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Abstract

We provide further evidence for the existence of loss-aversion in a high-stakes context:

professional tennis. Our contribution to the literature is threefold: (1) We provide a

theoretical framework as a basis of our investigation, (2) we test the predictions of our

model by using a novel dataset for both male and female players from the Dubai Tennis

Championships 2013 that not only includes the serve speed but also the serve location,

and (3) we employ semiparametric Additive Mixed Models to include smooth one-, two-

and three-dimensional interaction eects for modelling the serve speed and placement. By

doing so, we provide additional evidence for the existence of loss-aversion for both males

and females, but we show that loss-aversion kicks in much later for females compared

to males. We also document that male players take more risks in the final, when the

stakes are highest. Our results imply significant gender di↵erences for both risk-taking

and loss-aversion.
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1 Introduction

In their seminal paper regarding the Prospect Theory, Kahneman and Tversky (1979) argue

that economic agents place a di↵erent weight on losses than on gains. Despite assigning more

weight on losses than on gains, agents are risk seeking in the loss domain and risk averse in

the gains domain. While numerous studies provided evidence that loss-aversion exists, many

scholars remain skeptical.1

More recently, Pope and Schweitzer (2011) use data from professional golf to demonstrate

that players are indeed loss averse – as they are more focused while playing in the loss domain.

We take the aforementioned paper as a starting point and test prospect theory in another

setting – namely, in professional tennis. Contrary to golf where a player has full control of

every shot, in tennis the only action where a player has full control is the serve, particularly

the serve speed and placement/location. Specifically, players take higher risks when they

serve faster and go for a precise location closer to the T-line.2 Given that the data on serve

speed and location have recently become available by Hawk-eye technology that measures

the serve speed and location for selected matches, professional tennis provides us a unique

opportunity to test prospect theory in a competitive setting, with large stakes and very

experienced agents.3

We test the implication of our model that a server will be less risk averse in his/her serve

speed and in trying to serve closer to the center of the T-line when behind in score than

when ahead in score using novel data from the Dubai Duty Free Tennis Championships in

2013, by utilizing advanced semi-parametric econometric methods. We build upon Anbarci

et al. (2017) by also explicitly taking the serve location into account. We can therefore test

loss-aversion in a multi-dimensional setting with the use of our state-of-the-art empirical

methodology that can account for interaction between our variables of interest. With the

latter, we model multivariate and non-linear functional e↵ects impacting the serve speed.

Our results provide further evidence that loss-aversion significantly influences behavior, even

after controlling for the stakes and experience. However, we also show that the timing of

loss-aversion di↵ers by gender, and while males are loss-averse within a game, females are

1Loss-aversion has been documented in many laboratory and field settings. See, for instance, Knetsch
(1989), Kahneman, Knetsch and Thaler (1990), Tversky and Kahneman (1991), Camerer et al. (1997), Gneezy
and Potters (1997), Thaler et al. (1997), Odean (1998), Genesove and Mayer (2001), List (2003), Mas (2006),
Fehr, Goette and Zehnder (2007), Abeler et al. (2011), Crawford and Meng (2011), Hossain and List (2012),
He↵etz and List (2014). The sceptics include, List (2003), Hart (2005), Levitt and List (2008). In particular,
List (2003) suggests that experience and large stakes may eliminate decision errors. Kahneman and Tversky’s
(1979) “prospect theory” is at the root of other important phenomena such as the endowment e↵ect (Thaler,
1980), the status quo bias (Samuelson and Zeckhauser, 1988), disappointment aversion (Gul, 1991), and
reference-dependent preferences (Kőszegi and Rabin, 2006), among others.

2The T-line refers to the T-shape formed by the service and center-service line. See Figure 2 for the layout
of a tennis court.

3Hawk-Eye is computer system used in various sports to measure the trajectory, speed and placement of
the ball.
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loss-averse when they are behind in sets. Moreover, we also document that, when the stakes

are the highest (i.e., in the final), the serve speed is significantly higher for male players.

The remainder of the paper is organized as follows: Section 2 provides a theoretical

framework as a basis of our empirical investigation, Section 3 reviews data, Section 4 presents

the empirical methodology, and the empirical results are provided in Section 5. Finally,

Section 6 concludes.

2 Conceptual Framework

Kahneman and Tversky’s (1979) “prospect theory” triggered a vast literature by providing

evidence on the prominence of “loss-aversion”(i.e., on the phenomenon that individuals weigh

(and respond to) losses more than identical gains with respect to a salient reference point).

Loss-aversion implies that agents’ “value function” is kinked at the reference point with a

steeper gradient for losses than for gains; in addition, agents are risk seeking in the loss

domain and risk averse in the gain domain. That is, the utility function is convex in the loss

quadrant and concave in the gain quadrant. Similar to Pope and Schweitzer (2011) model, we

develop a simple conceptual framework to describe the influence that loss-aversion may have

on first and second serves when players are ahead or behind in score. Similar to golf, there is

also a reference point in tennis, which is a tied score in a game, set and the match. Players

are “at par” if the game score is tied in a game or if the set score is tied after equal numbers

of games or if equal numbers of sets are won by players; they are not at par otherwise.

Our paper makes an important contribution to the literature by documenting loss-aversion

in another competitive field setting – namely in professional tennis – with large stakes, very

experienced agents and a well-defined reference point. In a sense, our paper complements

Pope and Schweitzer (2011) and our results serve as a strong robustness check of Pope and

Schweitzer’s results specific to golf, since tennis and golf are very di↵erent in their competitive

nature, as in golf one competes against the whole field (open play), while in tennis one

opponent is taken one at a time (match play).4

In tennis (and unlike golf), the only shot over which a player has full control is the serve.

Therefore, the serve is very critical and the server has a distinct incentive to put great e↵ort

into the serve, especially in terms of the speed and the location/placement of the serve. This

also brings up the issues related to risk taking and a higher cognitive e↵ort of aiming the

serve over the net and inside the service box, preferably with a precise location close to the

side of the service box which are the hardest ones to reach for the returner. The returner’s
4This di↵erence has very important implications. Laband (1990) compared golf and tennis and showed

that the open play nature of golf tournaments leads to a lack of dominance by one or a few players, whereas in
contrast the match play nature of tennis tournaments is conducive to dominance by one or a few players being
the usual outcome; specifically, Laband (1990) found under match play, the probability that a top-ranked
player finishes first is about four times greater than in open play against the field.
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e↵ort too is important since he/she has to react as quickly as possible to a faster serve that

lands on a side line of the service box with a significant physical and cognitive e↵ort; besides,

a point cannot continue without a return that is placed back into the server’s court.

Consider any probability function where the probability of winning a point is strictly

concave in the serve and the serve is strictly concave in e↵ort and risk taking (i.e., given that

the latter is fixed/given for an individual, it is not a strategy variable). The serve success

depends on the speed and location. The serve speed depends on physical e↵ort and risk

taking, and the serve location depends on cognitive e↵ort and risk taking.

One can model interactions between a serving player and the returner in various ways.

One way is to model it at a very general level by considering the probability of winning a

point as a function of server’s e↵ort, which is endogenously set by him/her as follows:

Ps
�
win the point while serving

�
= fs(es, er, zs, zr) + ✏ (1)

where es represents the amount of e↵ort exerted by the server on the serve, er represents the

amount of e↵ort exerted by the returner and ✏ is random noise. The vectors zs and zr contain

player characteristics (e.g., ranking, height, weight) of the server and returner, respectively.

Note that the function fs is positive w.r.t. es while fs is negative w.r.t. to es. That

is, additional e↵ort strictly increases the probability of winning a point, and fs(·) is strictly
concave in e↵ort.

Alternatively, one may consider a more specific probability function incorporating the

interaction between players into consideration in the form of a contest success function (e.g.,

Tullock (1980)). This indicates that winning is a probabilistic event, depending on the relative

e↵orts of contestants:

Ps
�
win the point while serving

�
= gs(es, er,↵,�) =

e

↵
s

e

↵
s + e

�
r

(2)

where es again represents the amount of e↵ort exerted by the server on the serve and er

represents the amount of e↵ort exerted by the returner. ↵(zs) and �(zr) are such that 1 > ↵,

� > 0 and they depend on who the server is as well as on zs and zr.

Since 1 > ↵ > 0, gs is positive w.r.t. es and gs being negative w.r.t. es. Additional e↵ort

strictly increases the probability of winning a point and gs(·) is strictly concave in e↵ort.

Note that regardless of whether one considers the general functional form f or the specific

functional form g, the level of e↵ort and of risk-taking determine the speed of each serve as

well as its placement.

Let Ts denote the score of the server (in terms of points or games or sets) and Tr denote

the score of the returner. To incorporate loss-aversion, we will utilize the value functions for a

winning score (w), a losing score (l) and a tied score (t) with both a “degree of loss-aversion”
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separate risk preference parameters, � and �, for the gain and loss domains, respectively:

V (w) = (Ts � Tr)
� if Ts > Tr

V (l) = ��(Tr � Ts)
� if Tr > Ts

Let

(Ts � Tr) = �s

and

(Tr � Ts) = ��r

where �s = �r ⌘ � if and only if Ts � Tr = �(Tr � Ts).

V (w) = ��
s if Ts > Tr (3)

V (l) = ��

⇣
���

s

⌘
(4)

V (t) = 0 (5)

Due to � > 1, the di↵erence in value between winning a service game and a tied score

is smaller than the di↵erence in value between a tied score and losing a point. Note that

1 > � � � > 0 allows for “diminishing sensitivity” in score di↵erence such that incremental

gains in �s above the reference point (i.e., the tied score) result in progressively smaller

utility improvements and, conversely, incremental reductions in �r that are below the tied

score result in progressively smaller declines in utility.

There is a cost of e↵ort for the server, cs(es), which is strictly increasing in e↵ort es with

cs being positive w.r.t. es and cs being positive w.r.t. to es as well. That is, additional e↵ort

strictly increases the cost of e↵ort and cs(·) is strictly convex in e↵ort.

Each server’s utility is equal to the values placed on winning and losing a point weighted

by their probabilities and subtracting the cost of e↵ort. For our purposes of establishing

loss-aversion, we only need to compare payo↵s of servers when they are ahead or behind. A

serving player derives the following expected utilities U and V depending on which one of the

probability functions, for g, is used respectively, when he/she has advantageous score (e.g.,

40-30) serving for the game (or set or match). When it is a game (or set or match) point

favoring the server, where W denotes this state, we have the following:

Us(W ) =
h
fs(es, er, zs, zr) + ✏

i
· V (W ) +

h
1� fs(es, er, zs, zr) + ✏

i
· V (t)� cs(es)

= fs(es, er, zs, zr) + ✏� cs(es)
(6)
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Vs(W ) =
h
gs(es, er,↵,�)

i
· V (W ) +

h
1� gs(es, er,↵,�)

i
· V (t)� cs(es)

= gs(es, er,↵,�)� cs(es)

=

"
e

↵
s

e

↵
s + e

�
r

#
· V (W ) +

"
1� e

↵
s

e

↵
s + e

�
r

#
· V (t)� cs(es)

=
e

↵
s

e

↵
s + e

�
r

� cs(es)

(7)

Likewise, a serving player derives the following expected utilities U and V depending

on which one of the probability functions, f or g, is used respectively, when he/she has a

disadvantageous score (e.g., 30-40) serving for the game (or set or match). When it is a

game (or set or match) point favouring the returner, where L denotes this state, we have the

following:

Us(L) =
h
fs(es, er, zs, zr) + ✏

i
· V (t) +

h
1� fs(es, er, zs, zr) + ✏

i
· V (l)� cs(es)

=
h
1� fs(es, er, zs, zr) + ✏

i
(��)� cs(es)

(8)

Vs(L) =
h
gs(es, er,↵,�)

i
· V (t) +

h
1� gs(es, er,↵,�)

i
· V (l)� cs(es)

=
h
1� gs(es, er,↵,�)

i
(��)� cs(es)

=

"
e

↵
s

e

↵
s + e

�
r

#
· V (t) +

"
1� e

↵
s

e

↵
s + e

�
r

#
· V (l)� cs(es)

=

"
1� e

↵
s

e

↵
s + e

�
r

#
(��)� cs(es)

(9)

Maximizing the utility functions in (6) and (8) yields the following first-order conditions:

c

0
s/f

0
s = ��

s when the state is W

c

0
s/f

0
s = ���

s when the state is L
(10)

Likewise, maximizing the utility functions in (7) and (9) yields the following first-order

conditions

c

0
s/g

0
s = ��

s when the state is W

c

0
s/g

0
s = ���

s when the state is L
(11)

The first-order conditions in (10) and (11) (which, incidentally, are identical to those of

Pope and Schweitzer (2011)) indicate that a server chooses an optimal level of e↵ort, e⇤s, by
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setting the marginal cost of e↵ort equal to the marginal benefit of e↵ort when serving. When

behind in score, the server chooses a higher optimal e↵ort level, which equates the ratio of

the marginal cost and benefit of e↵ort to �, than when ahead, which equates the ratio of the

marginal cost and benefit of e↵ort to 1. Thus, the first-order conditions imply that a server

chooses higher e↵ort level in the loss domain than he/she does in the gain domain. We then

obtain the following result.

Proposition 1. Controlling for individual characteristics, zs and zr leading to ↵ and �, a

loss averse server will be more risk averse in terms of the serve speed and the location of the

serve when ahead in score than when behind in score.

In addition, the curvature of these utility functions induces a server to exert less e↵ort

when he/she is significantly ahead (e.g., 40-0 in his/her serve game, 5-0 in a set and 2-0 in sets

in a grand-slam tournament) than when he/she is slightly ahead (e.g., 40-30 in his/her serve

game, 5-3 in a set and 0-0 in sets) and much more e↵ort when he/she is drastically behind

(e.g., 0-40 in his/her serve game, 0-5 in a set and 0-2 in sets in a grand-slam tournament)

than when he/she is slightly behind (e.g., 30-40 in his/her serve game, 3-5 in a set and 0-0

in sets).

Observe that when �s = �r ⌘ �, the first-order conditions still imply that a server

chooses higher e↵ort level in the loss domain than he/she does in the gain domain for the

same score di↵erential. In addition, c0s/f
0
s = ��

s or c0s/g
0
s = ��

s implies that a server will put

more e↵ort into his/her serve in terms of speed and placement when slightly ahead in score

than significantly ahead in score, while c

0
s/f

0
s = ���

s or c

0
s/g

0
s = ���

s implies that a server

will put more e↵ort into his/her serve in terms of speed when slightly behind in score than

when significantly behind in score. Further, note that, with � > 1 and � � �, the first-order

conditions also allow that a more loss averse server with � and � will put more e↵ort into

his/her serve in terms of speed and placement at a closer losing score than a less loss averse

server with �

0
< � and �

0
< � will at the same or more disparate losing score.

Thus, we have the following result:

Proposition 2. Controlling for individual characteristics, zs and zr leading to ↵ and �, (1)

a loss averse server will put more e↵ort into his/her serve in terms of the speed and the

location of the serve, (i) when slightly behind in score than when significantly behind in score,

and (ii) when slightly ahead in score than significantly ahead in score. (2) compared to a less

loss averse server, a more loss averse server will put more e↵ort into his/her serve in terms

of the speed and the location of the serve at any losing score.

As a result of both the loss-aversion and diminishing sensitivity components of prospect

theory, loss averse servers in the domain of gains will be more likely to choose risk averse

serves and locations than loss averse servers in the domain of losses. This leads to our final

result:
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Proposition 3. Controlling for individual characteristics, zs and zr leading to ↵ and �, a

loss averse server will be more risk averse in terms of the serve speed and the location of the

serve when ahead in score than when behind in score.

3 Data

The data consists of 32 matches of the Dubai Duty Free Tennis Championships in 2013 for

which Hawk-Eye technology was available. Of these, 19 were matches by male and 13 by

female players. It is a $2 million ATP (Association of Tennis Players) tournament, a so-called

ATP 500 tournament, and a $2 million WTA (Women’s Tennis Association) tournament, a

so-called Premier Event.5 Due to its prestige and money prizes, the tournament manages to

attract the best players in the world. For instance, both the number 1 ranked female and

male players in the world, Novak Djokovic from Serbia and Victoria Azarenka of Belarus, were

also the top seeds in the tournament for males and females, respectively. After Azarenka’s

withdrawal with injury, World Number 2 Serena Williams from the USA was promoted to

be the top seed.

The dependent variable – serve speed – was obtained from Hawk-Eye Innovations, which

uses ball tracking technology to measure it. The Hawk-Eye technology has been used for all

ATP, WTA and ITF tournaments since 2002. The serve speed is measured in miles per hour

(mph) for every serve in the match. During the Dubai Duty Free Tennis Championships,

Hawk-Eye technology recorded all matches played on the center court. Only serves that were

counted in were included in the dataset, since the Hawk-eye technology does not measure

the serve speed for serves that are ruled as out. Our first category of independent variables

uses the serves that are ruled in: The serve-speed data was also used in Anbarci et al.

(2017). However, Hawk-Eye also captures the location of the service in the field of the

receiver. Thus, one contribution of this paper is to extend the aforementioned dataset by

incorporating information regarding the serve location coordinates. These spatial coordinates

allow us to include the positioning of the service in the model. According to Figure 1, the

serves must be placed in the green shaded area by the server from the diagonal opposite

side. The variables are summarized in Table 1. Figure 2 shows the observed locations of the

services.

The second category is made up of player characteristics. We thereby use the age, height

and weight of each player. Additionally, we control for the rank of each male and female

player from the o�cial ATP and WTA sites, respectively. The resulting variables are defined

in Table 2. In addition to these personal characteristics, we include variables capturing the

di↵erent characteristics of the currently observed match. The definitions for the latter group

of variables are presented in Table 3. In Table 4 and 5, we provide summary statistics for

5Since its inauguration in 1993, the tournament has been hosted in the Dubai Duty Free Tennis Stadium.
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male and female players, respectively. For two of the female matches (Stosur vs. Makarova

and Putintseva vs. Robson) data was unavailable, although the Hawk-Eye technology was

installed for these matches.

4 Methodology

We model the speed of serve t from server i to receiver j for females by

Serve Speedfijt = �0 + �1 · Second Serveijt

+ �2 · Round 2ijt + �3 · Round 3ijt + �4 · Round 4ijt + �5 · Round 5ijt

+ �6 ·D2 ijt + �7 ·D3 ijt + �8 ·D4 ijt

+ �9 · (Round 5ijt ·D4 ijt)

+ g

�
Longitudeijt,Latitudeijt

�

+ b

�
Heightijt,Weightijt,Ageijt

�

+ f1
�
Rankijt

�

+ f2
�
Point Di↵erenceijt

�
+ f2|M

�
Point Di↵erenceijt

�
·Maleijt

+ f3
�
Game Di↵erenceijt

�
+ f3|M

�
Game Di↵erenceijt

�
·Maleijt

+ �i + ⌘j + ✏ijt (12)

and for males by

Serve Speedmijt = �0 + �1 · Tie-Breakijt + �2 · Second Serveijt

+ �3 · Round 2ijt + �4 · Round 3ijt + �5 · Round 4ijt + �6 · Round 5ijt

+ �7 ·D2 ijt + �8 ·D3 ijt + �9 ·D4 ijt

+ g

�
Longitudeijt,Latitudeijt

�

+ b

�
Heightijt,Weightijt,Ageijt

�

+ f1
�
Rankijt

�

+ f2
�
Point Di↵erenceijt

�

+ f3
�
Game Di↵erenceijt

�

+ �i + ⌘j + ✏ijt (13)

In (12) and (13) we include �i as the random e↵ect for server i = 1, . . . , 36 and ⌘j as the

random e↵ect for receiver j = 1, . . . , 36. In addition to the parametric e↵ects �0, . . . ,�9 for

the binary-coded variables, our models contain three types of nonparametric components.
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First, the univariate functional e↵ect f1(Rankijt) captures the (possible) nonlinear e↵ect of

the ranking from player i on his or her serve speed. f1(·) is a priori unspecified and estimated

with a data-driven approach. To obtain a nonlinear but also su�ciently smooth e↵ect f̂1(·),
we employ penalized spline smoothing. In our method, the P-splines are built upon B-spline

bases. The idea traces back to Eilers and Marx (2010). To achieve the smoothness for this

type of e↵ect, the approach uses the squared derivative of the function. The latter represents

the variability of the function by focusing on its curvature. By penalizing a wiggly and

unsmooth function with the second derivative, we use

�

Z �
f1(x)

�2
dx

with � being the parameter steering the smoothness. For more details, we refer to Fahrmeir

et al. (2013). In (12) and (13), we use the same approach for f2(·) and f3(·).
The functional e↵ect g(·, ·) captures in an a priori unspecified form the location of the

serve by assuming a joint e↵ect of the longitude and the latitude. The resulting bivariate

interaction surface from ĝ(·, ·) is obtained by using tensor product bases in the first step. Due

to the spatial character of this e↵ect, we assume an isotropic structure of the two location

variables. With this flexible form, we allow for both non-linear joint e↵ects of the positioning

and interactions of the two variables. By isotropic, we mean that rotation of the covariate

co-ordinate system will not change the result of smoothing. This is especially useful for

geographic variables with the same dimension of values.6

Finally, the body-characteristics of each player are included with a three-dimensional

function b(·, ·, ·). We allow the weight, the height and the age of the player to be combined

simultaneously to one trivariate e↵ect and to a↵ect the serve speed again in a nonlinear

and smooth way. Although tensor products are again used to obtain the bases for this

nonparametric e↵ect, we do not assume an isotropic structure of the three variables in b(·, ·, ·):
our variables for the body-characteristics are measured on di↵erent scales. For an application

of trivariate nonparametric e↵ect, we refer to Berlemann, Enkelmann and Kuhlenkasper

(2015). With the two random e↵ects �i and ⌘j , our models (12) and (13) are (semiparametric)

Additive Mixed Models. The estimation is conducted in R.7

5 Empirical Results

Our discussion of the empirical results starts with Table 6, which provides coecient estimates

for the parametric parts of models (12) and (13). Our results, consistent with Anbarci et al.

(2017), show that both male and female players serve significantly slower in their second

6See Fahrmeir et al. (2013) and Wood (2006) for more information regarding this procedure.
7See R Core Team (2016)) with the function gamm4 from the package gamm4. Also, see Wood and Scheipl

(2016).
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attempt. Moreover, serve speed for males is significantly higher in the final round of the

competition, when the stakes are the highest. This result is consistent with previous studies

examining the incentive eect of tournaments, which show that subjects increase their e↵ort

in response to an increase in the winner’s prize (Harbring and Irlenbusch, 2005, 2008; Falk,

Fehr and Hu↵man, 2008). However, this does not hold for female players, which points out

an important gender-di↵erence in risk-taking

Our main variables of interest are the three dummy variables which we use to test for

incidence of loss-aversion. Once again, we document remarkable gender di↵erences with

respect to risk-taking behaviour. The negative and significant coe�cient for the D3 variable

for males, and the positive and significant coe�cient for females for the same variable imply

that male players serve slower when they are ahead in sets, while female players do the exact

opposite by serving faster. Interestingly, the positive and significant coe�cient for the D4

variable for males is somewhat consistent with the pioneering study of Pope and Schweitzer

(2011), show that the serve speed is significantly lower when the score is tied in terms of sets.

Nevertheless, it is important to emphasize that if one looks at serve speed when players are a

set behind, female players exhibit consistent behaviour in terms of loss-aversion theory, while

male players do not.

However, this result can be explained with the timing of loss-aversion, as documented by

Anbarci et al. (2017). In order to investigate this we have a closer look at how the point

di↵erence in a game and how the game di↵erence in a set a↵ects the serve speed for male

and female players. In Figure 11 we can analyse the partial eect of the point dierence within

a game, and Figure 12 shows the partial eect of the game dierence within the current set of

the match.

The top half of Figure 11 shows loss-aversion within a game for female players and the

bottom half shows the same for male players. We observe opposite patterns for the two

genders. In the very short run (i.e., within a game), female players do not show any loss-

aversion when behind in the game. This can be seen by the positive eect on the serve speed

on the left-hand side of the response function. Conversely, for male players, there is evidence

for immediate loss-aversion, especially if they are significantly behind in a game. This result

confirms our initial suspicion that loss-aversion exists for both genders, but kick in at di↵erent

times: male players become “loss-averse” much earlier compared to female players.

Figure 12 shows the eects for what we call the medium run (i.e., within a set). Once

again we observe an opposing pattern for the two genders. If females are – slightly as well

as significantly – behind in the set, the serve is significantly slower compared to when they

are ahead. For males, on the other hand, the opposite can be observed: being behind in the

set leads to higher serve speed (more so when slightly behind) and therefore to higher risk

taking in the serve. This behaviour is consistent with what we observe in the short-run, i.e.

within a game.

11



In a nutshell, our results provide evidence that loss-aversion exists for both genders.

However, the “timing” of loss-aversion is di↵erent for male and female players. The results

also show that, within a match, the risk-taking behaviour changes over time. We believe this

result is very important and has never been documented before.

In the next step, we present the estimated bivariate partial e↵ect ĝ (Longitude, Latitude)

as a two-dimensional contour graph in Figure 3 and as three-dimensional perspective graphs

in Figures 4 and 5. For the Figures 3 to 9, we use the heat colorscheme. The latter indicates

higher partial e↵ects on the serve speed by brighter colors and lower and even negative partial

e↵ects with darker colors. Our results for this bivariate spatial e↵ect clearly show that the

selected location by the server a↵ects his/her speed. In other words, the players can serve

faster by positioning their serves closer to the center of the T-line or the outer border of the

T-field.

The partial e↵ect of the body characteristics b̂ (height, weight, age) are displayed in a

two-dimensial graph in Figures 6 and 8 and as a three-dimensial graph in Figures 7 and

9. We show the partial trivariate eect by holding age constant. Our results show that the

interaction of physical characteristics is very important in terms of serve speed. For instance,

our results for the oldest age group (34) show that only shorter players with very low or very

high weight serve faster compared to other players.

In addition to the trivariate body-characteristics, Figure 10 shows the smooth partial

e↵ects of the ranking on the serve speed. We document that players lower in the world

rankings serve statistically significantly faster on average. This result is consistent with the

findings of Kräkel, Nieken and Przemeck (2014), who posit that the underdog (in our case

the player with lower probability of winning) should strictly benefit from taking higher risks

since he has nothing to lose, and good luck may compensate for the competitive disadvantage.

Interestingly, once again, this result does not hold for female players.

6 Conclusion

In this paper, we provide additional evidence for the existence of “loss-aversion” in the highly

competitive context of professional tennis. Interestingly, the influence of loss-aversion is

visible in three dierent settings. First, when players are behind in score, we show that they

are more likely to take risks in their serve speed, although the timing of the loss-aversion is

di↵erent between male and female players. Second, we also document that male players are

more willing to take risks when the stakes are highest; namely, they take more risks in the

final, when also in monetary terms there is much more to lose. Third, we also document

that lower-ranked male players for whom the opportunity cost of a loss is much higher, risk

taking is higher as well. For many lower-ranked players, entrance to the main draw of the

next tournaments is highly dependent on their performance in the previous tournaments.
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Further exploration of these results in dierent sports as well as in other fields seem to be very

beneficial for deeper understanding of loss-aversion and its origins.
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Figure 1: Scheme of a tennis court with units for the longitude and latitude.
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Figure 2: Scheme of a tennis court with observed locations of services for females (top) and
males (bottom)
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Figure 3: Two-dimensional visualization of the simultaneous isotropic partial e↵ect of the
positioning of the service on its speed for females (top) and males (bottom)
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Figure 4: Three-dimensional visualization of the simultaneous isotropic partial e↵ect of the
positioning of the service on its speed from di↵erent perspectives for females
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Figure 5: Three-dimensional visualization of the simultaneous isotropic partial e↵ect of the
positioning of the service on its speed from di↵erent perspectives for males

21



Figure 6: Two-dimensional visualization of the simultaneous partial e↵ect of weight, height
and age on the serve speed by holding age constant for eight selected values for females
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Figure 7: Three-dimensional visualization of the simultaneous partial e↵ect of weight, height
and age on the serve speed by holding age constant for eight selected values for females
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Figure 8: Two-dimensional visualization of the simultaneous partial e↵ect of weight, height
and age on the serve speed by holding age constant for eight selected values for males
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Figure 9: Three-dimensional visualization of the simultaneous partial e↵ect of weight, height
and age on the serve speed by holding age constant for eight selected values for males
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Figure 10: Smooth partial e↵ect of the ATP /WTA position on the serve speed with pointwise
95% confidence bands for females (top) and males (bottom)
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Figure 11: Smooth partial e↵ect of the point di↵erence within a game on the serve speed
with pointwise 95% confidence bands for females (top) and males (bottom)
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Figure 12: Smooth partial e↵ect of the game di↵erence within a set on the serve speed with
pointwise 95% confidence bands for females (top) and males (bottom)
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Table 1: Definition of the spatial variables

Variable Definition

Longitude The final position of the serve in the horizontal perspective from
the server. The values are centered around the middle line and
have a range of 8.223 meters

Latitude The final position of the serve in the vertical perspective from the
server. The values are centered around the net and have a range
of 12.764 meters

Table 2: Definition of the variables for player characteristics

Variable Definition

Rank The ATP or WTA World-Rank of the player. The value is cap-
tured one week prior to the start of the tournament from the ATP
or WTA website.

Age The age of the player, measured in months. The value is captured
one week prior to the start of the tournament from the ATP or
WTA website.

Height The height of the player, measured in centimeters. The value is
captured from the ATP or WTA website.

Weight The weight of the player, measured in kilograms. The value is
captured from the ATP or WTA website.
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Table 3: Definition of the match variables

Variable Definition

Round The stage of the tournament with 1 being the lowest value for the
first round of matches and 5 being the highest possible value for
the final match. We define dummy variables for the rounds > 1
yielding round 1 to be the reference.

Tie-Break Dummy variable which takes the value of 1 if the serve takes place
during a Tie-Break and 0 otherwise (only observed for males)

Second Serve Dummy variable which takes the value of 1 if the serve is “second
serve”. This implies that the player made an error during his/her
first serve. This serve is then the last chance before he/she is
penalized by a point.

D1 Dummy variable that takes the value of 1 if the set score is tied
at 0,0.

D2 Dummy variable that takes the value of 1 if the set score is 0,1.
The serving player is behind.

D3 Dummy variable that takes the value of 1 if the set score is 1,0.
The serving player is ahead.

D4 Dummy variable that takes the value of 1 if the set score is tied
at 1,1.

Point Di↵erence
Game

The number of points won by the player who is currently serving
minus the number of points won by the receiver in the current
game. The numbers are taken prior to the serve.

Game Di↵erence
Set

The number of games won by the player who is currently serving
minus the number of games won by the receiver in the current set.
The numbers are taken prior to the serve.
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Table 6: Summary of model (12)

Dep. Var. Serve Speed Estimates Females Estimate Males

Constant 91.87
(34.65)

⇤⇤⇤ 113.30
(118.73)

⇤⇤⇤

Tie-Break — �0.97
(�0.96)

Second Serve �13.08
(�32.97)

⇤⇤⇤ �18.48
(�47.09)

⇤⇤⇤

Round 2 �0.78
(�0.35)

�1.79
(�1.62)

Round 3 �0.16
(�0.08)

�0.33
(�0.39)

Round 4 2.41
(0.74)

0.43
(0.69)

Round 5 3.96
(1.16)

2.73
(2.00)

⇤

D2 �0.33
(�0.60)

0.46
(0.97)

D3 �1.38
(�2.43)

⇤⇤ 1.07
(2.20)

⇤

D4 �2.37
(�3.67)

⇤⇤⇤ �0.47
(�0.76)

D4 ⇥ Round 5 0.90
(0.54)

—

d
V ar(�) 43.88 8.81

d
V ar(⌘) 5.59 1.00

R

2
c 0.71 0.82

Data Source: Hawk-Eye. Robust standard errors. t-statistics in parentheses. Bold faced coe�cients are

statistically significant. ·, ⇤, ⇤⇤ and ⇤⇤⇤ respectively indicate significance at the 10%, 5%, 1% levels and

almost 0% levels.
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