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a b s t r a c t 

Enhancement, followed by segmentation, quantification and modelling of blood vessels in retinal im- 

ages plays an essential role in computer-aided retinopathy diagnosis. In this paper, we introduce the 

bowler-hat transform method a new approach based on mathematical morphology for vessel enhance- 

ment. The proposed method combines different structuring elements to detect innate features of vessel- 

like structures. We evaluate the proposed method qualitatively and quantitatively and compare it with 

the state-of-the-art methods using both synthetic and real datasets. Our results establish that the pro- 

posed method achieves high-quality vessel-like structure enhancement in both synthetic examples and 

clinically relevant retinal images. The bowler-hat transform is shown to be able to detect fine vessels 

while still remaining robust at junctions. 

© 2019 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Many biomedical images contain vessel-like structures, such as

lood vessels or cytoskeletal networks [1] . Automated extraction of

hese structures and their connected network is often an essential

tep in quantitative image analysis and computer-aided diagnostic

ipelines. For example, automated retinal vessel extraction is used

or diagnosis, screening, and evaluation in a wide range of retinal

iseases, including diabetes and arteriosclerosis [2] . 

However, for a multitude of reasons, e.g. noisy image capture,

ample/patient variability, low contrast scenarios, etc., biomedical

maging modalities may suffer from poor quality. As such, stan-

ard image segmentation methods are not able to robustly detect

essel-like structures, and therefore some form of vessel-like struc-

ure enhancement is required [1] . 

A wide range of vessel enhancement methods have been pro-

osed (see [2] and [1] for a recent review). These include Hes-

ian [3–5] , Phase Congruency Tensor [6,7] , mathematical morphol-

gy [5,8,9] , adaptive histogram equalisation [10] based approaches

nd many others [11–18] . 

However, many of these methods still have considerable issues

hen faced with variations in contrast, high levels of noise, varia-
∗ Corresponding author. 

E-mail address: boguslaw.obara@durham.ac.uk (B. Obara). 
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ion in image features (e.g. lines vs junctions; retention of network

onnectivity), and complexity of method parameter space. 

.1. Contribution and organisation 

In this paper, we introduce a new enhancement method for

essel-like structures based on mathematical morphology, which

xploits a key shape property of vessel-like structures: elongation.

he proposed method, called the bowler-hat transform, has been

ualitatively and quantitatively validated and compared with state-

f-the-art methods using a range of synthetic data and publicly

vailable retinal image datasets. The obtained results show that the

roposed method achieves high-quality, vessel-like structure en-

ancement in both synthetic examples and clinically relevant reti-

al images. Retinal vessels can be considered at dark vessels on a

right background or, when the image is simply inverted, as bright

essels on a dark background. For the purposes of clarity in de-

cription and visualisation, we assume, and our methods work for,

right vessels on a dark background; this is similar to other meth-

ds [3] . The method is suitable for a range of biomedical image

ypes without needing prior training or tuning. Finally, we have

ade the implementation of our approach available online, along

ith source code and all test functions. The rest of this paper is or-

anised as follows. In Section 2 , we introduce existing vessel-like

tructure enhancement methods and highlight their known limita-

ions. Section 3 introduces and explains the proposed bowler-hat

ransform, Section 4 presents validation experiments and results
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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on synthetic and real data. Finally, in Section 5 , we discuss the re-

sults and future work. 

2. Related work 

In the following section, we review existing approaches for ves-

sel enhancement. We aim to highlight the positives and the nega-

tives of these methods. 

2.1. Multiscale techniques for image processing 

Multiscale image processing techniques are motivated by how

the human visual system functions. In order to capture objects at

both low and high spatial frequencies, images are processed at dif-

ferent scales either by altering the image size, e.g. in a Gaussian

pyramid or by altering the filter size. By altering this scale in ves-

sel enhancement different thickness vessels can be successfully en-

hanced. 

In the first case, we are embedding the original image into a

family of increasingly different scales, where the fine-scale details

are successively suppressed. This multi-scale image representation

is generally obtained by use of Gaussian filters or their derivatives

defined at different scales, or by a use of mathematical morphol-

ogy filters defined with a varying size of the structuring element. 

Multiscale methods cover a wide range of approaches such as

wavelets decomposition based methods, time-evolving snakes, ob-

ject tracking with increasing smoothing, fixed scale method [19] ,

the hierarchical approximation. There are many different fields def-

initions of multiscale concepts, such as time [20,21] , information

complexity [22] , signal frequency [23] or smoothing degree [24] ,

among others. 

2.2. Hessian-based methods 

In [3] , Frangi et al. introduce a novel Hessian-based multi-

scale concept for 2D curvilinear/3D tubular structure enhancement

in images. They construct the Hessian matrix using second-order

Gaussian derivatives. The eigenvectors and eigenvalues of the Hes-

sian matrix then define the principal directions of local image fea-

tures. These can then be combined to form different measures of

vesselness or blobness [1] in biomedical images. 

2.2.1. Vesselness 

The vesselness measure is proportional to the ratio of the

eigenvalues [3] . If the magnitude of both eigenvalues is small, i.e.

the local image structure is likely to be background, then the ves-

selness measure is small. If one eigenvalue is small and the other

large then the local structure is likely to be vessel-like, and the

vesselness measure is large. Finally, if both eigenvalues are high,

then the structure is likely to be blob-like, and the vesselness mea-

sure is again small. Vesselness measurement is also regulated by

two tunable thresholds which control the sensitivity of the line fil-

ter to the blob-like and tubular-like features. 

This approach, however, leads to a failure at the intersection

of vessels as both eigenvalues have similarly large values lead-

ing to a vesselness measure close to zero. Thus, vessel-like struc-

tures can be lost at junctions and therefore vessels network con-

nectivity may be lost [25] . An extension of this approach can be

found in [5] where a multi-scale morpho-Gaussian filter is com-

bined with multi-scale Hessian measurement to enhance the curvi-

linear features and reduce noise. 

2.2.2. Neuriteness 

As an alternative to vesselness, Meijering and colleagues intro-

duce the neuriteness measure to enhance low contrast and highly

inhomogeneous neurites in bioimages [26] . Using a modified Hes-

sian, with a tuning parameter, and a different combination of

eigenvalues, neuriteness infers a putative neurite in every pixel of
he image that has a non-zero value. The second derivative reduces

he approximation error of the first derivative. The local maximum

here zero crossing of the first derivative, discovered with a neg-

tive value at the second order derivative. 

A major failing for the neuriteness measure is that background

oise signals are enhanced as if they are curvilinear structures. In

he original paper [26] this is solved with a tracing stage; however,

s an enhancer only, this can cause serious problems for further

nalysis. The neuriteness measure also leads to a failure at the in-

ersection of vessels as both eigenvalues have similarly large values

eading to a neuriteness measure close to zero. A further example

f their work is found in [27] . 

.2.3. Regularized volume ratio 

Recently, Jerman and colleagues [28] propose a new Hessian-

ased vessel enhancement method, which is able to resolve the

rawbacks found in most of the previous Hessian-based meth-

ds: 1. eigenvalues are non-uniform throughout an elongated or

ounded structure that has uniform intensity; 2. eigenvalues vary

ith image intensity; and 3. enhancement is not uniform across

cales. To address such drawbacks, a modified volume ratio is in-

roduced to ensure method robustness to low magnitude intensity

hanges in the image. A major issue of this method is the false ves-

el effect, as also shown in Fig. 7 j in Section 4.4.3 noise sensitivity.

.3. Phase congruency tensor-based methods 

Many enhancement methods fail due to contrast variations on

he image. A significant issue is that they depend on image in-

ensity and, therefore, fine vessels may be missed because of the

ower intensity. To address this issue a contrast-independent con-

ept for image features representation, based on Phase Congruency

PC), was introduced in [29] . 

The development of a contrast-independent vessel enhance-

ent approach, based on the PC concept, has been proposed

n [6] . The Phase Congruency Tensor (PCT) combines PC princi-

les with a local tensor representation. This tensor provides a suit-

ble representation of the local image features. Eigenvalues of the

CT tensor can be used, in the same way as Hessian eigenvalues

see Sections 2.2.1 and 2.2.2 , to define PCT vesselness and PCT neu-

iteness measures. An extension of this method into 3D has re-

ently been shown in [30] . 

A major drawback of the PC-based concept is the complexity

f its parameter space. Moreover, as with Hessian-based measures,

he PCT-based measures also lead to failure at the intersection of

essels as both eigenvalues have similar, large values leading to

CT-based vesselness and neuriteness measures close to zero. 

.4. Adaptive histogram equalisation-based methods 

Contrast Limited Adaptive Histogram Equalisation [10] (CLAHE),

riginally developed for speculations enhancement in mammo-

rams, is widely used for vessel enhancement. In this simple,

istogram-based method an image is first divided into small re-

ions, each of which then undergoes a histogram equalisation. To

void over-enhancement of noise, a contrast limiting procedure

s applied between regions. Further development of this method

s demonstrated in [31] and where CLAHE is combined with an

nisotropic diffusion filter to smooth the image and preserve vessel

oundaries. A major drawback of this method is the noise sensitiv-

ty. 

.5. Wavelet transform-based enhancement methods 

Bankhead and colleagues [13] propose the use of wavelets for

essel enhancement and segmentation. They calculate an isotropic,

ndecimated wavelet transform using the cubic B-spline mother
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avelet, and employ the coefficients to the threshold steps for en-

ancement, followed by vessel segmentation. Further improvement

f this approach is demonstrated in [32] where multi-orientation

nd multi-scale features from the vessel filtering and the wavelet

ransform stages are combined and then used for training the ran-

om forest classifier. A major drawback of this method is the com-

lexity of its parameter space. 

.6. Line detector-based enhancement methods 

Vessel-like feature enhancement has also been done using

ulti-scale line detectors [15] . The approach is carried out by

hanging the length of a primary line detector with the varying

cales. The line response, identified by subtraction of average value

nd the maximum value of each pixel, is computed at 12 differ-

nt line directions. The main idea behind this method is that line

etectors with smaller lengths will avoid the combination of the

egion of vessel pixels and therefore, provide correct responses. A

ajor drawback of this method is at crossover points, where the

ethod produces ‘false vessels’ by merging nearby vessels. Further

mprovement of this method is demonstrated in [33] where a lin-

ar combination of all the line responses at varying scales is pro-

osed to produce the final enhancement and segmentation. 

.7. Mathematical morphology-based enhancement methods 

Zana and Klein [8] proposed a novel method which com-

ines morphological transforms and cross-curvature evaluation for

essel-like structure enhancement and segmentation. This method

elies on the assumption that vessels are linear, connected and

ave smooth variations of curvature along the peak of the fea-

ure as for all curvilinear enhancement methods. First, a sum of

op hats is calculated using linear structuring elements with the

ingle size (15-pixels long) at different orientations, and after en-

ancement step, a curvature measure is calculated using a Lapla-

ian of Gaussian, and finally, both of them are combined to reduce

oise and enhance vessel-like structures in an image. Further im-

rovement of this method is demonstrated in [5,9,16] . In particu-

ar, in [16] , an advanced morphological directional filter called path

penings is linked with data fusion based on fuzzy set theory. This

pproach has four steps; First is preprocessing, where the image

ndergoes histogram equalisation, and then Gaussian filtering to

mprove the effectiveness of the second step. The second step in-

olves feature extraction by detection of local minima and edges

n the image. The third step preserves connected vessels and sup-

resses noise by path opening, and the final step combines the fea-

ures and possible paths into a fuzzy classification problem - iden-

ifying pixels as likely vessels or likely background. 

And most recently, in [9] , a multi-scale morphological top hats

ransform is combined with Gabor and a matched filter. A major is-

ue with this method is that it is quite slow and sensitive to noise.

.8. Other approaches 

Recently, deep learning approaches have shown great potential

or curvilinear structure enhancement and segmentation [34–39] .

n particular, a new regression architecture based on the basis of

lter banks learned by sparse convolutional coding is proposed

y [38] . The approach is based on a novel initialisation strategy,

sing carefully designed hand-crafted filters (SCIRD-TS) which are

odelling appearance properties of curvilinear structures. 

.9. Limitations and challenges 

Many existing vessel-like structure enhancement methods still

ave substantial issues when faced with variations in contrast
low-accuracy enhancement), high levels of noise (introduction of

false vessels’ effect), dealing with junctions/bends (suppression

f disk-like structures; vessels network connectivity is lost), large

mage size (high computing time), and complexity of parameter

pace. 

. Method 

In this section, we introduce our novel, mathematical

orphology-based method for vessel-like structure enhance-

ent in images: the bowler-hat transform. We highlight the key

oncepts that allow this method to address the major drawbacks

f existing, state-of-the-art, methods. 

.1. Mathematical morphology 

Morphological operations are a set of non-linear filtering meth-

ds formed through a combination of two basic operators: dilation

nd erosion. 

Dilation, ( �), for a given pixel in a greyscale image, I ( p ), can be

escribed as the maximum of the points in the weighted neigh-

ourhood described by the structuring element b ( p ), and mathe-

atically: 

(I � b)(p ) = sup 

x ∈ E 
[ I(x ) + b(p − x )] , (1)

here ‘ sup ’ is the supremum and x ∈ E denotes all points in Eu-

lidean space within the image [41] . Likewise, we mathematically

escribe the erosion ( �), as the minimum of the points in the

eighbourhood described by the structuring element: 

(I � b)(p ) = inf 
x ∈ E 

[ I(x ) + b(p − x )] , (2)

here ‘ inf ’ is the infimum [41] . Dilation is able to expand bright

reas and reduce dark areas, whilst erosion expands dark areas re-

ucing bright areas as detailed in [42] . From these two operators

e can define two commonly used morphological filters: 

pening : (I ◦ b)(p ) = ((I � b) � b)(p ) (3) 

losing : (I • b)(p ) = ((I � b) � b)(p ) (4) 

here an opening ( ◦) will preserve dark features and patterns,

uppressing bright features, and a closing ( •) will preserve bright

eatures whilst suppressing dark patterns. 

.2. Proposed method 

Fig. 1 presents a flow diagram of the proposed method which

ombines the outputs of morphological operations upon an image

arried out with two different banks of structural elements: one

ank of disk elements with varying radii, and one bank of line ele-

ents with varying radii and rotation. The bowler-hat transform is

amed after the bank of disk elements (forming the bowl) and the

ank of line elements (forming the brim). For a given greyscale in-

ut image, I , we carry out a series of morphological openings with

 bank of disk-shaped structuring elements, b d of diameter d ∈ [1,

 max ] pixels, where d max is the expected maximum vessel size and

ser-defined parameter. This produces a stack of images, for all d ,

uch that 

 I disk } = { I ◦ b d : ∀ d ∈ [1 , d max ] } . (5)

n each I disk image, vessel segments wider than d remain and those

egments smaller than d are removed. 

We also produce a similar stack of images using a bank of line-

haped structuring elements, b d, θ ; each line-shaped is of length

 ∈ [1, d max ], with a width of 1 pixel, and orientation θ ∈ [0, 180),

ith the angle step defined by θ sep . 
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Fig. 1. Flow chart of the bowler-hat. 

Fig. 2. An opening of a simple image with the various size of structuring elements 

(SE) (the left route in Fig. 1 ). (a) is a result of after a SE smaller than any curvi- 

linear features, (b) is the result of after a SE bigger than some curvilinear features 

but smaller than the other features and (c) is result of after a SE bigger than all 

curvilinear features in the input image. Reprinted with the permission from [40] . 

 

 

 

 

 

 

 

 

 

 

Fig. 3. An openings with line SEs of various lengths and rotations of an exemplary 

input image (the right route in Fig. 1 ). (a) is a line SE longer than the width of 

some curvilinear features in the input image. (b) is a line SE longer than the width 

of most curvilinear features in the input image. Note how those features aligned 

with the SE are not attenuated during the opening. In this extremely simple case, 

the maximum (right hand column) includes values at all features. Reprinted with 

the permission from [40] . 
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As a result, vessel segments that are longer than d and along

the direction defined by θ will remain, and those shorter than d

or along the direction defined by θ will be removed. For each line

length d , we produce a stack of images for all orientations defined

by θ ∈ [0, 180). Then, for each d , we calculate a single image, I line 

as a pixel-wise maximum of the stack such that 

{ I line } = { max 
θ

({ I ◦ b d,θ : ∀ θ} ) : ∀ d ∈ [1 , d max ] } . (6)

These two stacks, { I disk } and { I line }, are then combined by taking

the stack-wise difference, the difference between the maximum

opening with a line of length d across all angles and an image

formed of opening with a disk of size d , to form the enhanced

image. The final enhanced image is then formed from maximum
ifference at each pixel across all stacks, 

 enhanced = max 
d 

(| I line − I disk | ) . (7)

Pixels in the background, i.e. dark regions, will have a low value

ue to the use of openings; pixels in the foreground of blob-like

tructures will have a low value as the differences will be mini-

al, i.e. similar values for disk-based and line-based openings; and

ixels in the foreground of vessel-like structures will have a high

alue, i.e. large differences between longer line-based openings and

isk-based openings. 

The combination of line and disk elements gives the proposed

ethod a key advantage over the existing methods. Given an ap-

ropriate d max , i.e. larger than any vessels in the image, a junction

hould appear bright like those vessels joining that junction, some-

hing that many other vessel enhancement methods fail to do. This

s due to the ability to fit longer line-based structural elements

ithin the junction area. As a result, the vessels network stays con-

ected when enhanced and segmented, especially at junctions. 

In Section 4 , we demonstrate, qualitatively and quantitatively,

he key advantages of the bowler-hat transform over the existing,

tate-of-the-art vessel-like structure enhancement methods. 

.3. Implementation and computation time 

All codes were implemented and written in MATLAB

016b [43] on Windows 8.1 Pro-64-bit PC running an Intel Core i7-

790 CPU (3.60 GHz) with 16GB RAM. The source code is available

n a GitHub repository https://git hub.com/CigdemSazak/bowler-

at-2d. 

The average computation time for the proposed method is 3.8

econds for DRIVE image and 4.9 seconds for STARE image. Please

ake a note that the proposed method has been implemented

nd tested in Matlab, however, C++ implementation could be much

aster. 

. Results 

In this section, the proposed method is qualitatively and quan-

itatively validated and compared with the existing state-of-the-

rt methods using synthetic and clinically relevant, retinal image

atasets, with human-annotated ground truths, and other biomed-

cal images. 

As with any image processing method, an understanding of how

he parameters involved affect the result is essential. In general, we
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Table 1 

Mean AUC values calculated as described in Section 4.4.1 , for the images across the DRIVE, STARE and HRF 

datasets enhanced by the bowler-hat and the state-of-the-art methods. Best results for each dataset are in bold. 

Individual ROC curves can be seen in Figure 8 . 

Enhancement Method AUC(Std) 

Year/Ref DRIVE STARE HRF (healthy) HRF (unhealthy) 

Raw image - 0.416 (0.064) 0.490 (0.076) 0.530 (0.075) 0.541 (0.073) 

Vesselness 1998 [3] 0.888 (0.243) 0.898 (0.215) 0.913 (0.020) 0.904 (0.020) 

CLAHE 1998 [10] 0.862 (0.068) 0.880 (0.087) 0.867 (0.025) 0.835 (0.023) 

Zana’s top-hat 2001 [8] 0.933 (0.015) 0.956 (0.021) 0.943 (0.010) 0.91 (0.016) 

Neuriteness 2004 [26] 0.909 (0.022) 0.927 (0.039) 0.896 (0.024) 0.879 (0.059) 

PCT vesselness 2012 [6] 0.890 (0.037) 0.899 (0.056) 0.888 (0.011) 0.837 (0.030) 

PCT neuriteness 2012 [6] 0.817 (0.021) 0.827 (0.165) 0.901 (0.029) 0.777 (0.022) 

Wavelet 2012 [13] 0.921 (0.013) 0.935 (0.015) 0.829 (0.021) 0.740 (0.026) 

Line detector 2013 [15] 0.926 (0.019) 0.954 (0.016) 0.858 (0.020) 0.734 (0.026) 

Volume ratio 2016 [28] 0.936 (0.013) 0.956 (0.012) 0.927 (0.018) 0.823 (0.026) 

SCIRD-TS 2016 [38] 0.925 (0.012) 0.946 (0.021) 0.956 (0.012) 0.692 (0.035) 

Bowler-hat - 0.946 (0.032) 0.962 (0.034) 0.968 (0.015) 0.944 (0.016) 

Table 2 

Mean ACC values with the standard deviation for vessel segmentation re- 

sults obtained by the proposed and the state-of-the-art vessel-like struc- 

tures enhancement methods followed by the same global thresholding 

approach proposed in [48] and local thresholding approach proposed 

in [49] when applied to the HRF dataset images. 

ACC (Std) 

Enhancement Method Global Local 

Year/Ref HRF HRF 

Vesselness 1998 [3] 0.936(0.006) 0.951(0.006) 

CLAHE 1998 [10] 0.668(0.101) 0.859(0.009) 

Zana’s top-hat 2001 [8] 0.925(0.016) 0.946(0.008) 

Neuriteness 2004 [26] 0.948(0.005) 0.953(0.006) 

PCT vesselness 2012 [6] 0.892(0.015) 0.926(0.007) 

PCT neuriteness 2012 [6] 0.916(0.013) 0.90 0(0.0 08) 

Wavelet 2012 [13] 0.672(0.137) 0.946(0.006) 

Line detector 2013 [15] 0.902(0.008) 0.957(0.006) 

Volume ratio 2016 [28] 0.936(0.012) 0.947(0.011) 

SCIRD-TS 2016 [38] 0.947(0.008) 0.951(0.010) 

Bowler-hat - 0.960(0.005) 0.961(0.005) 
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Fig. 4. Cross-sectional profiles of a synthetic vessel input image (at the upright side 

(red, dashed line)) and the input image enhanced with the state-of-the-art (see leg- 

end for colours) vessel enhancement methods and the proposed bowler-hat (black, 

solid line) vessel enhancement method. All the images were normalised such that 

the brightest pixel in the whole image has a value of 1 and the darkest a value of 

0. (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

Fig. 5. Comparison of the vessel enhancement methods’ abilities to deal with an 

uneven background illumination. (a) an input image, (b) vesselness, (c) CLAHE, 

(d) Zana’s top-hat, (e) neuriteness, (f) PCT vesselness, (g) PCT neuriteness, 

(h) wavelet, (i) line detector, (j) volume ratio, (k) SCIRD-TS, and (l) the bowler-hat. 
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ave found the bowler-hat transform to be robust, usually requir-

ng 10–12 θ orientations for line structuring element and the size

f the disk/line structuring element d to be greater than the thick-

st vessel structure in an image. 

The following sections are organised as follows: first, we visu-

lly and qualitatively analyse the bowler-hat transform and com-

are with alternative methods in Sections 4.1, 4.3 , and 4.2 . Sec-

nd, we use real world fundus images, with human-created ground

ruths, to compare these methods in Section 4.4 and the parame-

ers for all methods can be found in the supplementary file pre-

ented in Table 1 . We evaluate these results in a quantitative and

omparable manner using the Receiver Operating Characteristic

ROC) curve and the Area Under the Curve (AUC) metric. All the

mages were normalised after each enhancement approach such

hat the brightest pixel in the whole image has a value of 1 and

he darkest a value of 0. 

.1. Profile analysis 

The effect of the vessel enhancement methods on a simple

essel-like structure is shown in Fig. 4 . This represents the simplest

xample of a vessel in an image, like those found in retinal im-

ges. Fig. 4 illustrates the normalised, intensity profile for images

nhanced with each of the methods. As the Fig. 4 clearly shows,

he enhancement methods tend to expand or shrink the vessel-

ike structures. Moreover, while the Hessian-based methods have

n enhanced signal at the center of the vessel, i.e. a peak value of
ne at the vessels centre-line, their value quickly drops off and de-

reases the perceived thickness of the vessel. The proposed method

as both these benefits: a maximal peak value at the vessel centre-

ine and an enhanced response to the edges of the vessel. As a re-

ult, reliable vessel thickness can be captured. 

.2. Response to uneven background illumination 

Fig. 5 presents the response of the proposed method to an un-

ven illumination scenario. Key features such as junctions are pre-

erved and appear unaffected by even severe illumination prob-

ems. This ability to preserve junctions under uneven illumination
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Fig. 6. The bowler-hat transform enhances vessels, maintaining junctions and tips while suppressing blobs. A comparison of the enhancement of vessel-like and other 

structures using the proposed method and the state-of-the-art methods. (a) shows the original images, all vessels have a thickness of 9 pixels and the ‘blob’ in 4 has a 

diameter of 21 pixels. The first four rows are synthetic images that indicate possible vessel-like structures in biomedical images. The last three rows illustrate vessel-like 

structures from real biomedical images. Row 5 is a cropped region from the DRIVE dataset, while row 6 is vessel section of the healthy images in the HRF dataset. The last 

row is another a cropped region from the leaf image [6] . Results for (b) vesselness, (c) CLAHE, (d) Zana’s top-hat, (e) neuriteness, (f) PCT vesselness, (g) PCT neuriteness, 

(h) wavelet, (i) line detector, (j) volume ratio, (k) SCIRD-TS, and (l) the bowler-hat. Arrows indicate features of interest: vessel structures (yellow arrows), junctions (purple), 

blob-like features (green), and tips (orange). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d  

e  

a  

T  

a  

p  

t  

t  

w

 

a  

a  

c  

R  

i  

a

4

 

t  

q  

w  

a  

c  

R  

a  

c  

A  
is important for many real applications of vessel enhancement and

the proposed method is able to do this, unlike the current state-

of-the-art methods. 

4.3. Response to vessels, intersections, and blobs 

Fig. 6 presents a qualitative comparison between the proposed

method and the state-of-the-art methods when applied to syn-

thetic images and real images with vessel-like, intersection-like,

and blob-like structures. Key issues that occur across the state-of-

the-art methods include defects at junctions (purple arrows), noise

enhancement, tip artefacts (orange arrows) and loss of signal (yel-

low arrows). These issues are all absent with our proposed method.

However, a shortcoming of our approach is shown in Fig. 6 - row 4,

which shows a vessel like an object with an attached ‘blob’ (green

arrow), a perfect vessel enhancement method would enhance all

of the linear structure and none of the blob. While none of the

compared approaches act in this ideal manner, many of the meth-

ods show a clear difference between the blob response and vessel

response. 

4.4. Real data - Retinal image datasets 

In this section, we show the quality of the proposed method

validated on three publicly available retinal image datasets: the

DRIVE, STARE, and HRF databases. These datasets have been chosen

because of their availability and their ground truth data. We have

used these ground truth segmentations to quantitatively compare

the proposed method with the other vessel enhancement methods.
The Digital Retinal Images for Vessel Extraction [44] (DRIVE)

ataset is a published database of retinal images for research and

ducational purposes. The database consists of twenty colour im-

ges that are JPEG compressed, as for many screening programs.

hese images were selected randomly from a screening of 400 di-

betic subjects between the ages of 25 and 90. The ground truth

rovided with this dataset consists of manual segmentation of

he vasculature for each image. Ground truths were prepared by

rained observers, and ’true’ pixels are those for which observers

here > 70% certain. 

The STructured Analysis of the REtina (STARE) [45] dataset is

nother publicly available database containing twenty colour im-

ges with human-determined vasculature ground truth. We have

ompared all these images against the AH labelling. The High-

esolution Fundus (HRF) image dataset [46] consists of 45 retinal

mages. This dataset has three type of subjects include healthy, di-

betic retinopathy, and glaucoma. 

.4.1. Quantitative validation - Enhancement 

While a visual inspection can give some information regarding

he effectiveness of the vessel enhancement methods, a form of

uantitative validation is required. Therefore, as proposed in [47] ,

e have used the Receiver Operating Characteristic (ROC) curve

nd we calculated the Area Under the Curve (AUC) based on ROC

urve to compare the vessel enhancement methods. To derive the

OC curve and then to calculate the AUC value, each enhanced im-

ge is segmented at different thresholds ranging from 0 to 1, and

ompared with the corresponding ground truth segmentation [43] .

UC value is calculated using a trapezoidal approximation of the
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Fig. 7. A comparison of the vessel-like structure enhancement results for a sample image from HRF dataset. (a) an input image. The zoomed in the region (2) shows enlarged 

image ROI in the square of the raw image. The arrows point to key areas of interest, such as junctions, fine tips and vessels not captured by all methods. Respectively, 

(b) vesselness, (c) CLAHE, (d) Zana’s top-hat, (e) neuriteness, (f) PCT vesselness, (g) PCT neuriteness, (h) wavelet, (i) line detector, (j) volume ratio, (k) SCIRD-TS, and (l) the 

bowler-hat. 

Fig. 8. ROC curves calculated for sample images from the (a) DRIVE, (b) STARE, and (c) HRF datasets enhanced by the proposed and the state-of-the-art methods (see legend 

for colours). Corresponding mean AUC values can be found in Table 1 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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rea under the curve. The AUC metric measures vessel segmen-

ation accuracy directly but it also measures the vessel enhanced

ccuracy indirectly. Such a procedure is used for Figs. 11 and 8 ,

nd Table 1 . 

Please note that, before any quantitative evaluation, all the en-

anced retinal images were masked with the mask images pro-

ided with the retinal image datasets. 

.4.2. Quantitative validation - Segmentation 

To quantitatively evaluate the robustness of the vessel segmen-

ation methods, sensitivity (SE), specificity (SP), and accuracy (ACC)
etrics are calculated for each segmented image and its corre-

ponding ground truth segmentation, as follows: 

E = 

T P 

T P + F N 

, (8) 

P = 

T N 

T N + F P 
, (9) 

CC = 

T P + T N 

T P + T N + F P + F N 

, (10) 
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Fig. 9. The bowler-hat applied to the unhealthy subjects from (a) DRIVE, (b) STARE 

and (c) HRF. (d,g,j) are the input images with the region of interest. (e,h,k), illustrate 

the green channel of the input image (f,i.l) demonstrate the enhancement result of 

the vessel-like structure on the abnormal area. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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where TP is the true positive count, FP the false positive count,

TN the true negative and FN the false negative counts of the seg-

mented pixels. We used these metrics in Tables 2 and 3 . 

4.4.3. Healthy subjects 

Fig. 7 shows the results of the proposed and state-of-the-art

methods applied to a sample image from the HRF dataset (results
Fig. 10. Vessel segmentation results obtained by the proposed and the state-of-the-art ve

approach proposed in [49] when applied to the HRF dataset images. (a) vesselness, (b) 

(g) wavelet, (h) line detector, (i) volume ratio, and (j) the bowler-hat. Colours indicate true 

mean AUC values can be found in Table 2 . (For interpretation of the references to colour 
or DRIVE and STARE datasets can be found in Supplementary Ma-

erials). 

We can see that the proposed method is able to enhance finer

tructures as detected by the human observer but not emphasised

y many of the other methods (see arrows). 

We can also see that, whilst the connectivity seems to be

aintained (unlike in Fig. 7 b), ‘false vessels’ are not introduced

c.f. Fig. 7 e). 

Finally, Fig. 8 and Table 1 present ROC curves and mean AUC

alues for the enhancement results of the proposed and state-of-

he-art methods applied to all images across the DRIVE, STARE

nd HRF datasets by using the quantitative validation as de-

cribed Section 4.4.1 . 

.4.4. Unhealthy subjects 

Fig. 9 presents a visual comparison of the enhancement meth-

ds applied to sample images of subjects with diabetic retinopathy

nd with glaucoma from the DRIVE, STARE and HRF datasets. As

e can notice in Fig. 9 i, the proposed method is sensitive to noisy

egions. This issue can be addressed by the use of a line-shaped

orphological structuring element with a varying thickness. Even

o, the proposed method achieved the highest overall score on the

RF unhealthy images as illustrated in Table 1 . 

.4.5. Enhancement with global and local thresholding 

Fig. 10 demonstrates the vessel segmentation results obtained

y the proposed and the state-of-the-art vessel-like structures en-

ancement methods followed by the same global and local thresh-

lding approaches proposed in [4 8,4 9] when applied to the HRF

ataset images. The quantitative comparision of the vessel segmen-

ation results obtained is presented in Table 2 . 

.4.6. Comparison with other segmentation methods 

To highlight the effectiveness of the proposed vessel en-

ancement method (combined with the local thresholding

pproach [49] ) for a full vessel segmentation, we compared

he performance of our method with seventeen state-of-

he-art vessel segmentation methods reported in the litera-

ure [12,13,15,44,46,50–61] applied to DRIVE, STARE and HRF

atasets. 

Table 3 shows the reported results of the seventeen segmenta-

ion methods compared with the proposed method. From Table 3 ,

t can be seen that the proposed bowler-hat transform outper-

orms several common or state-of-the-art methods from the field.

n cases where the proposed method does not outperform, but still
ssel-like structures enhancement methods followed by the same local thresholding 

CLAHE, (c) Zana’s top-hat, (d) neuriteness, (e) PCT vesselness, (f) PCT neuriteness, 

positive (white), false positive (red) and false negative pixels (green). Corresponding 

in this figure legend, the reader is referred to the web version of this article.) 



Ç. Sazak et al. / Pattern Recognition 88 (2019) 739–750 747 

Fig. 11. The bowler-hat transform is robust against additive Gaussian noise but susceptible to speckle and salt&pepper. Mean AUC for the input image and the image 

enhanced by bowler-hat and by the state-of-the-art methods with different peak signal-to-noise ratios (PSNRs) for three different noise types: (a) additive Gaussian noise, 

(b) multiplicative Gaussian noise, and (c) salt and pepper noise (see legend for colours). (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

Table 3 

Performance of different vessel segmentation methods have been reported in the literature with the proposed 

method, regarding mean sensitivity (SE), specificity (SP), accuracy (ACC) on the all over the DRIVE, STARE and 

HRF datasets. 

Method DRIVE STARE HRF 

SE SP ACC SE SP ACC SE SP ACC 

Staal et.al [44] - - 0.946 - - 0.951 - - - 

Soares et.al [50] - - 0.946 - - 0.948 - - - 

Lupascu et.al [51] 0.720 - 0.959 - - - - - - 

You et.al [52] 0.741 0.975 0.943 0.726 0.975 0.949 - - - 

Marin et.al [53] 0.706 0.980 0.945 0.694 0.981 0.952 - - - 

Wang et.al [54] - - 0.946 - - 0.952 - - - 

Mendonca et.al [55] 0.734 0.976 0.945 0.699 0.973 0.944 - - - 

Palomera-Perez et.al [56] 0.660 0.961 0.922 0.779 0.940 0.924 - - - 

Matinez-Perez et.al [57] 0.724 0.965 0.934 0.750 0.956 0.941 - - - 

Al-Diri et.al [58] 0.728 0.955 - 0.752 0.968 - - - - 

Fraz et.al [12] 0.715 0.976 0.943 0.731 0.968 0.944 - - - 

Nguyen et.al [15] - - 0.940 - - 0.932 - - - 

Bankhead et.al [13] 0.703 0.971 0.937 0.758 0.950 0.932 - - - 

Orlando et.al [59] 0.785 0.967 - - - - - - - 

Azzopardi et.al [60] 0.766 0.970 0.944 0.772 0.970 0.950 - - - 

Odstrcilik et.al [46] 0.784 0.951 0.934 0.706 0.969 0.934 0.786 0.975 0.953 

Zhang et.al [61] 0.774 0.972 0.947 0.779 0.975 0.955 0.797 0.971 0.955 

Proposed method 0.718 0.981 0.959 0.730 0.979 0.962 0.831 0.981 0.963 
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erforms to a similar quality, it is worth keeping in mind that

any of these methods combine multiple stages, of which en-

ancement is just one, whereas our approach is able to achieve

uch high quality results with just an enhancement process. The

esults on both datasets demonstrate that the sensitivity of the

roposed method is not in top three respectively for DRIVE ( SE =
 . 616 ) and STARE ( SE = 0 . 730 ). However, the proposed method has

he highest score with the specificity ( SP = . 991 ) for DRIVE and

 SP = . 979 ) for STARE. Most importantly, our method has the accu-

acy ( ACC = 0 . 960 ) and ( ACC = 0 . 962 ) for DRIVE and STARE respec-

ively; the highest compared to other vessel segmentation meth-

ds. Finally, the proposed method has the highest score for HRF

ataset, with ( SE = 0 . 831 ), ( SP = . 981 ) and ( ACC = 0 . 963 ). 

.5. Response to noise 

To test how the state-of-the-art enhancement methods and the

roposed method behave with the different level and type of the

oise, a noisy synthetic image that includes a single vessel-like

tructure was used. We generated such noisy image by optimising
he noise generation parameters to achieve a target PSNR by using

 genetic optimisation algorithm proposed in [62] . 

We then examine the enhancement methods by increasing the

oise level and then calculating the AUC values for each level of

oise and each comparator method. Fig. 11 shows the effect of

hree different noise types on the proposed and state-of-the-art

ethods. Given that the proposed method has no built-in noise

uppression, it is unsurprising that the effect of noise on the en-

anced image is in-line with the raw image. We note that the

ethod is weakest in response to speckle noise (multiplicative

aussian) and also weak in response to salt and pepper noise. This

ollows from the noise-sensitivity in morphological operations and

hould be taken into consideration when choosing an enhance-

ent method. 

.6. Other biomedical data 

While we have demonstrated the proposed method on the en-

ancement of vessel-like structures, the approach is feasible for a

ide range of biomedical images, see Fig. 12 . 
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Fig. 12. Results of the vessel-like structure enhancement using the bowler-hat on biological images of (a–b) cytoskeletal networks, (c) endoplasmic reticulum, and (d–e) 

macro-scale networks. (a) provided by Prof. R. Leube, RWTH Aachen University, Germany. (b) provided by Dr T. Hawkins, Durham University, UK. (c–e) provided by Prof. M. 

Fricker, Oxford University, UK. 
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5. Conclusion and discussion 

A wide range of image processing methods have been proposed

for vessel-like structure enhancement in biomedical images, see

section Section 1 . Most of them, however, suffer from issues with

low-contrast signals, enhancement of noise or when dealing with

junctions. 

In this paper, we introduce a new enhancement method for

vessel-like structures based on mathematical morphology, which

exploits the elongated shape of vessel-like structures. The pro-

posed method, the bowler-hat transform, was qualitatively and

quantitatively validated and compared with the state-of-the-art

methods using a range of synthetic and real image datasets, includ-

ing retinal image collections (DRIVE, STARE and HRF). We showed

the effectiveness of the bowler-hat transform, and its superior per-

formance on retinal imaging data, see Fig. 8 , Tables 1 and 2 . Fur-

thermore, experimental results on the unhealthy retinal images

have shown that the vessels enhanced by our bowler hat transform

are continuous and complete in problematic regions as illustrated

in Fig. 9 . 

As with any image processing technique, our proposed method

has limitations. Basically, morphological operations are renowned

for their large computational requirements. Another limitation of

the proposed method is displayed in Fig. 6 row 4, which shows a

vessel-like structure with an attached ‘blob’ (green arrow), a per-

fect vessel enhancement method would enhance all of the linear

structure and none of the blob. Whilst none of the comparison

methods act in this ideal manner many of them show a clear dif-

ference between the blob response and vessel response, our pro-

posed method shows some difference, but this difference impacts

the signal of the vessel. 

Moreover, as we note in Fig. 7 , the proposed method is sensi-

tive to noise such as susceptible to speckle and salt&pepper, as is

the PCT neuriteness method in Fig. 7 g. In the future, we will inves-

tigate introducing a line-shaped morphological structuring element

with varying thickness to address this issue. Nevertheless, our im-

plementation demonstrates an improved and easy to use vessel en-

hancement alternative that can be used in a wide range of biomed-

ical imaging scenarios [63] . Whilst one would expect the lack of

noise suppression to be a major issue with regard to quantified

measurements of vessel enhancement, we find that the proposed

method gives the best enhancement of all methods on the DRIVE,

STARE and HRF datasets (see Table 1 and Fig. 8 ). 
In this paper, we have demonstrated the ability of the pro-

osed bowler-hat transform to effectively enhance and segment

essel-like structures in the retinal images. In addition, to illustrate

he robustness of the proposed bowler-hat transform enhance, we

ave matched it with the seventeen state-of-the-art methods pre-

iously tested on the DRIVE, STARE and HRF image datasets, see

able 3 . 

Future extensions of this work will include the development of

 three-dimensional equivalent, exploration of blob-like structures

nhancing variants of this method, and an analysis of parameter

ensitivity for different modalities. 
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