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Abstract. In [M. Benzi and M. A. Olshanskii, SIAM J. Sci. Comput., 28 (2006), pp. 2095--2113]
a preconditioner of augmented Lagrangian type was presented for the two-dimensional stationary in-
compressible Navier--Stokes equations that exhibits convergence almost independent of Reynolds
number. The algorithm relies on a highly specialized multigrid method involving a custom pro-
longation operator and for robustness requires the use of piecewise constant finite elements for the
pressure. However, the prolongation operator and velocity element used do not directly extend to
three dimensions: the local solves necessary in the prolongation operator do not satisfy the inf-sup
condition. In this work we generalize the preconditioner to three dimensions, proposing alternative
finite elements for the velocity and prolongation operators for which the preconditioner works ro-
bustly. The solver is effective at high Reynolds number: on a three-dimensional lid-driven cavity
problem with approximately one billion degrees of freedom, the average number of Krylov iterations
per Newton step varies from 4.5 at Re = 10 to 3 at Re = 1000 and 5 at Re = 5000.
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1. Introduction. We consider the stationary incompressible Newtonian Navier--
Stokes equations: given a bounded Lipschitz domain \Omega \subset \BbbR d, d \in \{ 2, 3\} , find (u, p) \in 
H1(\Omega ;\BbbR d)\times Q such that

 - \nabla \cdot 2\nu \varepsilon (u) + (u \cdot \nabla )u+\nabla p = f in \Omega ,(1.1a)

\nabla \cdot u = 0 in \Omega ,(1.1b)

u = g on \Gamma D,(1.1c)

2\nu \varepsilon (u) \cdot n = pn on \Gamma N ,(1.1d)

where \varepsilon (u) = 1
2 (\nabla u + \nabla uT ), \nu > 0 is the kinematic viscosity, f \in L2(\Omega ;\BbbR d), n is

the outward-facing unit normal to \partial \Omega , \Gamma D and \Gamma N are disjoint with \Gamma D \cup \Gamma N = \partial \Omega ,
and g \in H1/2(\Gamma D;\BbbR d). If | \Gamma N | > 0, then a suitable trial space for the pressure is
Q := L2(\Omega ); if | \Gamma N | = 0, then the pressure is only defined up to an additive constant
and Q := L2

0(\Omega ) is used instead. The Reynolds number, defined as Re = UL
\nu , where

U is the characteristic velocity and L is the characteristic length scale of the flow, is
an important dimensionless number governing the nature of the flow. The Navier--
Stokes equations are of enormous practical importance in science and industry, but
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are very difficult to solve, especially for large Reynolds number. The importance of
these equations has motivated a great deal of research on algorithms for their solution;
for a general overview of the field, see the textbooks of Turek [77], Elman, Silvester,
and Wathen [30], or Brandt and Livne [16].

After Newton linearization and a suitable spatial discretization of (1.1), nonsym-
metric linear systems of saddle point type must be solved:

(1.2)

\biggl( 
A BT

B 0

\biggr) \biggl( 
\delta u
\delta p

\biggr) 
=

\biggl( 
b
c

\biggr) 
,

where A is the discrete linearized momentum operator, BT is the discrete gradient
operator, B is the discrete divergence operator, and \delta u and \delta p are the updates to
the coefficients for velocity and pressure, respectively. One strategy to solve these
systems is to employ a monolithic multigrid iteration on the entire system with a
suitable coupled relaxation method, such as the algorithms of Vanka [79] or Braess
and Sarazin [15]. Vanka iteration works well for moderate Reynolds numbers [77], but
the iteration counts have been observed to increase significantly once the Reynolds
number becomes large [7].

An alternative approach to solving (1.2) is to build preconditioners based on block
factorizations [58, 43, 6, 30, 80]. This strategy can be grounded in an insightful func-
tional analytic framework that guides the development of solvers whose convergence
is independent of parameter values and mesh size h, at least in the case where (1.2)
is symmetric [56]. Block Gaussian elimination reduces the problem of solving the
coupled linear system to that of solving smaller separate linear systems involving the
matrix A and the Schur complement S =  - BA - 1BT . If a fast solver is available for
A, the main difficulty is solving linear systems involving S, as this matrix is generally
dense and cannot be stored explicitly for large problems. Tractable approximations
\~S - 1 to S - 1 must be devised on a PDE-specific basis.

For the Stokes equations, the Schur complement is spectrally equivalent to the
viscosity-weighted pressure mass matrix [74]. For the Navier--Stokes equations this
choice yields mesh-independent convergence and is effective for very small Reynolds
numbers, but the convergence deteriorates badly with Reynolds number [27, 30]. The
pressure convection-diffusion (PCD) approach [46] constructs an auxiliary convection-
diffusion operator on the pressure space, and hypothesizes that a certain commuta-
tor is small. This yields an approximation to the Schur complement inverse that
involves the inverse of the Laplacian on the pressure space, the application of the
auxiliary convection-diffusion operator, and the inverse of the pressure mass matrix.
The least-squares commutator (LSC) approach [26] is based on a similar idea, but
derives the commutator algebraically. Both of these approaches perform well for
moderate Reynolds numbers. Numerical experiments comparing the performance of
our approach to these algorithms are provided in section 5.

In 2006, Benzi and Olshanskii proposed an augmented Lagrangian approach for
controlling the Schur complement of (1.2) [60, 7, 59, 8, 31, 51]. The idea, referred
to as grad-div stabilization, is to introduce an additional term in the equations that
does not change the continuous solution, but does modify the Schur complement. The
continuous form of the stabilization replaces (1.1a) with

 - \nabla \cdot 2\nu \varepsilon (u) + (u \cdot \nabla )u+\nabla p - \gamma \nabla \nabla \cdot u = f in \Omega ,(1.3)

for \gamma > 0. As \nabla \cdot u = 0, the solutions of (1.3) and (1.1a) are the same. The discrete
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variant of this approach replaces (1.2) with

(1.4)

\biggl( 
A+ \gamma BTM - 1

p B BT

B 0

\biggr) \biggl( 
\delta u
\delta p

\biggr) 
=

\biggl( 
b+ \gamma BTM - 1

p c
c

\biggr) 
,

where Mp is the pressure mass matrix. This modified system has the same discrete
solutions as (1.2), as B\delta u = 0. With either variant, for \gamma not too small, the Schur
complement inverse is well approximated by

(1.5) S - 1 \approx  - (\nu + \gamma )M - 1
p ,

where Mp is the pressure mass matrix. This approximation improves as \gamma increases
(section 3). In either case, we denote the discretized augmented momentum block as
A\gamma .

Remark 1.1. The continuous form of the grad-div stabilization has some fur-
ther appealing characteristics. For example, it significantly improves the pressure-
robustness of discretizations where the incompressibility constraint is not enforced
pointwise [60, 40, 44]. It also arises in other contexts in the numerical analysis of
(1.1). For example, Boffi and Lovadina [13] showed that the addition of the term
h - 1/2(\nabla \cdot u,\nabla \cdot v)L2(\Omega ) to the weak form of the [\BbbP 2]

2 - \BbbP 0 discretization of (1.1) im-
proves its convergence order. It also arises in the iterated penalty [76, 17] and artificial
compressibility [22] methods for the Stokes and Navier--Stokes equations.

The tradeoff with either variant of this approach is that developing fast solvers for
A\gamma becomes significantly more difficult. The divergence operator has a large kernel
(the range of the curl operator) and hence standard multigrid relaxation methods are
ineffective.

A key insight of Benzi and Olshanskii was that a specialized multigrid algorithm
could be built for A\gamma [7, 59] by applying the seminal work of Sch\"oberl [68]. The
algorithm combines four ingredients, each of which is crucial to the effectiveness of
the method: (i) the discrete variant of the grad-div stabilization; (ii) streamline-
upwind Petrov--Galerkin (SUPG) stabilization of the advective term; (iii) a multigrid
relaxation that effectively treats errors in the kernel of the discrete divergence term;
and (iv) a specialized prolongation operator whose continuity constant is indepen-
dent of \gamma and \nu . This scheme exhibits outer iteration counts that grow only very
slowly with Reynolds number [7]. However, it is described as difficult to implement
[37, 9], and so most of the works that use grad-div stabilization and the Schur com-
plement approximation (1.5) employ either matrix factorization as the inner solver
[24, 78, 14, 38, 40] or a block-triangular approximation to A\gamma [9, 37, 8, 39]. This
block-triangular approximation decouples linear systems involving A\gamma into d scalar
anisotropic advection-diffusion problems, which may be solved with algebraic multi-
grid techniques. However, this simplicity comes at a price; the scheme is much more
sensitive to the choice of \gamma , and its convergence deteriorates somewhat as the Reynolds
number increases [9].

The main contribution of this paper is the extension of the robust multigrid
scheme for the inner velocity problem arising in the augmented Lagrangian precondi-
tioner to three dimensions. The previous work of Benzi and Olshanskii only considered
the case d = 2. While the same general strategy applies in three dimensions, the exten-
sion is nontrivial: if the finite elements used in [68, 7] are applied in three dimensions,
the prolongation operator involves the solution of ill-posed local problems. We pro-
pose appropriate finite element discretizations and matching prolongation operators
that exhibit Reynolds-robust iteration counts in three dimensions.
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A3076 P. E. FARRELL, L. MITCHELL, AND F. WECHSUNG

A second contribution is the release of an open-source parallel implementation of
the solver in two and three dimensions, built on Firedrake [66] and PETSc [5]. This
has required substantial modifications to Firedrake, PETSc, UFL [1], and TSFC [42],
as well as minor developments in FIAT [47]. The solver heavily relies on and extends
the solver infrastructure developed in [48], enabling easy composition and nesting
of preconditioners in PETSc and Firedrake. To express the local solves involved in
the relaxation and prolongation operator, we have developed a new preconditioner in
PETSc that allows for the simple expression of general additive subspace correction
methods. For example, the same code that does patchwise relaxation can be used to
formulate line smoothers, plane smoothers, or Vanka iteration, and we expect that it
will be of substantial interest for other applications as well.

The remainder of the paper is laid out as follows. The discretization and the grad-
div stabilization are described in section 2. The augmented Lagrangian approach is
explained in section 3. The multigrid cycle for the augmented momentum block is de-
scribed in section 4. Numerical experiments analyzing its performance and comparing
it to PCD and LSC are reported in section 5. Finally, conclusions and prospects for
future improvements are given in section 6.

2. Formulation and discretization. For boundary data g \in H1/2(\Gamma D), let

(2.1) Vg = \{ v \in H1(\Omega ;\BbbR d) : v| \Gamma D
= g\} .

The initial weak form of (1.1) is: find (u, p) \in Vg \times Q such that

(2.2)

\int 
\Omega 

2\nu \varepsilon (u) : \nabla v dx+

\int 
\Omega 

(u \cdot \nabla )u \cdot v dx - 
\int 
\Omega 

p\nabla \cdot v dx - 
\int 
\Omega 

q\nabla \cdot u dx =

\int 
\Omega 

f \cdot v dx

for all (v, q) \in V0 \times Q. This will be extended before discretization in two ways. The
first is a consistent SUPG stabilization; it is well known that straightforward Galerkin
discretizations of advection-dominated problems are oscillatory [19, 77, 64, 30]. In
addition, it is widely observed that mesh-dependent SUPG stabilization is highly
advantageous for multigrid smoothers on advection-dominated problems [65, 77]. The
strong form of the momentum residual is given by

(2.3) \scrL (u, p) =  - \nabla \cdot 2\nu \varepsilon (u) + (u \cdot \nabla )u+\nabla p - f,

and the following term is added to the weak form:

(2.4)

\int 
\Omega 

\delta (u)\scrL (u, p) \cdot 
\bigl( 
(u \cdot \nabla )v

\bigr) 
dx.

Here \delta (u) is a weighting function that should be small in regions where the flow is
well-resolved and large where stabilization is necessary. The particular form employed
in this work is

(2.5) \delta (u) = \delta d

\biggl( 
4\| u\| 2

h2
+

144\nu 2

h4

\biggr)  - 1/2

,

with \delta d = 1 in two dimensions and \delta d = 1/20 in three dimensions. To the best of
our knowledge, this form was first suggested in [72, eq. (3.58)]. It is important to
take account of the dependence of \delta on the (unknown) solution u when taking the
derivatives required by Newton's method; in this work, these derivatives are calculated
automatically and symbolically by the Unified Form Language [1].
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The second modification is the augmented Lagrangian term described above in
(1.3) and (1.4). If the continuous variant is employed, the term

(2.6) \gamma 

\int 
\Omega 

\nabla \cdot u\nabla \cdot v dx

is added to the weak form, while if the discrete variant is employed, the term

(2.7) \gamma 

\int 
\Omega 

\bigl( 
PQh

\nabla \cdot u
\bigr) 
\nabla \cdot v dx

is added instead, where PQh
: L2(\Omega ) \rightarrow Qh is the projection operator onto the discrete

pressure space Qh. The continuous grad-div stabilization changes the discrete solution
computed if the discrete velocity uh does not satisfy \nabla \cdot uh = 0 pointwise, whereas
the discrete variant does not. The effect of the continuous approach is to penalize
\| \nabla \cdot uh\| L2(\Omega ) and thereby improve the discrete enforcement of the incompressibility
constraint [60, 40, 44]. Nevertheless, in this work we use the discrete variant (2.7).
The reason for this is that the kernel of PQh

div is much more straightforward to char-
acterize than the kernel of div if Qh is chosen to be the space of piecewise constants:

(2.8) Qh(\scrM ) = \{ q \in L2(\Omega ) : q| K \in \BbbP 0(K) \forall K \in \scrM \} ,

where \scrM is a simplicial mesh of the domain \Omega . By the divergence theorem, uh \in 
ker(PQh

div) if and only if for any K \in \scrM , uh satisfies

(2.9)

\int 
\partial K

uh \cdot n ds = 0.

This characterization will be extremely useful for dealing with errors in the kernel
in the multigrid relaxation, as it ensures that the kernel is spanned by basis func-
tions with local support [18, section VI.8]. Note also that this choice of Qh removes
the dependency of \scrL on p (as \nabla p is zero on each element), thereby eliminating any
extra contribution to the top-right block of the linearized system to be solved, thus
preserving the symmetry between the top-right and bottom-left blocks of the matrix.

After these modifications, the final discrete weak form to be solved is: find (u, p) \in \bigl( 
Vh \cap Vg

\bigr) 
\times 
\bigl( 
Qh \cap Q

\bigr) 
such that\int 

\Omega 

2\nu \varepsilon (u) : \nabla v dx+

\int 
\Omega 

(u \cdot \nabla )u \cdot v dx+

\int 
\Omega 

\delta (u)\scrL (u) \cdot 
\bigl( 
(u \cdot \nabla )v

\bigr) 
dx

+ \gamma 

\int 
\Omega 

\bigl( 
PQh

\nabla \cdot u
\bigr) 
\nabla \cdot v dx - 

\int 
\Omega 

p\nabla \cdot v dx - 
\int 
\Omega 

q\nabla \cdot u dx =

\int 
\Omega 

f \cdot v dx(2.10)

for all (v, q) \in 
\bigl( 
Vh \cap V0

\bigr) 
\times 
\bigl( 
Qh \cap Q

\bigr) 
, with the choice of Vh to be discussed below.

2.1. Choice of velocity space. We now turn our attention to choosing an
appropriate space for the discrete velocities. Define the space Vh(\scrM ) used for the
velocity as

(2.11) Vh(\scrM ) = \{ v \in H1(\Omega ) : v| K \in \BbbP v(K) \forall K \in \scrM \} 

for some choice of \BbbP v(K). The first condition on \BbbP v(K) is that Vh must be inf-sup
stable when combined with Qh for the pressure. Unfortunately, both in two and in
three dimensions, the [\BbbP 1]

d  - \BbbP 0 element combining piecewise linear functions for the
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velocity space together with piecewise constants for the pressure does not satisfy the
inf-sup condition on general meshes. This means that the velocity space needs to be
enriched, with the resulting element pairs (e.g., [\BbbP 2]

2 - \BbbP 0 and [\BbbP 3]
3 - \BbbP 0) exhibiting a

suboptimal convergence rate.
In [7] the element pair [\BbbP 1iso\BbbP 2]

2 - \BbbP 0 is used, which is obtained by considering
a [\BbbP 1]

2 element on a once refined mesh for the velocity. This element has the same
number of degrees of freedom as [\BbbP 2]

2 - \BbbP 0. Neither [\BbbP 2]
3 - \BbbP 0 nor [\BbbP 1iso\BbbP 2]

3 - \BbbP 0 is inf-
sup stable on a single regularly refined tetrahedron, which as we shall see in section 4.2
is crucial for the effectiveness of the preconditioner. These element pairs are missing
degrees of freedom on the facets of the tetrahedra which are necessary to stabilize the
jump of the pressure field.

Increasing the degree of the velocity space to piecewise cubic polynomials, i.e.,
choosing the element pair [\BbbP 3]

3 - \BbbP 0, introduces additional degrees of freedom on the
facets and results in a stable element pair. However, this element is extremely expen-
sive while being suboptimal by two orders for the velocity. Alternatively, Bernardi
and Raugel [10, 11] suggest enriching the piecewise linear velocity space with bubble
functions on each facet.1 While it is only necessary to add a single bubble function for
the normal component of the velocity on each facet, this adds significant complexity
to the implementation as these functions are not affine equivalent; they require a Piola
transform to preserve the normal orientation. This means that the basis functions
associated with vertices and those associated with facets need to be pulled-back differ-
ently, complicating the implementation. For this reason we choose instead to enrich
the space with facet bubbles for all three components of the velocity, obtaining the
[\BbbP 1 \oplus BF

3 ]3 - \BbbP 0 element. As can be seen in Figure 2.1, this results in an element with
significantly fewer degrees of freedom than [\BbbP 3]

3 - \BbbP 0. We also show the [\BbbP 2 \oplus BF
3 ]3

element in Figure 2.1; we will demonstrate in section 4.2 that these elements satisfy
a particular property that is useful in the prolongation.

Fig. 2.1. The \BbbP 1 \oplus BF
3 , \BbbP 2, \BbbP 2 \oplus BF

3 , and \BbbP 3 elements.

Remark 2.1. Pressure elements other than \BbbP 0 have been considered for the aug-
mented Lagrangian preconditioner. Benzi and Olshanskii [7, Table 6.2] also present
results for the [\BbbP 1iso\BbbP 2]

2 - \BbbP 1 pair, where the pressure mass matrix solve in PQh
is

approximated by the inverse of a diagonal matrix. However, for this element pairing
the developed multigrid scheme is not independent of the ratio \gamma /\nu and hence as \nu 
decreases, \gamma has to be decreased correspondingly. This in turn leads to worse control
of the Schur complement and consequent growth in iteration counts.

1The bubble function on each facet is the product of the barycentric coordinates that are nonzero
on that facet.
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Remark 2.2. Effective smoothers for PDEs involving the continuous term (\nabla \cdot 
u,\nabla \cdot v)L2(\Omega ) have been proposed in other contexts [2, 41]; it should be possible to
extend these approaches to the two- and three-dimensional advection-dominated case
considered here, and thereby enable the use of finite elements with advantageous prop-
erties such as optimal convergence rates and exact enforcement of the incompressibility
constraint.

3. The augmented Lagrangian method. The Schur complement of the ma-
trix in (1.4) is given by

(3.1) S =  - B(A+ \gamma BTM - 1
p B) - 1BT .

From the Sherman--Morrison--Woodbury formula it follows (e.g., [4, Theorem 3.2])
that

(3.2) S - 1 =  - (BA - 1BT ) - 1  - \gamma M - 1
p .

From this we obtain immediately that

(3.3) \~S - 1 =  - (\nu + \gamma )M - 1
p

is a good approximation to S - 1 as \gamma \rightarrow \infty for fixed mesh size and viscosity. To
understand the quality of the approximation for finite \gamma as \nu or h changes, we need
to consider how \nu M - 1

p approximates (BA - 1BT ) - 1.
It is well known that the eigenvalues of a matrix do not characterize the con-

vergence of GMRES for a linear system [35]. Instead, it is necessary to bound the
field-of-values of the preconditioned system [75, Theorem 3.2], [25, Corollary 6.2], and
[62, section 1.3]. This analysis was performed by Benzi and Olshanskii [8] for both the
ideal and the modified augmented Lagrangian preconditioner for the Oseen problem,
using general results of Loghin and Wathen [55]. One of the key ingredients in this
analysis is that the momentum operator is coercive with constant \nu . They use this
to prove that the choice of \gamma \sim \nu  - 1 results in an optimal preconditioner (assuming
exact solves of the momentum block). However, it is well known [34, p. 300] that the
momentum operator of the Newton linearization of (1.1) is only coercive for \nu > \nu 0
for some problem-dependent \nu 0. Fortin and Glowinski remark [31, p. 85] that this is
typically a very restrictive condition: for \nu > \nu 0 the Stokes approximation itself is
adequate. This proof strategy would therefore require significant extension to apply
to the Newton linearization considered here.

In practice, Benzi and Olshanskii [7] observe that a constant choice of \gamma yields
mesh-independent and essentially Reynolds number--independent results. As our
multigrid solver for the momentum block is robust with respect to \gamma , we simply
choose \gamma large. In the experiments of section 5, we take the value \gamma = 104 to match
the largest Reynolds number considered.

4. Solving the augmented momentum block. The key challenge with the
augmented Lagrangian strategy is the solution of the augmented momentum block
A\gamma . The grad-div term has a large nullspace, rendering standard relaxation methods
(point-block Jacobi or Gauss--Seidel) ineffective as \nu \rightarrow 0. In this section we explain
the specialized multigrid algorithm of Benzi and Olshanskii, along with the modifi-
cations required to extend the method to three dimensions. The multigrid method
has two components: a \nu - and \gamma -robust relaxation method, and a kernel-preserving
prolongation operator. In subsections 4.1 and 4.2 we first consider the augmented
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Stokes momentum operator without the linearized advection terms, to study in the
simplest possible situation the difficulties arising with the grad-div term. We then
comment on the case with advection in subsection 4.3.

To understand the properties required of the relaxation and prolongation, it suf-
fices to consider a two-level scheme. We use the subscripts h and H to denote function
spaces, bilinear forms, and meshes on the fine and coarse levels, respectively.

4.1. Relaxation. The augmented Stokes momentum problem is of the following
form: find u \in Vh,0 := Vh \cap V0 such that

(4.1) ah(u, v) := (2\nu \varepsilon (u),\nabla v) + \gamma (PQh
\nabla \cdot u,\nabla \cdot v) = (f, v)

for all v \in Vh,0. The viscosity term is symmetric and positive definite; the discrete
grad-div term is positive semidefinite. As \nu \rightarrow 0 or \gamma \rightarrow \infty this system becomes nearly
singular and standard relaxation methods such as Gauss--Seidel or Jacobi iterations
perform poorly. The essential difficulty is in computing the component of the solution
in the kernel

(4.2) \scrN h := \{ u \in Vh,0 : (PQh
\nabla \cdot u,\nabla \cdot v) = 0 \forall v \in Vh,0\} 

of the grad-div term. Sch\"oberl [69, Theorem 4.1] and Lee et al. [52, Theorem 4.2]
consider subspace correction methods for this class of problem. The key result of
these works is that if a subspace decomposition

(4.3) Vh,0 =
\sum 
i

Vi

satisfies the kernel decomposition property

(4.4) \scrN h =
\sum 
i

(Vi \cap \scrN h) ,

then the resulting subspace correction method (a block Gauss--Seidel or Jacobi itera-
tion) is robust with respect to \nu and \gamma . This is why characterizing the kernel of the
grad-div term is crucial, and why the discrete variant is easier to solve: the kernel \scrN h

is spanned by basis functions with local support around each vertex.
More specifically, for each vertex vi in the mesh \scrM , its star is the patch of

elements sharing vi:

(4.5) Ki :=
\bigcup 

K\in \scrM : vi\in K

K.

The subspace decomposition is then given by

(4.6) Vi := \{ \phi j \in Vh,0 : supp(\phi j) \subset Ki\} .

We call the resulting patchwise block relaxation method a star iteration. Note that
homogeneous Dirichlet conditions are imposed on the boundary of each star patch.
This relaxation method has been employed for robust multigrid methods in H(div)
and H(curl) [3].

For the reader's convenience, we briefly summarize the argument of [69, sec-
tion 4.1.2] to see why this decomposition satisfies (4.4). Observe that a discretely
divergence-free vector field uh \in \scrN h can be suitably modified in the interior of each
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cell to become continuously divergence-free by solving a local Stokes problem. De-
note this continuously divergence-free vector field by \~u and recall that then \~u = \nabla \times \phi 
for some vector field \phi . Choosing a partition of unity \{ \rho i\} i with

\sum 
i \rho i = 1 and

supp(\rho i) \subset Ki we define \phi i = \rho i\phi and obtain a decomposition

(4.7) \phi =
\sum 
i

\phi i.

For such a partition of unity to exist, every point in the mesh has to be in the
interior of at least one patch. The decomposition of the mesh into star patches is
the smallest decomposition of a finite element mesh that satisfies this property. Now
let \Pi 1 : V \rightarrow Vh be a Scott--Zhang interpolation operator using facet averaging [71].
Then it holds that \Pi 1(uh) = uh. Furthermore, define \Pi 2 : V \rightarrow Vh as in the classical
proof for inf-sup stability of the [\BbbP 2]

2 - \BbbP 0 element [12, Proposition 3.1]:

(4.8)

\Pi 2(v)(M) = 0 \forall vertices M,\int 
F

\Pi 2(v) ds =

\int 
F

v ds \forall facets F.

Now define I(v) = \Pi 1(v) + \Pi 2(v  - \Pi 1(v)); then it holds that

(4.9)

I(vh) = vh \forall vh \in Vh,\int 
F

I(v) ds =

\int 
F

v ds \forall v \in V.

Now define ui = I(\nabla \times \phi i) and conclude that

(4.10)
\sum 
i

ui =
\sum 
i

I(\nabla \times \phi i) = I(\nabla \times \phi ) = I(\~u) = uh.

Finally, using the fact that we are considering piecewise constant pressures, ui \in 
Vi \cap \scrN h follows from

(4.11)

\int 
\partial K

ui ds =

\int 
\partial K

\nabla \times \phi i ds =

\int 
K

\nabla \cdot (\nabla \times \phi i) dx = 0.

4.2. Prolongation. The second key ingredient of the multigrid scheme is the
prolongation operator that maps VH to Vh. To get an intuition for the properties
required, let EH : VH \rightarrow Vh be the prolongation operator obtained by interpolating
a function uH \in VH at the degrees of freedom of Vh. The continuity of EH in the
energy norm induced by the bilinear form ah defined in (4.1) is a key assumption in
Sch\"oberl's proof of the optimality of a two-level multigrid scheme [69, Lemma 3.5].
In order for the scheme to be robust, this continuity constant must be uniform in \nu 
and \gamma . Calculating, we observe that

(4.12)
\| uH\| 2aH

= \nu \| \varepsilon (uH)\| 2L2 + \gamma \| PQH
(\nabla \cdot uH)\| 2L2

\| EHuH\| 2ah
= \nu \| \varepsilon (EHuH)\| 2L2 + \gamma \| PQh

(\nabla \cdot (EHuH))\| 2L2 .

The key difficulty lies in the second term of this norm. To see this, observe that
for an element uH \in \scrN H the second term in \| uH\| 2aH

vanishes, but since it does not
necessarily hold that EHuH \in \scrN h, the corresponding term in \| EHuH\| 2ah

might be
large.
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To avoid this, we must modify the prolongation operator to map fields that
are discretely divergence-free on the coarse grid to fields that are (nearly) discretely
divergence-free on the fine grid.

To begin, we assume that there are a decomposition Qh = \~QH \oplus QT and a
subspace VT \subset Vh that satisfies VT \subset ker(PQH

(\nabla \cdot )). Sch\"oberl proved that if the
pairing VT - QT satisfies the inf-sup condition and if

(PQh
(\nabla \cdot (EHuH)), \~qH)L2 = (PQH

(\nabla \cdot uH), \~qH)L2 \forall uH \in VH , \~qH \in \~QH ,(4.13)

(PQh
(\nabla \cdot uT ), \~qH)L2 = 0 \forall uT \in VT , \~qH \in \~QH ,(4.14)

then the prolongation \~EH defined as

(4.15) \~EHuH = EHuh  - wT ,

where wT \in VT satisfies

(4.16) ah(wT , vT ) = ah(EHuH , vT ) \forall vT \in VT ,

is continuous in the energy norm. The continuity constant is uniform in \nu and \gamma . In
this case, the decomposition of Qh is chosen as

\~QH := QH ,(4.17)

QT := \{ qh \in Qh : PQH
(qh) = 0\} ,(4.18)

and we choose

(4.19) VT := \{ vh \in Vh : vh| \partial K = 0 \forall K \in \scrM H\} .

The idea behind this is the following: equation (4.13) guarantees that prolongation
preserves the flux across coarse grid facets. Then a correction term wT \in VT that cor-
rects the flux across the fine grid facets is subtracted. The condition (4.14) guarantees
that this correction does not affect the flux across the coarse facets.

Remark 4.1. The definition of VT implies that the problem in (4.16) can be solved
locally on each coarse grid element. This is crucial for an efficient implementation.

Remark 4.2. Decompositions \~QH \not = QH arise in other problems, such as in
Reissner--Mindlin plates [69, section 4.2.2].

In [68, 7] the [\BbbP 2]
2  - \BbbP 0 element is used. For this element choice it holds that

VH \subset Vh and hence (4.14) is satisfied trivially. However, in three dimensions the
pairing VT - QT resulting from the choice [\BbbP 2]

3  - \BbbP 0 is not inf-sup stable. This can
easily be seen by counting degrees of freedom: [\BbbP 2]

3 only has degrees of freedom on
edges and vertices. Since there are zero vertices and only one edge not entirely on the
boundary of the refined coarse tetrahedron (see Figure 4.1), we have dim(VT ) = 3.
On the other hand, the pressure space satisfies dim(QT ) = 7 (one dimension is fixed
by the nullspace). The local solve therefore cannot not be well-posed.

The choice [\BbbP 3]
3  - \BbbP 0 alleviates this problem of ill-posedness on the coarse cell

and still satisfies VH \subset Vh. However, as described in section 2.1, this element is quite
expensive without improving accuracy of the solution.

A much cheaper alternative is offered by the [\BbbP 1 \oplus BF
3 ]3 - \BbbP 0 element. This does

satisfy the inf-sup condition but violates VH \subset Vh. The nonnestedness is demonstrated
in Figure 4.2; a coarse bubble cannot be interpolated exactly by functions in Vh. In
particular, the flux across the coarse grid faces is not preserved, hence violating (4.13).
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Fig. 4.1. The uniform refinement of a coarse mesh tetrahedron yields eight fine mesh tetrahedra.
Only the edge highlighted in blue does not lie entirely on the boundary of the tetrahedron.

dofs on fine facet

dofs on coarse facet

Fig. 4.2. Left: Degrees of freedom on the facet of a coarse cell and its refinement. Middle:
Bubble function on a coarse facet. Right: Prolongation of a bubble function.

A brief calculation shows that every coarse grid bubble is interpolated by four
fine grid bubbles: one with coefficient 1, the other three with coefficient 1/2. From
this it follows immediately that the integral of the prolonged bubble is equal to (1 +
3 \cdot 1

2 )/4 = 5
8 of the integral of the coarse bubble. Hence, when using a hierarchical

basis, since the piecewise linear basis functions are prolonged exactly we can obtain a
prolongation that satisfies (4.13) by simply multiplying the coefficients of the fine grid
bubble functions by 8/5. After this scaling, the local correction wT is computed as
described above. For a nodal basis, a change of basis to the hierarchical basis should
be performed.

This modification of the prolongation operator is crucial for the solver to work
with the [\BbbP 1 \oplus BF

3 ]3 - \BbbP 0 element. We demonstrate this by showing the residual of
the outer flexible GMRES iteration for the linear solve in the first Newton step at
Re = 10 for a lid-driven cavity problem (see section 5.5 for details) in Table 4.1.
Without modifying the prolongation of the facet bubbles, we observe no convergence.
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Table 4.1
Residual of the outer flexible GMRES solver when employing the [\BbbP 1 \oplus BF

3 ]3 - \BbbP 0 element. It
is necessary to modify the prolongation operator to achieve convergence with this element.

Iteration Residual with bubble scaling Residual without bubble scaling
0 3.499 3.499
1 1.554\times 10 - 2 3.499
2 1.716\times 10 - 3 3.499
3 1.821\times 10 - 4 3.496
4 1.651\times 10 - 5 3.495

Finally, we consider the [\BbbP 2 \oplus BF
3 ]3  - \BbbP 0 element. While it is also nonnested, it

turns out that the interpolation is exact on the facets of each coarse cell and hence flux
preserving. To see this, observe that the cubic facet bubble function is only quadratic
on the newly introduced edges of a regularly refined facet, as they are parallel to the
edges of the coarse facet and therefore one of the barycentric coordinates is constant.
The coarse bubble function is therefore prolonged exactly. This means that the [\BbbP 2 \oplus 
BF

3 ]3 - \BbbP 0 element can be used with the Sch\"oberl prolongation operator (4.15), without
the modifications necessary for [\BbbP 1 \oplus BF

3 ]3 - \BbbP 0 described above. However, in our
preliminary numerical experiments the simpler prolongation was outweighed by the
cost of the larger number of degrees of degrees of freedom, and hence we use [\BbbP 1 \oplus 
BF

3 ]3 - \BbbP 0 for the numerical experiments in section 5.

Remark 4.3. Only the prolongation is modified; as in Benzi and Olshanskii [7],
the natural operations are used for restriction and injection.

4.3. The advection terms. So far we have neglected the terms arising from the
linearization of the advection term. Applying a Newton linearization, (4.1) becomes:
find u \in Vh,0 such that

(4.20) (2\nu \varepsilon (u),\nabla v) + (w \cdot \nabla u, v) + (u \cdot \nabla w, v) + \gamma (PQh
\nabla \cdot u,\nabla \cdot v) = (f, v)

for all v \in Vh,0, while the Picard linearization yields: find u \in Vh,0 such that

(4.21) (2\nu \varepsilon (u),\nabla v) + (w \cdot \nabla u, v) + \gamma (PQh
\nabla \cdot u,\nabla \cdot v) = (f, v)

for all v \in Vh,0. The Picard linearization is easier to solve but sacrifices quadratic
convergence of the nonlinear solver. Several authors have reported success with geo-
metric multigrid for scalar analogues of (4.21) without the grad-div term, using a
combination of line/plane relaxation and SUPG stabilization [65, 61, 81]. Olshanskii
and Benzi [59] and Elman, Loghin, and Wathen [28] apply preconditioners built on
the Picard linearization (4.21) to the Newton linearization (4.20), with good results.

Numerical experiments indicated that the additive star iteration alone was not
effective as a relaxation method for (4.20). (Benzi and Olshanskii [7] used a mul-
tiplicative star iteration with multiple directional sweeps, but we wished to avoid
this as its performance varies with the core count in parallel.) We investigated the
multiplicative composition of additive star iterations and plane smoothers, and while
this led to a successful multigrid cycle, the plane smoothers were quite expensive (in-
volving many two-dimensional (2D) solves) and were also difficult to parallelize on
arbitrary unstructured grids where the parallel decomposition does not divide into
planes. While the additive star iteration alone is not effective as a relaxation for
(4.20), we found that a few iterations of GMRES preconditioned by the additive star
iteration was surprisingly effective as a relaxation method, even for low viscosities.
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This point merits further analysis and will be considered in future work. This relax-
ation method also has the advantage that it is easy to parallelize, with convergence
independent of the parallel decomposition.

5. Numerical results.

5.1. Algorithm details. A graphical representation of the entire algorithm is
shown in Figure 5.1. We employ simple continuation in Reynolds number as a glob-
alization device, as Newton's method is not globally convergent. Newton's method is
globalized with the L2 line search algorithm of PETSc [21].

Continuation

Newton solver with line search

Krylov solver (FGMRES)

Block preconditioner

Approximate Schur complement inverse

F-cycle on augmented momentum block

Coarse grid solver

LU factorization

Prolongation operator

Local solves over coarse cells

Relaxation

GMRES

Additive star iteration

Fig. 5.1. An outline of the algorithm for solving (1.1).

We use flexible GMRES [67] as the outermost solver for the linearized Newton
system, as we employ GMRES in the multigrid relaxation. If the pressure is only
defined up to a constant, then the appropriate nullspace is passed to the Krylov
solver and the solution is orthogonalized against the nullspace at every iteration. We
use the full block factorization preconditioner

(5.1) P - 1 =

\biggl( 
I  - \~A - 1

\gamma BT

0 I

\biggr) \biggl( 
\~A - 1
\gamma 0

0 \~S - 1

\biggr) \biggl( 
I 0

 - B \~A - 1
\gamma I

\biggr) 
with approximate inner solves \~A - 1

\gamma and \~S - 1 for the augmented momentum block
and the Schur complement, respectively. The diagonal, upper, and lower triangular
variants described in [58, 43] also converge well, but these took longer runtimes in
preliminary experiments.

We use one application of a full multigrid cycle [16, Figure 1.2] using the com-
ponents described in section 4 for \~A - 1

\gamma . The problem on each level is constructed by
rediscretization; fine grid functions, such as the current iterate in the Newton scheme,
are transferred to the coarse levels via injection. On each level the SUPG stabilization
is performed with parameters corresponding to the mesh in question. For each relax-
ation sweep we perform 6 (in two dimensions) or 10 (in three dimensions) GMRES
iterations preconditioned by the additive star iteration; at lower Reynolds numbers
this can be reduced, but we found that these expensive smoothers represented the
optimal tradeoff between inner and outer work at higher Reynolds numbers. The
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problem on the coarsest level is solved with the SuperLU DIST sparse direct solver
[54, 53]. For scalability, the coarse grid solve is agglomerated onto a single compute
node using PETSc's telescoping facility [57]. As all inner solvers are additive, the con-
vergence of the solver is independent of the parallel decomposition (up to roundoff).

5.2. Software implementation. The solver proposed in the previous section is
complex, and relies heavily on PETSc's capability for the arbitrarily nested composi-
tion of solvers [20]. For the implementation of local patch solves, we have developed a
new subspace correction preconditioner for PETSc that relies on the DMPlex unstruc-
tured mesh component [49, 50] for topological subspace construction and provides an
extensible callback interface that allows for the very general specification of additive
Schwarz methods. A detailed description of this preconditioner is in preparation.

5.3. Solver verification with the method of manufactured solutions. In
order to verify the implementation and the convergence of the [\BbbP 1\oplus BF

3 ]3 - \BbbP 0 element
we employ the method of manufactured solution. We start by considering the pressure
and velocity field proposed in [73], which is rescaled to the [0, 2]2 square. This results
in u = (u1, u2) with

(5.2)

u1(x, y) =
1

4
(x - 2)2x2y

\bigl( 
y2  - 2

\bigr) 
,

u2(x, y) =  - 1

4
x
\bigl( 
x2  - 3x+ 2

\bigr) 
y2

\bigl( 
y2  - 4

\bigr) 
,

\~p(x, y) =
xy

\bigl( 
3x4  - 15x3 + 10x2y2  - 30x

\bigl( 
y2  - 2

\bigr) 
+ 20

\bigl( 
y2  - 2

\bigr) \bigr) 
5Re

 - 1

128
(x - 2)4x4y2

\bigl( 
y4  - 2y2 + 8

\bigr) 
,

p(x, y) = \~p - 1

4

\int 
[0,2]2

\~p(x, y) dx = \~p+
1408

33075
 - 8

5Re
.

As we are primarily interested in the three-dimensional (3D) case, we extend the
vector field into the z dimension via u(x, y, z) = (u1(x, y), u2(x, y), 0). The pressure
remains the same as in two dimensions.

To demonstrate that the error convergence is independent of \gamma , we run the solver
for values \gamma = 1 and \gamma = 104. Figure 5.2 shows the error between the computed
velocity and pressure and their known analytical solutions for Re = 1, Re = 200, and
Re = 500. Due to the DG0 discretization we expect, and see, first order convergence
of the pressure. Without stabilization, we expect second order convergence for the
velocity field; however, due to the presence of the SUPG stabilization this is reduced to
linear convergence for coarse meshes. Once the mesh is fine enough so that h - 1 \gtrsim Re,
second order convergence is recovered.

5.4. Two-dimensional experiments. We consider two representative bench-
mark problems: the regularized lid-driven cavity and backward-facing step problems,
fully described in [30, examples 8.1.2 and 8.1.3]. For each experiment, we fix a coarse
grid and vary the number of refinements to vary the size of the problem under con-
sideration; all refinements are used in the multigrid iteration, to ensure that the con-
vergence does not deteriorate as more levels are employed. We employ the [\BbbP 2]

2 - \BbbP 0

element for all 2D experiments. To investigate the performance of the solver with
Reynolds number, the problem is first solved for Re = 10, then Re = 100, and then in
steps of 100 until Re = 10000, with the solution for the previous value of Re used as
initial guess for the next. The Stokes equations are solved using a standard geometric
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2 - 6 2 - 5 2 - 4 2 - 3

10 - 4

10 - 3

10 - 2

10 - 1

100

101

h

L
2
-e
rr
o
r

Re = 1

2 - 6 2 - 5 2 - 4 2 - 3

10 - 2

10 - 1

h

L
2
-e
rr
or

Re = 200

2 - 6 2 - 5 2 - 4 2 - 3

10 - 2

10 - 1

100

h

L
2
-e
rr
o
r

Re = 500

\| v  - vh\| L2 , \gamma = 104

\| v  - vh\| L2 , \gamma = 1

h2

\| p - ph\| L2 , \gamma = 104

\| p - ph\| L2 , \gamma = 1
h

Fig. 5.2. Convergence of the computed velocity and pressure field as the mesh is refined for a
3D lid-driven cavity test problem.

multigrid algorithm with the pressure mass matrix as Schur complement approxima-
tion and point-block SOR as a smoother to provide the initial guess used at Re = 10.
The augmented Lagrangian parameter is set to \gamma = 104 in these and all subsequent
experiments.

The linear solves are terminated with an absolute tolerance of 10 - 10 in the \ell 2-
norm and a relative tolerance of 10 - 6. The nonlinear solves are terminated with an
absolute tolerance of 10 - 8 and a relative tolerance of 10 - 10. As each outer iteration
of the Krylov method does a fixed amount of work (i.e., all subproblems are solved
with a fixed number of iterations, not to a specified tolerance), the solver scales well
with mesh size and Reynolds number if the iteration counts remain approximately
constant.

For comparison, we solve the same problems using the reference implementations
of the PCD and LSC preconditioners in version 3.5 of IFISS [29], up to Re = 1000,
as IFISS does not employ stabilization of the advection term. For both of these
preconditioners we use the variant that takes corrections for the boundary conditions
into account, and we solve the inner problems in the Schur complement approximation
using an algebraic multigrid solver. We employ the hybrid strategy suggested by [30,
p. 391] that uses a single sweep of ILU(0) on the finest level and two iterations of
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point-damped Jacobi for pre- and post-smoothing on all coarsened levels. A relative
tolerance of 10 - 6 is set for the Krylov solver and an absolute tolerance of 10 - 8 for
the Newton solver.

We begin by considering the regularized lid-driven cavity problem. The coarse
grid used is the 16 \times 16 grid of triangles of negative slope. The results are shown in
Table 5.1; we observe only very mild iteration growth from Re = 10 to Re = 10000
with the performance improving as more refinements are taken. Iteration counts using
the PCD and LSC preconditioners are shown in Table 5.2. For both PCD and LSC
iteration counts increase substantially from Re = 10 to Re = 1000.

Table 5.1
Average number of outer Krylov iterations per Newton step for the 2D regularized lid-driven

cavity problem.

\# refinements \# degrees of freedom Reynolds number
10 100 1000 5000 10000

1 1.0\times 104 2.50 4.33 6.00 8.00 14.00
2 4.1\times 104 2.50 3.33 6.67 8.50 10.00
3 1.6\times 105 2.50 3.00 5.67 8.50 9.00
4 6.6\times 105 2.50 2.67 5.00 8.00 8.50

Table 5.2
Average number of outer Krylov iterations per Newton step for the 2D regularized lid-driven

cavity problem with PCD/LSC preconditioner.

1/h \# degrees of freedom Reynolds number
10 100 1000

24 8.34\times 102 22.0/21.5 40.4/48.7 103.3/130.7
25 3.20\times 103 23.0/22.0 41.3/52.7 137.7/185.3
26 1.25\times 104 24.5/22.5 42.0/49.3 157.0/205.7
27 4.97\times 104 25.5/21.0 42.7/43.3 149.0/207.3
28 1.98\times 105 26.0/23.0 44.0/38.0 137.0/180.0

For the backward-facing step we observe that the performance is dependent on the
resolution of the coarse grid. We consider two experiments, one starting with a coarse
grid consisting of 6941 vertices and 13880 elements (labeled A) and one consisting of
30322 vertices and 60642 elements (labeled B). Both unstructured triangular meshes
were generated with Gmsh [33]. For mesh A, we observe that the iteration counts for
large Reynolds numbers show the solver degrades somewhat as the mesh is refined;
see Table 5.3. Using the finer coarse grid B alleviates this problem. The bottom half
of Table 5.3 shows that iteration counts only approximately double as we increase
from Re = 10 to Re = 10000.

The results for PCD and LSC on the backwards-facing step are shown in Table 5.4.
The iteration counts approximately treble as we increase from Re = 10 to Re = 1000.

5.4.1. Runtime comparison to SIMPLE. To give some measure of the run-
time of the solver, we compare it to an implementation of SIMPLE [63, section 6.7] in
the same software framework. We select the lid-driven cavity in two dimensions with
three refinements (1.6 \times 105 degrees of freedom) as a representative problem. The
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Table 5.3
Average number of outer Krylov iterations per Newton step for the 2D backward-facing step

problem for two different coarse grids.

\# refinements \# degrees of freedom Reynolds number
10 100 1000 5000 10000

Coarse grid A

1 2.7\times 105 3.00 4.00 5.50 12.00 26.50
2 1.1\times 106 2.67 4.50 5.50 11.50 31.50
3 4.3\times 106 4.00 7.00 6.00 14.00 21.00

Coarse grid B

1 1.2\times 106 2.67 3.75 5.00 7.00 9.00
2 4.8\times 106 4.00 3.75 5.00 6.50 7.00
3 1.9\times 107 3.67 5.75 5.50 5.00 5.50

Table 5.4
Average number of outer Krylov iterations per Newton step for the 2D backwards-facing step

problem with PCD/LSC preconditioner. NaNF denotes failure due to NaNs occurring in the solve for
the velocity block.

1/h \# degrees of freedom Reynolds number
10 100 1000

24 3.94\times 103 23.0/29.0 32.5/47.5 NaNF/NaNF
25 1.52\times 104 23.5/26.0 31.0/45.0 221.3/329.0
26 5.96\times 104 23.5/25.5 30.5/42.8 122.7/225.7
27 2.36\times 105 23.5/25.5 30.0/40.8 85.3/161.3
28 9.38\times 105 23.5/27.0 30.0/40.0 78.3/128.0

SIMPLE preconditioner is given by

(5.3) P - 1
SIMPLE =

\biggl( 
I  - diag(A) - 1BT

0 I

\biggr) \biggl( 
\~A - 1 0

0 \~S - 1
SIMPLE

\biggr) \biggl( 
I 0

 - B \~A - 1 I

\biggr) 
,

where

(5.4) \~SSIMPLE =  - BT diag(A) - 1B

and no grad-div augmentation is employed. \~A - 1 is approximated by one full multigrid
cycle of the ML algebraic multigrid library [32]; \~S - 1

SIMPLE is approximated with one V
cycle of ML.2

The results for several continuation steps are shown in Table 5.5. The computa-
tions were performed in serial. Each SIMPLE iteration is approximately 22--26 times
faster than an augmented Lagrangian iteration, but the lower cost per iteration is
outweighed by the greater number of iterations required.

5.5. Three-dimensional experiments. The lid-driven cavity and backward-
facing step problems can both be extended to three dimensions in a natural way.
For the lid-driven cavity, we consider the cube \Omega = [0, 2]3 with no-slip boundary
conditions on all sides apart from the top boundary \{ y = 2\} . On the top boundary
we enforce u(x, y, z) = (x2(2  - x)2z2(2  - z)2, 0, 0)T . The 3D backwards-facing step

2For fairness, we do not use exact inner solves, since our solver also does not use exact inner
solves. Of the algebraic multigrid libraries available in PETSc, ML performed the best with default
settings.
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Table 5.5
Iteration count and runtime comparison against the SIMPLE preconditioner.

Reynolds number Augmented Lagrangian SIMPLE
Total iterations Time (min) Total iterations Time (min)

10 4 0.21 515 1.06
50 6 0.30 741 1.57
100 8 0.38 979 2.01
150 10 0.46 1111 2.27
200 10 0.46 1185 2.48

is given by \Omega = (([0, 10]\times [1, 2]) \cup ([1, 10]\times [0, 1])) \times [0, 1]. We enforce the inflow
condition u(x, y, z) = (4(2  - y)(y  - 1)z(1  - z), 0, 0)T on the left boundary \{ x = 0\} ,
a natural outflow condition on the right boundary \{ x = 10\} , and no-slip boundary
conditions on the remaining boundaries.

Two aspects of the solver were modified compared to the version used in two
dimensions. First, we observe that reducing the size of the SUPG stabilization by
a factor of 1/20 improves convergence significantly. Second, the relative tolerance
for the linear solver was relaxed to 10 - 5 and the absolute tolerance for the linear
and the nonlinear solver was relaxed to 10 - 8, to save computational time. The 3D
experiments were both run for [\BbbP 1 \oplus BF

3 ]3 - \BbbP 0 discretizations of up to one billion
degrees of freedom on ARCHER, the UK national supercomputer. The runs were
terminated at Re = 5000 due to budgetary constraints. Images of the solutions are
shown in Figures 5.3 and 5.4. Iteration counts for the 3D lid-driven cavity are shown
in Table 5.6, and for the 3D backwards-facing step in Table 5.7.

Table 5.6
Average number of outer Krylov iterations per Newton step for the 3D regularized lid-driven

cavity problem.

\# refinements \# degrees of freedom Reynolds number
10 100 1000 2500 5000

1 2.1\times 106 4.50 4.00 5.00 4.50 4.00
2 1.7\times 107 4.50 4.33 4.50 4.00 4.00
3 1.3\times 108 4.50 4.33 4.00 3.50 7.00
4 1.1\times 109 4.50 3.66 3.00 5.00 5.00

Table 5.7
Average number of outer Krylov iterations per Newton step for the 3D backwards-facing step

problem.

\# refinements \# degrees of freedom Reynolds number
10 100 1000 2500 5000

1 2.1\times 106 4.50 4.00 4.00 4.50 7.50
2 1.7\times 107 5.00 4.00 3.33 4.00 10.00
3 1.3\times 108 6.50 4.50 3.50 3.00 8.00
4 1.0\times 109 7.50 3.50 2.50 3.00 6.00

As for the 2D case, we see only very little variation of the iteration counts with
Reynolds number over this range.

To stress the solver further, the lid-driven cavity with two refinements (1.7\times 107

degrees of freedom) was run until failure. Iteration counts remain stable until Re =
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7000, then begin to increase, with eventual failure of convergence at Re = 7700.

Fig. 5.3. Interior view of the streamtubes of the 3D lid-driven cavity at Re = 5000. The color
denotes speed.

Fig. 5.4. Interior view of the streamtubes of the 3D backwards-facing step at Re = 1000. The
color denotes speed.

5.5.1. Computational performance. Having seen that the algorithmic scala-
bility of the solver is good, with well-controlled iteration counts, we now consider the
computational performance. In Figures 5.5a and 5.5b we show the weak scaling3 of
the total time to solution over all continuation steps. Both problems show excellent
scalability from 48 to 24576 MPI processes, with the lid-driven cavity achieving a
scaling efficiency of 80\% and the backwards-facing step 79\%. We attribute the lack of
perfect scalability primarily to load imbalance in our mesh distribution. In both prob-
lems, although the mesh has a well-balanced partition of cells, for the patch smoother
to have perfect load balance the number of vertices owned by each process must also

3A weak scaling test is where the number of degrees of freedom per MPI process is held constant
while increasing the number of processes. Perfect scaling corresponds to a constant time to solution
as the problem size is increased.
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(a) Weak scaling of the 3D lid-driven cavity.
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(b) Weak scaling of the 3D backwards-facing
step.

Fig. 5.5. Weak scaling of time to solution over all continuation steps for both 3D problems.

be equal. The partitioning scheme used does not take this constraint into account,
and we observe that the number of patches per process varies by a factor of 4 over
the partition for the largest problems. The scaling and computational performance
of the code will be improved in future work.

6. Conclusions and outlook. In this paper we have extended the multigrid
method of Benzi, Olshanskii, and Sch\"oberl for the augmented momentum solve arising
in the augmented Lagrangian preconditioner to three dimensions. The prolongation
operator proposed by Sch\"oberl works for the [\BbbP 3]

3 - \BbbP 0 and [\BbbP 2 \oplus BF
3 ]3 - \BbbP 0 discretiza-

tions, while a modification is required to use the cheaper [\BbbP 1 \oplus BF
3 ]3 - \BbbP 0 element.

We have developed a new patchwise preconditioner in PETSc and implemented the
resulting scheme in Firedrake. We have demonstrated iteration counts that grow very
slowly with respect to the Reynolds number in both two and three dimensions for
problems of up to a billion degrees of freedom. The code is freely available as open
source.

However, this multigrid method is currently tightly coupled to the use of piecewise
constant elements for the pressure for full robustness, and the discretizations consid-
ered here do not represent the divergence-free constraint exactly, which is highly
desirable [44]. The key next step is to develop a Reynolds-robust preconditioner for
these discretizations, such as the Scott--Vogelius element [70], the Guzm\'an--Neilan
modification of Bernardi--Raugel [36], or a H(div)-conforming element [23]. It may
also be possible to use this solver as a preconditioner for other discretizations, in a
similar manner to the modified multigrid schemes studied in [45].

Code availability. For reproducibility, we cite archives of the exact software
versions used to produce the results in this paper. All major Firedrake components
have been archived on Zenodo [82]. An installation of Firedrake with components
matching those used to produce the results in this paper can by obtained following
the instructions at https://www.firedrakeproject.org/download.html with

export PETSC\.CONFIGURE\.OPTIONS=""--download-superlu --download-superlu\.dist ``

--with-cxx-dialect=C++11""
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python3 firedrake-install --doi 10.5281/zenodo.3247427.

The additive Schwarz preconditioner has been incorporated into PETSc as of version
3.10. The Navier--Stokes solver and example files are available at https://bitbucket.
org/pefarrell/fmwns/; the version used in the paper is archived as part of [82].
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