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This paper presents for the first time the derivation of an hp a posteriori error estimator 

for the symmetric interior penalty discontinuous Galerkin finite element method for linear 

elastic analysis. Any combination of Neumann and Dirichlet boundary conditions are ad- 

missible in the formulation, including applying Neumann and Dirichlet on different com- 

ponents on the same region of the boundary. Therefore, the error estimator is applicable 

to a variety of physical problems. The error estimator is incorporated into an hp -adaptive 

finite element solver and verified against smooth and non-smooth problems with closed- 

form analytical solutions, as well as, being demonstrated on a non-smooth problem with 

complex boundary conditions. The hp -adaptive finite element analyses achieve exponential 

rates of convergence. The performances of the hp -adaptive scheme are contrasted against 

uniform and adaptive h refinement. This paper provides a complete framework for adap- 

tivity in the symmetric interior penalty discontinuous Galerkin finite element method for 

linear elastic analysis. 
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1. Introduction 

The discretization of partial differential equations for numerical computation facilitates the solution of physical systems,

however, it introduces approximation errors. Error estimators are essential for the numerical analysis of boundary value

problems as they allow for the assessment of the accuracy of a simulation in the absence of analytical solutions [1] . 

In this work, we present a new error estimator for linear elasticity based on a Discontinuous Galerkin (DG) finite

element method. DG methods were introduced in the early 1970s as a way to numerically solve first-order hyperbolic

problems [2] . More recently, these methods have been applied to elliptic problems [3–5] . A variety of DG methods have

been developed in the decades [6] , among them is the subclass of interior penalty DG methods which are stable and, in

the authors’ opinion, easy to implement. For these reasons the method used in this work is the symmetric version of the

interior penalty DG method. 

Error estimators for elliptic problems have been an important topic in the last few years. In [7] the first residual-based

energy-norm error estimator for the symmetric interior penalty discontinuous Galerkin finite element method is presented.

In the following years, inspired by this pioneering work, error estimators have been derived to solve a variety of problems
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(see for example [8–11] ). The present work is meant to fill the need of an hp residual-based energy-norm error estimator

for DG methods for linear elasticity. 

The layout of the paper is as follows. Section 2 introduces the linear elastic model problem including pure Neu-

mann/Dirichlet and mixed Neumann/Dirichlet boundary conditions and Section 3 presents the weak formulation for this

problem. The symmetric interior penalty discontinuous Galerkin finite element method is introduced in Section 4 , and

Section 5 provides the a priori convergence results of the method. Sections 6 and 7 present the reliability and the efficiency

of the error estimator. The analysis in Sections 6 and 7 is only presented for the two dimensional case, but it holds also

for the three dimensional case. The restriction to the two dimensional case is to keep the paper more readable. For the

same reason we only consider triangular elements, but the analysis is also applicable to affine quadrilateral elements and

to tetrahedral and affine hexahedral elements in three dimensions. Numerical examples verifying the error estimator and

its implementation within an hp -adaptive solver are presented in Section 8 before conclusions are drawn in Section 9 . 

2. Model problem 

The model problem considered in this paper is linear elasticity with several kinds of boundary conditions: let � be a

bounded polygonal domain in R 

2 with ∂� = �D ∪ �N ∪ �T , where �D , �N and �T are disjoint sets, and let u the solution

of 

−∇ · σ(u ) = f in �, 

u = g D on �D , 

σ(u ) · n = g N on �N , 

u · n = g T · n on �T , 

t (u ) · n ‖ = 0 on �T , (1)

with u ∈ [ H 

1 ( �)] 2 and where n = (n x , n y ) is the unit vector perpendicular to the boundary of � and pointing out and n ‖ is

the tangential unit vectors to the boundary, t ( u ) is the traction component of the stress, i.e. 

t (u ) := σ(u ) · n 

and where f , g D , g N and g T are functions respectively in [ L 2 ( �)] 2 , [ H 

1/2 ( �D )] 
2 , [ L 2 ( �N )] 

2 and [ H 

1/2 ( �T )] 
2 . The last equation

in (1) imposes that the tangential component of the traction is zero. 

In order to ensure that the model problem (1) has a unique solution, the rigid motions have to be excluded. In order to

do that lets introduce the function space S := [ H 

1 (�)] 2 \ R, where R is the space containing all rigid motions, clearly rigid

motions are not in S . In view of this we assume that u ∈ S . The lack of uniqueness of the solution can be traced to the fact

that the kernel of the strain operator ε( · ) contains only rigid motions [12] . 

Remark 1. One or more sets among �D , �N and �T can be empty. We assume that all the considered combinations of

boundary conditions ensure the uniqueness of the solution of problem (1) up to rigid motions. A way to filter out the rigid

motions in simulations is presented in [13] . This technique is used in Section 8.3 to solve the crack in a plate problem. 

We define the strain tensor for a displacement v as ε(v ) i j := 

1 
2 (∇ j v i + ∇ i v j ) and we restrict the choice of material

properties such that we have that σ(v ) = D ε(v ) where the matrix D ∈ R 

3 ×3 ×3 ×3 is symmetric and invertible implying that

there are two positive constants D min and D max such that 

D min | x | ≤ | Dx | ≤ D max | x | , ∀ x ∈ R 

3 ×3 . (2)

It is straightforward to see that on S there are two positive constants c ε and C ε such that 

c ε‖ ∇ v ‖ 0 , � ≤ ‖ ε(v ) ‖ 0 , � ≤ C ε‖ ∇ v ‖ 0 , �, ∀ v ∈ S, (3)

with ‖ · ‖ 0, � the L 2 norm. Also, thanks to the fact that D is invertible, there are two positive constants c σ and C σ such that 

c σ‖ ∇ v ‖ 0 , � ≤ ‖ σ(v ) ‖ 0 , � ≤ C σ‖ ∇ v ‖ 0 , �, ∀ v ∈ S. (4)

Theorem 2.1 (Coercivity in the continuous case) . There is a positive constant c CG such that for any function v ∈ S we have: 

‖ ∇ v ‖ 

2 
0 , � ≤ c CG 

∣∣∣∣ ∫ 
�

σ(v ) : ε(v ) dx 

∣∣∣∣. 
Proof. The statement comes easily from (3) and (4) . �

3. Continuous weak formulation 

In this section we introduce the continuous weak formulation of problem (1) , this formulation is only used in the

analysis for the error estimator and it is not implemented in the code. Due to the variety of boundary conditions in (1) , we

introduce different spaces for the trial and test functions: 

S CG 
1 := { u ∈ S : u | � = g D , u · n | � = g T · n } , (5)
D T 
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S CG 
2 := { v ∈ S : v | �D 

= 0 , v · n | �T 
= 0 } , (5) 

with n the unit vector perpendicular to the boundary of � and pointing outward. 

Thus, the weak form of problem (1) reads as follows: find u ∈ S CG 
1 

such that 

a CG (u , v ) = l CG (v ) ∀ v ∈ S CG 
2 , (6) 

where the bilinear form a CG ( ·, ·) and the linear form l CG ( · ) are 

a CG (u , v ) : = 

∫ 
�

σ(u ) : ε(v ) dx , 

l CG (v ) : = 

∫ 
�

f · v dx + 

∫ 
�N 

g N · v ds. (7) 

The definitions in (7) can be derived from the strong problem (1) applying integration by parts and then applying the

boundary conditions. 

4. Symmetric interior penalty discontinuous Galerkin method 

In this section, we introduce our DG method to solve problem (1) on �. Throughout, we assume that the computational

domain � can be partitioned into a shape regular mesh T of triangular elements and we denote with K a generic element

of T . Also we assume that the elements are affine, i.e. for each element K there exists an affine map between the reference

element ˆ K and the physical element K . We allow for a maximum of one hanging node per edge and we denote E(T ) and

E int (T ) ⊂ E(T ) the set of all edges of the mesh T and the subset of all interior edges, respectively, and by E BC (T ) ⊂ E(T )
the subset of all boundary edges. Furthermore, the set E BC (T ) is partitioned in the three subsets E D (T ) , E N (T ) and E T (T )
that are the sets containing the edges forming the three portions of the boundary �D , �N and �T . We define h K and h E to

be the diameter of the element K and the length of the edge E respectively and we also define h max as the maximum of h K 
on the mesh T . 

Now we introduce the polynomial degrees for the approximation in our DG method. Hence, for each element K of the

mesh T we associate a polynomial degree p K ≥ 1 and we introduce the degree vector p = { p K : K ∈ T } and we define p min 

as the minimum of p K on the mesh T . We assume that p is of bounded local variation on all meshes in the sense that for

any pair of neighbouring elements K, K 

′ ∈ T , we have 

� 

−1 ≤ p K 
p K ′ 

≤ �, (8) 

where ϱ≥ 1 is a constant independent of the particular mesh. For any E ∈ E(T ) , we introduce the edge polynomial degree

p E by 

p E = 

{
max ( p K , p K ′ ) , if E = ∂ K ∩ ∂ K 

′ , E ∈ E int (T ) , 
p K , if E = ∂ K ∩ ∂ �, E ∈ E(T ) \ E int (T ) . (9) 

Hence, for a given partition T of � and a degree vector p on T , we define the hp -version DG finite element space by 

V p (T ) = 

{ 

v ∈ [ L 2 (�)] 2 \ R : v | K ∈ [ P p K (K)] 2 , K ∈ T 
} 

, (10) 

where P p K (K) is the space of polynomials of degree at most p K and R is the set of rigid motions, see Remark 1 . The exclusion

of rigid motions from the DG space is useful for the analysis. In practice this constraint is imposed as explained in Remark 1 .

Given an edge E ∈ E int (T ) shared by two elements K 

+ and K 

−, we define denoting with + and − the values from the

two elements. Moreover, we define n 

+ 
K 

= (n + x , n 
+ 
y ) the outward unit normal on the boundary ∂K 

+ of an element K , then we

define the jump [[ · ]] operator and the average { · } operator on vectors and tensors as: 

[[ v ]] i j = v + 
i 

n 

+ 
K j 

− v −
i 

n 

+ 
K j 

, 

[[ σ]] i = σ+ 
i j 

n 

+ 
K j 

− σ−
i j 

n 

+ 
K j 

, 

{ σ(v ) } = 

1 

2 

(
σ(v ) + + σ(v ) −

)
. (11) 

Note that if E ⊂ ∂�, we set { σ(v ) } = σ(v ) , [[ σ]] i = σ i j n 

+ 
K j 

and [[ v ]] i j = v i n 

+ 
j 

. Thus, the DG approximation problem (1) reads

as follows: find u h ∈ V p (T ) such that 

a DG (u h , v h ) = l(v h ) , ∀ v h ∈ V p (T ) , (12) 
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where the bilinear form 

a DG (u , v ) : = 

∑ 

K∈T 

∫ 
K 

σ(u ) : ε(v ) dx 

−
∑ 

E∈E int (T ) ∪E D (T ) 

∫ 
E 

{ σ(u ) } : [[ v ]] + { σ(v ) } : [[ u ]] ds 

+ 

∑ 

E∈E int (T ) ∪E D (T ) 

γ p 2 E 

h E 

∫ 
E 

[[ u ]] : [[ v ]] ds 

−
∑ 

E∈E T (T ) 

∫ 
E 

(t (u ) · n )(v · n ) + (t (v ) · n )(u · n ) ds 

+ 

∑ 

E∈E T (T ) 

γ p 2 E 

h E 

∫ 
E 

(u · n )(v · n ) ds, 

and the linear form 

l(v ) : = 

∑ 

K∈T 

∫ 
K 

f · v dx −
∑ 

E∈E D (T ) 

∫ 
E 

g D · σ(v ) · n ds + 

∑ 

E∈E D (T ) 

γ p 2 E 

h E 

∫ 
E 

g D · v ds + 

∑ 

E∈E N (T ) 

∫ 
E 

g N · v ds 

−
∑ 

E∈E T (T ) 

∫ 
E 

(g T · n )(t (v ) · n ) ds + 

∑ 

E∈E T (T ) 

γ p 2 E 

h E 

∫ 
E 

(g T · n )(v · n ) ds 

where γ is the penalty constant. 

The natural norm for problem (12) is the DG norm: 

||| u ||| T : = 

( ∑ 

K∈T 
‖ ∇ u ‖ 

2 
0 ,K + 

∑ 

E∈E int (T ) 

γ p 2 E 

h E 

∥∥∥[[ u ]] 

∥∥∥2 

0 ,E 
+ 

∑ 

E∈E D (T ) 

γ p 2 E 

h E 

∥∥∥u 

∥∥∥2 

0 ,E 
+ 

∑ 

E∈E T (T ) 

γ p 2 E 

h E 

∥∥∥u · n 

∥∥∥2 

0 ,E 

)
1 / 2 , (13)

where ‖ · ‖ 0, K and ‖ · ‖ 0, E are respectively the L 2 -norm on an element K and on an edge E . 

5. A priori convergence results 

In this section, we prove the a priori convergence of the DG method. For this purpose we need to introduce an additional

function space: 

[ H 

s (T )] 2 := { v ∈ [ L 2 (�)] 2 : v | K ∈ [ H 

s (K)] 2 , K ∈ T } . 
Remark 2. From now on the notation a � b is used to denote a ≤ c b , where c is a constant that may depend on the coef-

ficients in (1) , the value of γ and the constant in Theorem 2.1 . The constant c is always independent of the sizes of the

elements and the orders of polynomials in the elements. 

Lemma 1. Let K ∈ T be a triangular element and u a function in [ H 

s ( K )] 2 , with s ≥ 1 . There exists a positive constant C π de-

pending on s and on the shape regularity of the mesh but independent of u , p K and h K , and a polynomial πu ∈ [ P p K (K)] 2 , with

p K ≥ 1, such that for any q , 0 ≤ q ≤ s 

‖ u − πu ‖ q,K ≤ C π
h 

μ−q 
K 

p s −q 
K 

‖ u ‖ s,K , (14)

‖ u − πu ‖ 0 ,E ≤ C π
h 

μ−1 / 2 
K 

p s −1 / 2 
K 

‖ u ‖ s,K , (15)

where μ = min (p K + 1 , s ) and where E ⊂ ∂K. 

This result for the scalar case is presented in Lemma A.7 in [14] . The definition of the projection operator is in [15] for

the p -case and in [16] for the hp -case. The extension of the operator from the scalar case to the vector case is trivial and it

consists in applying the operator to each component of the vector function u . 

Theorem 5.1. Let u ∈ S ∩ [ H 

s (T )] 2 , with s ≥ 2, be a solution of (1) and u h the corresponding DG approximation. Then choosing

γ large enough we have: 

||| u − u h ||| T � 

h 

μ−1 
max 

p s −3 / 2 
min 

‖ u ‖ s, �, 

where h max and p are defined in Section 4 and where μ = min (p + 1 , s ) and p ≥ 1 . 
min min min 
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Proof. The proof is based on [14, Theorem 4.1] , but in order to apply it to linear elasticity, we extended it in several ways

including to remove rigid motions. First we need to introduce a second DG norm: 

‖ u ‖ 

2 
DG , T := ||| u ||| 2 T + 

∑ 

E∈E int (T ) ∪E D (T ) 

∫ 
E 

h E 

γ p 2 
E 

|{ σ(u ) · n }| 2 ds + 

∑ 

E∈E T (T ) 

∫ 
E 

h E 

γ p 2 
E 

|{ t (u ) · n }| 2 ds, 

it is straightforward to see that ||| · ||| T ≤ ‖ · ‖ DG , T . Also Theorem 3.3 in [14] can be used to prove the continuity result in

our case, i.e. 

| a DG (u , v ) | � ‖ u ‖ DG , T ‖ v ‖ DG , T , ∀ u , v ∈ [ H 

2 (T )] 2 \ R. (16) 

Moreover, Theorem 3.5 in [14] can be used to prove the coercivity result in our case, i.e. 

‖ v h ‖ 

2 
DG , T � a DG (v h , v h ) , ∀ v h ∈ V p (T ) . (17) 

Using the interpolation operator defined in Lemma 1 , we have: 

‖ u − u h ‖ DG , T ≤ ‖ u − πu ‖ DG , T + ‖ πu − u h ‖ DG , T , 

then by (17) and the orthogonality of the DG solution, i.e. a DG (u − u h , v h ) = 0 , for all v h ∈ V p (T ) , we have 

‖ πu − u h ‖ 

2 
DG , T � a DG (πu − u h , πu − u h ) = a DG (πu − u , πu − u h ) . 

Furthermore applying (16) we obtain 

‖ πu − u h ‖ DG , T � ‖ u − πu ‖ DG , T . (18) 

The result comes directly from (18) noticing that 

||| u − u h ||| T ≤ ‖ u − u h ‖ DG , T � ‖ u − πu ‖ DG , T . �

The regularity assumption in Theorem 5.1 may be weakened using the same argument for the pure diffusion case as in

[17] . 

6. Reliability of the error estimator 

This section contains one of the main results of this paper which is the proof of reliability for the proposed error estima-

tor (19) . Theorem 6.1 guarantees that, up to a constant independent of the sizes of the elements or their order, the error esti-

mator is an upper bound for the true error using the DG norm. This result is very useful in practice since the error estimator

is computable also when the exact solution of a problem is not known, therefore it can be used to determine how accurate

is the computed solution. Also, since the error estimator is computable, it can be used to drive adaptivity to improve the

accuracy of the computed solution. In Section 8 a series of examples are presented to show the usage of the error estimator.

The error estimator presented in this paper is given by 

ηerr = 

√ ∑ 

K∈T 

(
η2 

R,K 
+ η2 

J,K 
+ η2 

F,K 

)
, (19) 

where the three terms under the sum are defined as 

η2 
R,K := 

h 

2 
K 

p 2 
K 

∥∥∥f h + ∇ · σ(u h ) 

∥∥∥2 

0 ,K 
, 

η2 
J,K := 

1 

2 

∑ 

E∈E int (K) 

γ 2 p 3 E 

h E 

∥∥∥[[ u h ]] 

∥∥∥2 

0 ,E 
+ 

∑ 

E∈E D (K) 

γ 2 p 3 E 

h E 

∥∥∥u h − g D,h 

∥∥∥2 

0 ,E 
+ 

∑ 

E∈E T (K) 

γ 2 p 3 E 

h E 

∥∥∥u h · n − g T,h · n 

∥∥∥2 

0 ,E 
, 

η2 
F,K := 

1 

2 

∑ 

E∈E int (K) 

h E 

p E 

∥∥∥[[ σ(u h )]] 

∥∥∥2 

0 ,E 
+ 

∑ 

E∈E N (K) 

h E 

p E 

∥∥∥σ(u h ) · n − g N,h 

∥∥∥2 

0 ,E 
+ 

∑ 

E∈E T (K) 

h E 

p E 

∥∥∥t (u h ) · n ‖ 
∥∥∥2 

0 ,E 
, 

where f h and g N , h are the L 2 projections of f and g N onto the finite element space and where g D , h and g T , h are approximated

as in [18] of traces of functions in H 

1 ( �) such that 

g D,h | E ∈ [ P p K (E)] 2 , E ∈ ∂K ∩ �D , K ∈ T , 

g T,h | E ∈ [ P p K (E)] 2 , E ∈ ∂K ∩ �T , K ∈ T , 

and such that g D , h , g T , h are on each edge E on the corresponding portions of the boundary the best approximations of g D ,

g T in the interpolation space [( L 2 ( E ), H 

1 ( E )) 1/2 ] 
2 ; we refer the reader to [19] and the references cited therein for details on

the construction of the approximations and to [20] for the definition of the interpolation Sobolev space. 
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Due to the fact that data like f or the values of the boundary conditions may not be represented exactly in the finite

element space, the analysis include an oscillation term. This term is high order compared to ηerr and for this reason is

rarely computed in practice. Also the oscillation term is the sum of different terms: 

osc := 

√ 

osc 2 
glo 

+ 

∑ 

K∈T 

(
osc 2 

R,K 
+ osc 2 

J,K 
+ osc 2 

F,K 

)
, (20)

where 

osc 2 glo := ‖ g D − g D,h ‖ 1 / 2 , �D 
+ ‖ g N − g N,h ‖ 0 , �N 

+ ‖ g T − g T,h ‖ 1 / 2 , �T 
, 

osc 2 R,K := 

h 

2 
K 

p 2 
K 

∥∥∥f − f h 

∥∥∥2 

0 ,K 
, 

osc 2 J,K := 

∑ 

E∈E D (K) 

γ 2 p 3 E 

h E 

∥∥∥g D − g D,h 

∥∥∥2 

0 ,E 
+ 

∑ 

E∈E T (K) 

γ 2 p 3 E 

h E 

∥∥∥g T · n − g T,h · n 

∥∥∥2 

0 ,E 
, 

osc 2 F,K := 

∑ 

E∈E N (K) 

h E 

p E 

∥∥∥g N − g N,h 

∥∥∥2 

0 ,E 
. 

Next, we introduce the reliability result, which is the main result of this section. In the repository [21] we included a

document containing a longer and more detailed version of the proof that is too long to include here. 

Theorem 6.1. Let u the exact solution and u h the computed solution, we have that 

| | | u − u h | | | T ≤ C(ηerr + osc ) , 

where C is a positive constant independent of the mesh nor the order of the elements used. 

The rest of the section is devoted to the proof of Theorem 6.1 . The proof is based on [18] where a reliability proof for an

error estimator for the Laplace equation is presented. However, to prove Theorem 6.1 for linear elasticity, the approach has

been changed to deal with the fact that the model problem is a system of equations. Also, the presence of many different

boundary conditions increases considerably the number of terms to consider in the proof. 

In order to carry out the analysis we need to introduce an auxiliary continuous problem similar to (1) which is only

used in the analysis and never in computations: 

−∇ · σ( ̃  u ) = f in �

˜ u = g D,h on �D 

σ( ̃  u ) · n = g N,h on �N 

˜ u · n = g T,h · n on �T 

t ( ̃  u ) · n ‖ = 0 on �T , (21)

with 

˜ u ∈ [ H 

1 (�)] 2 . Since linear elasticity is a linear problem and its solutions depended continuously on their data, we

have 

‖ ∇ (u − ˜ u ) ‖ 0 , � � ‖ g D − g D,h ‖ 1 / 2 , �D 
+ ‖ g N − g N,h ‖ 0 , �N 

+ ‖ g T − g T,h ‖ 1 / 2 , �T 
. (22)

The introduction of this auxiliary problem is essential in the analysis to isolate the oscillation term. 

For DG methods, the construction of the upper bound for the DG norm using the error is done in two steps

bounding separately the conforming and the non conforming part of the error. To this end, we define the space

 

c 
p (T ) ≡ V p (T ) ∩ [ H 

1 (�)] 2 which is a conforming version of the DG space. Then, we decompose the discontinuous Galerkin

finite element space V p (T ) = V c p (T ) 
⊕ 

V ⊥ p (T ) , where V ⊥ p (T ) is the orthogonal complement of V c p (T ) with respect to the DG

norm (13) . We also define V c 
p , 0 

(T ) which is the subspace of V c p (T ) containing functions satisfying the following boundary

conditions imposed strongly: u = 0 on �D , σ(u ) · n = 0 on �N , u · n = 0 on �T and t (u ) · n ‖ = 0 on �T . We also assume

that there is an interpolation operator I hp : V p (T ) → V c p (T ) that satisfy the following inequalities: 

p 2 K h 

−2 
K ‖ v − I hp v ‖ 

2 
0 ,K � ‖ ∇ v ‖ 

2 
0 ,K , (23)

‖ ∇ (v − I hp v ) ‖ 

2 
0 ,K � ‖ ∇ v ‖ 

2 
0 ,K , (24)

p E h 

−1 
E ‖ v − I hp v ‖ 

2 
0 ,E � ‖ ∇ v ‖ 

2 
0 ,K , (25)

with E ⊂ ∂K . Examples of similar interpolation operators are the Scott–Zhang presented in [22] and used in [18] or the

operator in [8] . 

We can then split the solution as: 

u h − I hp ̃  u = u 

c + u 

r , (26)
h h 
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with u 

c 
h 

∈ V c 
p , 0 

(T ) and u 

r 
h 

∈ V ⊥ p (T ) , then using the triangle inequality and (26) , we obtain 

||| u − u h ||| T ≤ ||| u − ˜ u ||| T + ||| ̃  u − u h ||| T 
≤ ||| u − ˜ u ||| T + ||| ̃  u − I hp ̃  u − u 

c 
h − u 

r 
h ||| T 

≤ ||| u − ˜ u ||| T + ||| ̃  u − I hp ̃  u − u 

c 
h ||| T + ||| u 

r 
h ||| T . (27) 

The first term on the rhs of (27) can be bounded using (22) and (13) noticing that u − ˜ u is zero on the internal edges: 

||| u − ˜ u ||| 2 T = ‖ ∇ (u − ˜ u ) ‖ 

2 
0 , � + 

∑ 

E∈E D (T ) 

γ p 2 E 

h E 

∥∥∥g D − g D,h 

∥∥∥2 

0 ,E 
+ 

∑ 

E∈E T (T ) 

γ p 2 E 

h E 

∥∥∥(g T − g T,h ) · n 

∥∥∥2 

0 ,E 
� osc 2 . (28) 

Then, in order to obtain the upper bound for the conforming part of the error ||| ̃  u − I hp ̃  u − u 

c 
h 
||| T , we recognize that

[[ ̃  u − I hp ̃  u − u 

c 
h 
]] = 0 in the interior of the mesh and so denoting 

D (u , v ) := 

∑ 

K∈T 

∫ 
K 

σ(u ) : ε(v ) dx + 

∑ 

E∈E int (T ) ∪E D (T ) 

γ p 2 E 

h E 

∫ 
E 

[[ u ]] : [[ v ]] ds + 

∑ 

E∈E T (T ) 

γ p 2 E 

h E 

∫ 
E 

( u · n )( v · n ) ds, (29) 

we obtain from Theorem 2.1 : 

||| ̃  u − I hp ̃  u − u 

c 
h ||| 2 T � D ( ̃  u − I hp ̃  u − u 

c 
h , ̃  u − I hp ̃  u − u 

c 
h ) . (30) 

Then setting 

v = 

˜ u − I hp ̃  u − u 

c 
h 

||| ̃  u − I hp ̃  u − u 

c 
h 
||| T ∈ V 

c 
p , 0 (T ) , (31) 

we have 

||| ̃  u − I hp ̃  u − u 

c 
h ||| T � D ( ̃  u − I hp ̃  u − u 

c 
h , v ) = D ( ̃  u − u h , v ) + D (u 

r 
h , v ) 

= D (u − u h , v ) + D ( ̃  u − u , v ) + D (u 

r 
h , v ) . (32) 

The term D ( ̃  u − u , v ) can be bounded using the Cauchy–Schwarz inequality and (28) by 

D ( ̃  u − u , v ) � ||| u − ˜ u ||| T ||| v ||| T � osc ||| v ||| T . (33) 

To bound the term D (u 

r 
h 
, v ) we use the next lemma: 

Lemma 2. Considering u h the DG solution of problem (12) , we have 

||| u 

r 
h ||| T � ηerr , 

recalling that u 

r 
h 

= u h − I hp ̃  u − u 

c 
h 
. 

Proof. From the definition of the DG norm (13) and the fact that [[ u 

r 
h 
]] = [[ u h ]] on the edges in the interior: 

||| u 

r 
h ||| 2 T = 

∑ 

K∈T 
‖ ∇ u 

r 
h ‖ 

2 
0 ,K + 

∑ 

E∈E int (T ) ∪E D (T ) 

γ p 2 E 

h E 

∥∥∥[[ u h ]] 

∥∥∥2 

0 ,E 
+ 

∑ 

E∈E T (T ) 

γ p 2 E 

h E 

∥∥∥u h · n 

∥∥∥2 

0 ,E 
. (34) 

The next step is to bound the H 

1 -seminorm of u 

r 
h 

using the jump over the faces. Similar results have been already used

in other works, like in [18] . However, such results are for problems with only Dirichlet type boundary conditions, which

means that they are not suitable in this context. We need to bound the H 

1 -seminorm of u 

r 
h 

using only the jump over

interior faces and faces on the portion of the boundary where only Dirichlet type of boundary conditions are imposed. Such

result is proved for scalar problems in Theorem 2.1(ii) in [23] and for the case �D ∪ �T = ∅ , which is admissible for our

model problem, we use Theorem 2.1(iii) from [23] . Applying the results from [23] to our problem, we have that there exists

a projection operator πhp : V p (T ) → V c 
p , 0 

(T ) such that for any v h ∈ V p (T ) holds true ∑ 

K∈T 
‖ ∇ (v h − πhp v h ) ‖ 

2 
0 ,K � 

∑ 

E∈E int (T ) 

∫ 
E 

p 2 E h 

−1 
E | [[ v h ]] | 2 ds + 

∑ 

E∈E D (T ) 

∫ 
E 

p 2 E h 

−1 
E | v h | 2 ds + 

∑ 

E∈E T (T ) 

∫ 
E 

p 2 E h 

−1 
E | v h · n | 2 ds, (35) 

where the faces on the boundary considered on the rhs are also the ones on �T for just the normal component since for

that component the boundary condition is of Dirichlet type. 

Then, since any function v r 
h 

∈ V ⊥ p (T ) can be seen as v r 
h 

= v h − πhp v h for some v h ∈ V p (T ) , we can apply (35) on the first

term of (34) and have ∑ 

K∈T 
‖ ∇ u 

r 
h ‖ 

2 
0 ,K � 

∑ 

E∈E int (T ) 

∫ 
E 

p 2 E h 

−1 
E | [[ u h ]] | 2 ds + 

∑ 

E∈E D (T ) 

∫ 
E 

p 2 E h 

−1 
E | u h | 2 ds + 

∑ 

E∈E T (T ) 

∫ 
E 

p 2 E h 

−1 
E | u h · n | 2 ds � 

∑ 

K∈T 
η2 

J,K . 

Also the other two terms can be bounded straightforwardly by 
∑ 

K∈T η2 
J,K 

. �
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Then the term D (u 

r 
h 
, v ) can be bounded using the Cauchy–Schwarz inequality and Lemma 2 by 

D (u 

r 
h , v ) � ||| u 

r 
h ||| T ||| v ||| T � ηerr ||| v ||| T . (36)

To bound the remaining term D (u − u h , v ) we use the fact that problem (12) can be rewritten as 

D (u h , v h ) + K(u h , v h ) = l(v h ) = l c (v h ) + l r (v h ) , 

where K(u , v ) = a DG (u , v ) − D (u , v ) and where 

l c (v ) : = 

∑ 

K∈T 

∫ 
K 

f · v dx + 

∑ 

E∈E N (T ) 

∫ 
E 

g N · v ds, 

l r (v ) : = −
∑ 

E∈E D (T ) 

∫ 
E 

g D · σ(v ) · n ds + 

∑ 

E∈E D (T ) 

γ p 2 E 

h E 

∫ 
E 

g D · v ds 

−
∑ 

E∈E T (T ) 

∫ 
E 

(g T · n )(t (v ) · n ) ds + 

∑ 

E∈E T (T ) 

γ p 2 E 

h E 

∫ 
E 

(g T · n )(v · n ) ds. 

Then, we have choosing v as in (31) and using (1) : 

D (u − u h , v ) = l c (v ) − D (u h , v ) 

= l c (v − v h ) − l r (v h ) − D (u h , v − v h ) + K(u h , v h ) . (37)

The next lemma is fundamental to bound the conforming part of the error with the error estimator. 

Lemma 3. Considering u h the DG solution of problem (12) and for any continuous function v with v h := I hp v , we have: 

l c (v − v h ) − l r (v h ) − D (u h , v − v h ) + K(u h , v h ) � (ηerr + osc ) ||| v ||| T . 
Proof. Applying integration by parts to the first term in D (u h , v − v h ) : 

l c (v − v h ) − l r (v h ) − D (u h , v − v h ) + K(u h , v h ) 

= l c (v − v h ) − l r (v h ) −
∑ 

K∈T 

∫ 
K 

σ(u h ) : ε(v − v h ) dx 

−
∑ 

E∈E int (T ) ∪E D (T ) 

γ p 2 E 

h E 

∫ 
E 

[[ u h ]] : [[ v − v h ]] ds 

−
∑ 

E∈E T (T ) 

γ p 2 E 

h E 

∫ 
E 

(u h · n )(v − v h ) · n ds + K(u h , v h ) 

= l c (v − v h ) − l r (v h ) + 

∑ 

K∈T 

∫ 
K 

∇ · σ(u h ) · (v − v h ) dx 

−
∑ 

K∈T 

∫ 
∂K 

σ(u h ) · n k · (v − v h ) ds 

−
∑ 

E∈E int (T ) ∪E D (T ) 

γ p 2 E 

h E 

∫ 
E 

[[ u h ]] : [[ v − v h ]] ds 

−
∑ 

E∈E T (T ) 

γ p 2 E 

h E 

∫ 
E 

(u h · n )(v − v h ) · n ds + K(u h , v h ) . (38)

The term 

∑ 

K∈T 
∫ 
∂K σ(u h ) · n K · (v − v h ) ds can be further treated in the standard way for DG: ∑ 

K∈T 

∫ 
∂K 

σ(u h ) · n K · (v − v h ) ds = 

∑ 

E∈E int (T ) 

∫ 
E 

{ σ(u h ) } : [[ v − v h ]] ds 

+ 

∑ 

E∈E BC (T ) 

∫ 
E 

σ(u h ) · n K · (v − v h ) ds + 

∑ 

E∈E int (T ) 

∫ 
E 

[[ σ(u h )]] · { v − v h } ds 

= −
∑ 

E∈E int (T ) 

∫ 
E 

{ σ(u h ) } : [[ v h ]] ds + 

∑ 

E∈E BC (T ) 

∫ 
E 

σ(u h ) · n K · (v − v h ) ds 

+ 

∑ 

E∈E int (T ) 

∫ 
E 

[[ σ(u h )]] : { v − v h } ds, 
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where in the last step we used the fact that [[ v ]] = 0 in the interior of the mesh. Adding also the term K ( u h , v h ) we have: 

K(u h , v h ) −
∑ 

K∈T 

∫ 
∂K 

σ(u h ) · n K · (v − v h ) ds = −
∑ 

E∈E int (T ) 

∫ 
E 

[[ u h ]] : { σ(v h ) } ds 

−
∑ 

E∈E D (T ) 

∫ 
E 

σ(u h ) · n K · v h + u h · σ(v h ) · n K ds 

−
∑ 

E∈E T (T ) 

∫ 
E 

(t (u h ) · n )(v h · n ) + (u h · n )(t (v h ) · n ) ds 

−
∑ 

E∈E BC (T ) 

∫ 
E 

σ(u h ) · n K · (v − v h ) ds −
∑ 

E∈E int (T ) 

∫ 
E 

[[ σ(u h )]] : { v − v h } ds. 

In view of this, the rhs in Eq. (38) can be split in four terms defined as: 

T 1 := 

∫ 
�

f · (v − v h ) + ∇ · σ(u h ) · (v − v h ) dx , 

T 2 := −
∑ 

E∈E int (T ) ∪E D (T ) 

γ p 2 E 

h E 

∫ 
E 

[[ u h ]] : [[ v − v h ]] ds −
∑ 

E∈E T (T ) 

γ p 2 E 

h E 

∫ 
E 

(u h · n )(v − v h ) · n ds 

−
∑ 

E∈E D (T ) 

γ p 2 E 

h E 

∫ 
E 

g D · v h ds −
∑ 

E∈E T (T ) 

γ p 2 E 

h E 

∫ 
E 

(g T · n )(v h · n ) ds, 

T 3 := −
∑ 

E∈E int (T ) 

∫ 
E 

[[ σ(u h )]] : { v − v h } ds 

−
∑ 

E∈E D (T ) 

∫ 
E 

σ(u h ) · n K · (v − v h ) ds −
∑ 

E∈E D (T ) 

∫ 
E 

σ(u h ) · n K · v h ds 

−
∑ 

E∈E N (T ) 

∫ 
E 

σ(u h ) · n K · (v − v h ) ds + 

∑ 

E∈E N (T ) 

∫ 
E 

g N · (v − v h ) ds 

−
∑ 

E∈E T (T ) 

∫ 
E 

σ(u h ) · n K · (v − v h ) ds −
∑ 

E∈E T (T ) 

∫ 
E 

(t (u h ) · n )(v h · n ) ds 

T 4 := −
∑ 

E∈E int (T ) 

∫ 
E 

[[ u h ]] · { σ(v h ) } ds 

−
∑ 

E∈E D (T ) 

∫ 
E 

u h · σ(v h ) · n K ds + 

∑ 

E∈E D (T ) 

∫ 
E 

g D · σ(v h ) · n K ds 

−
∑ 

E∈E T (T ) 

∫ 
E 

(u h · n )(t (v h ) · n ) ds + 

∑ 

E∈E T (T ) 

∫ 
E 

(g T · n )(t (v h ) · n ) ds, 

The rest of the proof consists in bounding each term separately. To bound T 1 , we use the Cauchy–Schwarz inequality,

(23) and v h := I hp v : 

T 1 ≤
[( ∑ 

K∈T 

h 

2 
K 

p 2 
K 

‖ f h + ∇ · σ(u h ) ‖ 

2 
0 ,K 

)
1 / 2 + 

( ∑ 

K∈T 

h 

2 
K 

p 2 
K 

‖ f − f h ‖ 

2 
0 ,K 

)
1 / 2 

]
×
( ∑ 

K∈T 

p 2 K 

h 

2 
K 

‖ v − v h ‖ 

2 
0 ,K 

)
1 / 2 

� 

[( ∑ 

K∈T 
η2 

R,K 

)
1 / 2 + 

( ∑ 

K∈T 
osc 2 R,K 

)
1 / 2 

]
||| v ||| T . 

To bound T 2 , we use the Cauchy–Schwarz inequality, (25) , the shape regularity assumption on the mesh T and the facts

that v = 0 on �D and v · n = 0 on �T : 

T 2 ≤
[( ∑ 

E∈E int (T ) 

γ 2 p 3 E 

h E 

‖ [[ u h ]] ‖ 

2 
0 ,E + 

∑ 

E∈E D (T ) 

γ 2 p 3 E 

h E 

‖ u h − g D,h ‖ 

2 
0 ,E 

+ 

∑ 

E∈E T (T ) 

γ 2 p 3 E 

h E 

‖ u h · n − g T,h · n ‖ 

2 
0 ,E 

)
1 / 2 
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+ 

( ∑ 

E∈E D (T ) 

γ 2 p 3 E 

h E 

‖ g D − g D,h ‖ 

2 
0 ,E + 

∑ 

E∈E T (T ) 

γ 2 p 3 E 

h E 

‖ g T · n − g T,h · n ‖ 

2 
0 ,E 

)
1 / 2 

]
×
( ∑ 

E∈E int (T ) 

p E 
h E 

‖ [[ v − v h ]] ‖ 

2 
0 ,E + 

∑ 

E∈E D (T ) 

p E 
h E 

‖ v − v h ‖ 

2 
0 ,E 

+ 

∑ 

E∈E T (T ) 

p E 
h E 

‖ (v − v h ) · n ‖ 

2 
0 ,E 

)
1 / 2 

� 

[( ∑ 

K∈T 
η2 

J,K 

)
1 / 2 + 

( ∑ 

K∈T 
osc 2 J,K 

)
1 / 2 

]
||| v ||| T . 

To bound T 3 in the interior of the mesh, we use the Cauchy–Schwarz inequality, (25) and the shape regularity assumption

on the mesh T : 

T 3 | E int (T ) ≤
( ∑ 

E∈E int (T ) 

h E 

p E 
‖ [[ σ(u h )]] ‖ 

2 
0 ,E 

)
1 / 2 ×

( ∑ 

E∈E int (T ) 

p E 
h E 

‖{ v − v h }‖ 

2 
0 ,E 

)
1 / 2 

� 

( ∑ 

K∈T 
η2 

F,K 

)
1 / 2 ||| v ||| T . 

In a similar way T 3 is bounded on the Neumann portion of boundary: 

T 3 | E N (T ) ≤
[( ∑ 

E∈E N (T ) 

h E 

p E 
‖ σ(u h ) · n K − g N,h ‖ 

2 
0 ,E 

)
1 / 2 

+ 

( ∑ 

E∈E N (T ) 

h E 

p E 
‖ g N − g N,h ‖ 

2 
0 ,E 

)
1 / 2 

]
×
( ∑ 

E∈E N (T ) 

p E 
h E 

‖ v − v h ‖ 

2 
0 ,E 

)
1 / 2 

� 

[( ∑ 

K∈T 
η2 

F,K 

)
1 / 2 + 

( ∑ 

K∈T 
osc 2 F,K 

)
1 / 2 

]
||| v ||| T . 

On the Dirichlet portion of boundary, the term T 3 is null since v = 0 on �D : 

T 3 | E D (T ) = −
∑ 

E∈E D (T ) 

∫ 
E 

σ(u h ) · n K · (v − v h ) ds −
∑ 

E∈E D (T ) 

∫ 
E 

σ(u h ) · n K · v h ds 

= −
∑ 

E∈E D (T ) 

∫ 
E 

σ(u h ) · n K · v ds = 0 . 

On the traction portion of boundary we use v · n = 0 to bound T 3 : 

T 3 | E T (T ) = −
∑ 

E∈E T (T ) 

∫ 
E 

σ(u h ) · n K · (v − v h ) ds −
∑ 

E∈E T (T ) 

∫ 
E 

(t (u h ) · n )(v h · n ) ds 

= −
∑ 

E∈E T (T ) 

∫ 
E 

σ(u h ) · n K · n ‖ (v − v h ) · n ‖ ds 

−
∑ 

E∈E T (T ) 

∫ 
E 

σ(u h ) · n K · n (v − v h ) · n ds 

−
∑ 

E∈E T (T ) 

∫ 
E 

(t (u h ) · n )(v h · n ) ds 

= −
∑ 

E∈E T (T ) 

∫ 
E 

σ(u h ) · n K · n ‖ (v − v h ) · n ‖ ds 

≤
( ∑ 

E∈E T (T ) 

h E 

p E 
‖ σ(u h ) · n K · n ‖ ‖ 

2 
0 ,E 

)
1 / 2 ×

( ∑ 

E∈E T (T ) 

p E 
h E 

‖ v − v h ‖ 

2 
0 ,E 

)
1 / 2 

� 

( ∑ 

K∈T 
η2 

F,K 

)
1 / 2 ||| v ||| T . 
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To bound T 4 in the interior of the mesh, we use (4) , the Cauchy–Schwarz inequality, the standard hp -version of the trace

inequality [24] and the shape regularity assumption on the mesh T : 

T 4 | E int (T ) � 

( ∑ 

E∈E int (T ) 

γ 2 p 2 E 

h E 

‖ [[ u h ]] ‖ 

2 
0 ,E 

)
1 / 2 ×

( ∑ 

E∈E int (T ) 

h E 

p 2 
E 

‖{ ∇ v h }‖ 

2 
0 ,E 

)
1 / 2 

� 

( ∑ 

K∈T 
η2 

J,K 

)
1 / 2 ||| v ||| T , 

where in the last step we used (24) : 

‖ ∇ v h ‖ 

2 
0 ,K � ‖ ∇ (v − v h ) ‖ 

2 
0 ,K + ‖ ∇ v ‖ 

2 
0 ,K � ‖ ∇ v ‖ 

2 
0 ,K . 

In a similar way T 4 is bounded on the Dirichlet portion of boundary: 

T 4 | E D (T ) � 

[( ∑ 

E∈E D (T ) 

γ 2 p 2 E 

h E 

‖ u h − g D,h ‖ 

2 
0 ,E 

)
1 / 2 

+ 

∑ 

E∈E D (T ) 

γ 2 p 2 E 

h E 

‖ g D − g D,h ‖ 

2 
0 ,E 

)
1 / 2 

]
×
( ∑ 

E∈E D (T ) 

h E 

p 2 
E 

‖ ∇ v h ‖ 

2 
0 ,E 

)
1 / 2 

� 

[( ∑ 

K∈T 
η2 

J,K 

)
1 / 2 + 

( ∑ 

K∈T 
osc 2 J,K 

)
1 / 2 

]
||| v ||| T . 

In a similar way T 4 is bounded on the traction portion of boundary: 

T 4 | E T (T ) � 

[( ∑ 

E∈E T (T ) 

γ 2 p 2 E 

h E 

‖ u h · n − g T,h · n ‖ 

2 
0 ,E 

)
1 / 2 

+ 

( ∑ 

E∈E T (T ) 

γ 2 p 2 E 

h E 

‖ g T · n − g T,h · n ‖ 

2 
0 ,E 

)
1 / 2 

]
×
( ∑ 

E∈E T (T ) 

h E 

p 2 
E 

‖ ∇ v h · n ‖ 

2 
0 ,E 

)
1 / 2 

� 

[( ∑ 

K∈T 
η2 

J,K 

)
1 / 2 + 

( ∑ 

K∈T 
osc 2 J,K 

)
1 / 2 

]
||| v ||| T . 

The statement of the lemma is a consequence of all the above bounds. �

The upper bound for (32) comes from the application of Lemma 3 , (33) and (36) , i.e. 

||| ̃  u − I hp ̃  u − u 

c 
h ||| T � (ηerr + osc ) ||| v ||| T . (39) 

Finally the proof of Theorem 6.1 is achieved by constructing an upper bound of (27) using (28) , Lemma 2 and (39) . 

7. Efficiency of the error estimator 

In this section we prove the efficiency of the error estimator exploiting the properties of bubble functions as in

[8,25–27] . The efficiency result cannot be shown uniformly in the polynomial degree since inverse estimates optimal in the

polynomial degree are not currently available. 

The efficiency result states that it is possible to construct an upper bound for the error estimator using the error in the

DG norm. This, together with the reliability result, establishes that the error in the DG norm and the error estimator are

linearly proportional quantities up to the oscillation terms that are considered of higher order. In other words we have that

the error estimator cannot be “too far away” from the real value of the error. 

For an element K the bubble function ψ K is positive real valued function with compact support contained in K and

bounded by 1 in the L ∞ norm. Similarly, for an edge E we define the bubble function ψ E as a positive real valued function

with compact support contained in �E , where �E is the union of the elements with an intersection with E of dimension

1, and bounded by 1 in the L ∞ norm. In [27] the explicit definitions of ψ K and ψ E for the 2D case can be found: denoting

by λK , i with i = 1 , 2 , 3 the barycentric coordinate of the vertex i of K 

ψ K = 

{
27 λK, 1 λK, 2 λK, 3 in K 

0 in �/K. 
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Denoting with i = 1 , 2 the vertices of E and assuming they are not hanging nodes and with λK + ,i and λK −,i the corresponding

barycentric coordinates for the elements K 

+ and K 

− forming �E , 

ψ E = 

{ 

4 λK + , 1 λK + , 2 in K 

+ 

4 λK −, 1 λK −, 2 in K 

−

0 in �/ �E. 

For edges touching hanging nodes, the construction using an auxiliary mesh presented in [28] can be used. The construction

is very technical and for brevity it is not reported in here. 

Lemma 4. Bubble functions can be constructed such that the following results hold for any element K ∈ T , for any edge E ∈ E(T )
and any v ∈ V p (T ) 

‖ v ‖ 0 ,K � ‖ ψ 

1 / 2 
K 

v ‖ 0 ,K , (40)

‖ ∇ (ψ K v ) ‖ 0 ,K � h 

−1 
K ‖ v ‖ 0 ,K , (41)

‖ v ‖ 0 ,E � ‖ ψ 

1 / 2 
E 

v ‖ 0 ,E , (42)

‖ ∇ (ψ E v ) ‖ 0 , �E � h 

−1 / 2 
K 

‖ v ‖ 0 ,E , (43)

‖ ψ E v ‖ 0 , �E � h 

1 / 2 
K 

‖ v ‖ 0 ,E . (44)

See Lemma 3.3 in [27] for the proof. Next we have the efficiency result: 

Theorem 7.1. Let u the exact solution and u h the computed solution, we have that 

ηerr ≤ C( | | | u − u h | | | T + osc ) , 

where C is a positive constant independent of the mesh nor the order of the elements used. 

Proof. Starting with ηJ , K , we have that [[ u ]] = 0 on all interior faces, then ∑ 

E∈E int (K) 

γ 2 p 3 E 

h E 

∥∥∥[[ u h ]] 

∥∥∥2 

0 ,E 
= 

∑ 

E∈E int (K) 

γ 2 p 3 E 

h E 

∥∥∥[[ u h − u ]] 

∥∥∥2 

0 ,E 
� p E ||| u − u h ||| ω K , 

where ||| · ||| ω K is the DG norm computed on all the elements intersecting K and its faces. Similarly u = g D on �D and

u · n = g T · n on �T , so we have ∑ 

E∈E D (K) 

γ 2 p 3 E 

h E 

∥∥∥u h − g D,h 

∥∥∥2 

0 ,E 
+ 

∑ 

E∈E T (K) 

γ 2 p 3 E 

h E 

∥∥∥u h · n − g T,h · n 

∥∥∥2 

0 ,E 

� 

∑ 

E∈E D (K) 

γ 2 p 3 E 

h E 

∥∥∥u h − u 

∥∥∥2 

0 ,E 
+ 

∑ 

E∈E T (K) 

γ 2 p 3 E 

h E 

∥∥∥u h · n − u · n 

∥∥∥2 

0 ,E 

+ 

∑ 

E∈E D (K) 

γ 2 p 3 E 

h E 

∥∥∥g D − g D,h 

∥∥∥2 

0 ,E 
+ 

∑ 

E∈E T (K) 

γ 2 p 3 E 

h E 

∥∥∥g T · n − g T,h · n 

∥∥∥2 

0 ,E 

� p E ||| u − u h ||| ω K + 

( ∑ 

K∈ ω K 
osc 2 J,K 

)
1 / 2 . 

Moving on to the term ηR , K and assuming that it is non-zero, we define w := 

h 2 
K 

p 2 
K 

(f h + ∇ · σ(u h ) ) ψ K , then using (40) we

have 

η2 
R,K � 

∫ 
K 

(
f h + ∇ · σ(u h ) 

)
· w dx = 

∫ 
K 

(
−∇ · σ(u ) + ∇ · σ(u h ) 

)
· w dx + 

∫ 
K 

(
f h − f 

)
· w dx . 

Then applying integration by parts and using the fact that w | ∂K = 0 we have 

η2 
R,K � ‖ σ(u ) − σ(u h ) ‖ 0 ,K ‖ ∇ w ‖ 0 ,K + ‖ f − f h ‖ 0 ,K ‖ w ‖ 0 ,K . 

Then using (4) , (41) and the fact that ψ K � 1, we obtain 

η2 
R,K � ||| u − u h ||| K ‖ ∇ w ‖ 0 ,K + ‖ f − f h ‖ 0 ,K ‖ w ‖ 0 ,K 

� h 

−1 
K ||| u − u h ||| K h 

2 
K 

p 2 
‖ f h + ∇ · σ(u h ) ‖ 0 ,K + 

h 

2 
K 

p 2 
‖ f − f h ‖ 0 ,K ‖ f h + ∇ · σ(u h ) ‖ 0 ,K . 
K K 
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Finally dividing both sides by 
h K 
p K 

‖ f h + ∇ · σ(u h ) ‖ 0 ,K we obtain 

ηR,K � p −1 
K ||| u − u h ||| K + 

h K 

p K 
‖ f − f h ‖ 0 ,K . (45) 

In case that ηR,K = 0 , then any non-negative quantity can be used to bound it and in particular (45) holds. 

For the term ηF , K we have that [[ σ(u )]] = 0 in the interior of the mesh, then defining w := 

h E 
p E 

[[ σ(u h )]] ψ E we have using

(42) 

h E 

p E 
‖ [[ σ(u h )]] ‖ 

2 
0 ,E � 

∫ 
E 

[[ σ(u h )]] · w ds = 

∫ 
E 

[[ σ(u h ) − σ(u )]] · w ds. 

Then assuming that 
h E 
p E 

‖ [[ σ(u h )]] ‖ 2 
0 ,E 

> 0 and integrating by parts: 

h E 

p E 
‖ [[ σ(u h )]] ‖ 

2 
0 ,E � 

∫ 
�E 

∇·( σ(u h ) − σ(u )) · w + ( σ(u h ) − σ(u )) · ∇ w dx . 

The second term can be bounded using (4) and (43) ∫ 
�E 

( σ(u h ) − σ(u )) · ∇ w dx � ||| u − u h ||| �E ‖ ∇ w ‖ 0 , �E 

� ||| u − u h ||| �E h 

−1 / 2 
E 

h E 

p E 
‖ [[ σ(u h )]] ‖ 0 ,E 

= || u − u h ||| �E p −1 / 2 
E 

∥∥∥ h 

−1 / 2 
E 

p −1 / 2 
E 

[[ σ(u h )]] 

∥∥∥
0 ,E 

To bound the first term we define ˜ w = w ψ �K , with ψ �K = 

∑ 

K∈ �E ψ K . Then using (40) we have ∫ 
�E 

∇·( σ(u h ) − σ(u )) · w dx � 

∫ 
�E 

∇·( σ(u h ) − σ(u )) · ˜ w dx 

Then using integration by parts and using (41) and (44) : ∫ 
�E 

∇·( σ(u h ) − σ(u )) · ˜ w dx � h 

−1 
k 

h 

1 / 2 
E 

|| u − u h ||| �E 

h E 

p E 
‖ [[ σ(u h )]] ‖ 0 ,E 

= p −1 / 2 
E 

||| u − u h ||| �E 

h E 

p E 
‖ [[ σ(u h )]] ‖ 0 ,E . 

Putting everything together we have {
h E 

p E 
‖ [[ σ(u h )]] ‖ 

2 
0 ,E 

}
1 / 2 � p −1 / 2 

E 
|| u − u h ||| �E (46) 

In case that 
h E 
p E 

‖ [[ σ(u h )]] ‖ 0 ,E = 0 , then any non-negative quantity can be used to bound it and in particular (46) holds. 

On �N we define w := 

h E 
p E 

( σ(u h ) · n − g N,h ) ψ E we use (42) : 

h E 

p E 
‖ ( σ(u h ) · n − g N,h ) ‖ E, 0 � 

∫ 
E ( σ(u h ) · n − g N ) · w ds + 

∫ 
E (g N − g N,h ) · w ds. (47) 

Assuming that 
h E 
p E 

‖ ( σ(u h ) · n − g N,h ) ‖ E, 0 > 0 , the first integral in (47) can be bounded noticing that σ(u ) · n = g N and using

integration by parts as for ηF , K on the interior faces: ∫ 
E 

( σ(u h ) · n − g N ) · w ds � p −1 / 2 
E 

||| u − u h ||| �E 

∥∥∥ h 

−1 / 2 
E 

p −1 / 2 
E 

( σ(u h ) · n − g N,h ) 

∥∥∥
E, 0 

. 

The second integral can be bounded using ψ E � 1 ∫ 
E 

(g N − g N,h ) · w ds � 

∫ 
E 

(g N − g N,h ) ·
h E 

p E 
( σ(u h ) · n − g N,h ) ds 

≤
∥∥∥ h 

−1 / 2 
E 

p −1 / 2 
E 

(g N − g N,h ) 

∥∥∥
E, 0 

∥∥∥ h 

−1 / 2 
E 

p −1 / 2 
E 

( σ(u h ) · n − g N,h ) 

∥∥∥
E, 0 
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This leads to: (
h E 

p E 
‖ ( σ(u h ) · n − g N,h ) ‖ E, 0 

)
1 / 2 � p −1 / 2 

E 
|| u − u h ||| �E + 

( ∑ 

K∈T 
osc 2 F,K 

)
1 / 2 (48)

In case that 
h E 
p E 

‖ ( σ(u h ) · n − g N,h ) ‖ E, 0 = 0 , then any non-negative quantity can be used to bound it and in particular

(48) holds. 

Finally to bound the term on �T we define w := 

h E 
p E 

t (u h ) · n ‖ ψ E and we proceed in the same way as before using the

fact that t (u ) · n ‖ = 0 and applying integration by parts. This leads to the bound {
h E 

p E 
‖ t (u h ) · n ‖ ‖ E, 0 

}
1 / 2 � p −1 / 2 

E 
|| u − u h ||| �E 

Putting together the bounds for all terms, the proof of the theorem is concluded. �

8. Numerical examples 

In this section the a posteriori error estimator, (19) , for smooth and non-smooth problems will be shown to be efficient,

reliable, and with an exponential performance in the error estimate value (19) and the error in the DG norm (13) . 

The finite elements used in the simulations are arbitrary high order triangular elements as defined in [29] . The hp -

adaptive strategy used here was originally proposed in [30] and was shown to be proficient for finite elements in [31] . The

elements are chosen for either h or p refinement using Algorithm 1 . The marking strategy in Algorithm 1 uses two threshold

values δ1 and δ2 , with δ2 ≥ δ1 , to determine what elements to refine in h and what elements in p . The assumption behind

the marking strategy is that the elements associated to the highest values of the error estimator are localized where the

solution is less smooth and therefore they have to be refined in h . In view of this, all the elements satisfying η2 
K 

> δ2 η
2 
max ,

where η2 
max = max K∈T η2 

K 
, are marked for h -refinement and all elements satisfying δ2 η

2 
max ≥ η2 

K 
> δ1 η

2 
max are marked for

p -refinement. The remaining elements are not marked for refinement at all. To perform h adaptivity only, set δ2 = δ1 � = 0

and to adaptively refine in p only set δ2 = 1 and δ1 � = 0. To adaptively refine in hp simply ensure δ2 > δ1 . To uniformly refine

in h set δ2 = δ1 = 0 and to uniformly refine in p set δ2 = 1 and δ1 = 0 . All adaptive strategies are halted once the number

of degrees of freedom (ndof) of the linear system exceeds 10 4 . 

To uniformly refine in h set δ2 = δ1 = 0 and to uniformly refine in p set δ2 = 1 and δ1 = 0 . The strategy assumes that

if η2 
K 

> δ2 η
2 
max , where η2 

max = max K∈T η2 
K 
, the real solution in element K is non-smooth and so h-refinement is necessary.

If δ2 η
2 
max ≥ η2 

K 
≥ δ1 η

2 
max the real solution is assumed smooth however the polynomial order is too low to capture the real

solution to a sufficient accuracy. Many adaptive strategies exist, a review is provided in [30] , this strategy was chosen

as it was the simplest to facilitate and demonstrate the efficacy of the error estimator. To perform h adaptivity only, set

δ2 = δ1 � = 0 and to adaptively refine in p set δ2 = 1 and δ1 � = 0. To adaptively refine in hp simply ensure δ2 � = δ1 . All adaptive

strategies are halted once the number of degrees of freedom (ndof) of the linear system exceeds 10 4 . 

Algorithm 1. hp -refinement strategy: for parameters δ1 , δ2 with 1 ≥ δ2 ≥ δ1 ≥ 0 . 

1) Compute the maximum error η2 
max = max K∈T η2 

K 
. 

2) Identify the set of elements to refine in p: T p _ re f = { K ∈ T | δ2 η
2 
max ≥ η2 

K > δ1 η
2 
max } . 

3) Increase p K by one for K ∈ T p _ re f . 

4) Identify the set of elements to refine in h : T h _ re f = { K ∈ T | η2 
K 

> δ2 η
2 
max } . 

4) Identify any elements K ∈ T ∩ T ′ , where T ′ is the refined mesh, that will have more than one hanging node on a face

and add to T hre f . 

5) h refine all elements K ∈ T h _ re f to create the new mesh T ′ . 
7) Ensure for every pair of neighbours K, K 

′ ∈ T ′ that (8) is satisfied, otherwise add K 

′ , where p K ′ < p K , to the set T ′ 
p _ re f 

. 

9) Increase p K by one for K ∈ T ′ 
p _ re f 

. 

8.1. Smooth solution problem 

We consider a small strain linear elastic problem on (x, y ) ∈ � = (0 , 1) 2 , where x and y are in metres. The problem acts

in plane strain with Young’s modulus E Y = 

5 
2 Pa, and a Poisson’s ratio ν = 

1 
4 . The right-hand side f of problem (1) is chosen

such that the exact analytical solution is smooth over the entire domain, 

u = 

{
sin (2 πx ) sin (2 πy ) 
sin (2 πx ) sin (2 πy ) 

}
. 

The initial mesh is conforming and is constructed from 32 elements with p K = 3 for all K ∈ T . The right-hand side is

applied to the problem as a body force and with g = 0 on � where ∂� = � . The hp -adaptive strategy uses δ = 0 . 7 and
D D D 2 
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Fig. 1. Square domain – performance of the error estimator, ηerr (19) , and the error in the DG norm ||| u − u h ||| T against 
√ 

ndof for different adaptive 

strategies. 

Fig. 2. Square domain – performance of ||| u −u h ||| T 
ηerr 

, Theorem 6.1 , against the refinement step for the hp -adaptive strategy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

δ1 = 0 . 07 , from [31] . As noted in [31] , since the solution is regular over the entire domain, and therefore smooth, adaptive

p -refinement would produce the greatest reduction in error per unit cost in degrees of freedom. However it is demonstrated

here for linear elasticity that this hp -adaptive strategy is still capable of producing exponential convergence. Additionally

for comparison, the h -adaptive strategy uses δ2 = δ1 = 0 . 07 . In Fig. 1 the error estimate value and the error in the DG norm

are plotted against 
√ 

ndof for, hp -adaptive, h -adaptive, and uniform h -refinement on a linear log scale. Fig. 1 shows only the

hp -adaptive strategy to achieve exponential convergence for the DG norm and error estimate value, this is demonstrated by

the (roughly) straight lines. Additionally in Fig. 2 we plot 
||| u −u h ||| 

ηerr 
, against refinement step for the hp -refinement strategy.

The variation in 

||| u −u h ||| 
ηerr 

is oscillatory within a small range, which supports the fact that ηerr is efficient and reliable for

smooth problems. 

The hp -strategy employed here will always perform some h -refinement, unless δ2 = 1 . Other hp -adaptive methods can

achieve exponential convergence though p -adaptivity only, these adapt by evaluating whether the solution is locally smooth

on an element by examining the decay of the element’s Legendre coefficients [32,33] . A thorough investigation is presented

in [31] . 

8.2. L-shaped non-smooth problem 

The next problem considered is a linear elastic problem on (x, y ) ∈ � = (−0 . 5 , 0 . 5) 2 / ([0 , 0 . 5] × [ −0 . 5 , 0]) , where x and y

are in metres, acting in plane strain with E Y = 

5 Pa and ν = 

1 . The right-hand side f in (1) is chosen such that the problem
2 4 
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Fig. 3. L-shaped domain – performance of the error estimator, ηerr (19) , and the error in the DG norm, ||| u − u h ||| T , against 
3 
√ 

ndof for different adaptive 

strategies. 

Fig. 4. L-shaped domain – element and polynomial order distribution for the L-shaped domain after the 13th hp -adaptive step. 

 

 

 

 

 

 

 

 

 

 

 

is singular at (x, y ) = (0 , 0) , 

u = 

{
(x 2 + y 2 ) 

2 
3 

(x 2 + y 2 ) 
2 
3 

}
. 

On the boundary of the problem ∂� = �D we have g D = u on �D . The initial mesh is conforming and is constructed from

6 elements with p K = 3 for all K ∈ T . For this problem the solution at the convex corner is non-smooth, the error estimator

here is therefore likely to be higher here than in the remainder domain. As in [31] we set δ2 = 0 . 7 to capture the regions

elements where the solution is non-smooth and perform h -refinements. δ1 = 0 . 07 is set to capture remain regions of the do-

main where the solution is smooth but not sufficiently refined. The h -adaptive strategy used δ2 = δ1 = 0 . 07 . On Fig. 3 the er-

ror in the DG norm and the error estimator value are plotted against 
3 
√ 

ndof . 
3 
√ 

ndof is chosen as the best known hp -strategy

for finite element methods achieves an error bound for a singular problem of ||| u − u h ||| H 1 (�) ≤ Ce −b( ndof ) 
1 
3 
, see [34] . 

For the singular problem the hp -adaptive strategy achieves exponential convergence of the error estimator and the error

in the DG norm, this is demonstrated by the roughly straight line on the linear-log plot. Additionally, Fig. 4 shows the

hp -strategy to refine in h around the singularity and p in regions where the solution is smooth, consistent with [31,35] . Last

the oscillations in 

||| u −u h ||| T 
ηerr 

, Fig. 5 , show the error estimator to be efficient and reliable for singular problems. 

8.3. Crack in a plate problem 

Last we consider a problem with a stronger singularity, a crack in a plate acting in plane strain with E Y = 

5 
2 Pa and

ν = 

1 . The domain of the problem is described as (x, y ) ∈ � = ((0 , 1 . 5) × (−1 . 5 , −1 . 5)) / ([0 , 0 . 5] × { 0 } ) , where x and y are
4 
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Fig. 5. L-shaped domain – performance of ||| u −u h ||| T 
ηerr 

, Theorem 6.1 , against the refinement step for the hp -adaptive strategy. 

 

 

 

 

 

 

 

in metres, with the crack tip at the point (x, y ) = (0 . 5 , 0) . The boundary of the problem is defined as ∂� = �N ∪ �D ∪ �T ,

where �N = �N 1 
∪ �N 2 

, and 

σ(u ) · n = p r · n on �N 1 = ([0 , 0 . 5] × {−1 . 5 } ) 
u = 0 on �D = ([0 , 0 . 5] × { 1 . 5 } ) 
u · n = 0 on �T = ({ 0 . 5 } × [ −1 . 5 , 1 . 5]) 

t (u ) · n ‖ = 0 on �T 

σ(u ) · n = 0 on �N 2 = ∂� \ (�N 1 ∪ �D ∪ �T ) 

and p r = 1 Pa is an applied pressure. This is a mixed mode crack problem with jumps in both components of u across the

crack faces, represented by the line ([0, 0.5] × {0}) in metres [36] . The near crack tip displacement field was first derived by

Irwin [36] . It is presented here in polar coordinates ( r , θ ), where the crack tip is the origin, 

u = 

(1 + ν) 

E 

√ 

r 

2 π

{
K I cos 

(
θ
2 

)
[ κ − 1 + 2 sin 

2 
(

θ
2 

)
] + K II sin 

(
θ
2 

)
[ κ + 1 + 2 cos 2 

(
θ
2 

)
] 

K I sin 

(
θ
2 

)
[ κ + 1 − 2 cos 2 

(
θ
2 

)
] − K II cos 

(
θ
2 

)
[ κ − 1 − 2 sin 

2 
(

θ
2 

)
] 

}
, (49) 

and κ = (3 − 4 ν) , r 
a << 1 , with a = 0 . 5 m as length of the crack and K I and K II as stress intensity factors which are

depending on the loading, geometry and boundary conditions of the problem. A displacement solution does not exist for

the entire domain, however the stress singularity at the crack tip is clearly stronger than that found in Section 8.2 . 

To model the problem, the initial mesh is conforming and is constructed from 6 elements with p K = 3 for all K ∈ T .
The hp -adaptive strategy used δ2 = 0 . 7 and δ1 = 0 . 2 , and the h -adaptive strategy used δ2 = δ1 = 0 . 2 . Although δ2 = 0 . 07
Fig. 6. Crack in a plate – performance of the error estimator for different schemes against 
3 
√ 

ndof . 
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Fig. 7. Crack in a plate – element and polynomial order distribution for the plate with a crack (denoted by the white line) after the 25th hp -adaptive step. 

Included is a close up of the element and polynomial order distribution around the crack tip and the top left corner. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

produced exponential convergence with hp -adaptivity, δ2 was raised to 0.2 as this produced faster convergence by prevent-

ing unnecessary p -refinement in areas of the domain where the solution could be relatively well represented by low order

polynomial functions. 

In Fig. 6 the error estimator values are plotted against 
3 
√ 

ndof . 

The element and polynomial order distribution is presented in Fig. 7 . The highest h -refinement levels are generated at

the singular stress field at the crack tip. hp -refinement also occurs in the top-left corner of the problem where the stress

field is also non-smooth, this results in relatively high error estimate values however not as high as the crack tip. For this

singular problem only the hp -adaptive refinement scheme produced exponential convergence, the h -adaptive and h -uniform

schemes produced only polynomial convergence. 

9. Conclusions 

The paper has presented, for the first time, an hp a posteriori error estimator for the symmetric interior penalty discon-

tinuous Galerkin finite element method for linear elastic analysis. The error estimator was incorporated into an hp -adaptive

finite element solver and verified against smooth and non-smooth problems with closed-form analytical solutions as well as

being demonstrated on a non-smooth problem with complex boundary conditions. The hp -adaptive finite element analyses

achieve exponential rates of convergence and are contrasted against uniform and adaptive h refinement. 

The paper has provided a complete framework for adaptivity in the symmetric interior penalty discontinuous Galerkin

finite element method for linear elastic analysis. This will allow engineers and scientists to use the method to obtain highly-

accurate but efficient stress analysis results in areas where the displacement/stress solution is of paramount importance,

fatigue analysis for example. 
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