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2Ludwig-Maximilians-Universität, Universitäts-Sternwarte, Scheinerstr. 1, D-81679 München, Germany
3Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching, Germany
4Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH, UK
5Institut d’Astrophysique Spatiale, CNRS (UMR 8617), Univ. Paris-Sud, Université Paris-Saclay, Bât. 121, F-91405 Orsay, France
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ABSTRACT
We investigate the accuracy of weak lensing simulations by comparing the results of five inde-
pendently developed lensing simulation codes run on the same input N-body simulation. Our
comparison focuses on the lensing convergence maps produced by the codes, and in particular
on the corresponding PDFs, power spectra, and peak counts. We find that the convergence
power spectra of the lensing codes agree to � 2 per cent out to scales � ≈ 4000. For lensing
peak counts, the agreement is better than 5 per cent for peaks with signal-to-noise � 6. We
also discuss the systematic errors due to the Born approximation, line-of-sight discretization,
particle noise, and smoothing. The lensing codes tested deal in markedly different ways with
these effects, but they none-the-less display a satisfactory level of agreement. Our results
thus suggest that systematic errors due to the operation of existing lensing codes should be
small. Moreover their impact on the convergence power spectra for a lensing simulation can
be predicted given its numerical details, which may then serve as a validation test.

Key words: gravitational lensing: weak – methods: numerical – cosmology: theory – large-
scale structure of Universe.

1 IN T RO D U C T I O N

The images of distant galaxies are weakly sheared due to the
differential deflection of their light by the gravity of the intervening
cosmic large-scale structure. This gravitational lensing effect is

� E-mail: hilbert@mpa-garching.mpg.de(SH);
barreira@mpa-garching.mpg.de(AB)

commonly referred to as weak lensing or cosmic shear (see e.g.
Bartelmann & Schneider 2001; Kilbinger 2015; Mandelbaum 2018,
for reviews), and it carries information about both the space–time
geometry and the large-scale matter distribution of the Universe.
Cosmic shear observations therefore prove extremely useful in
tests of cosmological models and constraints on cosmological
parameters, as the analyses of the Kilo Degree Survey (KiDS;
Hildebrandt et al. 2017, 2020), the Dark Energy Survey (DES;
Abbott et al. 2018; Troxel et al. 2018), and the Subaru Hyper
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Suprime-Cam (HSC) survey (Hamana et al. 2019; Hikage et al.
2019) have recently demonstrated.

Upcoming wide-field imaging surveys such as the Euclid satellite
(Laureijs et al. 2011),1 the Large Synoptic Survey Telescope (LSST
Dark Energy Science Collaboration 2012)2 (LSST), or the Wide
Field Infrared Survey Telescope (Spergel et al. 2013)3 (WFIRST)
will allow us to measure the cosmic shear signal over a wide range of
angular scales and redshifts with very small statistical uncertainties
(e.g. Laureijs et al. 2011). To fully exploit this unprecedented sta-
tistical power, we require not only a thorough understanding of the
systematic errors inherent in the measurements themselves, but also
very accurate theoretical predictions for cosmic structure formation
and its associated cosmic shear signal. Numerical simulations are
an extremely valuable and widespread tool in gravitational lensing
analysis. They can be used to compute predictions for gravitational
lensing observables accurately in the non-linear/small-scale regime
of structure formation (which can be used to calibrate faster semi-
analytical methods to compute gravitational lensing predictions),
as well as to build synthetic mock lensing data to be used in tests
of different methods to measure the lensing shear signal from
observations. Lensing simulations are, however, also subject to
statistical and systematic errors themselves, and these must be well
understood in order to appropriately apply and interpret their output.

Various methods for simulating gravitational lensing observa-
tions have been developed over the past few decades. They differ
in the intended application, which naturally leads to differences in,
for instance, the way the deflector mass is distributed and modelled,
or in the method to compute the gravitational light deflection and
distortion caused by the deflecting mass. For example, stars as
deflectors in microlensing studies have been modelled as point
masses (e.g. Paczynski 1986; Wambsganss, Paczynski & Katz
1990; Kochanek 2004). Analytic extended mass profiles have
been used to represent the lensing mass of galaxies and clusters
in strong lensing simulations (e.g. Blandford & Kochanek 1987;
Grossman & Narayan 1988; Bezecourt, Pello & Soucail 1998;
Metcalf & Madau 2001; Oguri 2002; Giocoli et al. 2012; Xu et al.
2015; Despali et al. 2018). Other simulations of the strong lensing
signal caused by galaxies and clusters employ ‘non-parametric’
mass distributions extracted from N-body and hydrodynamical
simulations, either alone or in combination with analytic mass
profiles (e.g. Bartelmann & Weiss 1994; Meneghetti et al. 2000,
2017; Horesh et al. 2005, 2011; Puchwein et al. 2005; Hilbert et al.
2007, 2008; Puchwein & Hilbert 2009; Xu et al. 2009).

There is also a variety of methods to simulate the weak lensing
signal caused by the large-scale distribution of matter in the
Universe, which is the signal we focus on in this paper. Some
simulations adopt analytical prescriptions (e.g. Kainulainen &
Marra 2011; Giocoli et al. 2017) or realizations of lognormal
distributed fields (e.g. Xavier, Abdalla & Joachimi 2016) to describe
the large-scale mass distribution. A more common approach has
been to use the matter distribution generated by N-body or hydro-
dynamical simulations of cosmic structure formation. Among these,
many methods employ a multiple-plane (e.g. Wambsganss, Cen &
Ostriker 1998; Jain, Seljak & White 2000; Hamana & Mellier 2001;
Hilbert et al. 2009; Harnois-Déraps, Vafaei & Van Waerbeke 2012;
Petkova, Metcalf & Giocoli 2014; Petri 2016) or multiple-sphere
algorithm (e.g. Das & Bode 2008; Fosalba et al. 2008; Becker 2013;

1http://www.euclid-ec.org
2http://www.lsst.org
3https://wfirst.gsfc.nasa.gov

Fabbian, Calabrese & Carbone 2018; Gouin et al. 2019), in which
the continuous mass distribution is projected on to a set of discrete
2D mass distributions that act as deflectors along the line-of-sight.
There are also methods that bypass the line-of-sight discretization
and make use of the 3D mass distribution of the N-body simulation
outputs (e.g. Couchman, Barber & Thomas 1999; Vale & White
2003; Carbone et al. 2008; Kiessling et al. 2011; Li et al. 2011;
Barreira et al. 2016; Breton et al. 2019)

The different weak-lensing simulation methods have different
advantages and disadvantages in terms of speed and memory re-
quirements, but importantly, the type and number of approximations
made in them can also have an impact on their accuracy. Even for
numerical codes that adopt overall the same lensing simulation
method, there can still be differences in the final result, as different
implementations may handle different approximations differently.
Published work on weak lensing simulations usually contains tests
of the correctness and accuracy of the numerical algorithms, but
what is exactly tested and the way it is reported can vary widely,
which makes comparisons across the literature hard. The importance
to establish benchmark tests of the accuracy of these methods
is therefore hard to overstate, specially given the ever increasing
precision of the observational data (Krause et al. 2017).

Specifically in this paper, we investigate the current level of
accuracy of weak lensing simulations by comparing the results
of different lensing simulation codes ran on the same output of
an N-body simulation of cosmic structure formation. We compare
five codes: HILBERT (Hilbert et al. 2007, 2009) and MAPSIM

(Giocoli et al. 2015), which are post-processing multiple-plane
lensing codes; MICE (Fosalba et al. 2008, 2015) and LENS2HAT

(Fabbian & Stompor 2013; Calabrese et al. 2015), which are post-
processing multiple-sphere codes; and RAY-RAMSES (Barreira et al.
2016), which runs on-the-fly with the simulation and uses the
3D distribution directly. We focus the comparison on the lensing
convergence maps, their associated power spectra, and probability
distribution functions (PDFs), as well as lensing peaks counts. We
also comment on systematic errors such as those associated with
the Born approximation, particle noise, smoothing, and the line-
of-sight discretization for multiple-plane/sphere methods. Based
on these results, we outline and discuss a procedure to help
validate the output of weak lensing simulations and quantify their
accuracy.

The code comparison we present in this paper adds to a large body
of work on the validation of numerical N-body codes and algorithms
to extract cosmological information from their output. Some of the
codes/methods already subject to similar testing include: gravity-
only N-body algorithms (Schneider et al. 2016), including non-
standard gravity (Winther et al. 2015), galaxy formation codes
(Scannapieco et al. 2012), methods to identify haloes/subhaloes
(Knebe et al. 2011; Onions et al. 2012), galaxies (Knebe et al.
2013), voids (Colberg et al. 2008), and tidal debris (Elahi et al.
2013) from the output of N-body simulations, codes to construct
halo merger trees (Srisawat et al. 2013) and fast generation of
halo catalogues (Chuang et al. 2015), including comparing the
covariances of their two- (Blot et al. 2019; Lippich et al. 2019) and
three-point statistics (Colavincenzo et al. 2019). The importance of
validation analyses such as these is crucial to identify and mitigate
sources of systematic errors in our theoretical predictions. This
serves as the main motivation for the weak-lensing code comparison
analysis carried out here.

This paper is organized as follows. In Section 2, we review the
main theoretical aspects of weak gravitational lensing and how
accurately can one expect numerical simulation methods to operate.
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In Section 3, we describe the setup of our code comparison analysis,
including the underlying N-body simulation of cosmic structure
and the operation of the lensing simulation codes that participate
in the comparison. Our main comparison results are presented and
discussed in Section 4, where we also quantify systematic errors
at play in lensing simulations. We summarize and conclude in
Section 5.

2 TH E O RY

In this section, we display some of the main equations needed
to understand weak-lensing observables, with emphasis on the
calculation of two-point statistics, including how it can be affected
by numerical resolution issues in lensing simulations (such as
discretization of the line-of-sight and particle shot-noise).

2.1 Weak gravitational lensing

While travelling from source to observer, light will be deflected
by the gravity of intervening matter structures (see e.g. Bartel-
mann & Schneider 2001; Kilbinger 2015; Mandelbaum 2018, for
reviews). In a weakly perturbed Friedmann–Lemaı̂tre–Robertson–
Walker universe, the angular (unobserved) position β of a source
at comoving line-of-sight distance χ s and redshift zs = z(χ s) and
with (observed) image position θ on the sky is given to very high
accuracy by:

β(θ , zs) = θ − 2

c2

∫ χs

0
dχd

fds

fdfs
∇β�

(
β(θ , χd), χd, zd

)
. (1)

Here, c denotes the speed of light, fds = fK(χ s − χd), fd = fK(χd),
and fs = fK(χ s), where fK(χ ) denotes the comoving angular diameter
distance for comoving line-of-sight distance χ , and zd = z(χd)
the redshift corresponding to comoving line-of-sight distance χd.
Furthermore, ∇β denotes the gradient w.r.t. the angular position β,
and �

(
β, χd, zd

)
denotes the Newtonian gravitational potential at

position (β, χd) and redshift zd. On a flat sky, the Jacobian4

∂β

∂θ
=

(
1 − κ − γ1 −γ2 − ω

−γ2 + ω 1 − κ + γ1

)
(2)

defines the lensing convergence κ , lensing shear γ = γ 1 + iγ 2, and
the lensing rotation ω. From equation (1) it follows that

∂βi(θ, zs)

∂θj

= δij − 2

c2

∫ χs

0
dχd

fds

fdfs

×∂2�
(
β(θ , χd), χd, zd

)
∂βi∂βk

∂βk

(
θ , χd

)
∂θj

, (3)

where δij is the Kronecker delta symbol. Replacing β on the RHS
by the unperturbed position θ in equation (3) yields the first-order
(in �) approximation:

∂βi(θ, zs)

∂θj

= δij − 2

c2

∫ χs

0
dχd

fds

fdfs

∂2�
(
θ , χd, zd

)
∂θi∂θj

, (4)

which is sometimes called the Born approximation.5 Note that the
rotation ω vanishes in this approximation.

4For simplicity, we discuss these equations for a flat sky with β and θ as
2D Cartesian coordinate vectors. For a spherical sky, the partial derivatives
w.r.t. the angular positions have to be replaced by covariant derivatives on
the sphere (Becker 2013).
5The term ‘Born approximation’ is not used uniformly throughout the
literature, and sometimes instead refers to an equation obtained by just

If one makes use of the Poisson equation for the gravitational
potential � and also neglects boundary terms at the observer and
source, one obtains the following approximation for the conver-
gence:

κ(θ, zs) =
∫ χs

0
dχd qds δm

(
θ , χd, zd

)
(5)

with the lensing efficiency factor

qds = 3H 2
0 
m

2c2
(1 + zd)fd

fds

fs
, (6)

where δm

(
θ , χd, zd

)
is the matter density contrast.

Assuming statistical isotropy, the two-point correlation ξκ (ϑ, zs)
of the convergence κ for sources at angular separation ϑ and redshift
zs can then be written as:

ξκ (|ϑ |, zs) = 〈κ(θ, zs)κ(θ + ϑ, zs)〉

=
∫ χs

0
dχd qds

∫ χs

0
dχ ′

d q ′
ds

× 〈
δm

(
θ , χd, zd

)
δm

(
θ + ϑ, χ ′

d, z
′
d

)〉
. (7)

Here, 〈. . . 〉 denotes the expectation for a given (statistically homo-
geneous and isotropic) ensemble of universes.

Assuming δm is slowly evolving with redshift and matter correla-
tions are short-ranged compared to χ s, one can apply a Limber-type
approximation to obtain:

ξκ (ϑ, zs) =
∫ χs

0
dχd q2

ds ξ⊥
m

(
ϑχd, zd

)
, (8)

where

ξ⊥
m

(
R, z

) =
∫ ∞

−∞
dLξm

(√
R2 + L2, z

)
, (9)

is the line-of-sight projection of the 3D two-point correlation func-
tion ξm(r, z) of the matter density contrast at comoving separation
r at redshift z. The corresponding approximation to the spherical
harmonic power spectrum Cκ (�) of the convergence as a function
of harmonic wavenumber � reads:

Cκ (�) =
∫ χs

0
dχd q2

ds Pm (�/χd, zd) , (10)

where Pm (k, zd) denotes the 3D matter power spectrum for
wavenumber k at redshift zd.

In cosmic-shear surveys, one aims to estimate the shear from the
observed shapes of galaxy images. Given a direction ϑ on the sky,
one may define a tangential and a cross shear component as

γT(θ , zs, ϑ) = 
 [−e−2iϕ(ϑ)γ (θ , zs)
]
, (11a)

γ×(θ , zs, ϑ) = � [−e−2iϕ(ϑ)γ (θ , zs)
]
, (11b)

where ϕ(ϑ) is the position angle of ϑ . Using these, one may define
the shear correlation functions

ξ±(|ϑ |, zs) = 〈γT(θ, zs,ϑ)γT(θ + ϑ, zs, ϑ)〉
± 〈γ×(θ, zs, ϑ)γ×(θ + ϑ, zs, ϑ)〉 . (12)

replacing ∂βi
∂βk

�(β, χd, zd) by ∂θi
∂θk

�(θ , χd, zd) in equation (3), but
keeping the factor ∂θj

βk .
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Within the first-order approximation, we have that

ξ+(ϑ, zs) = ξκ (ϑ, zs) (13a)

ξ−(ϑ, zs) = ξκ (ϑ, zs)

+
∫ ϑ

0
dϑ ′

(
4ϑ ′

ϑ2
− 12ϑ ′3

ϑ4

)
ξκ (ϑ ′, zs). (13b)

The shear γ transforms like a spin-2 field and thus can be
decomposed into rotationally invariant E and B modes (Stebbins
1996; Kamionkowski, Kosowsky & Stebbins 1997; Zaldarriaga &
Seljak 1997). When employing the flat-sky, first-order (Born), and
Limber approximations, the shear E- C(EE)

γ (�) and B-mode C(BB)
γ (�)

power spectra obey the following relations:

C(EE)
γ (�) = Cκ (�) , (14a)

C(BB)
γ (�) = Cω (�) = 0, (14b)

where Cω (�) is the lensing rotation power spectrum.
Corrections to the flat-sky approximation for the convergence and

shear power spectra become relevant only on very large scales with
� < 102 (e.g. Hu 2000; Castro, Heavens & Kitching 2005; Becker
2013; Kilbinger et al. 2017). For example, the relation between
the convergence and shear power spectrum is modified by a factor
[(� + 2)(� − 1)]/[�(� + 1)] on a spherical sky, which differs by
< 1 per cent from unity for � ≥ 15. Corrections to the Limber
approximation also only become relevant on very large scales. For
� � 102, such corrections to the convergence and shear power
spectra are expected to be below 1 per cent (Angulo & Hilbert
2015; Kilbinger et al. 2017).

Second- and higher order contributions in the gravitational
potential � to the convergence and shear yield small corrections
to their power spectra. These are expected to be at least two orders
of magnitude below the leading order terms for 102 � � � 104 (see
e.g. Cooray & Hu 2002; Hirata & Seljak 2003; Shapiro & Cooray
2006; Hilbert et al. 2009; Krause & Hirata 2010; Petri, Haiman &
May 2017a). Note, however, that beyond-Born corrections may be
more significant for other weak-lensing quantities. In particular,
the galaxy–galaxy lensing shear profiles (e.g. Ziour & Hui 2008;
Hilbert et al. 2009; Ghosh, Durrer & Sellentin 2018; Simon &
Hilbert 2018), higher order moments of the convergence field (Petri
et al. 2017a) and lensing bispectrum (Pratten & Lewis 2016) may
require one to go beyond first order and undeflected light rays (Petri,
Haiman & May 2017b).

Higher order terms also cause a non-vanishing rotation ω, and
create a small B-mode component in the shear field that is likely
below the detection threshold even for upcoming galaxy lensing
surveys. The amplitude of these corrections depends however on
the distance to the lensing sources (the farther the sources the
higher the number of deflections), which has been motivating studies
of its importance for future analysis of the lensing of the cosmic
microwave background (Lewis & Pratten 2016; Marozzi et al. 2016;
Pratten & Lewis 2016; Fabbian et al. 2018).

2.2 Weak lensing power spectra in simulations

The convergence and shear power spectra measured from simu-
lated weak-lensing observations may differ from the pure theory
predictions (10) and (14a,b) for a number of reasons. First, there is
sample variance because every simulation set covers only a finite
number of realizations of a given area fraction and depth. The
impact of sample variance can however be estimated analytically,
by resampling techniques, or by generating many realizations of the
simulated lensing maps.

Secondly, there is the issue of the intrinsic accuracy of equa-
tions (10) and (14a,b), which assume a flat sky and use the
Born and the Limber approximation. As we noted in the previous
subsection, corrections from going beyond these approximations on
the convergence and shear power spectra are however expected to
be well below 1 per cent for 102 � � � 104, which is sufficiently
small even for surveys like Euclid, LSST, or WFIRST. Hence, taking
the validity of these approximations as established thus allows one
to actually use them in internal self-consistency tests: codes ran in
and out of these approximations should return spectra that differ
comfortably by less than 1 per cent on the relevant scales.

Thirdly, the methods to measure the convergence and shear from
the simulations may introduce biases. In this work, we do not
consider possible issues due to, e.g. differences between shear γ

and reduced shear g = γ /(1 − κ) (which is more closely related
to observed galaxy ellipticities) or noisy and biased image shape
measurements. Instead we assume that we have bias- and noise-free
measurements of the convergence (except in Section 4.3, when we
also add Gaussian random noise to the simulated convergence maps
before we count lensing peaks).

Fourthly, numerical approximations (smoothing, line-of-sight
projections, particle discreteness, etc.) employed in the lensing
simulations may impact the simulated convergence and shear power
spectra in various ways. However, with sufficient knowledge of the
numerical details of the simulations, one may be able to account
for some of these effects in a modified theory prediction for the
convergence and shear power spectra. One may then compare these
modified predictions with the measured power spectra as part of a
validation procedure for the lensing simulations (see e.g. Section 3
of Fosalba et al. 2008).

As an example, consider a lensing simulation based on an N-
body simulation of cosmic structure formation. In that case, the
matter power spectrum P (sim)

m (k, z) going into the lensing simulation
can be described by a continuous component and a shot noise
component due to sampling of the density field by a finite number
of particles/mass elements in the simulation:

P (sim)
m (k, z) = P (cont)

m (k, z) + P (sn)
m (k, z) . (15)

The continuous component P (cont)
m (k, z) should closely resemble

the theoretical power spectrum Pm (k, z) at least on the scales repre-
sented well by the N-body simulation, but deviates more strongly on
very large and very small scales due to the finite simulation box size
and resolution. The shot-noise term P (sn)

m (k, z) is usually sufficiently
well described by white noise with an amplitude given by the
inverse particle density, P (sn)

m (k, z) = V N−1
p , where V denotes the

simulation volume, and Np denotes the simulation particle number
(assumed to have the same mass).

As a first step to adjust the prediction for the convergence power
spectra from the simulation, one may replace the theoretical power
spectrum with the power spectrum measured from the N-body
simulation:

C(sim)
κ (�) =

∫ χs

0
dχd q2

ds P (sim)
m (�/χd, zd) . (16)

Further, if the matter distribution of the simulation is only available
at a finite number of snapshots at redshifts, z

(i)
d , i = 1, . . . , one can

write

C(sim)
κ (�) =

∑
i

∫ χ
(i,hi)
d

χ
(i,lo)
d

dχd q2
ds P (sim)

m

(
�/χd, z

(i)
d

)
, (17)

where χ
(i,lo)
d and χ

(i,hi)
d denote the lower and upper boundary of

the slice of the observer’s backward light-cone filled by the matter
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Figure 1. Sketch of the light-cone setup. The black solid lines represent the five 512 Mpc h−1 simulation boxes that are tiled to encompass the 10 × 10 deg2

light-cone that extends out to zs = 1. The light-cone geometry is depicted by the red solid line. The grey shaded slices mark the comoving distance (in the
(0,0,1) (zcoord.) direction) covered by each of the 90 simulation snapshots. The comoving volume of the right-most simulation box that corresponds to z > zs

(black) is never used in the calculations. In this work, all five simulation boxes correspond to the same N-body simulation, and hence, there is repetition of
structure along the line-of-sight (this is however not important for our code comparison results).

distribution from snapshot i at redshift z
(i)
d . If the lensing simulation

employs lens planes at distances χ
(i)
d with one plane per snapshot and

with the matter projected on to lens planes with parallel projection,
then we can write

C(sim)
κ (�) =

∑
i

(
χ

(i,hi)
d − χ

(i,lo)
d

)

×q
(i)
ds

2
P (sim)

m

(
�/χ

(i)
d , z

(i)
d

)
, (18)

where q
(i)
ds is the lensing efficiency at z(i)

d . Finally, if all of the binning,
interpolation, and smoothing schemes employed by the lensing
simulations in their various steps can be effectively described by
some convolution of the 3D matter distribution with a window
function W with a fixed comoving smoothing scale, then the
prediction for the simulated convergence power spectrum can be
written as:

C(sim)
κ (�) =

∑
i

(
χ

(i,hi)
d − χ

(i,lo)
d

)

×q
(i)
ds

2
Ŵ

(
�/χ

(i)
d

)
P (sim)

m

(
�/χ

(i)
d , z

(i)
d

)
, (19)

where Ŵ (k) denotes the Fourier transform of filter W (see Sec-
tion 4.4.3 for a specific application).

3 ME T H O D S

In this section, we describe the numerical methods that participate
in this comparison project. This includes the lensing simulation
codes themselves (HILBERT, LENS2HAT, MAPSIM, MICE, and RAY-
RAMSES), as well as the N-body simulation that provides the
common realization of large-scale structure on which they perform
their calculations.

3.1 N-body simulation and light-cone geometry

We base our lensing simulation code comparison on a common
N-body simulation of cosmic structure formation in a spatially
flat standard cold-dark-matter cosmology with a cosmological
constant. The assumed cosmological parameters are: a matter
density parameter 
m = 0.32, a baryon density parameter 
b =
0.049, an amplitude parameter σ 8(z = 0) = 0.83, spectral index ns =
0.96 for the initial density power spectrum, and a Hubble constant

H0 = h100 km s−1 Mpc−1 with h = 0.67. In this work, we ignore
the effects of the energy density of radiation, as well as massive
neutrinos.

The simulation is carried out with the adaptive-mesh-refinement
(AMR) code RAMSES in a cubic box of side length L = 512 h−1 Mpc
with 10243 matter tracer particles from z = 99 to redshift z = 0.
The interpolation between the particle positions and the positions
of the AMR mesh cells (needed to construct the density on the
AMR grid and also evaluate the forces at the particle positions)
is done with a cloud-in-cell (CIC) scheme. The cell refinement
criterion adopted is 8, i.e. an AMR cell is split into eight child-cells
if the particle number in the cell exceeds 8. The initial conditions
are generated with second-order Lagrangian perturbation theory
using the routines implemented in the PINOCCHIO code (Monaco,
Theuns & Taffoni 2002; Munari et al. 2017), which follow closely
those of the initial conditions code 2LPTIC (Scoccimarro 1998). The
initial conditions are generated using the linear power spectrum
computed by the CAMB code (Lewis, Challinor & Lasenby 2000)
at z = 0, with its amplitude rescaled to z = 99 using the linear
growth factor of our fiducial cosmology. This ensures that the non-
negligible contribution of radiation at z = 99, that CAMB captures
but which we omit from the N-body simulation, does not cause
discrepancies at the lower redshifts of interest.

In this work, we consider a single galaxy source redshift zs =
1 and the particle information in the simulation is outputted at
90 redshift values between z = zs = 1 and z = 0. The output
times are equally spaced in comoving distance χ (z) with intervals
�χ = 25.6 h−1Mpc. By tiling up these 90 simulation snapshots one
can construct a realization of the time evolution of cosmic large-
scale structure that encompasses a light-cone with 10 × 10 deg2 out
to χs = χ (zs) ≈ 2286 h−1 Mpc. We place the observer at (L/2, L/2,
0) in Cartesian box coordinates, with the central line of sight of the
observer’s backward light-cone chosen along the (0,0,1) direction.
This lensing light-cone geometry is depicted in Fig. 1.

All 90 snapshots are from the same N-body simulation, and as
a result, the same large-scale structures appear at different epochs
along the light-cone (most notably closer to the centre of the
field-of-view). This issue can be avoided by running five different
N-body simulations, each providing 20 snapshots along the light-
cone (cf. five black boxes drawn in Fig. 1). When comparing results
using just one N-body simulation to results using five simulations
for tests, we do not detect any significant impact on our results,
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310 S. Hilbert et al.

Table 1. Summary of the key features of the lensing simulation codes compared in this paper. The entries ‘w/ development’ indicate that the code versions
used do not immediately admit the corresponding feature, but that there is no impediment for it to be implemented with further development.

Name HILBERT LENS2HAT MAPSIM MICE RAY-RAMSES

Code paper Hilbert et al. (2009) Fabbian et al. (2018) Giocoli et al. (2015) Fosalba et al. (2008) Barreira et al. (2016)
Code type Post-process Post-process Post-process Post-process On the fly

(multiple plane) (multiple sphere) (multiple plane) (multiple sphere)
LOS projection � to central LOS Radial Radial Radial Radial
LOS resolution Particle outputs Particle outputs Particle outputs Particle outputs RAMSES time steps
Ray grid scheme Regular grid HEALPIX6 Regular grid HEALPIX Regular grid
Full-sky maps w/ development � w/ development � w/ development
Beyond-Born � � w/ development w/ development w/ development

6Despite adopting a HEALPIX grid for this work, LENS2HAT supports ray-tracing on arbitrary isolatitudinal grids on the sphere that are symmetric with respect
to the equator. See Fabbian & Stompor (2013) and references therein for more details.

which focus on the differences between numerical methods for a
fixed realization of the large-scale structure (with the exact degree
of realism of such a realization being of secondary importance).
We thus report only the results using a single N-body simulation for
brevity.

We note also that our main goal is to assess the accuracy of the
various lensing codes on their lensing predictions for small angular
scales, for which our simulated field of view is sufficient. Our field
of view is appreciably smaller than the expected area for Euclid
(100 deg2 versus 15 000 deg2), but our comparison analysis remains
of interest for such wide-field imaging surveys since a significant
portion of the constraining power comes from the smallest scales.
Further, on larger angular scales, calculations based on linear theory
are sufficient and the lensing codes tested here are not strictly needed
to obtain theoretical predictions.

3.2 Lensing simulations

We refer to the lensing simulation codes that participate in this
comparison project as the HILBERT (Hilbert et al. 2007, 2009),
LENS2HAT (Fabbian & Stompor 2013; Calabrese et al. 2015; Fabbian
et al. 2018), MAPSIM (Giocoli et al. 2015), MICE (Fosalba et al. 2008,
2015), and RAY-RAMSES (Barreira et al. 2016) codes. The main data
produced by these codes for this analysis are lensing convergence
maps with 20482 pixels on a regular mesh that covers a 10 × 10 deg2

field of view. This default pixel resolution corresponds to an angular
resolution of ≈ 18 arcsec (due to the details of their operation, the
LENS2HAT and MICE codes will work at slightly lower resolution).

The main goal of this paper is to evaluate the level of agreement
between these maps for a number of different summary statistics.
In the remainder of this section, we describe, in alphabetical order,
the main aspects of the operation of these lensing simulation codes.
We shall be succinct in the description and we refer the interested
reader to the relevant cited literature for more details on their
operation. Table 1 summarizes the main key features of the lensing
simulation codes.

3.2.1 HILBERT

The HILBERT lensing simulation code is described in Hilbert et al.
(2007, 2009). The code implements a multiple-lens-plane algorithm
in the flat-sky approximation, and it is capable of computing
convergence and shear fields both in full ray-tracing mode with
multiple light deflections and lens–lens coupling, and within the
Born approximation with unperturbed ray trajectories and without
lens–lens coupling.

In the first step of the code operation, the backward light-cone
up to the source redshift zs = 1 is divided into 90 redshift slices
of 25.6 h−1 Mpc comoving thickness. Each slice is filled with the
matter distribution of a snapshot of the N-body simulation. The
matter of each slice is projected parallel to the (0,0,1) direction
on to a lens plane located at the centre of the slice. From the
matter on the lens planes, the 2D lensing potential and its first and
second derivatives are computed using a particle-mesh particle-
mesh (PMPM) method. On each lens plane, a coarse mesh with
16 3842 mesh points and side length 512 h−1 Mpc spans the whole
cross-section of the box. One or more finer meshes with 81922

mesh points and 5 h−1 kpc mesh spacing are used to cover the
intersection of the light-cone with each lens plane. The simulation
particles are assigned to the 2D mesh points using CIC assignment.
The matter distribution on the meshes is smoothed further with a
Gaussian kernel with a constant comoving width σG = 10 h−1 kpc
per dimension. Thus the smoothing is well captured by a kernel
Ŵ in comoving harmonic space that is a product of the (circularly
averaged) CIC mass assignment kernel and a Gaussian smoothing
kernel:

Ŵ (k) = sinc

(
dfinek

2

)4

exp

(
−σ 2

Gk2

2

)
, (20)

where k denotes the comoving wavenumber, and dfine = 5 h−1 kpc
denotes the fine mesh spacing.

The coarse meshes are used to compute a long-range low-
pass filtered version of the lensing potential from the projected
density using Fast Fourier Transforms (FFT). From that long-range
potential, the first and second derivatives on the mesh points are
computed using finite differencing. Similarly, the fine meshes are
used to compute the complementary high-pass filtered short-ranged
part of the lensing potential and its derivatives.

Light rays are then traced back from the observer through the
series of lens planes to the source plane. In full ray-tracing mode,
deflection angles at each lens plane are computed by bilinear
interpolation of the first derivatives of the lensing potential at the
mesh points on to the ray position. The lensing Jacobians of the rays
are updated using the second derivatives of the lensing potential. In
Born mode, light rays are not deflected and the lensing Jacobians
of the rays are computed by sums of the second derivatives with
appropriate lensing efficiency weights.

3.2.2 LENS2HAT

LENS2HAT implements a multiple lens ray-tracing algorithm in
spherical coordinates on the full sky using the approaches of Fosalba
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et al. (2008) and Das & Bode (2008), and was originally developed
to perform high-resolution CMB lensing simulations (Fabbian &
Stompor 2013; Fabbian et al. 2018). The current version of the code
reconstructs the full-sky backward light-cone around the observer
using the particle snapshots produced by an N-body simulation out
to the comoving distance of the highest redshift available from
the snapshots following Calabrese et al. (2015). Because of the
finite size of an N-body simulation box, the code replicates the box
volume the necessary number of times in space to fill the entire
observable volume between the observer and the source plane. In
order to minimize systematics arising from the box replica (and thus
by the repetition of the same structures along the line of sight) the
code can randomize the particle positions as described in Carbone
et al. (2008), Carbone et al. (2009). However, this randomization
is not performed here to ensure the LENS2HAT code ‘sees’ the same
large-scale structures as the other codes. Furthermore, the results
reported here focus only of the 10 × 10 deg2 portion of the sky that
is common to all codes (cf. Fig. 1).

The backward light-cone is sliced into 90 full-sky spherical shells
such that the median comoving distance spanned by each shell
coincides with the comoving distance at the redshift of each N-body
snapshot. The particles inside each of these shells are projected on
to spheres. The surface mass density � on each sphere is defined
on a 2D grid. For each pixel of the i-th sphere one has

�(i)(θ ) = nm

Apix
, (21)

where n is the number of particles in the pixel, Apix is the pixel area
in steradians, and m is the particle mass of the N-body simulation
in each pixel.

For this work, the LENS2HAT code produces a full-sky conver-
gence map on a HEALPIX7 grid (Górski et al. 2005) with Nside =
8192, which corresponds to a pixel resolution of 26 arcsec. The
lensing convergence of a source plane at redshift zs in the Born
approximation is computed as the lensing-efficiency-weighted sum
of the surface mass density:

κ(θ, χs) = 4πG

c2

1

fs

∑
i

(
1 + z

(i)
d

) f
(i)
ds

f
(i)
d

[
�(i)(θ )−�̄(i)

]
, (22)

where �(i) denotes the angular surface mass density, �̄(i) is the mean
angular surface mass density of the i-th shell, and f

(i)
ds and f

(i)
d are

the corresponding distances at the redshift of the i-th shell. The
angular position of the centre of each HEALPIX pixel coincides with
the direction of propagation of the rays in the Born approximation.

The common sky patch for the code comparison is extracted from
the HEALPIX map with a Lambert azimuthal equal area projection
using 18 arcsec pixels.8 We correct for the effect of projecting
the HEALPIX map to the higher resolution flat-sky map in the
convergence power spectrum estimation by multiplying Cκ (�) by a
pixel window function w2

� estimated as follows. We first synthesize
100 Gaussian realizations of a convergence field on an Nside = 8192
HEALPIX grid from a theoretical power spectrum CMC

κ (�) at zs = 1
using the HEALPIX synfast routine. These realizations are then
similarly projected to a flat-sky and their power spectrum measured.
The pixel window function w� is then defined as

w−2
� = 〈CMC,proj.

κ (�)〉
CMC

κ (�)
, (23)

7http://healpix.sourceforge.net
8We use the azeqview routine of the HEALPIX python package HEALPY.

where the angular brackets denote the average over the
power spectrum measured from each projected Gaussian field
CMC,proj.

κ (�).
LENS2HAT can also be used to propagate the lensing Jacobian

beyond the Born approximation (Fabbian et al. 2018). In this case
the 2D lensing potential and its derivatives required by the multiple-
lens algorithm are computed in the harmonic domain by solving the
Poisson equation, and later resampled on a higher resolution ECP
pixelization (Muciaccia, Natoli & Vittorio 1997) that can reach the
arcsec resolution. The perturbed ray trajectories are then computed
using a nearest grid point interpolation scheme.

3.2.3 MAPSIM

The MAPSIM code has been developed by Giocoli et al. (2015) and
it works in two main steps termed i-MAPSIM and ray-MAPSIM. In the
first step i-MAPSIM, the particle positions in the simulation snapshots
that lie within the desired field-of-view are projected on to different
lens planes located along the line of sight. Each particle is placed
in the nearest lens plane maintaining angular positions. The mass
density is then interpolated from the projected particle positions to
a 2D grid using a triangular shaped cloud (TSC) scheme. The grid
pixels are chosen to have the same angular size on all lens planes and
no particle randomization is performed to ensure MAPSIM calculates
the lensing signal using the same large-scale structure as the other
codes. The angular surface mass density �(i) on the i-th plane is
computed as in equation (21).

In the second step (as done by Petri, Haiman & May 2016;
Giocoli et al. 2017, 2018; Petri et al. 2017b; Castro et al. 2018)9

ray-MAPSIM constructs the lensing convergence map in the Born
approximation by simply summing up the surface mass density
from each plane along the line-of-sight, weighted appropriately by
the lensing efficiency kernels as in equation (22), except now i labels
planes perpendicular to the (0,0,1) direction instead of concentric
spheres. Since the grid pixels have the same angular resolution, they
are also the direction of propagation of the light rays in the Born
approximation. There is thus no need to interpolate the projected
density defined on the grid to the exact light ray position.

3.2.4 MICE

The methodology of the MICE code presented in Fosalba et al. (2008,
2015) guided the development of the LENS2HAT, and hence, the two
codes work very similarly. The N-body data are sliced and projected
on to spherical shells (called the ‘onion universe’ in Fosalba et al.
2008). Each such shell is used to define surface mass density fields
on HEALPIX grids. Finally, the surface mass is summed along the
line-of-sight, weighted by the appropriate weak lensing efficiency
factors.

The MICE lensing maps produced for this comparison project take
the HEALPIX data from LENS2HAT as input. The lensing convergence
is then calculated independently of LENS2HAT employing the Born
approximation. The common sky patch is extracted from the
HEALPIX map with a Lambert azimuthal equal area projection using
18 arcsec pixels, and the power spectra measured from the patch are
corrected for the projection.

9The mass maps produced in this first step i-MAPSIM can also be used
as input to the GLAMER lensing code (Metcalf & Petkova 2014; Petkova
et al. 2014) to perform ray-tracing calculations (including beyond the Born
approximation).
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3.2.5 RAY-RAMSES

The RAY-RAMSES code is described in detail in Barreira et al. (2016).
The computation of the lensing quantities is based on the original
ideas of White & Hu (2000), Li et al. (2011) and it is done on-
the-fly during the RAMSES N-body simulation that produced the
90 snapshots that serve as input to the other codes. This code
therefore does not rely on any discretization of the density field
along the line-of-sight, or more precisely, it retains the full line-of-
sight (or time) resolution attained by the N-body simulation itself.
Likewise, RAY-RAMSES also bypasses the need to choose a density
assignment scheme to construct 2D projected density planes from
the 3D density distribution, i.e. the transverse spatial resolution
is directly specified by the AMR grid structure of the RAMSES

simulation.
In RAY-RAMSES, light rays are initialized at the curved surface

of constant zs = 1 and then subsequently followed in unperturbed
trajectories until they reach the observer at z = 0. In each simulation
particle time-step, the rays are moved by the distance light would
travel during that time interval. The size of the time-steps depends
on the refinement of the grid in RAMSES: rays located in refined
regions are integrated more often than rays in unrefined regions.
The lensing integral accumulated during a time-step is the sum of
the lensing integral associated with each crossed cell:10

κts = 1

c2

∑
cells

∫ χ
cell,start
d

χ
cell,end
d

dχd
fdfds

fs
∇2

2D�, (24)

where χ
cell,start
d and χ

cell,end
d are the comoving distances between the

observer and ray at the start and end of its trajectory inside a given
mesh cell, and the sum runs over all of the cells crossed by the ray
during the time-step. The total lensing convergence is the sum of
the convergence accumulated during all of the simulation time-steps
κ = ∑

tsκ ts.
The quantity ∇2

2D� = ∇1∇1� + ∇2∇2� is the 2D Laplacian of
the gravitational potential (∇1 and ∇2 represent the curved-sky
generalizations of ∂/∂θ1 and ∂/∂θ2 in Section 2.1), which is related
to the 3D second-derivative ∇ i∇ j� (i, j = x, y, z) via geometrical
factors determined by the direction of motion of the ray. The
values of ∇ i∇ j� are evaluated by finite-differencing the potential in
neighbouring cells, analogously to how standard RAMSES computes
the force. In the calculations presented in this paper, the values of
∇ i∇ j� are treated as constant inside each cell.11 RAY-RAMSES can
evaluate also the shear components γ 1 and γ 2 by replacing ∇2

2D� in
equation (24) with ∇1∇1� − ∇2∇2� and 2∇1∇2�, respectively.
The calculation of these quantities for a given cell involves the
information from a larger number of neighbouring cells compared
to the calculation of ∇2

2D� for κ . This constitutes an effective form of
smoothing that explains some differences between the convergence
and shear power spectra of RAY-RAMSES. We will return to this point
below in Section 4.4.4.

As it runs on-the-fly with the simulation, the generation of lens-
ing maps using RAY-RAMSES with certain specifications modified
(e.g. increased number of pixels) requires rerunning the N-body
simulation. All of the RAY-RAMSES results shown below correspond
to the default 20482 (≈ 18 arcsec) map resolution.

10This is integration ‘method B’ in Barreira et al. (2016).
11RAY-RAMSES allows also to evaluate ∇ i∇ j� inside each cell via trilinear
interpolation using the quantity’s value reconstructed at the cell vertices (see
Barreira et al. 2016, for the details).

4 R ESULTS

In this section, we compare the various lensing codes by analysing a
number of statistics of the lensing maps: their PDF, the convergence
power spectrum, and lensing peak counts. We also study the impact
that a number of variations in code setups (e.g. Born versus beyond-
Born approximation, smoothing schemes, line-of-sight resolution,
convergence versus shear power spectra) can have on the results.

4.1 Convergence maps

The convergence maps produced by the different lensing simulation
codes are compared in Fig. 2. This comparison serves as a basic
sanity check that the codes were successfully run on the same light-
cone geometry and cosmic large-scale structure. This is confirmed
by the good agreement between the position of high-κ and low-κ
regions, as well as the small differences to the mean map of the
codes.

The convergence one-point distributions of the maps are shown
in Fig. 3. In the absence of any smoothing performed on the maps
(left-hand panels), the PDF of the convergence from RAY-RAMSES

has a noticeably higher peak at κ ≈ −0.01, and it decays more
sharply towards more negative κ values. The RAY-RAMSES PDF also
has higher probability of large κ > 0.06 values than the other codes.
This indicates a stronger smoothing of the matter by RAY-RAMSES in
low-density regions and a higher resolution in high-density regions
compared to the other codes. This is as one would expect from the
underlying adaptive 3D mesh employed in RAY-RAMSES compared
to the non-adaptive 2D grids of the other codes.

After smoothing the maps with a Gaussian kernel with size
1 arcmin (centre panels), the shapes of the PDFs of all five codes
are brought closer together, but slight horizontal shifts in the
corresponding curves remain. This indicates that the codes produce
slightly different mean values of the convergence across the field
of view 〈κ〉fov. When the mean is taken out (right-hand panels), the
PDFs agree to ≈ 1 per cent in the range of κ values where the PDFs
are sizeable. We do not investigate further the origin of remaining
differences on the tail of the distribution given the many different
details in the operation of the codes. For example, the differences
in the exact way the projection on to discrete planes/spheres is
done in the codes (projection along line-of-sight versus along
zcoord, different density assignment schemes, etc.) can cause small
differences that would appear exacerbated in relative differences of
a (small) PDF. We note also that the slight difference in the values of
〈κ〉fov is not worrying as it has little impact on lensing observables.
For example, in the remainder of this section, we compare statistics
measured from maps without the mean subtracted and we will find
very good agreement between the codes. Furthermore, analyses
based on shear statistics are more closely related to the actually
observed galaxy ellipticities and are not sensitive to shifts in the
mean signal across the field of view.

4.2 Convergence power spectra

The power spectra of the convergence maps of the HILBERT,
LENS2HAT, MAPSIM, MICE, and RAY-RAMSES codes are shown in
Fig. 4. The power spectra are calculated with Fourier transforms
assuming the flat-sky approximation, which is valid for the small
field-of-view our comparison is based on.12 All spectra were

12In cases where the curvature of the sky cannot be ignored, the spectra need
to be computed using spherical harmonic decompositions instead.
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Figure 2. Lensing convergence maps produced by the lensing simulation codes, as labelled (10 × 10 deg2 with 2048 × 2048 resolution). The upper panels
show the convergence maps as obtained by the codes. The lower panels show the corresponding difference to the mean of the codes. The colour scale is the
same in all panels, ranging from κ = −0.02 (dark blue) to κ = 0.1 (bright yellow).

Figure 3. Probability density functions (PDF) of the convergence maps. The upper panels show the PDFs obtained by the lensing codes without smoothing
(left-hand panel), after smoothing using a Gaussian kernel with width 1 arcmin (centre), and after smoothing and deducting the field mean value (right-hand
panel). The lower panels show the corresponding difference to the PDF given by the mean of the codes. The light and dark grey shaded areas indicate 10 per cent
and 1 per cent fractional errors. In all of the upper panels, the read and cyan lines are practically indistinguishable; in the right upper panel, all curves are
indistinguishable.

evaluated using the routines in the publicly available LENSTOOLS

software (Petri 2016).13 The resulting spectra are then subsequently

13We checked that our results are identical using an independent power
spectrum calculation code.

averaged in logarithmically spaced �-bins. Fig. 4 also shows the
result obtained by integrating the 3D matter power spectrum
measured directly from the simulation snapshots according to
equation (16), as well as integrating the power spectrum given
by the HALOFIT fitting formula (Smith et al. 2003; Takahashi
et al. 2012).
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314 S. Hilbert et al.

Figure 4. Power spectrum of the lensing convergence maps obtained by
the lensing simulation codes, as labelled (upper panel). The result obtained
by integrating the 3D non-linear matter power spectrum measured in the
simulations according to equation (16) is also shown for reference (orange
line). The magenta curve shows the convergence power spectrum obtained
by integrating the matter power spectrum given by the HALOFIT formula.
In the upper panel, the red and cyan lines are nearly indistinguishable. The
lower panel shows the ratio to the mean of the codes. The light and dark
grey shaded areas indicate 5 per cent and 1 per cent fractional errors.

The lower panel of Fig. 4 shows the ratio of the individual code
results to their mean. The LENS2HAT, MAPSIM, MICE, and RAY-
RAMSES codes agree with the mean of the codes to � 2 per cent
on scales � � 4000. The same holds for the HILBERT code, when
ignoring the fluctuations of ≈ 3 per cent at � ≈ 100 and � ≈ 700.
These larger differences are likely due to the parallel projection (i.e.
along the zcoord.) used by HILBERT in contrast to the radial projection
employed by the other codes, which causes slight differences in what
structures appear where in the field of view. Note also that on scales
� � 4000, where the code differences become larger (10 per cent for
� = 104 in some cases), uncertainties associated with the modelling
of baryonic processes (most notably stellar and AGN feedback) are
expected to be sources of larger systematic errors (Semboloni et al.
2011; Barreira et al. 2019; Gouin et al. 2019; Huang et al. 2019).
Overall, we therefore conclude that the lensing codes tested display
a satisfactory level of agreement, which is a valuable cross-check
in preparation for the analysis of future surveys.

On scales �� 3000, the codes systematically underpredict the am-
plitude of the power spectrum predicted by the HALOFIT result. This
reflects the lower resolution of the N-body simulation used to con-
struct the convergence maps of the tested codes. This is confirmed
by the fact that the result of equation (16), which uses the power
spectrum directly measured from the snapshots, displays the same
level of suppression on small scales relative to the HALOFIT curve.

The code results also differ from equation (16) on scales �� 1000.
On these angular scales, the results are severely affected by sample

Figure 5. Cumulative count of lensing convergence peaks. The result is
shown for the maps obtained by the various codes, with (dashed) and without
(solid) shape noise added to the maps, as labelled. The result shown is for
maps smoothed with a Gaussian kernel with the size of 1 arcmin. The lower
panels show the ratio to the mean result of the codes. The light and dark
grey shaded areas indicate 10 per cent and 5 per cent fractional errors.

variance as they correspond to a single realization of a rather small
field of view; it is in fact a reassuring cross-check that the codes all
agree on this peculiar shape of the spectra. Increasing the size of the
field of view and/or the number of realizations of our 10 × 10 deg2

field of view (and then taking the mean) would reduce the impact of
sample variance. As a sanity check, the grey dashed line shows the
spectra measured from the full-sky map produced by the LENS2HAT

code, i.e. without specifying to the common 10 × 10 deg2 field
of view. This effectively increases the number of modes sampled
(though not all independent because of box replication), which
brings the result closer to the large-scale prediction of equation (16).

As an additional test, we also investigate the power spectrum
of the log-transformed convergence (Neyrinck, Szapudi & Szalay
2009; Seo et al. 2011, 2012; McCullagh et al. 2013; Llinares &
McCullagh 2017), which is sensitive to higher order statistics of the
convergence field itself. We find that the power spectra of logκ (0.1
+ κ) (the value of 0.1 ensures the argument is always positive for
our maps) measured from the maps of the codes agree with their
mean to better than ≈ 2 per cent on scales � � 3000.

4.3 Peak counts

Lensing peak counts contain information beyond the power spec-
trum, and their inclusion in data analyses has been advocated to
be able to yield significantly improved cosmological parameter
constraints (Dietrich & Hartlap 2010; Hilbert et al. 2012; Marian
et al. 2012; Liu et al. 2015, 2016; Shan et al. 2018; Davies, Cautun &
Li 2019). Fig. 5 shows the cumulative number density of lensing
convergence peaks found in the maps of the different codes. Peaks
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Figure 6. Ratio of the convergence and shear power spectra from the
HILBERT code run with full ray-tracing to that assuming the Born approxi-
mation. The lines show ratios of the mean over 16 10 × 10 deg2 fields. The
grey region indicates the statistical error on these ratios (in terms of standard
deviation) estimated from the field-to-field variation.

are identified as pixels whose amplitude is higher than that of all its
eight neighbours and the result is plotted in terms of the peak height
(or signal-to-noise) ν = κ/σ , where σ is the standard deviation of all
pixels. We use the κ and σ values of each code to define their peak
height. We also count peaks on maps with their mean convergence
subtracted (cf. Section 4.1). The result shown is for peaks counted
on maps smoothed with a Gaussian filter of size 1 arcmin, and
with and without Gaussian shape noise added (assuming a variance
σ 2

e = 0.312 for the shape noise in the shear estimate per galaxy and
an effective number density of source galaxies n̄eff = 30 arcmin−2;
the values of both κ and σ in ν = κ/σ are computed for maps with
and without added noise). The assumption of Gaussian distributed
shape noise is not critical to the code comparison.

The codes all display very similar lensing peak count predictions.
In particular, for both the cases with and without shape noise, the
codes agree with the mean prediction to better than 5 per cent for
peaks with ν � 6. This level of agreement is naturally related to
that observed in Section 4.1 for the convergence maps PDFs. For
higher ν, the relative differences increase as the cumulative peak
count becomes more sensitive to small changes. Should current or
future real data analyses require better than ∼ 20 per cent precision
for ν ∼ 10, then these code differences should be understood
better.

For completeness, we have also compared the codes for two
additional cases (not shown): (i) peak counts on maps without the
mean convergence deducted; (ii) using the values of σ found in
the map of one of the codes to define ν for all codes. We found
that using a common σ value yields effectively the same level of
agreement and skipping subtracting the mean convergence yields
an agreement of 10 per cent for ν � 6.

4.4 Systematic errors

In this section, we quantify various possible sources of systematic
errors in lensing simulations. Unless specified otherwise, the results
described here are produced by the HILBERT code, and correspond
to the average over 16 realizations of the 10 × 10 deg2 field-of-
view, obtained by picking 16 different observer orientations in
the simulation box. This reduces the statistical noise due to the

finiteness of the field of view (by up to a factor of four, assuming
the realizations are statistically independent).

4.4.1 Born approximation

As mentioned in Section 2.1, the impact of adopting the Born
approximation (i.e. computing the lensing signal along unperturbed
ray trajectories) on the convergence or shear power spectrum
is expected to lie comfortably below the 1 per cent level for
angular scales relevant for current and future surveys. This can
be explicitly checked by comparing full beyond-Born ray-tracing
with Born-approximation results. Conversely, assuming that the
Born approximation is valid to better than 1 per cent on a given
range of angular scales, such a comparison can also be used as
a self-consistency check of a lensing simulation code that can
perform both types of calculations.

Fig. 6 shows the ratio of the convergence and shear power spectra
obtained without adopting the Born approximation to those obtained
adopting it. The relative differences are ∼ 0.1 per cent out to � =
104 and are likely due to numerical noise14 rather than a direct
consequence of the Born approximation. This corroborates past
similar conclusions in the literature (e.g. Jain et al. 2000; Hilbert
et al. 2009; Giocoli et al. 2016; Fabbian, Lewis & Beck 2019), but
recall, as noted in Section 2.1, the degree of validity of the Born
approximation can be different for other lensing statistics.

4.4.2 Line-of-sight discretization

The users of multiple-plane and multiple-sphere algorithms must
decide how many planes or spheres the algorithm employs to
represent the matter distribution along the line-of-sight. Employing
more planes/spheres naturally incurs on higher computational, data
storage, and data transfer costs. Fewer planes/spheres may lead to
larger line-of-sight discretization errors.

Fig. 7 illustrates for the HILBERT code, how the number of
planes affects the resulting convergence power spectra. Reducing
the number of planes from 90 to 30 or even to 10 may cause
deviations in the measured power by up to 5 per cent. This is in
rough accordance with earlier results by Vale & White (2003).
However, the differences we find are within the expected statistical
error for such a finite field, and bear no strong indication for a
systematic difference. Further, recall that the HILBERT code projects
the matter on to planes along the (0,0,1) direction, which exacerbates
the impact of reducing the number of planes, compared to the other
codes which do radial projections.

We can also use equation (19) to estimate the effect of a finite
number of planes. Results are shown in Fig. 8 for different numbers n
of planes evenly spaced in comoving distance between the observer
and the source. Employing n = 90 planes yields results that are
practically indistinguishable from the limit n → ∞. Even when
using only n = 10 planes, which corresponds to a plane-to-plane
distance of ≈ 200 Mpc, the resulting convergence power spectrum
deviates by less than 1 per cent.

We note however, that this small impact of the number of planes
is partly due to our specific choice of source redshift and cosmology.
In this case, the integrand in equation (10) is very symmetric for
most �-values of interest, and the integral can be well approximated

14The main source of noise is that, for our finite fields of view, the light-cone
in full-ray tracing contains slightly different matter structures than the one
in Born mode due to the presence/absense of light deflections.
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Figure 7. Ratio of the convergence power spectra C
(n)
κ (�) for different

number n of planes to that using n = 90 planes for the HILBERT code. The
results shown correspond to the mean of the 16 10 × 10 deg2 fields. The grey
region indicates the relative statistical error (in terms of standard deviation)
on the mean of the convergence power spectrum measured from these fields
for the n = 90 case.

Figure 8. Ratio of the convergence power spectra C
(n)
κ (�) for a finite

number n of planes to that in the limit n → ∞, according to equation (19).

by a sum of the integrand values at just a few evenly spaced points
between the observer and the source. For very different source
redshifts (including realistic extended distributions) or cosmologies,
the integrand may be more skewed, and the resolution along the
line-of-sight may become more important.

4.4.3 Particle noise and smoothing

The 3D matter distribution in the underlying N-body simulation
lacks power on very large and very small scales due to the finite box
size and finite spatial/mass resolution. As mentioned in Section 4.2,
this lack of power naturally propagates to the convergence and shear
power spectra of the lensing simulations. Moreover, the lensing
simulations are affected by additional smoothing, either inherent
in some of their processing steps, e.g. when employing meshes of
finite resolution, or applied explicitly, e.g. to reduce the impact of
shot noise due to finite number of particles in the N-body simulation.

The effects of particle shot noise and smoothing are illustrated
in Fig. 9 for the HILBERT code. Integrating the 3D matter power

Figure 9. Comparison of convergence power spectra from HILBERT (black)
with the prediction from equation (16) only considering the continuous
component P

(cont)
m in equation (15) (blue), the prediction from equation (16)

also accounting for shot noise (green), as well as the prediction from
equation (19) taking into account line-of-sight discretization, shot noise,
and smoothing (red).

spectrum directly without accounting for particle shot noise or
smoothing yields much smaller values for the convergence power
spectrum than the lensing simulation for � � 104. Further, ac-
counting for shot noise, but not for smoothing overestimates the
convergence power spectra of the lensing simulation.

When the smoothing is taken into account (in addition to the
line-of-sight discretization) assuming the kernel of equation (20),
the prediction based on equation (19) agrees with the power
spectrum directly measured from the convergence maps to better
than 1 per cent for scales 300 � � � 20 000. This underlines the
fact that a good understanding of the amount of shot noise and
smoothing carried out by a given lensing code can prove useful in
tests of its accuracy.

4.4.4 Shear power spectra

We also compare code predictions for the shear power spectrum
(not just convergence), since the shear is more directly related to
the actually observed galaxy image ellipticities. As mentioned in
Section 2.1, C(EE)

γ (�) = Cκ (�) for a flat sky;15 this relation holds to
high accuracy beyond the Born approximation as well (cf. Fig. 6).
In Fig. 10 we show the ratios of the shear and convergence power
spectra for the HILBERT, MAPSIM, and RAY-RAMSES codes.16 The
deviations of the measured ratios from unity seen for � ≤ 1000
can be attributed to the finite size of the field of view.17 On scales
� > 1000, the RAY-RAMSES result underestimates the shear power
spectrum in a non-negligible way: the shear power is smaller by

15On a spherical sky, they differ by a known wavenumber-dependent factor
that is close to unity for sufficiently large �.
16The HILBERT and RAY-RAMSES codes compute the lensing shear directly
by projecting the corresponding second-derivatives of the lensing potential.
The shear power spectrum from MAPSIM is calculated from a γ map
obtained from the κ map by Fourier transforming γ̃ (�) = (γ̃1(�), γ̃2(�)) =(

�2
1−�2

2
�2

1+�2
2
,

2�1�2
�2

1+�2
2

)
κ̃(�), where � = (�1, �2).

17For example, different matter structures outside the finite field of view
may contribute to the shear seen within the field, but not to the convergence.
This can explain why the shear and convergence spectra do not react in the
same way when the orientation of the finite field-of-view changes.
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Figure 10. Ratio of shear and convergence power spectra for the HILBERT,
MAPSIM, and RAY-RAMSES codes (computed from one 10 × 10 deg2 field).
The shaded area indicates the expected variance (estimated from the 16
HILBERT fields). For � ≤ 1000, the deviations from unity can be attributed
to the finite field size. The deviations for � > 1000 for RAY-RAMSES are due
to different effective smoothings for shear and convergence.

approximately 6 per cent for � ≈ 4000. This difference between
the shear and convergence power spectrum can be traced back to
an effective larger smoothing that exists in the calculation of the
second derivatives of the potential that are integrated to calculate γ 1

and γ 2 (cf. Section 3.2.5). This suppression is therefore expected to
remain even if the simulation is performed at higher mass resolution,
although the scale at which C(EE)

γ (�) �= Cκ (�) would be pushed to
higher � values.

This subtlety in the operation of the RAY-RAMSES code stresses
further the importance to understand the impact of smoothing in
lensing simulation codes. The smoothing in RAY-RAMSES is adap-
tive, controlled mostly by the resolution of the N-body simulation,
and as shown here can yield different shear and convergence spectra
(even though they should be the same). On the other hand, the
smoothing schemes can be partly specified by the user in the other
codes (e.g. in the smoothing or mass assignment scheme used
to construct the multiple planes/spheres), and should therefore be
subject to careful numerical convergence tests. For the LENS2HAT

code, the relation C(EE)
γ (�) = Cκ (�) has been verified to hold to

sub-per cent precision, both in the Born approximation and beyond
it (Fabbian et al. 2018).

5 SU M M A RY A N D C O N C L U S I O N S

In this paper, we have studied the relative accuracy of different
weak lensing simulation codes by comparing the statistics of
lensing convergence maps that each produced from a common
underlying simulation of cosmic large-scale structure. The five
codes HILBERT, LENS2HAT, MAPSIM, MICE and RAY-RAMSES we
compare (cf. Table 1 and Section 3.2) were developed independently
from each other, and a significant number of results in the literature
featuring these codes exists already. The comparison analysis we
carried out in this paper thus serves the purpose of cross-checking
the validity of these past results, as well as checking the extent
to which any systematic difference between codes can affect the
analysis of large weak lensing surveys.

A major difference between the codes is how they integrate
the rays along the line-of-sight: HILBERT and MAPSIM project the
deflector mass field on to planes perpendicular to the central line-

of-sight of the field-of-view, MICE and LENS2HAT project it on to
concentric spherical shells around the observer, and RAY-RAMSES

carries out the lensing integrations using the 3D distribution of the
mass without projecting it. Other specifications such as interpolation
schemes to reconstruct the deflector mass on regular grids, and
additional smoothing applied on these grids, also differ between the
codes.

The lensing simulation codes carried out their calculations on the
output of the same N-body simulation performed with the RAMSES

code. Specifically, the RAY-RAMSES code ran on-the-fly with the
N-body calculation and produced the particle snapshots that the
remaining codes took as input. We considered a light-cone geometry
with area 10 × 10 deg2, extending out to a single source redshift
zs = 1 (cf. Fig. 1). This small field of view is not representative
of the total area of large surveys like Euclid (≈ 15 000 deg2), but
is sufficient to compare the code results on small angular scales,
which are the scales for which we rely on numerical simulations to
resolve non-linear structure formation.

The main results of the code comparison are:

(i) The PDFs of the maps agree to ≈ 1 per cent on κ values where
the PDF is sizeable, but only after applying 1 arcmin smoothing and
subtracting the mean convergence over the field of view (cf. Fig. 3).

(ii) The convergence power spectra predicted by the codes agree
to 2 per cent for � � 4000 (cf. Fig. 4). At � = 104, the differences
can be as large as 10 per cent, mainly due to differences in the
smoothing of the matter field.

(iii) The code predictions for lensing peak counts agree to better
than 5 per cent for peaks with signal-to-noise ν � 6, both for maps
with and without shape noise added (cf. Fig. 5).

Corroborating previous results in the literature, we confirmed
the validity of the Born approximation in the convergence power
spectrum from lensing simulations. Following the rays along unper-
turbed trajectories has an impact that is smaller than 0.2 per cent for
� < 104 (see Fig. 6). Note, however, that the Born approximation can
have a stronger impact on other observables such as galaxy–galaxy
lensing, higher order statistics or CMB lensing cross-correlations
(Hilbert et al. 2009; Fabbian et al. 2019).

We also showed that reducing the number of lens planes
from 90 (plane thickness ∼20 Mpc h−1) to 10 (plane thickness
∼200 Mpc h−1) can impact the resulting convergence power spec-
trum of the HILBERT code at the 5 per cent level (see Fig. 7), albeit
with no clear systematic trend. This value is likely exacerbated
by the parallel projection this code adopts. Analytic predictions
based on matter power spectra suggest that the systematic error
due to the line-of-sight discretization is smaller. Moreover, the
good agreement between using 90 lens planes or the full N-body
resolution used by RAY-RAMSES is telling that the discretization
along the line-of-sight is not a critical source of systematic error
(at least for slices with width � 25 Mpc h−1). Further, we noted
that the shear power spectrum predicted by the RAY-RAMSES code
is suppressed relative to that of the convergence on small scales
(≈ 6 per cent on � ≈ 4000; see Fig. 10). This is due to an effectively
larger smoothing that goes into the calculation of the integrand of
γ in this code, compared to κ .

We also compared the convergence power spectrum measured
directly from the lensing simulation maps with predictions obtained
by analytically integrating the non-linear 3D matter power spectrum
measured from the N-body simulation snapshots. Smoothing effects
and particle shot noise can be appropriately taken into account
analytically. When doing so, e.g. for the HILBERT code, the analytical
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prediction agrees with the lensing simulation spectra to better than
1 per cent out to � = 20 000 (cf. Fig. 9). These are scales already
well below the scales that our N-body simulation could accurately
resolve, but an appropriate analytical calculation can capture that
loss of resolution and thus be used in self-consistency tests of the
codes.

Overall, the comparison of the HILBERT, LENS2HAT, MAPSIM,
MICE, and RAY-RAMSES codes did not reveal any significant sys-
tematic errors in the statistical quantities we analysed. Further, in
comparisons in which larger than a few per cent differences were
observed, e.g. power spectrum on � � 4000, there are other known
sources of larger uncertainty such as the modelling of baryonic
processes, or even the accuracy of N-body methods in gravity-only
simulations. We thus conclude that the current accuracy of weak-
lensing simulation codes is acceptable for applications to current
and near future data analyses.

In accordance with previous works (e.g. Fosalba et al. 2008), we
find that the convergence and shear power spectra measured from
the lensing simulations can be accurately predicted analytically on
the relevant scales, which suggests a method to validate lensing
codes and simulations. As outlined in Section 2.2 and exemplified
in Section 4.4.3, one adjusts the first-order predictions for the
convergence and shear power spectra to account for the peculiarities
of the input matter distribution, any line-of-sight discretization,
particle noise, and smoothing according to the numerical parameters
of cosmic structure simulation and the lensing simulation. One then
measures the power spectra from the output of the lensing simu-
lation and compares them to the adjusted first-order predictions.
Any significant deviations (e.g. larger than expected from sample
variance due to finite area and depth) may then indicate a problem
with the lensing simulation code or the quantitative understanding
of its numerical properties.

Throughout this paper, we refrained from drawing considerations
on the numerical performance of the codes as it is hard to find
objective points of comparison. The main distinction in terms of
numerical resources concerns the post-processing or on-the-fly
nature of the codes. The post-processing codes require relatively
low numerical resources in the calculation of the lensing quantities
per se, but the N-body data that they analyse (and which is more
expensive to generate) is assumed to be pre-existent. Lensing
calculations performed on the fly with the N-body calculation
have the advantage of requiring in principle fewer data storage
resources, but are less flexible to changes in the lensing setup
adopted (e.g. changes in source redshift may require a new N-
body simulation). The choices of which method/code will also in
general be determined by the specific application in mind, based on
the specific features of each code (summarized in Table 1). A main
conclusion of this work is that, regardless of which method/code
is chosen, the accuracy of the result should be within the level of
agreement shown in this paper.

As future improvements to the analysis we carried out in
this paper, one may extend the comparison to full-sky lensing
simulations. Of the codes tested here, only LENS2HAT and MICE

can currently carry these out. There is in principle no impediment
to make HILBERT, MAPSIM, and RAY-RAMSES capable of that too,
but that would involve further code development. Additionally, it
would be valuable to carry out a similar comparison of numerical
codes such as PINOCCHIO (Monaco et al. 2002; Munari et al.
2017), PEAKPATCH (Stein, Alvarez & Bond 2019), ICE-COLA (Izard,
Fosalba & Crocce 2018), or that of Giocoli et al. (2017), which
are capable of generating fast (yet approximate) realizations of the
deflector mass distribution and compute their lensing properties.
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