containment relation between the graph classes.
A graph G is a cocomparability graph if its complement G admits a transitive ori-

entation of its edges. These graphs (as well as their complements, i.e., comparability
graphs) arise naturally in several real-world applications as they are closely related to
partially ordered sets (also referred to as posets). In particular, a given cocompara-
bility graph G, together with a transitive orientation of the edges of its complement
G, can be equivalently represented by a poset. Cocomparability graphs have been the
subject of intensive theoretical research [4, 6, 7, 11, 14, 15, 26, 27, 29, 39, 43]. On
the one hand, cocomparability graphs naturally generalize well-studied graph classes
such as interval and permutation graphs [2, 23], trapezoid (or bounded multitolerance)
graphs [25, 28, 32, 36, 38, 52], parallelogram (or bounded tolerance) graphs [20, 41, 42],
triangle (or PI\ast ) graphs [5, 35], and simple-triangle (or PI ) graphs [37, 53, 54]. On
the other hand, cocomparability graphs form an ``almost maximal"" subclass of perfect
graphs [2].1 Since perfect graphs (as well as comparability graphs) properly contain
bipartite graphs (for which improving the O(m

\surd 
n) running time is a long-standing

open question), it seems out of reach to obtain an algorithm forMatching with linear
running time on perfect graphs. Consequently, designing a linear-time algorithm for
cocomparability graphs provides a sharp boundary between O(n+m)-time algorithms
and the known O(m

\surd 
n)-time algorithms for Matching.

1For an overview of the relation between graph classes see http://www.graphclasses.org/.
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2822 G. B. MERTZIOS, A. NICHTERLEIN, AND R. NIEDERMEIER

Our contribution. In this paper we present a linear-time algorithm for Matching
on cocomparability graphs. It is a simple greedy algorithm, referred to as Rightmost
Matching (RMM), running on a specific vertex ordering. Essentially the same greedy
approach was earlier considered by Dragan [12] in the context of greedy matchable
graphs.2 The vertex ordering is obtained by using (as a preprocessing step) the
recently discovered Lexicographic Depth First Search (LDFS) algorithm [8]. Inter-
estingly it turns out that RMM computes in a trivial way a maximum matching on
interval graphs, when applied on the standard interval graph vertex ordering.3 Note
that the class of interval graphs is a strict subset of the class of cocomparability
graphs. So far a similar phenomenon of extending an interval graph algorithm to
cocomparability graphs by using an LDFS preprocessing step has also been observed
for the Longest Path problem [39], the Minimum Path Cover problem [6], and
the Maximum Independent Set problem [7]. Our results for the RMM algorithm,
adding to the previous results [6, 7, 39], provide evidence that cocomparability graphs
present an ``interval graph structure"" when they are considered with an LDFS pre-
processing step. This insight is of independent interest and might lead to new and
more efficient combinatorial algorithms.

Preliminaries. We use standard notation from graph theory. In particular, all
paths we consider are simple paths. A matching in a graph is a set of pairwise
disjoint edges. Let G = (V,E) be an undirected graph, and let M \subseteq E be a matching
in G. A vertex v \in V is called matched with respect to M if there is an edge in M
containing v; otherwise v is called free with respect to M . If the matching M is
clear from the context, then we omit ``with respect to M ."" An alternating path with
respect to M is a path in G such that every second edge of the path belongs to M .
An augmenting path is an alternating path whose endpoints are free. It is well known
that a matching M is maximum if and only if there is no augmenting path for it [31].

A graph G = (V,E) is an interval graph if we can assign to each vertex of G a
closed interval on the real line such that two vertices are adjacent in G if and only if the
corresponding two intervals intersect. A comparability graph is a graph whose edges
can be transitively oriented; that is, if u \rightarrow v (the edge \{ u, v\} is oriented towards v)
and v \rightarrow w, then u\rightarrow w. A cocomparability graph G is a graph whose complement G
is a comparability graph. The class of interval graphs is strictly included in the class
of cocomparability graphs [2]. Intuitively, we can transitively orient the ``nonedges""
of an interval graph, using the following ordering of nonintersecting intervals from left
to right: Consider three intervals Ia, Ib, Ic in an interval representation of an interval
graph. If Ia lies completely to the left of Ib, and Ib lies completely to the left of Ic,
then also Ia lies completely to the left of Ic.

2. A linear-time algorithm for cocomparability graphs. To begin with,
we present in subsection 2.1 a simple greedy linear-time algorithm (called RMM) for
computing a maximum matching M on interval graphs. Subsequently we provide
in subsection 2.2 all necessary background on vertex orderings for cocomparability
graphs and on the LDFS, which is needed for our algorithm on cocomparability graphs.
Finally, as our central result, we prove in subsection 2.3 that the algorithm RMM
actually works also for cocomparability graphs.

2Refer to Remark 2 in subsection 2.3 for a discussion about the subtle but important differences
from our approach.

3This is the vertex ordering that results from sorting the intervals according to their left end-
points. The RMM algorithm for interval graphs was discovered by Moitra and Johnson [45].
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MAXIMUM MATCHING ON COCOMPARABILITY GRAPHS 2823

2.1. The greedy algorithm for interval graphs. Given an interval graph G
with n vertices and m edges, we first compute in O(n+m) time an interval represen-
tation of G and, at the same time, we also sort the intervals according to their left
endpoint [48]. The algorithm works as follows (cf. [30, 45]):

1. Initialize M = \emptyset and label all vertices as ``unvisited.""
2. Pick the unvisited vertex (interval) x which has the rightmost left endpoint

among all currently unvisited vertices in G. Then, label x as ``visited.""
3. If x has at least one unvisited neighbor in G, then pick the unvisited neigh-

bor y of x which has the rightmost left endpoint among all unvisited neighbors
of x. Then label y as ``visited"" and add the edge \{ x, y\} to M .

4. If there is still an unvisited vertex in G, then go to step 2.
5. Return M .

We call the above algorithm Rightmost Matching (RMM). It can be executed in O(n+
m) time; with a simple exchange argument we can show that the matchingM returned
by RMM is indeed maximum in G. This algorithm implicitly uses the following vertex
ordering that characterizes interval graphs. It corresponds to sorting the intervals
according to their left endpoints and can be computed in O(n+m) time from G [48].

Lemma 2.1 (see [48]). G = (V,E) is an interval graph if and only if there exists
a vertex ordering \sigma of G (called an I-ordering) such that, for all x <\sigma y <\sigma z, if
\{ x, z\} \in E, then also \{ x, y\} \in E.

2.2. Cocomparability graphs and vertex orderings. Before we proceed
with our algorithm RMM and its analysis on cocomparability graphs (see subsec-
tion 2.3), we now state vertex ordering characterizations of cocomparability graphs
and of any vertex ordering that can result from an LDFS search on an arbitrary graph.
The following vertex ordering characterizes cocomparability graphs [27].

Definition 2.2 (see [27]). Let G = (V,E) be a graph. An ordering \pi of the
vertices V is an umbrella-free ordering (or a CO-ordering) if for all x <\pi y <\pi z it
holds that if \{ x, z\} \in E, then \{ x, y\} \in E or \{ y, z\} \in E (or both).

Lemma 2.3 (see [27]). A graph G = (V,E) is a cocomparability graph if and only
if there exists an umbrella-free ordering \pi of V .

Umbrella-free orderings directly generalize I-orderings for interval graphs
(see Lemma 2.1). It is worth noting here that, although there exists a linear-time al-
gorithm to compute an umbrella-free ordering \pi of a given cocomparability graph [34],
the fastest known algorithm to verify that a given vertex ordering is indeed umbrella-
free needs the same time as boolean matrix multiplication (Spinrad [50] discusses
this issue). As an example, we illustrate in Figure 2 the cocomparability graph C6,
i.e., the complement of the cycle on six vertices. In this graph, it is straightforward
to check by Definition 2.2 that the vertex ordering \pi = (b, d, c, f, e, a) is indeed an
umbrella-free ordering.

In the following we present the notion of an LDFS ordering \sigma (see Definition 2.5)
due to Corneil and Krueger [8]. This notion is based on good triples and bad triples,
which are defined next.

Definition 2.4 (see [8]). Let G = (V,E) be a graph and \sigma be an arbitrary
ordering of V . Let a, b, c \in V be three vertices such that a <\sigma b <\sigma c, \{ a, c\} \in E,
and \{ a, b\} /\in E. If there exists a vertex d such that a <\sigma d <\sigma b, \{ d, b\} \in E, and
\{ d, c\} /\in E, then (a, b, c) is a good triple; otherwise it is a bad triple.

Definition 2.5 (see [8]). Let G = (V,E) be a graph. An ordering \sigma of V is an
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b

c

de

a

f

Fig. 2. The cocomparability graph G = C6, i.e., the complement of a cycle on six vertices. The
vertex ordering \pi = (b, d, c, f, e, a) is an umbrella-free ordering for G.

a d b c

Fig. 3. A good triple (a, b, c) and its vertex d as in Definition 2.4, in the vertex ordering
\sigma = (a, d, b, c). The edges \{ a, c\} and \{ d, b\} are indicated with solid lines and the nonedges \{ a, b\} and
\{ d, c\} with dashed lines. Note that \{ a, d\} and \{ b, c\} can be edges or nonedges.

LDFS ordering if \sigma has no bad triple.

An example of a good triple (a, b, c) and the corresponding fourth vertex d is
depicted in Figure 3. Now we present the generic LDFS algorithm (Algorithm 1) due
to Corneil and Krueger [8]. LDFS runs on an arbitrary connected graph G, starting at
a distinguished vertex u. It is a variation of the well-known Depth First Search (DFS)
algorithm; the main difference is that LDFS assigns labels to the vertices and uses
the lexicographic order over these labels as a tie-breaking rule. Briefly, it proceeds
as follows. Initially, the label \varepsilon is assigned to every vertex. Then, iteratively, an
unvisited vertex v with a lexicographically maximum label is chosen and removed
from the graph. If v is chosen as the ith vertex, then the label of each of its unvisited
neighbors is being updated by prepending the digit i to it. Note that the digits in
the label of any vertex are always in decreasing order. Hence all neighbors of the last
chosen vertex have a lexicographically greater label than all its nonneighbors, and
thus all vertices are visited in a depth first search order.

Algorithm 1. LDFS(G, u) [8].

Input: A connected graph G = (V,E) with n vertices and a vertex u \in V .
Output: An LDFS ordering \sigma u of the vertices of G.

1: Assign the label \varepsilon to all vertices and mark all vertices as unnumbered
2: label(u)\leftarrow \{ 0\} 
3: for i = 1 to n do
4: Pick an unnumbered vertex v with the lexicographically largest label
5: \sigma u(i)\leftarrow v \{ assign to v the number i; v is now numbered\} 
6: for each unnumbered vertex w \in N(v) do
7: prepend i to label(w)

8: return the ordering \sigma u = (\sigma u(1), \sigma u(2), . . . , \sigma u(n))
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The execution of the LDFS algorithm is illustrated with the running example
of Figure 2. In this example, suppose that the LDFS algorithm starts at vertex a.
Suppose that LDFS chooses vertex c next. Now, ordinary DFS could choose either e
or f next, but LDFS has to choose e, since e has a greater label than f (e is a neighbor
of the previously visited vertex a). The next visited vertex has to be b, since it is the
only unvisited neighbor of e. The vertex following b in the LDFS ordering \sigma a must
be f rather than d, since f has a greater label than d (f is a neighbor of vertex c
which has been visited more recently than d's neighbor a). Finally, LDFS visits the
last vertex d, completing the LDFS ordering as \sigma a = (a, c, e, b, f, d).

It is important here to connect the vertex ordering \sigma u that is returned by the
LDFS algorithm (i.e., Algorithm 1) with the notion of an LDFS ordering, as defined
in Definition 2.5. The next theorem due to Corneil and Krueger [8] shows that a
vertex ordering \sigma of an arbitrary graph G can be returned by an application of the
LDFS algorithm to G (starting at some vertex u of G) if and only if \sigma is an LDFS
ordering.

Theorem 2.6 (see [8]). For an arbitrary graph G = (V,E), an ordering \sigma of V
can be returned by an application of Algorithm 1 to G if and only if \sigma is an LDFS
ordering.

In the generic LDFS, there can be some choices to be made at Line 4 of Algo-
rithm 1. More specifically, at some iteration there may be two or more vertices that
have the same label; in this case the algorithm must break ties and choose one of
these vertices. Generic LDFS (i.e., Algorithm 1) allows an arbitrary choice here. We
present in the following a special type of LDFS algorithm, called LDFS+ (see Al-
gorithm 2 below), which chooses a specific vertex in such a case of equal labels, as
follows. Along with the graph G = (V,E), an ordering \pi of V is also given as input.
The algorithm LDFS+ operates exactly as a generic LDFS that starts at the rightmost
vertex of V in the ordering \pi , with the only difference being that, in the case where
at some iteration at least two unvisited vertices have the same label, LDFS+ chooses
the rightmost vertex among them in the input ordering \pi . The resulting ordering is
then denoted \sigma = LDFS+(G, \pi ).

Algorithm 2. LDFS+ (G, \pi ).

Input: A connected graph G = (V,E) with n vertices and an ordering \pi of V .
Output: An LDFS ordering \sigma of the vertices of G.

1: Assign the label \varepsilon to all vertices and mark all vertices as unnumbered
2: for i = 1 to n do
3: Pick the rightmost vertex v in \pi among the unnumbered vertices with the

lexicographically largest label
4: \sigma (i)\leftarrow v \{ assign to v the number i; v is now numbered\} 
5: for each unnumbered vertex w \in N(v) do
6: prepend i to label(w)

7: return the ordering \sigma = (\sigma (1), \sigma (2), . . . , \sigma (n))

Consider our running example of Figure 2. In this graph G = C6, suppose that
LDFS+ is given as input the umbrella-free ordering \pi = (b, d, c, f, e, a). Then the
ordering \sigma = LDFS+(G, \pi ) is computed using Algorithm 2 as follows. The first
visited vertex is a, since a is the rightmost vertex in the ordering \pi . Now, LDFS
(see Algorithm 1) could choose any of the neighbors c, d, e of a next, but LDFS+ (see
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Algorithm 2) has to choose e, since e is the rightmost among these vertices in the
ordering \pi . In this example there exists no further tie among vertices with the same
label. Thus, proceeding similarly to our example vertex ordering for LDFS above, it
follows that the resulting ordering \sigma = LDFS+(G, \pi ) is \sigma = (a, e, c, f, b, d).

For the purposes of our algorithm RMM for computing a maximum matching on
cocomparability graphs in subsection 2.3, we will consider an arbitrary umbrella-free
vertex ordering \pi of the input cocomparability graph G, and we will then compute
the LDFS ordering \sigma = LDFS+(G, \pi ), by applying Algorithm 2 (i.e., LDFS+) to
\pi . Our RMM algorithm (see Algorithm 3) will then take this LDFS ordering \sigma as
input, together with the graph G. It is important to note here that, starting from
an umbrella-free ordering \pi , the LDFS vertex ordering \sigma = LDFS+(G, \pi ) remains
umbrella-free [6]. That is, \sigma satisfies both the conditions of Definition 2.2 and Defini-
tion 2.5, and thus \sigma is simultaneously an LDFS ordering and an umbrella-free ordering.
For this reason we refer to \sigma as an LDFS umbrella-free vertex ordering of the input
cocomparability graph G. Finally, note that, given an umbrella-free ordering \pi of a
cocomparability graph G with n vertices and m edges, the ordering LDFS+(G, \pi ) can
be computed in O(n+m) time [26].

2.3. The algorithm for cocomparability graphs. Once we have computed
in O(n + m) time the LDFS umbrella-free ordering \sigma = LDFS+(G, \pi ), we apply
our simple linear-time algorithm Rightmost Matching (RMM) (see Algorithm 3) to
compute a new vertex ordering \widehat \sigma and a maximum matching M of G. RMM is a simple
greedy algorithm which operates as follows. At every step it visits the rightmost
unvisited vertex x in \sigma and it labels x as visited. Then, if x does not have any
unvisited neighbor, then RMM proceeds at the next step by visiting the rightmost
currently unvisited vertex in \sigma ; note that this vertex is now different from x, as x has
already been labeled as visited. Otherwise, if x has at least one unvisited neighbor,
then RMM visits after x its rightmost unvisited neighbor y in the ordering \sigma , and it
also adds the edge \{ x, y\} to the computed matching M .

Algorithm 3. RMM(G, \sigma ).

Input: A cocomparability graph G with an LDFS umbrella-free ordering \sigma of G.
Output: A vertex ordering \widehat \sigma of G and a maximum matching of G.

1: Label all vertices ``unvisited""; i\leftarrow 0; M \leftarrow \emptyset 
2: while there are unvisited vertices do
3: Pick the rightmost unvisited vertex x in \sigma and label x as ``visited""
4: i\leftarrow i+ 1; \widehat \sigma (i)\leftarrow x \{ add vertex x to the ordering \widehat \sigma \} 
5: if x has at least one unvisited neighbor then
6: Pick the rightmost unvisited neighbor y of x and label y as ``visited""
7: i\leftarrow i+ 1; \widehat \sigma (i)\leftarrow y \{ add vertex y to the ordering \widehat \sigma \} 
8: M \leftarrow M \cup \{ \{ x, y\} \} \{ match x and y\} 
9: return the ordering \widehat \sigma and the matching M

Remark 1. Since any I-ordering of an interval graph is also an LDFS umbrella-
free ordering (see Lemma 2.1 and Definitions 2.2, 2.4, and 2.5), note that Algorithm 3
also works with an interval graph G and an I-ordering \sigma of G as input. In this
case, RMM(G,\sigma ) is actually exactly the same RMM algorithm as we sketched in
subsection 2.1 for interval graphs.
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Remark 2. Essentially the same greedy approach as our RMM algorithm was
already considered by Dragan [12].4 More specifically, he characterized those graphs G
which admit a vertex ordering \tau such that the greedy algorithm computes a maximum
matching on every induced subgraph F of G when applied to the induced subordering
of \tau on the vertices of F . These graphs G having the above property are called
greedy matchable graphs [12]. We prove that cocomparability graphs admit a vertex
ordering \sigma (namely an LDFS umbrella-free ordering) such that the greedy algorithm
computes a maximum matching in the input graph G itself (and not in every induced
subgraph of G). That is, Dragan [12] studied a problem that is very different from
computing a maximum matching in a given graph.

Dragan [12] proved that greedy matchable graphs form a subclass of weakly tri-
angulated graphs; a graph is weakly triangulated if it contains neither (as an induced
subgraph) a chordless cycle of length at least five nor the complement of such a
chordless cycle. On the contrary, cocomparability graphs are not a subclass of weakly
triangulated graphs since, for every k \geq 3, the complement C2k of a chordless cycle
with length 2k is a cocomparability graph. Indeed, the complement of a C2k (i.e., the
chordless cycle C2k) can be transitively oriented. Therefore, our results do not follow
from the paper of Dragan [12].

More specifically, one of the main results of Dragan (see Theorem 1 in [12]) is that
a graph G is greedy matchable if and only if G admits an admissible vertex ordering
(as defined in Definition 3 of [12]). Admissible orderings are characterized by the
nine forbidden suborderings as shown in Figure 1 of Dragan [12]. However, three of
these forbidden suborderings (namely the 2nd, the 5th, and the 9th) are in fact LDFS
umbrella-free orderings (see Definitions 2.2 and 2.5 of our paper). To see this, observe
that each of these three orderings (i) is umbrella-free (see our Definition 2.2) and
(ii) does not contain any triple a, b, c of vertices such that a <\sigma b <\sigma c, \{ a, c\} \in E,
and \{ a, b\} /\in E (see our Definitions 2.4 and 2.5).

To illustrate this with an example, consider the graph G = C6 of our Figure 2
and recall from subsection 2.2 that \sigma = (a, e, c, f, b, d) is an LDFS umbrella-free
vertex ordering of G. Note that this ordering \sigma contains the orderings (a, e, c, d)
and (a, e, c, b) as induced suborderings. Furthermore, note that these suborderings
correspond to the 2nd and the 5th forbidden suborderings of Figure 1 in Dragan's
paper [12], respectively. Hence, \sigma is an example of an LDFS umbrella-free ordering
which is not an admissible ordering; this is an alternative explanation of why our
results do not follow from Dragan's paper [12].

In the remainder of this section, we show that the matching M returned by
RMM(G, \sigma ) is indeed a maximum matching of G. The proof is by contradiction and
uses an appropriate potential function f that is defined over all matchings of G:

Definition 2.7 (potential function). Let G = (V,E) be a cocomparability graph
and \sigma be an LDFS umbrella-free ordering of V = \{ v1, . . . , vn\} with v1 <\sigma \cdot \cdot \cdot <\sigma vn.
Let M be a matching of G. Then the potential function is f(M) :=

\sum n
i=1 gM (vi),

where for each vi \in V

gM (vi) :=

\left\{     
0 if \{ vi, vj\} \in M and i < j,

(i - j) \cdot (n+ 1)i if \{ vi, vj\} \in M and j < i,

i \cdot (n+ 1)i if vi is not matched within M.

4The only difference is that Dragan's algorithm visits the vertices from left to right and always
matches a vertex with its leftmost unvisited neighbor.
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Note by Definition 2.7 that, for the empty matching, we have f(\emptyset ) =
\sum n

i=1 i \cdot (n+
1)i. Then, as we add an edge \{ vi, vj\} to the current matching M , where j < i and vi
and vj are unmatched, we have that

f(M \cup \{ \{ vi, vj\} \} ) = f(M) - i(n+ 1)i  - j(n+ 1)j + (i - j)(n+ 1)i

= f(M) - j((n+ 1)j + (n+ 1)i) < f(M).

Thus, adding edges to a matching decreases the potential function value. The expo-
nential dependency on the vertex-index in gM ensures that matching vertices with
higher index has a larger impact than matching vertices with lower index. Further-
more, aiming at a small potential function value also means that the endpoints of the
matched edges have only a small index difference. We formalize this intuition in the
next observation.

Observation 2.8. Let G = (V,E) be a graph and \sigma be an arbitrary ordering
of V = \{ v1, . . . , vn\} with v1 <\sigma \cdot \cdot \cdot <\sigma vn. Let M and M \prime be two different matchings
of G such that at vi is the rightmost difference between M and M \prime , that is, each
vertex v\ell , \ell > i, is either free in both M and M \prime or matched with the same v\ell \prime in
both M and M \prime . Suppose that

\bullet \{ vj , vi\} \in M \prime \setminus M , j < i, and
\bullet vi is in M either free or matched to some vj\prime , j

\prime < j.
Then, f(M \prime ) < f(M).

Proof. We have

f(M \prime ) - f(M) =

n\sum 
k=1

gM \prime (vk) - gM (vk) =

i\sum 
i=k

gM \prime (vk) - gM (vk)

as by assumption vi is the rightmost vertex where M and M \prime differ. Then,

f(M \prime ) - f(M) = gM \prime (vi) - gM (vi) +

i - 1\sum 
k=1

gM \prime (vk) - gM (vk)

< (i - j)(n+ 1)i  - (i - x)(n+ 1)i +

i - 1\sum 
k=1

gM \prime (vk),

where x = 0 if vi is free in M or x = j\prime if vi is matched to vj\prime in M . In both cases we
have j > x and thus

f(M \prime ) - f(M) <  - (n+ 1)i +

i - 1\sum 
k=1

gM \prime (vk) <  - (n+ 1)i +

i - 1\sum 
k=1

n(n+ 1)k

=  - (n+ 1)i + n
(n+ 1)i  - 1

n
 - 1

=  - (n+ 1)i + (n+ 1)i  - 2 < 0.

With the above observation the connection between the RMM algorithm and the
potential function f is easy to see.

Observation 2.9. The matching M returned by RMM(G, \sigma ) minimizes the func-
tion f(M).
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Proof. Let M \prime be a matching such that f(M \prime ) is minimum. Consider the right-
most vertex vn in the ordering \sigma and let vi be the rightmost neighbor of vn in \sigma . As-
sume that \{ vi, vn\} /\in M \prime . Then letM \prime \prime be the matching obtained by removing fromM \prime 

any edges with endpoints vi or vn, and by adding to it the edge \{ vi, vn\} . By Obser-
vation 2.8, we have f(M \prime \prime ) < f(M \prime ), a contradiction. Thus \{ vi, vn\} \in M \prime . We can
now recursively apply the same argument in the induced subgraph G[(V \setminus \{ vi\} \setminus )\{ vn\} ],
which eventually implies that M \prime is the matching returned by RMM(G, \sigma ).

Before we prove our main result in Theorem 2.12, we need to prove a crucial
technical lemma (Lemma 2.11). On a high level, our proof strategy is as follows:
We consider a maximum matching M minimizing f and a matching M \prime produced
by Algorithm 3. If M = M \prime , then we are done. Otherwise, we take the ``rightmost""
difference between M and M \prime , that is the rightmost vertex v in M that is not matched
in the same way in M \prime (or v is free in exactly one of the two matchings). Then we
show that matching v in M as in M \prime leads to another maximum matching M \prime \prime such
that f(M \prime \prime ) < f(M). To show this, we make a case distinction where in two cases we
need to exclude the special scenario described in Lemma 2.11. The existence of M \prime \prime 

would be a contradiction to our choice of M . This shows that M = M \prime .
In the next definition we introduce for every vertex v the induced subgraph G\sigma (v)

with respect to the ordering \sigma , which is fundamental for the statement and the proof
of Lemma 2.11.

Definition 2.10. Let G = (V,E) be a cocomparability graph and let \sigma =
(v1, v2, . . . , vn) be an LDFS umbrella-free vertex ordering of G. Then, for every
vi \in V , the graph G\sigma (vi) is the induced subgraph of G on the vertices \{ v1, v2, . . . , vi\} .

Lemma 2.11. Let G = (V,E) be a cocomparability graph and \sigma be an LDFS
umbrella-free ordering of V . Let M be a maximum matching of G such that f(M) is
minimum among all maximum matchings. Then, there is no quadruple (a, b, c, x) of
vertices in G satisfying all of the following six conditions:

1. a <\sigma b <\sigma c \leq \sigma x,
2. \{ a, c\} , \{ b, c\} \in E and \{ a, b\} /\in E,
3. \{ a, c\} \in M ,
4. there is no odd-length alternating path from a to b within G\sigma (x),
5. there is no odd-length alternating path from a to any free vertex v

within G\sigma (x), and
6. there is no odd-length alternating path from b to any free vertex v

within G\sigma (x).

Proof. Let G, \sigma , and M be as described in the statement of the lemma (see Fig-
ure 4). The proof is by contradiction. Towards a contradiction let (a, b, c, x) be a
quadruple of vertices satisfying all six conditions of the lemma. Fix now vertex x.
Among all such quadruples with fixed x, let (a, b, c, x) be such that a is leftmost in \sigma ;
that is, for any other such quadruple (a\prime , b\prime , c\prime , x) we have a \leq \sigma a\prime . Since \sigma is an LDFS
ordering, it follows from conditions 1 and 2 and Definitions 2.4 and 2.5 that there is a
vertex d such that a <\sigma d <\sigma b, \{ d, b\} \in E, and \{ d, c\} /\in E. Since \{ d, c\} /\in E and \sigma is
umbrella-free, it follows that \{ a, d\} \in E. Observe that d is matched in M as otherwise
conditions 5 and 6 would be violated. Thus, there is a vertex e \in V with \{ e, d\} \in M .
Now we distinguish three cases with respect to the position of e in the ordering \sigma .

Case 1: \bfitc <\bfitsigma \bfite . In this case we have that a <\sigma c <\sigma e, \{ d, e\} \in E, and \{ d, c\} /\in 
E. Thus, since \sigma is umbrella-free, it follows that \{ c, e\} \in E. However, in this case for
the matching M \prime = (M \setminus \{ \{ a, c\} , \{ d, e\} \} ) \cup \{ \{ e, c\} , \{ a, d\} \} we invoke Observation 2.8
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Fig. 4. Bold lines indicate matched edges; dotted lines indicate a nonedge. Left: Situation for
invoking Lemma 2.11 displaying conditions 1 to 3 where c \not = x. Right: The case distinction in the
proof of Lemma 2.11 over the position of e in the order.

with vi = e to obtain f(M \prime ) < f(M), a contradiction.
Case 2: \bfita <\bfitsigma \bfite <\bfitsigma \bfitc . If \{ a, e\} \in E, then there exists the length-three alternat-

ing path (a, e, d, b) from a to b within G\sigma (x), which is a contradiction to condition 4.
Thus, \{ a, e\} /\in E. Furthermore, \{ c, e\} \in E, since \sigma is umbrella-free and \{ a, c\} \in E.
Hence, for the matching M \prime = (M \setminus \{ \{ a, c\} , \{ d, e\} \} ) \cup \{ \{ e, c\} , \{ a, d\} \} we invoke Ob-
servation 2.8 with vi = c to obtain f(M \prime ) < f(M), a contradiction.

Case 3: \bfite <\bfitsigma \bfita . In this case it follows similarly to Case 2 that \{ a, e\} /\in E (proof
by contradiction due to condition 4). Furthermore, observe that \{ e, d\} , \{ a, d\} \in E
and \{ e, d\} \in M . Thus the triple (e, a, d) satisfies conditions 1 to 3. Furthermore,
if there exists an odd-length alternating path from e to a within G\sigma (x), then this
alternating path can be extended through d to an odd-length alternating path from
a to b within G\sigma (x), which is a contradiction to condition 4. Hence there is no odd-
length alternating path from e to a within G\sigma (x). Similarly, odd-length alternating
paths from e (resp., from a) to a free vertex v within G\sigma (x) are excluded as well due
to condition 5 (resp., due to condition 6). Thus the quadruple (e, a, d, x) satisfies the
six conditions of the lemma and it holds that e <\sigma a, a contradiction to the choice of
the initial quadruple (a, b, c, x).

We are now ready to prove our central result.

Theorem 2.12. For any n-vertex and m-edge cocomparability graph G, Algo-
rithm 3 returns a maximum matching M of G in O(n+m) time.

Proof. Let G = (V,E) be a cocomparability graph, and let \sigma be an umbrella-free
LDFS ordering of G. First we prove that Algorithm 3 runs in O(n+m) time. To this
end, we denote with deg(v) the degree of a vertex v \in V . During the execution of
the algorithm we maintain the unvisited vertices in a doubly linked list A (initially of
size n), according to their position in \sigma . Furthermore, we maintain for each vertex u its
unvisited neighbors in a doubly linked listNu (initially of size deg (u)), again according
to their position in \sigma . Once we have computed the ordering \sigma , the construction of the
list A can be done in O(n) time. The construction of all lists Nu, where u \in V , can
be done in O(n+m) time as follows. We initialize Nu = \emptyset for every u \in V . Then we
iterate for each vertex u \in V in the list A from left to right. For every such vertex u
we scan (in an arbitrary order) through its neighborhood N(u) (note that Nu is at
this point still incomplete), and for each v \in N(u) we append vertex u in the list Nv.

Line 16 can be clearly executed in O(n) time. The rightmost unvisited vertex x
in Line 18 can be found in O(1) time as the rightmost vertex in the list A. Once x
is detected in Line 18, x is removed from A also in O(1) time. Furthermore, x is
removed from all lists Nu, where \{ x, u\} \in E, in O(deg (x)) time since x is always
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the last element in the respective list. Moreover, Line 19 can be clearly executed in
O(1) time. The if-condition of Line 20 can be checked in O(1) time by just checking
whether the list Nx is empty. Similarly to Line 18, Line 21 can be executed in
O(deg (y)) time. Furthermore, each of Lines 22 to 24 can be clearly executed in O(1)
time. Summarizing, the total running time of Algorithm 3 is O(n+

\sum 
u\in V deg (u)) =

O(n+m).
For the correctness part, the proof is done by contradiction. Let M be the match-

ing returned by RMM(G, \sigma ). Assume towards a contradiction that M is not a max-
imum matching. For the rest of the proof, let M \prime denote a maximum matching that
minimizes f(M \prime ) among all maximum matchings of G. Let x be the rightmost vertex
in \sigma on which M differs from M \prime . Then x is matched in at least one of the two
matchings M and M \prime . Now we distinguish three cases with respect to the vertex that
is matched with x in M and M \prime .

Case 1: \bfitx is matched in \bfitM \prime to some \bfity \in \bfitV but is free in \bfitM . Then
M and M \prime also differ at vertex y. Thus y <\sigma x, since x is the rightmost vertex
in which M and M \prime differ. Consider the iteration t of Algorithm 3 during which
the algorithm visits x. If y is free in M , then this leads to a contradiction; indeed,
otherwise Algorithm 3 would have matched x in iteration t as x has at least one
unvisited neighbor, namely y. Hence, the vertex y is matched in M with a vertex z
at an earlier iteration t\prime < t. Then M differs from M \prime also at vertex z. If z <\sigma x,
then Algorithm 3 visits x at an earlier iteration than z, which is a contradiction to
the assumption on z. Hence x <\sigma z. This is a contradiction to the assumption that
x is the rightmost vertex in \sigma in which M differs from M \prime .

Case 2: \bfitx is matched in \bfitM to some vertex \bfity \in \bfitV but is free in \bfitM \prime .
If y is free in M \prime , then the matching M \prime \cup \{ \{ x, y\} \} is larger than M \prime , which is a
contradiction to the maximality assumption on M \prime . Therefore, y is matched in M \prime 

to some vertex z \in V . Note that M and M \prime differ also on y and z. Thus, it
follows by the choice of x that y <\sigma x and z <\sigma x. Consider now the matching
M \prime \prime := (M \prime \setminus \{ \{ y, z\} \} ) \cup \{ \{ x, y\} \} , which is maximum since | M \prime \prime | = | M \prime | . However,
invoking Observation 2.8 with vi = x yields f(M \prime \prime ) < f(M \prime ), which is a contradiction
to the assumption on the minimality of f(M \prime ).

Case 3: \{ \bfitx , \bfity \} \in \bfitM and \{ \bfitx , \bfitz \} \in \bfitM \prime with \bfitz \not = \bfity . Then M and M \prime 

differ also on y and z. Thus, it follows by the choice of x that y <\sigma x and z <\sigma x.
Consider the iteration t of Algorithm 3 during which the algorithm visits x. Suppose
that vertex z is matched in M with a vertex p at an earlier iteration t\prime < t. Then M
differs from M \prime also at vertex p. If p <\sigma x, then Algorithm 3 visits x at an earlier
iteration than p, which is a contradiction to the assumption on p. If x <\sigma p, then we
have again a contradiction to the assumption that x is the rightmost vertex in \sigma in
which M differs from M \prime . Thus z is unmatched in M at the iteration t of Algorithm 3
during which the algorithm visits x. Furthermore, z is also unvisited at iteration t
since z <\sigma x. Now, if y <\sigma z, then Algorithm 3 would not match x to y at the
execution of Line 21, which is a contradiction. Hence z <\sigma y.

Suppose that y is free in M \prime . Then M \prime \prime := (M \prime \setminus \{ \{ x, z\} \} ) \cup \{ \{ x, y\} \} is another
maximum matching. Invoking Observation 2.8 with vi = x yields f(M \prime \prime ) < f(M \prime ),
a contradiction to the assumption on M \prime . Hence, y is matched in M \prime to some
vertex w \in V with w <\sigma x by the choice of x. If \{ w, z\} \in E, then the match-
ing M \prime \prime := (M \prime \setminus \{ \{ x, z\} , \{ w, y\} \} ) \cup \{ \{ x, y\} , \{ z, w\} \} is another maximum matching.
Invoking Observation 2.8 with vi = x yields f(M \prime \prime ) < f(M \prime ), which a contradiction
to the choice of M \prime . Hence \{ z, w\} /\in E.

Suppose that withinG\sigma (x) (Definition 2.10) there exists an odd-length alternating
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path P0 with respect to M \prime from w to z. Let E0 be the edges in the path P0. Then,
swapping in M \prime all edges on the path P0 (that is, replacing in M \prime the edges M \prime \cap E0

with the edges E0 \setminus M \prime ), removing \{ x, z\} and \{ w, y\} from M \prime , and adding \{ x, y\} 
yields another maximum matching M \prime \prime . Recall that x is the rightmost vertex in
which M and M \prime differ. Thus, since the alternating path P0 belongs to the induced
subgraph G\sigma (x), it follows from Observation 2.8 with vi = x that f(M \prime \prime ) < f(M \prime ),
a contradiction to the choice of M \prime . Thus, within G\sigma (x) there exists no odd-length
alternating path with respect to M \prime from w to z.

Similarly, suppose that within G\sigma (x) there exists an odd-length alternating
path P1 with respect to M \prime from w (resp., from z) to a free vertex v. Then, swapping
inM \prime all edges on the path P1, removing \{ x, z\} and \{ w, y\} fromM \prime , and adding \{ x, y\} 
yields another maximum matching M \prime \prime for which Observation 2.8 with vi = x implies
f(M \prime \prime ) < f(M \prime ), which is again a contradiction to the choice of M \prime . Thus there exists
within G\sigma (x) no odd-length alternating path with respect toM \prime from w (resp., from z)
to a free vertex v.

Now suppose that w <\sigma z. That is, w <\sigma z <\sigma y, where \{ w, y\} \in E and \{ z, w\} /\in 
E. Hence, \{ z, y\} \in E since \sigma is umbrella-free. Thus, since \{ w, y\} \in M \prime , it follows that
the quadruple (w, z, y, x) satisfies all six conditions in the statement of Lemma 2.11.
This is a contradiction to Lemma 2.11, sinceM \prime is assumed to be a maximummatching
of G such that f(M \prime ) is minimum among all maximum matchings.

Finally, suppose that z <\sigma w. Recall that M differs from M \prime in w, since \{ y, w\} \in 
M \prime and \{ x, y\} \in M . Thus, since x is the rightmost vertex in \sigma in which M differs
fromM \prime , it follows that w <\sigma x. That is, z <\sigma w <\sigma x, where \{ x, z\} \in E and \{ z, w\} /\in 
E. Hence, \{ w, x\} \in E since \sigma is umbrella-free. Thus, since \{ x, z\} \in M \prime , it follows that
the quadruple (z, w, x, x) satisfies all six conditions in the statement of Lemma 2.11.
This is again a contradiction to Lemma 2.11, since M \prime is assumed to be a maximum
matching of G such that f(M \prime ) is minimum among all maximum matchings.

Summarizing, the matchingM returned by Algorithm 3 is a maximum matching.

3. Conclusion. We presented a thorough mathematical analysis of an efficient
and easy-to-implement linear-time greedy algorithm for computing maximum match-
ings on cocomparability graphs. This contributes to a long list of polynomial-time
algorithms for problems on cocomparability graphs. Notably, most of this previous
work showed polynomial-time (typically far from linear) algorithms for problems that
are NP-hard on general graphs, while we improved a problem solvable in polynomial
time on general graphs to linear time on cocomparability graphs.

Apart from being of interest on its own, our result might also be useful in a
more general approach towards deriving faster algorithms for computing maximum
matchings in relevant special cases. The fundamental idea behind this, as described
in the companion work [40], is as follows. First observe that, once a matching is
given which has k fewer edges than an optimal one, then using k iterated augmenting
path computations (each taking linear time [18]), one can improve it to a maximum
matching. If for a graph G we also have a vertex subset set X, | X| = k, such
that G - X is a cocomparability graph, then for constant k we could get a linear-time
algorithm for Matching as follows: First, delete the k vertices from G, then apply
our linear-time algorithm, and then apply (as described above) at most k iterations
of augmenting path computations again with respect to the original graph G, starting
with the maximum matching for the cocomparability graph. A drawback of this
approach is that we do not even know how to compute in linear time a constant-factor
approximation (which would be good enough) for the mentioned vertex deletion set
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of size k. Hence, we consider it as an interesting challenge for future work to give
a linear-time (constant-factor approximation) algorithm for computing a ``minimum-
vertex-deletion-to-cocomparability"" set. Based on the above considerations, for now
we only can state the following result.

Corollary 3.1. Matching can be solved in O(k \cdot (n +m)) time when given a
size-k vertex set subset X such that deleting X from the given graph yields a cocom-
parability graph.

From a more general point of view, Corollary 3.1 is a contribution to the ``FPT
in P"" program [21], heading for more efficient polynomial-time algorithms based on
problem parameterizations (also cf. [1, 9, 16, 17]).

Acknowledgment. We are deeply grateful to two anonymous reviewers for their
very careful reading and their constructive feedback, which helped us significantly
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