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Abstract
This paper considers robustness of Nonparametric Predictive Inference (NPI), in 
particular considering inference involving future order statistics. The concept of 
robust inference is usually aimed at development of inference methods which are 
not too sensitive to data contamination or to deviations from model assumptions. In 
this paper we use it in a slightly narrower sense. For our aims, robustness indicates 
insensitivity to small change in the data, as our predictive probabilities for order sta-
tistics and statistical inferences involving future observations depend upon the given 
observations. We introduce some concepts for assessing the robustness of statistical 
procedures to the NPI framework, namely sensitivity curve and breakdown point; 
these classical concepts require some adoption for application in NPI. Most of our 
nonparametric inferences have a reasonably good robustness with regard to small 
changes in the data.
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1 Introduction

As every statistical inference has underlying assumptions about models and specific 
methods used, one important field in statistics is the study of robustness of infer-
ences. Statistical inferences are based on the data observations as well as the under-
lying assumptions, e.g. about randomness, independence and distributional models 
[22]. Since the middle of the twentieth century, much theoretical effort has been 
dedicated to develop statistical procedures that are resistant with regard to outli-
ers and robust with regard to small deviations from an assumed parametric model 
[6]. Huber [21] provides the basic theory of robust statistics. Hampel et  al. [17] 
discussed some properties of robust estimators, test statistics and linear models. In 
these developments, the primary focus has been on estimating location, scale, and 
regression parameters [23]. It is well known that some classical procedures are not 
robust to slight contamination of the strict model assumptions [6]. From this per-
spective robustness against small deviations from the assumed model and existence 
of outliers or contamination, have all been identified as principal issues [23]. In clas-
sical robust statistics, there are several tools used to describe robustness, e.g. the 
influence function, the sensitivity curve and the breakdown point.

This paper introduces robustness of NPI. This involves adopting some of the con-
cepts of classical robust statistics within the NPI setting, namely sensitivity curve 
and breakdown point. These concepts fit well with the NPI setting as they depend 
on the actual data at hand rather than on a hypothetical underlying assumption. Data 
may be subject to errors occurring during the measurement and repeating process 
[11]. The concept of robust inference is usually aimed at development of inference 
methods which are not too sensitive to data errors or to deviations from the model 
assumptions. In this paper, we use it in a slightly narrower sense, as for our aims 
robustness indicates insensitivity to a small change in the data or to outliers.

This paper is organized as follows. Section 2 provides a brief introduction to NPI, 
including key results on NPI for future order statistics as used in this paper. Sec-
tion 3 provides a brief overview of some concepts used in robust statistics, namely 
influence function, sensitivity curve and breakdown point. In Sect. 4 we introduce 
the sensitivity curve and breakdown point in the NPI framework. Section 5 presents 
the use of these tools for NPI for events involving the r-th future observation. In 
Sect. 6 we use these tools to explore the robustness of the inferences involving the 
median and the mean of the m future observations. In Sect. 7, we briefly present NPI 
robustness of further inferences, namely pairwise comparisons and reproducibility 
of statistical tests. The paper ends with some concluding remarks in Sect. 8.

2  Nonparametric Predictive Inference

Nonparametric Predictive Inference (NPI) [5, 7] is a statistical framework which 
uses few modelling assumptions, with inferences explicitly in terms of future 
observations. For real-valued random quantities attention has thus far been mostly 
restricted to a single future observation, although multiple future observations have 
been considered for some NPI methods, e.g. in statistical process control [2, 3].
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Assume that we have real-valued ordered data x(1) < x(2) < ⋯ < x(n) , with n ≥ 1 . 
For ease of notation, define x(0) = −∞ and x(n+1) = ∞ , or define these equal to other 
known lower and upper bounds of the range of possible values for these random 
quantities. The n observations create a partition of the real-line into n + 1 intervals 
Ij = (x(j−1), x(j)) for j = 1,… , n + 1 . We assume throughout this paper that ties do 
not occur. If we wish to allow ties, also between past and future observations, we 
could use closed intervals [x(j−1), x(j)] instead of these open intervals Ij , the difference 
is rather minimal and to keep presentation easy we have opted not to do this here. 
We are interested in m ≥ 1 future observations, Xn+i for i = 1,… ,m . We link the 
data and future observations via Hill’s assumption A(n) [19], or, more precisely, via 
A(n+m−1) (which implies A(n+k) for all k = 0, 1,… ,m − 2 ; we will refer to this generi-
cally as ’the A(n) assumptions’), which can be considered as a post-data version of 
a finite exchangeability assumption for n + m random quantities. The A(n) assump-
tions imply that all possible orderings of the n data observations and the m future 
observations are equally likely, where the n data observations are not distinguished 
among each other and neither are the m future observations. Let the random quantity 
Si
j
 be defined as the number of m future observations in Ij = (xj−1, xj) given a specific 

ordering, which is denoted by Oi , of the m future observations among n data obser-

vations, for i = 1,… ,

(
n + m

n

)
 , so that Si

j
= #{Xn+l ∈ Ij, l = 1,… ,m|Oi} . Then 

the A(n) assumptions lead to [10]

where si
j
 are non-negative integers with 

∑n+1

j=1
si
j
= m . Equation (1) implies that all (

n + m

n

)
 orderings Oi of the m future observations among the n data observations 

are equally likely. Another convenient way to interpret the A(n) assumptions with 
n data observations and m future observations is to think that n randomly chosen 
observations out of all n + m real-valued observations are revealed, following which 
you wish to make inferences about the m unrevealed observations. The A(n) assump-
tions then imply that one has no information about whether specific values of neigh-
bouring revealed observations make it less or more likely that a future observation 
falls in between them. For any event involving the m future observations, Eq.  (1) 
implies that we can count the number of such orderings for which this event holds. 
Generally in NPI, a lower probability for the event of interest is derived by counting 
all orderings for which this event has to hold, while the corresponding upper prob-
ability is derived by counting all orderings for which this event can hold [5, 7].

In NPI, the A(n) assumptions justify the use of resulting inferences directly as pre-
dictive probabilities. Using only precise probabilities, such inferences cannot be used 
for many events of interest, but in NPI we use the fact, in line with De Finetti’s Fun-
damental Theorem of Probability [13], that corresponding optimal bounds can be 
derived for all events of interest [5]. These bounds are lower and upper probabilities 

(1)P

(
n+1⋂
j=1

{Si
j
= si

j
}

)
= P(Oi) =

(
n + m

n

)−1
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in the theory of imprecise probability [4]. NPI provides frequentist inferences which 
are exactly calibrated in the sense of [24], and it has strong consistency properties 
in theory of interval probability [5]. NPI is always in line with inferences based on 
empirical distributions, which is an attractive property when aiming at objectiv-
ity [7]. In NPI the n observations are explicitly used through the A(n) assumptions, 
yet as there is no use of conditioning as in the Bayesian framework, we do not use 
an explicit notation to indicate this use of the data. The m future observations must 
be assumed to result from the same sampling method as the n data observations in 
order to have full exchangeability. NPI is totally based on the A(n) assumptions, which 
however should be considered with care as they imply, e.g. that the specific ordering 
in which the data appeared is irrelevant, so accepting A(n) implies an exchangeabil-
ity judgement for the n observations. It is attractive that the appropriateness of this 
approach can be decided upon after the n observations have become available.

Let X(r) , for r = 1,… ,m , be the r-th ordered future observation, so X(r) = Xn+i 
for one i = 1,… ,m and X(1) < X(2) < ⋯ < X(m) . The following probabilities are 
derived by counting the relevant orderings and use of Eq. (1). For j = 1,… , n + 1 
and r = 1,… ,m,

For this event NPI provides a precise probability, as each of the 
(
n + m

n

)
 equally 

likely orderings of n past and m future observations has the r-th ordered future 
observation in precisely one interval Ij . As Eq. (2) only specifies the probabilities for 
the events that X(r) belongs to intervals Ij , it can be considered to provide a partial 
specification of a probability distribution for X(r) ; no assumptions are made about 
the distribution of the probability masses within such intervals Ij.

Analysis of the probability in Eq. (2) leads to some interesting results, including 
the logical symmetry P(X(r) ∈ Ij) = P(X(m+1−r) ∈ In+2−j) . For all r, the probability 
for X(r) ∈ Ij is unimodal in j, with the maximum probability assigned to interval Ij∗ 

with 
(

r−1

m−1

)
(n + 1) ≤ j∗ ≤

(
r−1

m−1

)
(n + 1) + 1 . A further interesting property occurs 

for the special case where the number of future observations is equal to the number 
of data observations, so m = n . In this case, P(X(r) < xr) = P(X(r) > xr) = 0.5 holds 

for all r = 1,… ,m . This fact can be proven by considering all 
(
2n

n

)
 equally likely 

orderings, where clearly in precisely half of these orderings the r-th future observa-
tion occurs before the r-th data observation due to the overall exchangeability 
assumption.

For an event X(r) ∈ Ij , the A(.) assumptions provide precise probabilities. More 
generally, interest may be in an event X(r) ∈ Z , with Z any subset of the real values, 
for example an interval not equal to one of the intervals Ij created by the data. Gener-
ally, NPI provides bounds for the probability for such an event, where the maximum 

(2)P(X(r) ∈ Ij) =

(
j + r − 2

j − 1

)(
n − j + 1 + m − r

n − j + 1

)(
n + m

n

)−1
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lower bound and minimum upper bound are lower and upper probabilities, respec-
tively [4]. The NPI lower and upper probabilities are

The lower probability (3) is obtained by summing up only the probability masses 
that must be in Z. The upper probability (4) is obtained by summing up all prob-
ability that can be in Z. The NPI lower and upper probabilities for the event that 
X(r) > z , where z is not equal to one of the data observations, are

We denote the median of m future observations by Mm . For m odd, so Mm = X(
m+1

2
) , 

the NPI probability for the event Mm ∈ Ij = (xj−1, xj) can be derived straightfor-
wardly from Eq. (2). NPI for the median of m future observations is relatively more 
complicated if m is even, in which case Mm = (X(

m

2
) + X(

m

2
+1))∕2 . In this case NPI 

does not provide precise probabilities for the event Mm ∈ Ij but lower and upper 
probabilities, which are presented in the PhD thesis of [1].

We denote the mean of m future observations by �m , and the mean correspond-
ing to a specific ordering Oi of the future observations among n observations by 
�i
m
 . When we consider �m and �i

m
 , we must avoid possible probability mass in 

−∞ or ∞ , because it affects the mean of the m future observations. We assume 
finite bounds L < R for the data observations and future observations, such that 
L < x1 < ⋯ < xn < R , and we define x0 = L and xn+1 = R for the A(n) assumptions. 
The maximum lower bound and the minimum upper bound for the mean �i

m
 of the m 

future observations, for given ordering Oi , are

(3)P
(
X(r) ∈ Z

)
=

n+1∑
j=1

�{Ij ⊆ Z}P
(
X(r) ∈ Ij

)

(4)P
(
X(r) ∈ Z

)
=

n+1∑
j=1

�{Ij ∩ Z ≠ �}P
(
X(r) ∈ Ij

)

(5)P
(
X(r) > z

)
=

n+1∑
j=1

�{xj−1 > z}P
(
X(r) ∈ Ij

)

(6)P
(
X(r) > z

)
=

n+1∑
j=1

�{xj > z}P
(
X(r) ∈ Ij

)

(7)�i
m
=

1

m

n+1∑
j=1

si
j
xj−1
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The NPI lower and upper probabilities for the event 𝜇m > z , are

For any interval Z = (z1, z2) , the NPI lower and upper probabilities for the event 
�m ∈ Z are

3  Classical Concepts for Evaluating Robustness

In the literature of robustness, many measures of robustness of an estimator have 
been introduced [16, 17]. In this section, we review some concepts from classical 
theory of robust statistics, namely the influence function (IF), sensitivity curve (SC), 

(8)�i
m
=

1

m

n+1∑
j=1

si
j
xj

(9)P(�m ≥ z) =
1�

n + m

n

�

⎛⎜⎜⎝
n + m

n

⎞⎟⎟⎠�
i=1

1
�
�i
m
≥ z

�

(10)P(�m ≥ z) =
1�

n + m

n

�

⎛⎜⎜⎝
n + m

n

⎞⎟⎟⎠�
i=1

1
�
�i
m

≥ z
�

(11)P(�m ∈ (z1, z2)) =
1�

n + m

n

�

⎛⎜⎜⎝
n + m

n

⎞⎟⎟⎠�
i=1

1
�
z1 ≤ �i

m
≤ �i

m
≤ z2

�

(12)P(�m ∈ (z1, z2)) =
1�

n + m

n

�

⎛⎜⎜⎝
n + m

n

⎞⎟⎟⎠�
i=1

1
�
(�i

m
,�i

m
) ∩ (z1, z2) ≠ �

�
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empirical influence function (EIF) and breakdown point (BP). First, we consider 
the influence function (IF), an approach that is due to [16]. Let the CDF F denote 
the true underlying distribution function, and CDF G� a contaminating distribution 
which puts all its mass in � . For an estimator T based on data from a population with 
CDF F, the influence function of T at basic distribution F is

Here (1 − �)F + �G� with 0 < 𝜖 < 1 is a mixture distribution of F and G� . This defi-
nition of the IF depends on the assumed distribution as it assesses the effect of an 
infinitesimal perturbation in a distribution on the value of the estimator. There are 
several finite sample versions of (13), the most important being the sensitivity curve 
[28] and the empirical influence function [17]. Let Tn(X) = Tn(x1, .., xn) denote a sta-
tistic of the sample X = (x1, .., xn) and let Tn+1(X, �) denote the corresponding sta-
tistic of the sample x1, .., xn,� . The simplest idea is the empirical influence function 
[17].

This EIFi is defined by replacing the i-th value in the sample X by an arbitrary value 
� and looking at the output of the estimator [17]. Alternatively, one can define it by 
adding an observation, i.e. when the original sample consists of n observations one 
can add an arbitrary value � [17, p. 93]. The second tool is the sensitivity curve [28]. 
Again there are two versions, one with addition and one with replacement [17]. In 
case of additional an observation, the sensitivity curve (SC) is defined as [22]

SCn(�, Tn,X) measures the sensitivity of Tn to the addition of one observation with 
value � [22]. The sensitivity curve measures sensitivity of an estimator to a change 
in the sample. In case of replacing an observation xi by � , let Tn(X, �, i) denote a 
statistic of the sample (x1,… , xi−1, �, xi,… , xn) , then the SC is defined as [22] 
SCi(�, Tn,X) = n

(
Tn(X, �, i) − Tn(X)

)
 . This version of SC measures the sensitivity of 

Tn to replacing the i-th value in the sample by an arbitrary value.
The concepts defined above are local measurements, as they in principle exam-

ine the effect on an estimator of substituting a single contaminant for one of the n 
observations, or of adding a data point to the sample. In contrast, the breakdown 
point is a global measurement, as it gives the highest fraction of outliers one may 
have in the data before the estimator goes to infinity [23]. Let X = (x1,… , xn) be 
a fixed sample of size n. We can contaminate this sample in many ways [22]. We 
consider the following two; �a replacement and �b contamination. These will also 
be considered in the NPI setting in Sect. 4. First, �a replacement: we replace an arbi-
trary subset of size l of the sample by arbitrary values y1,… , yl , so 1 ≤ l ≤ n [22]. 
Let X′ denote the contaminated sample. The fraction of contaminated values in the 
contaminated sample X�

= (x1 … , xl−1, yl,… , yn) , is �a =
l

n
 . Secondly, �b contami-

nation: we add l arbitrary additional values Y = (y1,… , yl) to the sample X [22]. Let 
X

′′ denote the sample contaminated by adding l arbitrary additional values. Thus, the 

(13)IFT ,F(�) = lim
�→0

T((1 − �)F + �G�) − T(F)

�

EIFi(�, Tn,X) = Tn(x1 … , xi−1, �, xi+1,… , xn)

SCn(�, Tn,X) = (n + 1)
(
Tn+1(X, �) − Tn(X)

)



 Journal of Statistical Theory and Practice           (2019) 13:12 

1 3

   12  Page 8 of 34

fraction of contaminated values in the contaminated sample X��

= X ∪ Y  is �b =
l

l+n
 . 

Let T = (Tn) be an estimator and T(X) be its value at the sample X. The maximum 
bias which might be caused by general � , which is either �a or �b , is [22]

where the supremum is taken over the set of all �-contaminated samples, which is 
either X′ or X′′ . The definition of the breakdown point is

The breakdown point �∗(X, T) of an estimator T at sample X is the smallest value of 
� for which the estimator T(X, Y) can have values arbitrarily far from T(X).

4  Robustness Concepts in NPI

A simple way to study NPI robustness is to contaminate the given data and then 
explore its effect on our predictive inference. This approach is straightforward, gives 
an intuitive analysis, and is in line with the classic nonparametric robustness con-
cepts, as they typically assess the influence on statistical inference of an arbitrary 
data value either added to the data or substituted for an original observation. We do 
not consider IF for NPI, as IF depends on the assumed distribution and in the NPI 
approach we do not assume any underlying distribution. In our study of the robust-
ness of NPI, we will focus on the sensitivity curve (SC) and breakdown point (BP) 
as they typically rely on the actual data at hand rather than on a hypothetical under-
lying population. We can also adopt EIF, but we prefer to only focus on SC as local 
measurement of our predictive inferences.

Let x = {x1,… , xn} be a given sample of real-valued observations and let I(x) be 
a predictive inference for future observations, based on the sample x . Such a sam-
ple x can be contaminated in many ways, as discussed in Sect. 3, and we consider 
two of them; substituting a contaminant for one of the n observations or adding an 
additional observation to the past data. We denote these contaminated data by x(j, �) 
and ( x, y ), respectively. These two ways of contaminating the sample will be stud-
ied separately in the NPI framework. We first focus on the effect of adding � to one 
of the observations in the past data, as it is convenient and logical to do this in the 
NPI method. Let I(x(j, �)) denote the inference of interest based on the contaminated 
data x(j, �) , where the data are contaminated by replacing xj by xj + � in x . The NPI 
sensitivity curve (NPI-SC) for a predictive inference I(x) , in case of replacing one 
observation xj by xj + � , is defined by

It can also be of interest to consider nSCI(x(j, �)) , corresponding to the classical def-
inition of the sensitivity curve as given in Sect. 3. We may multiply SCI(x(j, �)) by 
n, but in our case Eq. (16) is more straightforward, and it depends on n, so when n 
is large we expect SCI(x(j, �)) to become smaller. However, if one wants to compare 
sensitivity for different values of n, then one may need to multiply SC by the sample 

(14)b(�;X,T) = sup |{T(X,Y) − T(X)}|

(15)�∗(X, T) = inf{�|b(�;X, T) = ∞}

(16)SCI(x(j, �)) = I(x(j, �)) − I(x)
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size n to make the evaluation less sensitive to n. Let I(x, y) denote the inference of 
interest based on the contaminated data, where the data are contaminated by adding 
y to x . The NPI-SC, in the case of adding an additional observation y to the data, is

This NPI-SCI(x, y) assesses the sensitivity of an inference to the position of an addi-
tional observation, so it illustrates the impact of adding an additional observation y 
to the sample on the inferences involving future observations.

A finite sample breakdown point (BP) was first proposed by [20], as “tolerance of 
extreme values” in the situation of location parameter problems, and it was general-
ized for a variety of cases by [15]. As far as we know, it has not been applied to situ-
ations of predictive inferences where the range of the inferences for the future obser-
vations is bounded, but it can easily be extended to such situations. We will modify 
the concept of BP to fit with the NPI approach. The maximum value of predictive 
inferences in terms of lower and upper probabilities is 1. We introduce a new defini-
tion of BP, which we call the c-breakdown point, and denote by �∗

c
(I, x(j1,… , jl, �)).

To introduce the c-breakdown point concept, we first need to introduce some 
notation related to the way of contamination of the data x , as discussed in Sect. 3. 
First, ’replacement’: we replace a subset of size l of the data x by xj1 + �,… , xjl + � , 
where 1 ≤ l ≤ n . We denote these contaminated data by x(j1,… , jl, �) . Let 
I(x(j1,… , jl, �)) denote the inference of interest based on the contaminated data. 
Note that � can be vary for each value, i.e. �ji for i = 1,… , l , and we denote these 
contaminated data by x(j1,… , jl, �j1 ,… , �jl ) for different � . The fraction of contami-
nant values in the contaminated sample x(j1,… , jl, �) is �a =

l

n
 . Secondly, ’addi-

tional’: we add l arbitrary additional observations y1,… , yl to the past data x . We 
denote these contaminated data by (x, y1,… , yl) . The inference is denoted by 
I(x, y1,… , yl) . The fraction of contaminant values in the contaminated sample 
(x, y1,… , yl) , is �b =

l

l+n
 . The maximum bias which might be caused by �a-replace-

ment, is

where the supremum is taken over the set of all �a-replacement samples 
x(j1,… , jl, �) , with {j1,… , jl} ⊂ {1,… , n} for fixed � and given data x . Alterna-
tively, one can define the maximum bias by adding l contaminated values to the 
sample x , so the maximum bias which might be caused by �b-contamination is

where the supremum is taken over the set of all �b-contaminated samples 
(x, y1,… , yl) , with y1,… , yl ∈ ℝ of given data x . The c-breakdown point, where 
c ∈ [0, 1] , for the case of �a-replacement , is defined as

(17)SCI(x, y) = I(x, y) − I(x)

(18)
b(�a; x, I) = sup |(I(x(j1,… , jl, �)) − I(x))|

= sup |(SCI(x(j1,… , jl, �))|

(19)
b(�b; x, I) = sup |(I(x, y1,… , yl) − I(x))|

= sup |(SCI(x, y1,… , yl)|

(20)𝜆∗
c
(I, x(j1,… , jl, 𝛿)) = inf{𝜆a|b(𝜆a; x, I) > c}
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Alternatively, the c-breakdown point for the case of adding l observations to the 
original sample ( �b-contamination), is

The c-breakdown point is the smallest fraction of contamination in the past data that 
could cause a predictive inference to take a value at least c away from the value 
of the initial predictive inference. This definition includes for, c = 0 , the case when 
any change in the inference caused by l contaminated observations, is considered as 
breakdown of the inference of interest. The value c determines how much we allow 
the inference to change before its breakdown.

5  Robustness of NPI for the rth Future Order Statistic

To illustrate the use of the robustness concepts for NPI, namely NPI-SC and NPI-
BP as defined in Sect.  4, we first consider the probabilities for events involving 
the r-th ordered future observation. We illustrate both ways that the sample can be 
contaminated.

5.1  NPI‑SC for Data Replacement

To begin with, we explore how a contamination in the data affects the NPI prob-
ability for the event that X(r) ∈ Ik in Eq. (2). The probability (2) is only affected by 
replacing contamination if the indices, k = 1,… , n + 1 , differ. The effect of replac-
ing an observation xj by xj + 𝛿 = x̃l , with � ∈ ℝ , on the probability for the event 
X(r) ∈ Ik is

The NPI lower and upper probabilities for the event X(r) > z are, in some cases, 
affected slightly by changing xj to xj + � . Let z ∈ Ik = (xk−1, xk) , then the effect of 
replacing an observation xj by xj + 𝛿 = x̃l , with � ∈ ℝ , on the NPI lower and upper 
probabilities for the event X(r) > z , is

(21)𝜆∗
c
(I, (x, yj1 ,… , yjl )) = inf{𝜆b|b(𝜆b; x, I) > c}

SCP(X(r)∈Ik)
(x(j, 𝛿))

= P
x(j,𝛿)

(X(r) ∈ (x̃k−1, x̃k)) − P
x
(X(r) ∈ Ik)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if xj < xk and x̃l < xk
P(X(r) ∈ Ik−1) − P(X(r) ∈ Ik) if xj < xk and x̃l > xk∑l

i=k+1
P(X(r) ∈ Ii) if xj = xk and x̃l > xk∑k−1

i=l+1
P(X(r) ∈ Ii) − P(X(r) ∈ Ik) if xj = xk and x̃l < xk

P(X(r) ∈ Ik+1) if xj > xk and x̃l ∈ (xk−1, xk)

0 if xj > xk and x̃l > xk
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This NPI-SC depends on the value of r and which interval it falls in, and will be 
illustrated in Example 1 in Sect. 5.4.

5.2  NPI‑SC for Additional Data

Suppose we are interested in assessing the effect of an additional observation on the 
probability for the event that the rth ordered future observation falls in interval Ij , by 
considering

We let j∗ be such that y ∈ Ij∗ . If the method is robust to the new observation then 
P(X(r) ∈ Ij|y ∈ Ij∗ ) should be close to P(X(r) ∈ Ij) for all r, j, j∗ . The intuitive question 
we should investigate is when the influence is larger, if j∗ < j , or j∗ = j , or j∗ > j ? 
Thus, this P(X(r) ∈ Ij|y ∈ Ij∗ ) needs to be studied with respect to the position of j∗ 
and j. The P(X(r) ∈ Ij|y ∈ Ij∗ ) can be derived using Eq. (2). For j∗ < j,

Similarly, for j∗ > j , n is replaced in Eq. (2) by n + 1 but j is unchanged,

For j∗ = j , we get

SCP(X(r)>z)
(x(j, 𝛿)) = P

x(j,𝛿)
(X(r) > z) − P

x
(X(r) > z)

=

⎧
⎪⎨⎪⎩

0 if xj < z and x̃l < z

P(X(r) ∈ Ik) if xj < z and x̃l > z

−P(X(r) ∈ Ik−1) if xj > z and x̃l < z

0 if xj > z and x̃l > z

SC
P(X(r)>z)

(x(j, 𝛿)) = Px(j,𝛿)(X(r) > z) − Px(X(r) > z)

=

⎧
⎪⎨⎪⎩

0 if xj < z and x̃l < z

P(X(r) ∈ Ik−1) if xj < z and x̃l > z

−P(X(r) ∈ Ik) if xj > z and x̃l < z

0 if xj > z and x̃l > z

(22)SCP(X(r)∈Ij)
(x, y) = P(x,y)(X(r) ∈ Ij) − Px(X(r) ∈ Ij)

(23)

P(X(r) ∈ Ĩj+1|y ∈ Ij∗ ) =

(
j + r − 1

j

)(
n − j + 1 + m − r

n − j + 1

)(
n + m + 1

n + 1

)−1

(24)P(X(r) ∈ Ĩj|y ∈ Ij∗ ) =

(
j + r − 2

j − 1

)(
n − j + 2 + m − r

n − j + 2

)(
n + m + 1

n + 1

)−1

P(X(r) ∈ Ij|y ∈ Ij) = P(X(r) ∈ Ij ∪ Ĩj+1|y ∈ Ij)

= P(X(r) ∈ Ĩj|y ∈ Ij∗) + P(X(r) ∈ Ĩj+1|y ∈ Ij∗ )
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It is quite easy to proof [1] that SCP(X(r)∈Ij)
(x, y) > 0 for j∗ < j if and only if 

j ≤
(r−1)(n+1)

m
 and for j∗ > j if and only if j ≥ r(n+1)

m
+ 1 . The SC for the event 

that X(r) ∈ Ij , when we add an additional observation y ∈ Ij∗ where j∗ < j and 
Ĩj+1 = (x̃j, x̃j+1) = (xj−1, xj) , is

If j∗ > j , so Ĩj = Ij = (x̃j−1, x̃j) , then

If j∗ > j and j = r(n+1)

m
+ 1 is an integer number, then SCP(X(r)∈Ij)

(x, y) = 0 , as will 
be illustrated in Example 1 in Sect. 5.4. If j∗ = j , so Ij now becomes Ĩj ∪ Ĩj+1 where 
Ĩj = (xj−1, y) and Ĩj+1 = (y, xj) , then NPI-SC for P(X(r) ∈ Ij) is

The NPI-SC measures how a single contaminant, whether added or substituted, 
affects an inference of interest, which is in line with SC in classical robustness.

5.3  NPI‑BP for Data Replacement and Adding

We illustrate the NPI-BP for the lower and upper probabilities for the event that 
X(r) > z , where z ∈ (xk−1, xk) . Suppose we keep x1,… , xk−1 fixed and let xk,… , xn 
go to infinity, then the NPI lower and upper probabilities for the event that X(r) > z , 
will not change at all. However, when we only keep x1,… , xk−2 fixed and let 
xk−1,… , xn go to infinity then [P,P](X(r) > z) will increase. For c = 0 the mini-
mum fraction of the contaminated values in the contaminated sample that can cause 
b(𝜆a; x, [P,P](X(r) > z)) > 0 , is

(25)
SCP(X(r)∈Ij)

(x, y) = P(X(r) ∈ Ĩj+1|y ∈ I∗
j
) − P(X(r) ∈ Ij)

= P(X(r) ∈ Ij)

[
(r − 1)(n + 1) − jm

j(n + 1 + m)

]

(26)

SCP(X(r)∈Ij)
(x, y) = P(X(r) ∈ Ij|y ∈ I∗

j
) − P(X(r) ∈ Ij)

= P(X(r) ∈ Ij)

[
m(j − 1) − r(n + 1)

(n − j + 2)(n + m + 1)

]

SCP(X(r)∈Ij)
(x, y) =

[
P(X(r) ∈ Ĩj|y ∈ Ij) + P(X(r) ∈ Ĩj+1|y ∈ Ij)

]
− P(X(r) ∈ Ij)

= P(X(r) ∈ Ij)

[
(r − 1)(n + 1) − jm

j(n + 1 + m)
+

m(j − 1) − r(n + 1)

(n − j + 2)(n + m + 1)

]

(27)𝜆∗
0
([P,P](X(r) > z), x(𝛿, n,… , jn−k+2)) =

n − k + 2

n
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An effect on such an inference occurs only when the contaminated values lead to 
change of the number of the observations that are greater than z. The value of the 
c-breakdown point decreases as the value of k increases, where Ik is the interval 
that z falls in. Similarly, the c-breakdown point for the probability for the event that 
X(r) ∈ Ik is n−k+2

n
.

In the case of adding observations to the data, the c-breakdown point for the 
probability for the event that X(r) ∈ Ij , for c = 0 , is

Thus, adding a single data observation will change the probability for the event that 
X(r) ∈ Ij . The size of the change varies depending on which order statistic is consid-
ered and in which interval it is, which will be illustrated in Example 1 in Sect. 5.4. 
Similarly, in the case of additional observations to the sample, the c-breakdown 
point for the event that X(r) > z , for c = 0 is 1

n+1
 . We have only considered the NPI-

BP for c = 0 here. In Example 1, we will also illustrate NPI-BP for c > 0.

5.4  Example

We illustrate the NPI-SC and NPI-BP presented in this section by the following 
example.

Example 1 We consider data set x = {−9,−7, 0, 2, 5, 7, 10, 16} , and the corrupted 
sample x(2, �) , where we replace x2 = −7 by −7 + � for � ∈ ℝ . Table  1 presents 
the NPI-SC for the lower and upper probabilities for the event X(r) ≥ 1 , for m = 5 
and r = 1,… , 5 . These inferences are not affected at all by adding 𝛿 < 8 to x2 , as 
x2 + 𝛿 < 1 , whereas for � ≥ 8 the value x2 + 𝛿 > 1 , which changes the values of the 
lower and upper probabilities by an amount P(X(r) ∈ I4) , and P(X(r) ∈ I3) , respec-
tively. The results illustrate that the largest effect of replacing x2 = −7 by −7 + � , for 
� ≥ 8 , occurs for r = 2 and the smallest effect occurs for r = 5.

To illustrate the NPI-BP, we consider the data set x and the case with 
m = 5 and interest in event X(r) ≥ 1 . Table  2 presents the NPI-SC for the 
NPI lower and upper probabilities for X(r) ≥ 1 for the values r = 1,… , 5 , in 
the case where we keep x1,… , x8−l and we added � = 100 to x9−l,… , x8 for 
l = 1,… , 8 . The results clearly show that, as the value of r increases, the effect 
of replacing l observations by contaminated values on the NPI lower and upper 

(28)
𝜆∗
0
(P(X(r) ∈ Ii), (x, yj1 ,… , yjl )) = inf{𝜆b|b(𝜆b; x,P(X(r) ∈ Ij)) > 0}

𝜆∗
0
(P(X(r) ∈ Ii), (x, yj1 )) =

1

n + 1

Table 1  SCP(X(r)≥1)
(x(j, �)) for 

m = 5 and � ≥ 8
r = 1 r = 2 r = 3 r = 4 r = 5

SC
P

0.09790 0.17405 0.16317 0.09324 0.02720
SC

P
0.16317 0.19580 0.13054 0.05439 0.01166
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probabilities for X(r) ≥ 1 is decreasing. If we chose c = 0.15 , then the maximum 
NPI-BP for the event X(r) ≥ 1 occurs for r = 5 , whereas the minimum NPI-BP 
occurs for r = 2 . The higher the breakdown point of an inference, the more robust 
it is. �∗

0
(P(X(1) ≥ 1), x(2,… , 8, 100)) = �∗

0
(P(X(3) ≥ 1), x(2,… , 8, 100)) =

7

8
 whereas 

the NPI-BP for the lower and upper probabilities for X(2) ≥ 1 and the lower prob-
ability for X(3) ≥ 1 is 6

8
 and for the lower probability for X(4) ≥ 1 is 1, whereas the 

upper probability for X(4) ≥ 1 does not breakdown. For r = 5 the inferences did not 
breakdown.

j*<j j*=j j*>j

−0.05

0.00

0.05

0.10

0.15

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
J

S
C

r=1

Fig. 1  SCP(X(1)∈Ij)
(x, y ) for n = 8 and m = 3

j*<j j*=j j*>j

0.00

0.04

0.08

0.12

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
J

S
C

r=2

Fig. 2  SCP(X(2)∈Ij)
(x, y) for n = 8 and m = 3

Table 2  SCP(X(r)≥1)
(x(9 − l,… , 8, 100)) for m = 5

r = 1 r = 2 r = 3 r = 4 r = 5

l SCP SC
P

SCP SC
P

SCP SC
P

SCP SC
P

SCP SC
P

6 0.0979 0.1632 0.1740 0.1958 0.1632 0.1305 0.0932 0.0544 0.0272 0.0117
7 0.2611 0.4196 0.3699 0.3823 0.2937 0.2145 0.1476 0.0793 0.0389 0.0155
8 0.5175 0.8042 0.5563 0.5105 0.3776 0.2494 0.1725 0.0862 0.0427 0.0163
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Figures  1, 2 and 3 illustrate the NPI-SC for the event X(r) ∈ Ij , for r = 1, 2, 3 , 
j = 1,… , 9 and j∗ < j , j∗ = j and j∗ > j . These figures illustrate that SCP(X(r)∈Ij)

(x, y) 
is symmetric, i.e. SCP(X(r)∈Ij)

(x, y) = SCP(X(m+1−r)∈In+2−j)
(x, y) , so such as 

SCP(X(1)∈I9)
(x, y) = SCP(X(3)∈I1)

(x, y) . For all r, the NPI-SC for X(r) ∈ Ij is unimodal  
in j.

To illustrate the c-breakdown point �∗
c
 for the event X(r) ∈ Ij , we choose c = 0.05 

and plot the absolute value of SCP(X(r)∈Ij)
(x, y1,… , yl) as function of l, where l is the 

j*<j j*=j j*>j

−0.05

0.00

0.05

0.10

0.15

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
J

S
C

r=3

Fig. 3  SCP(X(3)∈Ij)
(x, y) for n = 8 and m = 3

Table 3  SCP(X(r)∈Ij)
(x, y1,… , yl) 

for m = 3
r l j = 1 l j = 2 l j = 3 l j = 4 l j = 5

1 2 0.0420 4 0.0468 7 0.0410 7 0.0158 7 0.0047
3 0.0584 5 0.0557 8 0.0459 8 0.0189 8 0.0030

2 7 0.0349 4 0.0442 3 0.0449 3 0.0466 3 0.0416
8 0.0370 5 0.0505 4 0.0547 4 0.0575 4 0.0526

3 7 0.0048 7 0.0145 7 0.0290 7 0.0484 3 0.0497
8 0.0050 8 0.0151 8 0.0302 8 0.0503 4 0.0579

Table 4  SCP(X(r)∈Ij)
(x, y1,… , yl) 

for m = 3
r l j = 6 l j = 7 l j = 8 l j = 9

1 7 0.0203 7 0.0310 7 0.0370 7 0.0381
8 0.0199 8 0.0317 8 0.0386 8 0.0404

2 5 0.0490 7 0.0415 7 0.0087 7 0.0337
6 0.0572 8 0.0478 8 0.0144 8 0.0290

3 1 0.0318 1 0.0424 1 0.0545 1 0.0682
2 0.0538 2 0.0718 2 0.0923 2 0.1154
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number of the contaminated values that have been added to the data set of size 
n = 8 . These are given in Tables  3 and  4 for r = 1, 2, 3 . For r = 1 and j ≥ 3 , the 
probability for the event X(1) ∈ Ij does not break down, whereas for j = 1 , 
�∗
0.05

(P(X(1) ∈ I1), (x, y9, y10, y11)) =
3

11
= 0.2727 and for j = 2 , 

�∗
0.05

(P(X(1) ∈ I2), (x, y9,… , y13)) =
5

13
= 0.3846 . These tables present the absolute 

value of the NPI-SC for X(2) ∈ Ij , where for j = 3, 4, 5 the NPI-BP is 4

12
= 0.3333 , 

for j = 2 it is 5

13
= 0.3846 and for j = 6 it is 6

14
= 0.4286 . The probability for the 

event X(2) ∈ Ij for j = 1, 7, 8, 9 , does not break down as 
SCP(X(2)∈Ij)

(x, y1,… , y8) < 0.05 . For r = 3 , and j = 4 , 
�∗
0.05

(P(X(3) ∈ Ij), (x, y9,… , y16)) =
8

16
= 0.5 , whereas as j increases the NPI-BP 

decreases, such that for j = 8, 9 , �∗
0.05

(P(X(3) ∈ Ij), (x, y9)) = 1∕9.

6  Robustness of the Median and Mean of the Future Observations

In the classical robustness literature there has been quite a lot of emphasis on robust 
estimation of a location parameter, where typically they compare the robustness 
of the mean and the median. In this section, we illustrate the use of the robustness 
concepts for NPI, namely NPI-SC and NP-BP, by considering events involving the 
median and the mean of the m future observations.

6.1  Median of the m Future Observations

We first examine how contamination in the data affects NPI for an event involving 
the median of the m future observations, for odd-valued m. We consider the NPI-SC 
for the lower and upper probabilities for the event Mm < z . We wish to examine the 
effect on [P,P](Mm < z) of adding a contaminant � to one of the observations xj with 
j = 1,… , n . Let z ∈ Ik = (xk−1, xk) , if we add � to xj this becomes x̃l = xj + 𝛿 , where 
� ∈ ℝ . The NPI-SC for event Mm < z is

SCP(Mm<z)
(x(j, 𝛿)) =

⎧
⎪⎨⎪⎩

0 if xj > z and x̃l > z

0 if xj < z and x̃l < z

P(Mm ∈ Ik) if xj > z and x̃l < z

−P(Mm ∈ Ik−1) if xj < z and x̃l > z

SC
P(Mm<z)

(x(j, 𝛿)) =

⎧
⎪⎨⎪⎩

0 if xj > z and x̃l > z

0 if xj < z and x̃l < z

P(Mm ∈ Ik+1) if xj > z and x̃l < z

−P(Mm ∈ Ik) if xj < z and x̃l > z
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The NPI-SC for lower and upper probabilities for the event Mm < z is a step func-
tion, with the step occurring when the contamination value changes the number of 
intervals to the right of z.

Next we consider the NPI-SC for the lower and upper probability for the event 
that Mm ∈ (z1, z2) . Let z1 ∈ Ik and z2 ∈ Id where k ≤ d . If we add � to one of the 
data observations, i.e. xj is replaced by x̃l , then there are three possible situations. 
The effect of adding � to xj is to change the value of the NPI lower and upper prob-
abilities for the event Mm ∈ (z1, z2) , by an amount NPI-SC as specified for each case 
below. First, if xj < z1

Secondly, if xj > z2

Thirdly, if xj ∈ (z1, z2)

(29)

SCP(Mm∈(z1,z2))
(x(j, 𝛿)) = P

x(j,𝛿)
(Mm ∈ (z1, z2)) − P

x
(Mm ∈ (z1, z2))

=

⎧
⎪⎨⎪⎩

0 if x̃l < z1
P(Mm ∈ Ik) if x̃l ∈ (z1, z2)

P(Mm ∈ Ik) − P(Mm ∈ Id−1) if x̃l > z2

(30)

SC
P(Mm∈(z1,z2))

(x(j, 𝛿)) = Px(j,𝛿)(Mm ∈ (z1, z2)) − Px(Mm ∈ (z1, z2))

=

⎧
⎪⎨⎪⎩

0 if x̃l < z1
P(Mm ∈ Ik−1) if x̃l ∈ (z1, z2)

P(Mm ∈ Ik−1) − P(Mm ∈ Id) if x̃l > z2

SCP(Mm∈(z1,z2))
(x(j, 𝛿)) =

⎧
⎪⎨⎪⎩

0 if x̃l > z2
P(Mm ∈ Id) if x̃l ∈ (z1, z2)

P(Mm ∈ Id) − P(Mm ∈ Ik+1) if x̃l < z1

SC
P(Mm∈(z1,z2))

(x(j, 𝛿)) =

⎧
⎪⎨⎪⎩

0 if x̃l > z2
P(Mm ∈ Id+1) if x̃l ∈ (z1, z2)

P(Mm ∈ Id+1) − P(Mm ∈ Ik) if x̃l < z1

(31)SCP(Mm∈(z1,z2))
(x(j, 𝛿)) =

⎧⎪⎨⎪⎩

0 if x̃l ∈ (z1, z2)

−P(Mm ∈ Id−1) if x̃l > z2
−P(Mm ∈ Ik+1) if x̃l < z1
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So, when the data are contaminated and that contamination does not affect the num-
ber of intervals in (z1, z2) then there is no effect on this inference at all, which is an 
attractive property. But this is not the same if m is even , which leads to more com-
plicated analysis due to the definition of Mm as the overage of two observation. For 
study of the robustness of Mm for even-valued m we refer to the PhD thesis of [1].

The c-breakdown point for the NPI lower and upper probabilities for the event 
Mm > z and Mm > (z1, z2) , where z, z2 ∈ Ik and m is odd, are similar as presented in 
Sect. 5, if we replace X(r) by Mm in Eq. (27). The NPI lower and upper probabilities 
for such an event depend only on the number of observations that are greater than z 
or within (z1, z2) , so in the sample of n observations, only n − k + 2 or more outliers 
can cause these probabilities to change.

6.2  Mean of the m Future Observations

We consider the NPI-SC for the mean of the m future observations. It is well known 
that the mean of the population in classical statistics is more sensitive than the 
median to a single contamination in the data [22]. We investigate the robustness of 
inferences involving the mean of the m future observations. The lower and upper 
bounds for the mean of the m future observations given the ordering Oi , as given in 
Eqs.  (7) and (8), depend on the value of si

j
 . The NPI-SC for the lower and upper 

bounds of the �i
m
 , if xj becomes xj + 𝛿 = x̃l , for 𝛿 > 0 and l > j or for 𝛿 < 0 and l < j , 

are

As a special case, if l = j , i.e. xj + � did not shift from its rank among the observa-
tions, so xj−1 < xj + 𝛿 < xj+1 , then the NPI-SC for �i

m
 and �i

m
 are 1

m
si
j+1

� and 1
m
si
j
� , 

respectively. If the value of si
j
= si

j+1
= 0 then there is no influence at all on the lower 

and upper �i
m
 , whereas if si

j
= m and si

j+1
= m then NPI-SC of the lower or the upper 

(32)SC
P(Mm∈(z1,z2))

(x(j, 𝛿)) =

⎧
⎪⎨⎪⎩

0 if x̃l ∈ (z1, z2)

−P(Mm ∈ Id) if x̃l > z2
−P(Mm ∈ Ik) if x̃l < z1

(33)SC𝜇i
m
(x(j, 𝛿)) =

1

m

[
l∑

k=j

si
k+1

[x̃k − xk]

]

(34)SC
𝜇i
m

(x(j, 𝛿)) =
1

m

[
l∑

k=j

si
k
[x̃k − xk]

]



1 3

Journal of Statistical Theory and Practice           (2019) 13:12  Page 19 of 34    12 

bound for �i
m
 , will exceed any bound for � large or small enough. The NPI-SC for 

�m ≥ z , if xj becomes xj + 𝛿 = x̃l and � ∈ ℝ , is

The NPI-SC of the lower and upper probabilities for the event �m ∈ (z1, z2)) , are

and

These NPI-SC will be illustrated in Example 2 in Sect. 6.3.
The c-breakdown points of the lower and upper bounds of �i

m
 , are 1

n
 for 

si
l+1

≠ 0 and si
l
≠ 0 respectively. This is because if we hold x1,… , xn−1 fixed and 

let xn go to infinity then �i
m
 also goes to infinity if si

l+1
≠ 0 or si

l
≠ 0 , correspond-

ing to �i
m

 and �i
m

 . However, when we consider inference involving the mean, we 
will not let xn go to infinity, as we have assumed bounds for the data observations 
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L < x1 < ⋯ < xn < R . So �∗
c
(�i

m
, x(�, j1,… , jl)) may not be equal to 1

n
 . This will be 

illustrated in Example 2 in Sect. 6.3.

6.3  Comparison of Robustness of the Median and the Mean of the Future 
Observations

A main topic in the classical theory of robustness is comparison of the robustness of 
the mean and the median. The mean is typically very sensitive to small changes in 
the data, whereas the median is more robust. In our case the inferences that involve 
the median of the m future observations depend on the event of interest, for example, 
the lower and upper probabilities for the event Mm > z might slightly be affected 
if the contaminant changes the number of observations that are less than z, and its 
effect is a step function, as will be illustrated in Example 2. The 0-breakdown point 
for Mm > z , where z ∈ (xk−1, xk) , is n−k+2

n
 , so the value of NPI-BP for the median 

decreases as the value of k increases. If we replace xj by x̃l , then the inferences of 
events involving the mean of the m future observations might be affected by a small 
change in the data, if si

l
 , the number of future observations in Il given the ordering 

Oi , is not equal to zero. Example 2 illustrates the NPI-SC and NPI-BP for inferences 
involving the mean and the median of the m future observations.

Example 2 To illustrate the NPI-SC for different inferences involving the 
median and mean of the m = 3 future observations, we consider the data set 
x = {−9,−7, 0, 2, 5, 7, 10, 16} so n = 8 , and the contaminated sample x(2, �) , where 
we add � to x2 = −7 and � ∈ ℝ . When we consider the mean of the 3 future observa-
tions, we set x0 = L = −17 and x9 = R = 18 as bounds for the observations.

Figure  4 shows the NPI-SC for the NPI lower and upper probabilities for the 
events �3 ≥ 1 , �3 ∈ (1, 9) , M3 ≥ 1 and M3 ∈ (1, 9) given x , and the contaminated 
sample x(2, �) . Note that the NPI lower probability for such an event of interest in 
these figures is denoted by LP, and the NPI upper probability by UP. The NPI-SC 
for �3 ≥ 1 increases as the value of −7 + � increases, and the maximum NPI-SC 
for the lower and upper probabilities for �3 ≥ 1 are 0.1576 and 0.1333 respectively, 
which occur at −7 + � = 16 which is the largest contaminated value, as � can not go 
to 25 as we set R = 18 as upper bound for the observations. The inferences involving 
the median of the m = 3 future observations depend on the ranks of the observa-
tions, which are only affected if the number of the observations that are greater than 
1, or in (1, 9), changes, so NPI-SC is a step function. The NPI-SC for the NPI lower 
and upper probabilities for M3 ≥ 1 are 0.1454 and 0.1273 respectively, which occur 
at 𝛿 > 8 . So it is less than NPI-SC for �3 ≥ 1 . The NPI-SC for the event �3 ∈ (1, 9) 
increases till � ≥ 12.3 then for 𝛿 > 12.3 it decreases to be close to zero. The maxi-
mum NPI-SC for the lower and upper probabilities for �3 ∈ (1, 9) are 0.0667 and 
0.0909 respectively, and it occurred at � = 10.8 . The maximum NPI-SC for the NPI 
lower and upper probabilities for M3 ∈ (1, 9) are 0.1454 and 0.1273 respectively, so 
it is greater than NPI-SC for �3 ∈ (1, 9) . Table 5 shows that for 𝛿 < 7 and 𝛿 > 19 , 
the inferences involving the mean are more sensitive than the inference involving 
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the median. In contrast, for 8 < 𝛿 ≤ 15.3 the inferences involving the mean are more 
robust.

To illustrate the c-breakdown point, we consider NPI-SC as function of the num-
ber of contaminants present in the data, starting by replacing x8 by x8 + �8 , then x8 
and x7 by x8 + �8 and x7 + �7 , and so on, until all observations have been contami-
nated by {�1,… , �8} = {18.5, 17.5, 11, 9.5, 7, 5.5, 3, 1} . Figure 5 shows the NPI-SC 
for the lower and upper probabilities for �3 ≥ 1 and M3 ≥ 1) , as functions of the 
number of the observations that have been contaminated by adding different values 
of � to them. The results clearly show that when we contaminate up to 5 observa-
tions, which are 2, 5, 7, 10, 16 in the data, to become 11.5, 12, 12.5, 13, 17, the 
inference involving the median X(2) ≥ 1 is not affected at all, whereas the inference 
involving the mean of the future observations is affected. If we choose c = 0.15 , 
then the c-breakdown points for the lower and upper probabilities for M3 ≥ 1 and for 
the upper probability for �3 ≥ 1 , are all equal to 0.875, so breakdown occurs when 
we change 7 observations out of 8, whereas the c-breakdown point for the NPI lower 
probability for �3 ≥ 1 is 0.625, so breakdown occurs if 5 out of 8 observations are 
contaminated.

7  Robustness of Other Inferences

In this section we consider the use of the presented tools for robustness, namely 
NPI-SC and NPI-BP, for pairwise comparisons and for reproducibility of tests, as 
presented by [8, 9].
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Fig. 4  SCI(x(2, �)) for the events �3 ≥ 1 , �3 ∈ (1, 9) , M3 ≥ 1 and M3 ∈ (1, 9)
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7.1  Pairwise Comparisons

We investigate the robustness of one of the applications of NPI for future order sta-
tistics for statistical inference problems, as presented by [9]. Suppose that we have 
two independent groups of real-valued observations, X and Y and their ordered 
observed values are x1 < x2 < ⋯ < xnx and y1 < y2 < ⋯ < yny . For ease of notation, 
let x0 = y0 = −∞ and xnx+1 = yny+1 = ∞ . Let Ix

jx
= (xjx−1, xjx ) and Iy

jy
= (yjy−1, yjy ) . 

We focus attention on m ≥ 1 future observations from each group, Xnx+i
 and Yny+i for 

i = 1,… ,m . We wish to compare the r-th future order statistics from these two 
groups by considering the event X(r) < Y(r) , for which the NPI lower and upper prob-
abilities, based on the A(nx)

 and A(ny)
 assumptions per group, are derived by
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Fig. 5  SCI(x(j1,… , jl, �j1 ,… , �jl )) for the events �3 ≥ 1 and M3 ≥ 1
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The NPI-SC of the lower and upper probabilities for the event that X(r) < Y(r) , if we 
replace yj by yj + � , which we denote by ỹl , are

P(X(r) < Y(r)) =

nx+1∑
jx=1

ny+1∑
jy=1

�

{
xjx < yjy−1

}
P
(
X(r) ∈ Ix

jx

)
P
(
Y(r) ∈ I

y

jy

)

P(X(r) < Y(r)) =

nx+1∑
jx=1

ny+1∑
jy=1

�

{
xjx−1 < yjy

}
P
(
X(r) ∈ Ix

jx

)
P
(
Y(r) ∈ I

y

jy

)

Table 5  SCI(x(2, �)) for m = 3

�3 ≥ 1 M3 ≥ 1 �3 ∈ (1, 9) M3 ∈ (1, 9)

� SCP SC
P

SCP SC
P

SCP SC
P

SCP SC
P

− 9 − 0.0545 − 0.0667 0 0 − 0.0485 − 0.0667 0 0
− 7.41 − 0.0485 − 0.0545 0 0 − 0.0424 − 0.0545 0 0
− 5.82 − 0.0364 − 0.0424 0 0 − 0.0303 − 0.0424 0 0
− 4.23 − 0.0303 − 0.0364 0 0 − 0.0242 − 0.0364 0 0
− 2.64 − 0.0242 − 0.0303 0 0 − 0.0182 − 0.0303 0 0
− 1.05 − 0.0121 − 0.0182 0 0 − 0.0121 − 0.0182 0 0
0.54 0.0061 0.0061 0 0 0.0000 0.0061 0 0
2.13 0.0121 0.0182 0 0 0.0000 0.0121 0 0
3.72 0.0364 0.0424 0 0 0.0242 0.0364 0 0
5.31 0.0485 0.0545 0 0 0.0364 0.0485 0 0
6.9 0.0606 0.0667 0 0 0.0424 0.0606 0 0
8.49 0.0788 0.0848 0.1455 0.1273 0.0545 0.0727 0.1455 0.1273
10.08 0.0970 0.1030 0.1455 0.1273 0.0667 0.0909 0.1455 0.1273
11.67 0.1030 0.1030 0.1455 0.1273 0.0545 0.0848 0.1455 0.1273
12.9 0.1091 0.1091 0.1455 0.1273 0.0545 0.0848 0.1455 0.1273
13.26 0.1152 0.1152 0.1455 0.1273 0.0545 0.0848 0.1455 0.1273
14.85 0.1212 0.1212 0.1455 0.1273 0.0485 0.0848 0.1455 0.1273
15.3 0.1212 0.1212 0.1455 0.1273 0.0485 0.0848 0.1455 0.1273
16.44 0.1212 0.1212 0.1455 0.1273 0.0242 0.0667 0.0000 − 0.0000
18.03 0.1394 0.1273 0.1455 0.1273 0.0182 0.0485 0.0000 − 0.0000
19.62 0.1455 0.1333 0.1455 0.1273 0.0121 0.0424 0.0000 − 0.0000
21.21 0.1515 0.1333 0.1455 0.1273 0.0061 0.0303 0.0000 − 0.0000
22.8 0.1576 0.1333 0.1455 0.1273 0.0000 0.0182 0.0000 − 0.0000
24.39 0.1576 0.1333 0.1455 0.1273 −  0.0121 0.0061 0.0000 − 0.0000
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The NPI-BP for such NPI pairwise comparisons, for c = 0 , is

SCP(X(r)<Y(r))
(y(j, 𝛿))

=

⎧
⎪⎨⎪⎩

0 if yj < xd and ỹl < xd
P(Y(r) ∈ I

y

l+1
) × P(X(r) ∈ Ix

d
) if yj < xd and xd < ỹl

P(Y(r) ∈ I
y

l+1
) ×

�
P(X(r) ∈ Ix

d
)P(X(r) ∈ Ix

d+1
)
�

if yj < xd < xd+1
and xd < xd+1 < ỹl

SC
P(X(r)<Y(r))

(y(j, 𝛿))

=

⎧
⎪⎨⎪⎩

0 if yj < xd and ỹl < xd
P(Y(r) ∈ I

y

l
) × P(X(r) ∈ Ix

d+1
) if yj < xd and xd < ỹl

P(Y(r) ∈ I
y

l
) ×

�
P(X(r) ∈ Ix

d+1
)P(X(r) ∈ Ix

d+2
)
�

if yj < xd < xd+1
and xd < xd+1 < ỹl

𝜆∗
c
([P,P](X(r) < Y(r)), x(j1,… , jl, 𝛿)) =

1

n
if xn < yj and xn + 𝛿 > yj

Table 6  Rats weight gain data

Ozone group (X) Ozone-free group (Y)

− 15.9 − 14.7 − 12.9 − 9.9 − 9.0 − 9.0 − 16.9 13.1 15.4 17.4 17.7 18.3
6.1 6.6 6.8 7.3 10.1 12.1 19.2 21.4 21.8 21.9 22.4 22.7
14.0 14.3 15.5 15.7 17.9 20.4 24.4 25.9 26.0 26.0 26.6 27.3
28.2 39.9 44.1 54.6 27.4 28.5 29.4 38.4 41.0

r=1 r=2 r=3 r=4 r=5

−50 0 50 100 −50 0 50 100 −50 0 50 100 −50 0 50 100 −50 0 50 100

−0.05
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0.05

δ
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Fig. 6  SCP(X(r)<Y(r) )
(x(2, 𝛿)) for m = 5
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The NPI pairwise comparisons for such an event are not sensitive to a small change 
in the data, as they only are affected if the change to an observation has changed the 
order of the X and Y observations. In Example 3 we illustrate the NPI-SC and NPI-
BP for such NPI-pairwise comparisons.

Example 3 To illustrate the NPI-SC and NPI-BP for pairwise comparisons, we con-
sider the data set of a study of the effect of ozone environment on rats growth [12, 
p.170]. One group of 22 rats were kept in an ozone containing environment and 
the second group of 23 similar rats were kept in an ozone-free environment. Both 
groups were kept for 7 days and their weight gains are given in Table 6. We use this 
dataset to illustrate the effect of replacing x2 = −14.7 by −14.7 + � , for � from −50 
to 100, on the pairwise comparisons based on the events X(r) < Y(r) , r = 1,… ,m , 
and m = 5.

Figure 6 illustrates what happens to the NPI lower and upper probabilities for the 
event X(r) < Y(r) , if observation x2 = −14.7 in the X sample is replaced by −14.7 + � . 
Increasing the value −14.7 to −14.7 + � leads to decreasing SCP(X(r)<Y(r))

(x(2, 𝛿)) for � 
such that the rank of this observation among the Y group changes. However, if the 
contaminated value −14.7 + � does not change its rank among Y observations then 
SCP(X(r)<Y(r))

(x(2, 𝛿)) = 0 and SC
P(X(r)<Y(r))

(x(2, 𝛿)) = 0 . For � ≤ −30 the NPI-SC for 

r=1 r=2 r=3

0.00

0.25

0.50

0.75

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Number of contaminants

 SC 
LP

UP

Fig. 7  |SCP(X(r)<Y(r) )
(x(23 − l,… , 22, 100))| for m = 3

Table 7  The absolute value of 
SCP(X(r)<Y(r) )

(x(j1,… , jl, 100)) for 
m = 3 and n = 22

r = 1 r = 2 r = 3

l SCP SC
P

l SCP SC
P

l SCP SC
P

9 0.0454 0.0413 5 0.0382 0.0365 4 0.0442 0.0447
10 0.0649 0.0599 6 0.0813 0.0772 5 0.1151 0.1151
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X(1) < Y(1) has large effect where the other NPI-SC for the other inferences, for 
r = 2,… , 5 , are close to zero. For −1.5 ≤ � ≤ 27 the SCP(X(r)<Y(r))

(x(2, 𝛿)) = 0 and 
SC

P(X(r)<Y(r))
(x(2, 𝛿)) = 0 for all r, as the value −14.7 + � does not change its rank 

among Y observations. For 𝛿 > 27 , the effect of the contaminated value −14.7 + � 
increases as the value of r increases. The inferences involving r = 4 and 5 have large 
NPI-SC when the value x2 + � exceeds all the Y observations.

To illustrate the c-breakdown point of these NPI pairwise comparisons, we con-
sider NPI-SC for X(r) < Y(r) for m = 3 and r = 1, 2, 3 , for the case of adding the value 
100 to l observations in group X. This is shown in Fig. 7 and Table 7. Figure 7 illus-
trates that the absolute value of the NPI-SC increases as the value of l, the number 
of contaminations in the X sample, increases. If we choose c = 0.05 , then the NPI-
BP for r = 1 is 10/22, for r = 2 it is 6 / 22 and for r = 3 it is 5/22, so as the value 
of r increases the NPI-BP decreases. Thus the probability for the event X(r) < Y(r) 
based on the given data is more robust if we consider r = 1 , as it has the highest 
0.05-breakdown point.

7.2  NPI for Test Reproducibility

Reproducibility of statistical hypothesis tests is an issue of major importance in 
applied statistics: if the test were repeated, would the same conclusion, rejection 
or non-rejection of the null hypothesis, be reached? NPI provides a natural frame-
work for such inferences, as its explicitly predictive nature fits well with the core 
problem formulation of a repeat of the test in the future. For inference on reproduc-
ibility of statistical tests, NPI provides lower and upper reproducibility probabilities 
(RP). In this section, the robustness of the NPI method for reproducibility of statisti-
cal tests is presented for two basic tests using order statistics, namely a one sample 
quantile test and a two sample precedence test. For these inferences, NPI for future 
order statistics [9] is used, as briefly reviewed in Sect. 2. We assume that the first, 
actual experiment led to ordered real-valued observations x(1) < x(2) < ⋯ < x(n) . As 
we consider an imaginary repeat of this experiment, we use NPI for n = m future 
ordered observations [8].

To study the robustness of NPI reproducibility of classical statistical tests, we 
will only consider one way of contaminating the data which is by replacing one of 
the observations by a small contaminant. We do not consider contamination by add-
ing a value to the data as this would make a substantial change to the test statis-
tic and could require a different threshold value, which would complicate the study. 
Most of the literature on robustness [18, 25] considers the robustness of the test 
result, so that if a test is robust then small variations in the data should not be able to 
reverse the test decision. In our study, we are interested in exploring the robustness 
of the NPI reproducibility probability of the test conclusion, not the robustness of 
the original test result. Thus, we will not consider the case where adding � to one of 
the observations could change the original test decision from rejecting to not reject-
ing the null hypotheses, or the other way around.
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7.2.1  Quantile Test

The quantile test is a basic nonparametric test for the value of a population quantile 
[14]. Let �p denote the 100 × p-th quantile of an unspecified continuous distribution, 
for 0 ≤ p ≤ 1 . On the basis of a sample of observations of independent and identi-
cally distributed random quantities Xi, i = 1,… , n , we consider the one-sided test of 
null-hypothesis H0 ∶ �p = �0

p
 versus alternative H1 ∶ 𝜅p > 𝜅0

p
 , for a specified value 

�0
p
 . Under H0 , �0

p
 is the 100 × p-th quantile of the distribution function of the Xi , so 

P(Xi ≤ �0
p
|H0) = p . For a given data set x1,… , xn , define the test statistic of the one-

sided quantile test as the number of observations Xi in the sample that are less than 
or equal to �0

p
 , denoted by k =

∑n

i=1
�{xi ≤ �0

p
} A logical test rule is to reject H0 if 

X(r) > 𝜅0
p
 , so if k ≤ r − 1 , where X(r) is the r-th ordered observation in the sample 

(ordered from small to large), for a suitable value of r corresponding to a chosen sig-
nificance level. For the value r derived using the Binomial distribution [14].

Based on such data and the result of the actual hypothesis test, that is whether 
the null hypothesis is rejected in favour of the alternative hypothesis or not, NPI can 
be applied to study the reproducibility of the test. First we consider the case where 
k ≤ r − 1 , so the original test leads to rejection of H0 . Reproducibility of this test 
result is therefore the event that, if the test were repeated, also with n observations, 
then that would also lead to rejection of H0 . This will occur if X(r) > 𝜅0

p
 . The NPI 

lower and upper reproducibility probabilities for this event, as function of k ≤ r − 1 , 
are

Note that the dependence of these lower and upper probabilities on the value k is 
not explicit in the notation used for the terms on the right-hand side, but is due to 
the number of data xj that exceed �0

p
 . If the original test does not lead to rejection of 

H0 , so if k ≥ r , then reproducibility of the test is the event that the null hypothesis 
would also not get rejected in the future test. The NPI lower and upper reproducibil-
ity probabilities for this event, as function of k ≥ r , are

We consider the robustness of the reproducibility of the one-sided quantile test of 
H0 ∶ �p = �0

p
 versus H1 ∶ 𝜅p > 𝜅0

p
 . The original test leads to rejection of H0 if and 

only if k ≤ r − 1 , where k is the number of observations in the original sample x of 

RP(k) = P
(
X(r) > 𝜅0

p
|k
)
=

n+1∑
j=1

�

{
xj−1 > 𝜅0

p

}
P(X(r) ∈ Ij)

RP(k) = P
(
X(r) > 𝜅0

p
|k
)
=

n+1∑
j=1

�

{
xj > 𝜅0

p

}
P(X(r) ∈ Ij)

RP(k) = P
(
X(r) ≤ �0

p
|k
)
=

n+1∑
j=1

�

{
xj ≤ �0

p

}
P(X(r) ∈ Ij)

RP(k) = P
(
X(r) ≤ �0

p
|k
)
=

n+1∑
j=1

�

{
xj−1 ≤ �0

p

}
P(X(r) ∈ Ij)
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size n that are less than �0
p
 . Reproducibility of result of rejection of H0 is therefore 

the event that, if the test were repeated, also with n observations, then that would 
also lead to rejection of H0 . Let �0

p
∈ It = (xt−1, xt) , then the effect of adding � to any 

of the data observations, say xj which becomes x̃l , on the reproducibility of the quan-
tile test for that event is

If the original test led to not reject H0 , so if k ≥ r , then reproducibility of the test is 
the event that H0 would also not get rejected in the future test. The NPI-SC for the 
NPI lower and upper reproducibility probabilities for X(r) ≤ �0

p
 are

The NPI-SC for the NPI upper probability

So the NPI-RP for the quantile test is only affected if the change in the data changes 
the value of k, which is the number of observations less than �0

p
.

SCP(X(r)>𝜅
0
p
|k)(x(j, 𝛿)) =

{
0 if xj < 𝜅0

p
and x̃l < 𝜅0

p

P(X(r) ∈ It) if xj < 𝜅0
p

and x̃l > 𝜅0
p

SC
P(X(r)>𝜅

0
p
|k)(x(j, 𝛿)) =

{
0 if xj < 𝜅0

p
and x̃l < 𝜅0

p

P(X(r) ∈ It−1) if xj < 𝜅0
p

and x̃l > 𝜅0
p

SCP(X(r)<𝜅
0
p
�k)(x(j, 𝛿)) =

⎧
⎪⎪⎨⎪⎪⎩

0 if xj > 𝜅0
p

and x̃l > 𝜅0
p

0 if xj < 𝜅0
p

and x̃l < 𝜅0
p

P(X(r) ∈ It) if xj > 𝜅0
p

and x̃l < 𝜅0
p

−P(X(r) ∈ It−1) if xj < 𝜅0
p

and x̃l > 𝜅0
p

SC
P(X(r)<𝜅

0
p
�k)(x(j, 𝛿)) =

⎧
⎪⎪⎨⎪⎪⎩

0 if xj > 𝜅0
p

and x̃l > 𝜅0
p

0 if xj < 𝜅0
p

and x̃l < 𝜅0
p

P(X(r) ∈ It+1) if xj > 𝜅0
p

and x̃l < 𝜅0
p

−P(X(r) ∈ It) if xj < 𝜅0
p

and x̃l > 𝜅0
p

Table 8  SCRP(k)(x(j, �)) for 
n = 15

P(X(8) ≥ �0

0.75
|k) P(X(8) ≤ �0

0.75
|k)

k k̃ SCRP SC
RP

k k̃ SCRP SC
RP

1 0 0.00600 0.00110 9 8 − 0.14238 − 0.12656
2 1 0.01799 0.00600 10 9 − 0.12656 − 0.09930
3 2 0.03898 0.01799 11 10 − 0.09930 − 0.06770
4 3 0.06770 0.03898 12 11 − 0.06770 − 0.03898
5 4 0.09930 0.06770 13 12 − 0.03898 − 0.01799
6 5 0.12656 0.09930 14 13 − 0.01799 − 0.00600
7 6 0.14238 0.12656 15 14 − 0.00600 − 0.00110
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Example 4 Suppose that the original test has sample size n = 15 and we are inter-
ested in testing the null hypothesis that the third quartile, so the 75% quantile, of 
the underlying distribution is equal to a specified value �0

0.75
 against the alternative 

hypothesis that this third quartile is greater than �0
0.75

 , tested at significance level 
� = 0.05 . Using the Binomial distribution for the classical quantile test, this leads to 
the rule that H0 is rejected if x(8) > 𝜅0

0.75
 and H0 is not rejected if x(8) < 𝜅0

0.75
 . If k ≤ 7 

then the original test leads to H0 being rejected while it is not rejected for k ≥ 8 . 
Hence, the NPI lower and upper reproducibility probabilities are for the events 
X(8) > 𝜅0

0.75
 and X(8) < 𝜅0

0.75
 , respectively. Let k̃ denote to the number of observations 

that are less than �0
p
 based on the contaminated sample x(j, �).

Table 8 presents, in the first column, the NPI-SC for the NPI-RP for the event that 
the future test would also reject H0 if X(8) ≥ �0

0.75
 given all possible value of k in the 

original test. This NPI-RP for this event is only affected if k, the number of observa-
tions less than �0

0.75
 , changes, otherwise SC

[RP(k),RP(k)]
(x(j, �)) = 0 . The size of the 

effect for such an inference increases as the value of k increases.
Table 8 presents, in the second column, the NPI-SC for the test reproducibility 

if the original test did not reveal a significance affect, which is the event that the 
future test would also lead to not reject H0 , if X(8) < k0

0.75
 . The RP for X(8) < k0

0.75
 is 

only affected if xj < 𝜅0
0.75

 becomes xj + 𝛿 > 𝜅0
0.75

 . The NPI-SC for such an inference 
decreases as the value of k increase.

7.2.2  Precedence Test

As a second example of NPI for reproducibility of a statistical test based on order 
statistics, we consider a basic nonparametric precedence test. Such a test, first pro-
posed by [26], is typically used for comparison of two groups of lifetime data, where 
one wishes to reach a conclusion before all units on test have failed.

We consider the classical scenario with two independent samples. Let 
X(1) < X(2) < ⋯ < X(nx)

 be random quantities representing the ordered real-valued 
observations in a sample of size nx , drawn randomly from a continuously distributed 
population, which we refer to as the X population, with a probability distribution 
depending on location parameter �x . Similarly, let Y(1) < Y(2) < ⋯ < Y(ny) be random 
quantities representing the ordered real-valued observations in a sample of size ny , 
drawn randomly from another continuously distributed population, the Y popula-
tion, with a probability distribution which is identical to that of the X population 
except for its location parameter �y . We consider the hypothesis test for the locations 
of these two populations is H0 ∶ �x = �y versus H1 ∶ 𝜆x < 𝜆y , which is to be inter-
preted such that, under H1 , observations from the Y population tend to be larger than 
observations from the X population.

The precedence test considered in this section, for this specific hypothesis test 
scenario, is as follows. Given nx and ny , one specifies the value of r, such that the 
test is ended at, or before, the r-th observation of the Y population. For specific level 
of significance � , one determines the value k (which therefore is a function of � and 



 Journal of Statistical Theory and Practice           (2019) 13:12 

1 3

   12  Page 30 of 34

of r) such that H0 is rejected if and only if X(k) < Y(r) . The critical value for k is the 
smallest integer which satisfies

Note that the test is typically ended at the time T = min(X(k), Y(r)) , with the conclu-
sion that H0 is rejected in favour of the one-sided alternative hypothesis H1 , speci-
fied above, if T = X(k) , and H0 is not rejected if T = Y(r) . It is of interest to emphasize 
this censoring; continuing with the original test would make no difference at all to 
the test conclusion, but further observations would make a difference for the NPI 
reproducibility results, as discussed by [8].

The NPI approach for reproducibility of this two-sample precedence test consid-
ers again the same test scenario applied to future order statistics, and derives the 
NPI lower and upper probabilities for the event that the same overall test conclu-
sion will be derived, given the data from the original test. This involves the NPI 
approach for inference on the r-th future order statistic Y(r) out of ny future obser-
vations based on the data from the Y population, and similarly for the k-th future 
order statistic X(k) out of the nx future observations based on the data from the X 
population, where the values of r and k are the same as used for the original test (as 
we assume also the same significance level for the future test). Note, however, that 
there is a complication: for full specification of the NPI probabilities for these future 
order statistics, we require the full data from the original test to be available. But, as 
mentioned, the data resulting from the original precedence test typically have right-
censored observations for at least one, but most likely both populations, and these 
are all just known to exceed the time T at which the original test had ended. There 
are two perspectives on the study of reproducibility of such precedence tests. First, 
one can study the test outcome assuming that, actually, complete data were avail-
able, so all nx and ny observations of the X and Y populations, respectively, in the 
original test are assumed to be available. Secondly, one can consider inference for 
the realistic scenario with the actual data from the original test, so including right-
censored observations at time T [8].

The starting point for NPI-RP for the precedence test is to apply NPI for nx future 
observations, based on the nx original test observations from the X population, which 
are assumed to be fully available, and similarly for ny future observations based on 
the ny observations from the Y population. Using the results presented in Sect. 2, the 
following NPI lower and upper reproducibility probabilities are derived. First, if H0 
is rejected in the original test, so x(k) < y(r) , then

P(X(k) < Y(r)|H0) =

(
nx + ny
nx

)−1 r−1∑
j=0

(
j + k − 1

j

)(
ny − j + nx − k

ny − j

)
≤ 𝛼

RP = P(X(k) < Y(r)) =

nx+1∑
jx=1

ny+1∑
jy=1

�

{
x(jx) < y(jy−1)

}
P
(
X(k) ∈ Ix

jx

)
P
(
Y(r) ∈ I

y

jy

)

RP = P(X(k) < Y(r)) =

nx+1∑
jx=1

ny+1∑
jy=1

�

{
x(jx−1) < y(jy)

}
P
(
X(k) ∈ Ix

jx

)
P
(
Y(r) ∈ I

y

jy

)
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If H0 is not rejected in the original test, so x(k) > y(r) , then

We consider NPI-SC for the NPI-RP of the precedence test. As the NPI-RP infer-
ences for the precedence test depend monotonically on the combined ordering of 
the original test data, so the local change to the combined ordering of the data of 
the two populations in the original test leads to change both the NPI lower and 
upper probabilities for the event of interest. First we will consider the RP for the 
case that H0 is rejected in the original test, so xk < yr , then RP = P(X(k) < Y(r)) and 
RP = P(X(k) < Y(r)) . The effects of adding � to one of the observations in group Y, 
say yj which becomes yj + 𝛿 = ỹl , on RP and RP are

RP = P(X(k) > Y(r)) =

nx+1∑
jx=1

ny+1∑
jy=1

�

{
x(jx−1) < y(jy)

}
P
(
X(k) ∈ Ix

jx

)
P
(
Y(r) ∈ I

y

jy

)

RP = P(X(k) > Y(r)) =

nx+1∑
jx=1

ny+1∑
jy=1

�

{
x(jx) < y(jy−1)

}
P
(
X(k) ∈ Ix

jx

)
P
(
Y(r) ∈ I

y

jy

)

alpha=0.05 alpha=0.1

−1 0 1 2 3 4 −1 0 1 2 3 4
−0.04

0.00

0.04

0.08

δ

SC

LP

UP

Fig. 8  SCRP(x(2, �)) for X(10) > Y(6) and X(9) < Y(6)

Table 9  Times to insulating fluid breakdown

X sample 0.94 0.64 0.82 0.93 1.08 1.99 2.06 2.15 2.57 *
Y sample 1.34 1.49 1.56 2.10 2.12 3.83 * * * *
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If H0 is not rejected in the original test, so x(k) > y(r) , then RP = P(X(k) > Y(r)) and 
RP = P(X(k) > Y(r)) . The effects of adding � to yj in group Y, so yj becomes ỹl , on RP 
and RP are

Example 5 To illustrate the NPI-SC for the NPI-RP for the precedence test, we con-
sider a data set presented by [27] consisting of six groups of times (in minutes) to 
breakdown of an insulating fluid subjected to different levels of voltage. These times 
are presented in Table 9. These data were also used by [8]. Both samples are of size 
10, and we assume that the precedence testing scenario discussed in this section is 
followed, so we assume that the population distributions may only differ in location 
parameters, with H0 ∶ �x = �y tested versus H1 ∶ 𝜆x < 𝜆y . We assume that r = 6 , so 
the test is set up to end at the observation of the sixth failure time for the Y popula-
tion. We discuss both significance levels � = 0.05 and � = 0.1 . The missing values 
in Table 5 are only known to exceed 3.83.

For significance level � = 0.05 , the critical value is k = 10 , while for � = 0.1 
this is k = 9 . Therefore, the provided data will lead, in this precedence test, to 
rejection of H0 at 10% level of significance but not to rejection of H0 at 5% level 
of significance. For both scenarios, the NPI lower and upper reproducibility prob-
abilities, by using only the actual outcome without any assumption on the order-
ing of the right-censored observations, are RP = P(X(10) > Y(6)) = 0.3871 

SCP(X(k)<Y(r))
(y(j, 𝛿))

=

⎧
⎪⎨⎪⎩

0 if yj < xd and ỹl < xd
P
�
Y(r) ∈ I

y

l+1

�
× P

�
X(k) ∈ Ix

d

�
if yj < xd and xd < ỹl

P
�
Y(r) ∈ I

y

l+1

�
×
�
P
�
X(k) ∈ Ix

d

�
+ P

�
X(k) ∈ Ix

d+1

��
if yj < xd < xd+1

and xd < xd+1 < ỹl

SC
P(X(k)<Y(r))

(y(j, 𝛿))

=

⎧
⎪⎨⎪⎩

0 if yj < xd and ỹl < xd
P
�
Y(r) ∈ I

y

l

�
× P

�
X(k) ∈ Ix

d+1

�
if yj < xd and xd < ỹl

P
�
Y(r) ∈ I

y

l

�
×
�
P
�
X(k) ∈ Ix

d+1

�
+ P

�
X(k) ∈ Ix

d+2

��
if yj < xd < xd+1
and xd < xd+1 < ỹl

SCP(X(k)>Y(r))
(y(j, 𝛿))

=

⎧⎪⎨⎪⎩

0 if yj < xd and ỹl < xd
−P(Y(r) ∈ I

y

l
) × P(X(k) ∈ Ix

d+1
) if yj < xd and xd < ỹl

−P(Y(r) ∈ I
y

l
) ×

�
P(X(k) ∈ Ix

d+1
) + P(X(k) ∈ Ix

d+2
)
�

if yj < xd < xd+1
and xd < xd+1 < ỹl

SC
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and RP = P(X(10) > Y(6)) = 0.8669 for � = 0.05 . While for � = 0.1 , 
RP = P(X(9) < Y(6)) = 0.3029 and RP = P(X(9) < Y(6)) = 0.7079 . Let us now assume 
that we added an increasing value of � to x2 = 0.64 , then we examine its effect on 
the NPI lower and upper reproducibility probabilities.

The left plot of Fig.  8 presents the NPI-SC for the NPI-RP for the event that 
X(10) > Y(6) , as a function of � . The results clearly illustrate that NPI-SC for the NPI-
RP for precedence test is a step function, so the NPI-RP is only affected if x2 + � 
changes its rank among the Y observations. If x2 + 𝛿 > 3.83 = y6 then x2 + � is 
treated as right-censored observation in the x group, and the lower and upper repro-
ducibility probabilities are achieved by taken the minimum and the maximum NPI 
lower and upper probability respectively, for reproducibility over all possible order-
ings for the right-censored. The maximum NPI-SC for X(10) > Y(6) is achieved when 
x2 + � becomes very large and exceeds y6.

The right plot of Fig. 8 presents the NPI-SC for the lower and upper reproduc-
ibility probabilities for the event X(9) < Y(6) , as a function of � . Increasing the values 
of � such that it affects the x2 + � rank among the Y observations leads to decrease of 
the value of the NPI-SC. We consider only a small value of � , as if x2 + � exceeds y6 
that will change the original test conclusion and also the reproducibility probability.

8  Concluding Remarks

This paper is a first step towards robustness theory for the NPI setting, and we looked 
at some examples involving inferences on future order statistics. We found that some 
of the concepts from classical statistics cannot immediately be applied, because we 
do not use estimators but predictive inferences which are limited in value between 
[0, 1]. So, inspired by the classical concepts we have defined new concepts which 
are related to NPI. We then explored their use for some inferences presented in the 
earlier sections of this paper. We investigated robustness of the mean and the median 
for the m future observations. The robustness of the inference involving the median 
of the m future observations is a step function, whereas for the mean is continuously 
changing function, but the size of the effect is close to the median or less in some 
cases. For future research it will be of interest to consider other robustness concepts 
for NPI, and also, of course, robustness of other NPI methods. Further details, exam-
ples and discussion of the tests presented in this paper are given in the PhD thesis of 
[1].

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, 
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