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1 Introduction

The AdS/CFT correspondence is a powerful duality that allows us to make precise compu-

tations within a large class of strongly coupled conformal field theories. With applications

to real systems in mind, the biggest strength of the duality is that it allows us to perform

computations in, and ultimately characterise, systems at finite temperature and chemical

potential from a microscopic point of view.

One of the milestone developments in the dawn of AdS/CMT [1–3] was the observation

that boundary symmetry breaking may be realised in the bulk in a very natural way [4, 5].

In this framework, a bulk field develops a perturbative instability below a critical tempera-

ture Tc. The resulting zero mode yields a new branch of back-reacted black hole spacetimes

in which one or more symmetries can be broken in the bulk. By lowering the temperature

of these broken phase black holes down to zero temperature, one can realise new ground

states emerging from the cold event horizon [6, 7].

When a continuous bulk symmetry is broken, acting with the symmetry will generate

new bulk solutions with the same free energy. If the symmetry is gauged, the component

that transforms the VEVs of boundary operators is a global boundary symmetry, and has

a Noether current which extends into the bulk as the gauge field. On the other hand, in

the case of a global internal bulk symmetry,1 there is no longer a conserved charge. Nev-

ertheless, such a symmetry will still transform the VEVs, leading to inequivalent solutions

with the same free energy.

1Global symmetries are expected to be broken in a quantum theory of gravity [8, 9] Nevertheless, they

are perfectly well-behaved in the classical low-energy limit.
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As a result, the thermodynamic susceptibilities of operators whose VEVs transform

non-trivially under global bulk symmetries will be infinite, signalling long-ranged correla-

tions at finite temperature. In this paper we study the linear response of such operators via

their retarded Green’s function, in a hydrodynamic limit2 of long wavelengths and small

frequencies. In this limit, we give analytic expressions in terms of black hole horizon data

and thermodynamic quantities.

From the pole structure of our answer for the Green’s function, we extract the hydro-

dynamic mode associated with the breaking of a global U(1) symmetry in the bulk. As we

will explicitly show, the mode is diffusive and we determine the diffusion constant in terms

of thermodynamic quantities and a new transport coefficient σb which is fixed by black hole

horizon data. This is in contrast to bulk gauge symmetries, in which the Ward identity

fixes a linear dispersion relation at leading order in the wavenumber, with the speed of

sound given by the charge and current susceptibilities.

When the mode that we study in this paper mixes with the thermoelectric transport

currents, it plays a crucial role in the physics of pinning of density waves. This happens

when the VEV of the condensed operator in the density wave phase breaks translations,

which causes the gapless excitations to couple to the heat current and, if electric charge is

present, the electric current. Depending on whether translations are explicitly broken or

not one has two cases to consider.

When an explicit background lattice is present, as discussed in [11], the mode we

are examining in this paper will couple to the thermoelectric diffusive modes and enlarge

the hydrodynamic description of the system by one more degree of freedom [12]. The

phenomenology becomes more interesting after adding the effects of pinning by explicitly

breaking the bulk U(1) symmetry through perturbative boundary sources. At frequencies

much smaller that the infinitesimally small gap, the density wave related to the complex

order parameter is pinned and it doesn’t contribute to transport. However, as soon as

one reaches frequencies close to the gap, the density wave gets excited, contributing to the

thermoelectric transport properties.

When translations are not explicitly broken by a lattice, the longitudinal excitations

of the normal phase consist of a sound mode and an incoherent mode which is diffusive.

It would be interesting to know the role of the gapless mode we study here in setups

where translations are not explicitly broken. Once again, it can mix with the conserved

momentum currents [13] producing sound modes this time. We expect the gapless mode

to mix with the incoherent diffusive mode [14], via its overlap with the heat current.

Having stressed its significance in the physics of density waves, here we shall focus on

the relevant gapless mode when it does not mix with the thermoelectric transport currents.

We will achieve this by considering thermodynamic backgrounds in which the VEV of the

condensed complex operator does not break translations. Moreover, we will study the

effects of perturbatively deforming the theory to explicitly break the internal bulk U(1)

symmetry, thereby introducing a gap in the dispersion relation of the aforementioned mode.

2Among other results, the authors of [10] considered the hydrodynamic limit of Green’s functions in the

case of gauged symmetry breaking in the bulk up to linear order in the wavenumber giving a holographic

calculation of the speed of sound.
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By performing a systematic perturbative expansion, we compute the gap and express it as

a function of the VEV of the condensed operator, the thermodynamic susceptibility of the

deformed theory, and the transport coefficient σb. In the case where the order parameter

breaks translations, this small explicit breaking deformation plays the role of a pinning

parameter against an emerging sliding mode. In the setup of [11], this relaxation time is

independent of the momentum relaxation time due to the presence of a holographic lattice.

However, in the setups presented in [15–17], it also sets the relaxation time of momentum

dominating the transport properties of primarily heat in the system.

The paper is organised as follows. In section 2 we give an introduction to the class

of holographic models we are considering where the scenario of our paper is realised. Our

discussion includes some general remarks regarding holographic renormalization of our

holographic models as well as general statements on the thermodynamics of the black hole

solutions we will be interested in. Section 3 contains the first of our main results. We

study the retarded Green’s function of the operators generated by the action of the bulk

symmetry and derive the dispersion relation of the diffusive pole. In section 4 we give the

mode a gap by performing a symmetry breaking deformation in a perturbative manner.

The formula for the gap is the second main result of our paper. We have performed a

number of numerical checks of our analytic formulae for the Green’s function and the gap

in section 5 where we present a simple model that realises our setup of section 2. We

summarise in section 6 with a discussion of our results.

Note added. While finalising our paper, v2 of [17] appeared on the arxiv containing a

new discussion on the diffusive mode we identify in our section 3. The authors also discuss

the gap which we study in our section 4, where we express it in terms of dual field theory

quantities.

2 Set-up

In order to realise the desired holographic phase transition, we will consider a d+ 1 dimen-

sional gravitational theory which contains at least the bulk metric and a complex scalar Z.

The bulk part of the action is of the general form

Sbulk =

∫
dd+1x

√
−G

(
1

2
W (Gµν , ∂Gµν , ∂

2Gµν , · · · , ZZ̄,F)− 1

2
Q(ZZ̄,F) ∂µZ ∂

µZ̄

)
,

(2.1)

where the functions W and Q, apart from the metric Gµν and its derivatives, can depend

on a number of fields and their derivatives which we are collectively calling F . In order for

the kinetic term of the complex scalar to be well defined, we assume that Q is a positive

function and that Q(0, 0) = 1. The dependence of W and Q on the complex scalar Z is

only through its modulus u ≡ ZZ̄ and so the theory possesses a global U(1) symmetry

which simply rotates Z in the complex plane. The second basic requirement is that W

is such that the equations of motion resulting from (2.1) allow us to set F = 0 and also
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obtain AdSd+1 with unit radius as a solution

ds2 = r2
(
−dt2 + δijdx

idxj
)

+
dr2

r2
, F = 0, Z = 0 . (2.2)

The fluctuations of Z around the vacuum (2.2) satisfy

∇2δZ −m2 δZ = 0, m2 = − ∂uW |F=0, Z=0 , (2.3)

yielding an asymptotic expansion of the form

δZ(t, xi, r) = δzs(t, x
i) r∆−d + · · ·+ δzv(t, x

i) r−∆ + · · · , (2.4)

with ∆ = d
2 +

√
d2

4 +m2. The complex constants of integration δzs and δzv play the role

of source and VEV of a complex operator on the field theory side with dimension ∆.

For our theory (2.1), it is consistent to write down an ansatz of the form

ds2 = −U(r) dt2 +
dr2

U(r)
+ gij(r) dx

idxj ,

Z = ρ(r) ei kjx
j
, (2.5)

and the bulk fields F = F0 to be consistent with the ansatz (2.5). For kj 6= 0, the back-

ground solution (2.5) is periodic and preserves a diagonal combination of the global U(1)

symmetry and translations in the direction parallel to kj , while breaking the orthogonal

combination. This breaking can be either explicit or spontaneous, depending on whether

we have a source for ρ or just a VEV. When kj = 0, only the global U(1) symmetry is

broken.

For the background solutions we would like to consider thermal states in which the op-

erator dual to Z has taken a VEV spontaneously. For this reason we impose the asymptotic

expansion,

U(r) = r2 +O(r0) ,

gij(r) = r2 δij +O(r0) ,

ρ(r) =
ρv
r∆

+ · · · , (2.6)

close to the conformal boundary of AdSd+1. We also impose regularity near the black hole

horizon at r = rh by demanding

U(r) = 4πT (r − rh) +O
(
(r − rh)2

)
,

gij(r) = ghij +O ((r − rh)) ,

ρ(r) = ρh +O ((r − rh)) , (2.7)

along with appropriate regularity conditions on the rest of the fields F . Here T is the

Hawking temperature of the black hole, which is identified with the temperature of the

dual field theory.
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2.1 Holographic renormalization and thermodynamics

Thermodynamics is going to play a key role in expressing our main results in terms of

physical quantities of the dual field theory. The free energy density is equal to the on-shell

Euclidean action w = T
V IE , where V is the volume of the unit cell and IE = −i S is the

Euclidean version of the regulated on-shell action

S = Sbulk + Sct . (2.8)

The counterterm Sct should be expressed as a local, invariant functional of the induced

fields on a constant-r hypersurface [18]. Writing a precise form of Sct for the full theory can

be a quite complicated task and it depends on the details of the bulk action Sbulk. However,

in the regimes which will interest us, we will manage to extract a lot of information without

knowing the precise details.

Close to the conformal boundary, the bulk function Z will in general admit the expan-

sion

Z =
zs

rd−∆
+ · · ·+ zv

r∆
+ · · · . (2.9)

As far as the background is concerned, we will first consider the one point function of the

dual field theory operator OZ as well as the variation of w with respect to kj , in situations

where |zs| � |zv |. In the main part of the paper we will focus on the hydrodynamic limit of

the retarded Green’s functions by considering perturbations around the background. This

will introduce a time dependent perturbative source δzs with bulk response δzv. As we will

explain momentarily, in this limit we will be in a similar situation, where |δzs| � |δzv |.
After introducing the deformations we wish to consider and under the mild assumption

that Q → 1 at the boundary, the on-shell variation δSbulk of (2.1) gives only one finite

boundary term proportional to 1
2(∆−d) (z̄s δzv +zs δz̄v). As usual, the counterterm action

Sct is required to make the bulk variational problem well defined [19] by cancelling this

term in a variation. Moreover, Sct should not introduce new finite terms proportional to

δzv. This consideration suggests that the only finite term in Sct containing zv should result

in 1
2(d − ∆) (z̄s zv + zs z̄v). However, this argument does not fix the finite terms in Sct

which do not depend on zv. These can in general depend on the sources zs, as well as the

asymptotic data of the metric and the other fields Fas in our bulk theory. In summary,

the finite part of the counterterms will take the form

Sct,fin =

∫
ddx

1

2
(d−∆) (z̄s zv + zs z̄v) + F (zsz̄s, ∂mzs∂

mz̄s, . . .) , (2.10)

where the index m is raised and lowered with the Minkowski metric on the conformal

boundary. As a comment, there can be finite covariant terms in Sct which, from the field

theory point of view, reflect a potential dependence on the renormalisation scheme we can

choose. We will further assume that we stick to a renormalisation scheme which respects

the internal U(1) symmetry of the bulk. Such scheme dependent contributions, when we

replace the covariant fields by their UV expansion will be part of the function F in (2.10).
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Including the finite terms, from the variation of the bulk action (2.1) we get

〈OZ〉 =

(
∆− d

2

)
zv + zs F̂ (zsz̄s, ∂mzs∂

mz̄s, . . .) , (2.11)

where F̂ can be written as a sum of derivatives of F . This shows that, in all cases we will

subsequently consider, to leading order in the source, our one point functions will be given

by e.g. 〈OZ〉 ≈ (∆− d
2) zv.

A second point that can be derived from the previous discussion is that explicit vari-

ations of the on-shell action (2.8) with respect to kj in the backgrounds (2.5) are going to

come, to leading order in the source, from the bulk action (2.1). For this action, we have

that the bulk contribution of the derivative of w with respect to the wavelength ki is

∂kiw =

∫ ∞
rh

dr
√
g Qρ2gijkj . (2.12)

We can easily see that as long the scalar z satisfies the unitarity bound ∆ > d
2 − 1, the

above integral converges when zs = 0, and so the counterterm action does not contribute

to this variation.

Assuming that Q > 0, we see that the dominant branch of black holes will have kj = 0

in the class of theories described by (2.1). For this thermodynamically preferred branch of

black holes, we can then easily argue that

wij ≡ ∂ki∂kjw
∣∣
kl=0

=

∫ ∞
rh

dr
√
g Qρ2gij . (2.13)

This discussion shows that if we perturb the backgrounds by a static source δzs, the finite

counterterms in Sct will contribute only to higher perturbative corrections of the free energy

derivative ∂ki∂kjw ≈ wij + δwij , with δwij proportional to the perturbative source |δzs|.

3 Linear response and the diffusive pole

In order to make the discussion of the hydrodynamic modes from the field theory side more

transparent, we write our complex field in terms of real ones according to

Z = X + i Y . (3.1)

We now consider perturbations of Y around the background (2.5) with kj = 0. These are

described by

∇µ (Q0∇µδY )−Qu (∂ρ)2 δY − V0 δY = 0 ,

Q0 = Q|F=F0,Z=ρ , Qu = ∂uQ|F=F0,Z=ρ , V0 = − ∂uW |F=F0,Z=ρ . (3.2)

In order to solve equation (3.2), we notice that for the background (2.5) we have

∇µ (Q0∇µρ)−Qu (∂ρ)2 ρ− V0 ρ = 0 . (3.3)

– 6 –
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We now perform the change of fields

δY = ρ δχ , (3.4)

which can be regarded as a small rotation in the complex plane where Z takes values. The

resulting equation of motion is

∇µ
(
Q0ρ

2∇µδχ
)

= 0 . (3.5)

We observe that δχ = δc0 is a solution, and for the general solution at small frequency ω

and wavelength qj we perform the expansion

δχ(t, xj , r) = e−i (εω ω (t+S(r))−εq qjxj)
∞∑

m,n=0

εmω ε
n
q δχm,n(r) ,

δχ0,0(r) = δc0 . (3.6)

Here εω and εq are small bookkeeping parameters. The ansatz and logic used in order to

solve (3.5) is indeed very similar to [20], the main difference being that we will include an

external source and of course this time we will not find necessary to impose a dispersion

relation ω(qi), as ω and qi will now be free parameters for our source. The function S(r)

is such that it vanishes sufficiently fast close to the conformal boundary and close to the

horizon it behaves like S(r)→ 1
4πT ln(r− rh) + · · · . With this choice, close to the horizon

the time t and the function S combine to the infalling Eddington-Finkelstein coordinate

v = t+ 1
4πT ln(r−rh). Additionally, note that infalling boundary conditions at the horizon

require δχm,n to be analytic functions at r = rh.

Plugging the expansion (3.6) in (3.5) and keeping terms up to O(εω, ε
2
q), we find the

equations

∂r
(√
g Q0ρ

2U∂rδχ0,1

)
= 0 ,

∂r
(√
g Q0ρ

2U∂rδχ1,0

)
− iω δc0 ∂r

(√
g Q0ρ

2U∂rS
)

= 0 ,

∂r
(√
g Q0ρ

2U∂rδχ0,2

)
− δc0

√
g Q0ρ

2 gij qiqj = 0 . (3.7)

Using the asymptotic expansion of equation (2.6) we find that close to infinity we must have

δχ0,1 = δχ
(0)
0,1 ,

δχ1,0 =
i ω

(d− 2∆) rd−2∆

√
ghQ

h
0ρ

2
h

ρ2
v

δc0 + · · ·+ δχ
(0)
1,0 + · · · ,

δχ0,2 = − qiqj
(d− 2∆) rd−2∆

wij

ρ2
v

δc0 + · · ·+ δχ
(0)
0,2 + · · · , (3.8)

where the index h denotes background quantities evaluated on the black hole horizon and

δχ
(0)
m,n are constants of integration which we cannot fix. In order to clarify the importance

of this expansion, we now go back to the perturbation δY which at leading order in εω and

εq has the expansion

δY = e−i (ω t−qjx
j)

(
iω σb − wijqiqj

(d− 2∆) ρv

δc0

rd−∆
+ · · ·+ ρv (δc0 + · · · )

r∆
+ · · ·

)
,

σb ≡
√
ghQ

h
0ρ

2
h , (3.9)

– 7 –
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where the dots include higher order corrections in εω and εq. From this expansion we can

find the retarded Green’s function for the operator dual to Y after identifying its source

and one point function. As anticipated in subsection 2.1, we indeed see that the source

is parametrically smaller than the r−∆ term due to our hydrodynamic limit. Thus, the

leading order retarded Green’s function for the operator dual to Y reads

GY Y (ω, qi) =
ρ2
v (2∆− d)2

wijqiqj − iω σb
=

〈OX〉2

wijqiqj − iω σb
, (3.10)

yielding a diffusive pole at ω = −i σ−1
b wijqiqj . Notice that G(ω = 0, qi) diverges as qi → 0,

which is compatible with the existence of long range interactions from the field theory side

point of view.

By Fourier transforming to spacetime coordinates, the result (3.10) for the retarded

Green’s function allows us to write an equation which determines the VEV δ〈OY 〉(t, xi) of

the operator OY in terms of the source δzs = i ζY (t, xi). After introducing the infinitesi-

mally small angle δĉg(t, x
i) through δ〈OY 〉(t, xi) = 〈OX〉 δĉg(t, xi) we have(

σb ∂t − wij ∂i∂j
)
δĉg = 〈OX〉 ζY . (3.11)

This equation provides an effective description for the long wavelength response of the

emergent gapless mode due to the symmetry breaking in the bulk. In other words, we

have derived a Josephson type of relation which is more familiar in superfluids. The main

obvious difference from the phason mode of superfluids is that ours is a purely diffusive,

non-propagating one. The new transport coefficient σb that appears in (3.11) can be

simply computed from the retarded Green’s function after taking into account the right

order of limits

〈OX〉2

σb
= lim

ω→0
lim
q→0

(
−i ω GY Y (ω, qi)

)
. (3.12)

The last expression relates the transport coefficient σb to the rate at which the system

absorbs energy at long wavelengths and small frequencies.

4 Explicit breaking and the gap

In this section we will consider once again the thermal state described by the general bulk

geometry (2.5), this time right below the critical temperature Tc. In that regime 〈OX〉 6= 0

and ρ is non-trivial in the bulk with asymptotics given by (2.6). In the case where 〈OZ〉 is

relevant, we can introduce an explicit source δρs in order break the bulk U(1) symmetry

in a controlled, perturbative fashion. With this new scale in our theory, it is useful to

define a new bookkeeping dimensionless parameter δρs ≈ O(εs) while once again we take

ω ≈ O(εω) and qi ≈ O(εq). We will examine the retarded Green’s function of Y in the

regimes εs � εω, εq and εs ≈ εω ≈ ε2
q .

The perturbative deformation will modify the asymptotic expansion (2.6) to

ρ̂ = ρ+ δρ =
δρs
rd−∆

+ · · ·+ ρv + δρv
r∆

+ · · · , (4.1)

– 8 –
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where δρv is the perturbation of the VEV due to the addition of the perturbative source.

Once again, we wish to study perturbations of Y , the imaginary part of Z, through the

fluctuations of the field δχ which still satisfy the bulk equation (3.5). It is easy to see that

δχ = δc0 being a constant provides a solution with asymptotic expansion

δY =
δρs
rd−∆

δc0 + · · ·+ ρv + δρv
r∆

δc0 + · · · . (4.2)

Recalling the discussion in subsection 2.1, this suggests that in the perturbatively deformed

theory we have the thermodynamic susceptibility

χY Y ≡ GY Y (ω = 0, qi = 0) = (2∆− d)
ρv
δρs

=
〈OX〉
δρs

. (4.3)

We now find a mode close to the static, homogeneous solution (4.2), which has fre-

quency ω and wavenumber q2 at the scale set by δρs. In order to do this, we perform an

expansion in εω, εq and εs, similar to (3.6)

δχ(t, xj , r) = e−i (εω ω (t+S(r))−εq qjxj)
∞∑

m,n,l=0

εmω ε
n
q ε
l
s δχm,n,l(r) ,

δχ0,0,0(r) = δc0 . (4.4)

At this point we stress that in order to solve the equation of motion (3.5) perturbatively in

beyond next to leading order in εs, we would need to know the full perurbative expansion

of the background. Luckily, in order to extract non-trivial information, we will only need

to work at leading order in εs. We can indeed see that, at leading order in δρs, we arrive

again at a set of equations identical to (3.7) for δχ0,1,0, δχ1,0,0 and δχ0,2,0 with solution

δχ0,1,0 = δχ
(0)
0,1,0 ,

δχ1,0,0 =
i ω

(d− 2∆) rd−2∆

√
ghQ

h
0ρ

2
h

ρ2
v

δc0 + · · ·+ δχ
(0)
1,0,0 + · · · ,

δχ0,2,0 = − qiqj
(d− 2∆) rd−2∆

wij

ρ2
v

δc0 + · · ·+ δχ
(0)
0,2,0 + · · · . (4.5)

Thus, at order εs ≈ εω ≈ ε2
q that we are interested in, we have

δY = e−i (ω t−qjx
j)
((

δρs +
iω σb − wijqiqj

(d− 2∆) ρv

)
δc0

rd−∆
+ · · ·+ ρv (δc0 + · · · )

r∆
+ · · ·

)
, (4.6)

where the dots include higher order corrections in εs. This expansion constitutes yet

another example of the discussion in subsection 2.1 and so we can read off the retarded

Green’s function to be

GY Y (ω, qi) =
〈OX〉2

〈OX〉 δρs + wijqiqj − iω σb
=

〈OX〉2

〈OX〉2 χ−1
Y Y + wijqiqj − iω σb

. (4.7)
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yielding a quasinormal mode with a gap δωg given by3

δωg =
〈OX〉
σb

δρs =
〈OX〉2

σb χY Y
. (4.8)

After this definition, the Josephson relation (3.11) for the angular variable δĉg is modified to[
σb (∂t + δωg)− wij ∂i∂j

]
δĉg = 〈OX〉 ζY , (4.9)

demonstrating the fact that δωg can be thought of as a relaxation time for the perturba-

tively gapped mode.

In the next section we will provide a numerical check of our claim for a specific model.

Here we will also provide a check of equation (4.7) at small frequencies and wavenumbers,

much smaller than the scale set by δρs. We are once again performing an expansion similar

to (3.6) which leads to (3.7) but now with ρ being replaced by ρ̂. At leading order in δρs
we have

δχ0,1 = 0 ,

δχ1,0 = − i ω

(d− 2∆) r2∆−d
σb
δρ2
s

δc0 + · · · ,

δχ0,2 =
qiqj

(d− 2∆) r2∆−d
wij

δρ2
s

δc0 + · · · . (4.10)

The corresponding asymptotic expansion for the perturbation δY reads

δY = e−i (ω t−qjx
j)

[
δρs
rd−∆

+ · · ·+ 1

(d− 2∆) r∆

(
(d− 2∆)ρv − iω

σb
δρs

+
wijqiqj
δρs

)
+ · · ·

]
δc0 ,

(4.11)

where the dots include higher order corrections in εs as well as in εω and εq. The expan-

sion (4.11) yields the expanded Green’s function

GY Y (ω, qi) ≈ χY Y +
〈OX〉
δρs

iω − wijqiqj/σb
δωg

+ · · · , (4.12)

which is simply an expansion of (4.7) for εω ≈ εq2 � εs.

5 Numerical checks

The aim of this section is to verify numerically the analytic results of sections 3 and 4 in a

simple theory in d = 3 boundary dimensions. The action that we will consider is given by

S =

∫
d4x
√
−g

[
R− V − 1

2
∂µψ ∂µψ −

1

2
∂µρ ∂µρ−

ρ2

2
(∂χ)2

]
, (5.1)

3We believe that at leading order in their “pinning” parameter, this new result should match the formula

for Ω given as a bulk integral in the notation of [17].
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where we have chosen

V = −6 +
m2
ψ

2
ψ2 +

c2

2
ψ4 +

m2
ρ

2
φ2 + q ρ2ψ2 , m2

ψ = −2 , m2
φ = −2 . (5.2)

In comparison to (2.1) in section 2, Z = ρ eiχ, Q(ZZ̄ ,F) = 1 and W corresponds to the

first three terms in our action. Note that, for ρ = 0, ∂ψV = 0 both at ψ = 0 and at

ψ = 1/c.

The variation of the action (5.1) gives rise to the following field equations of motion

Rµν −
1

2
gµνV −

1

2
∂µρ∂νρ−

1

2
∂µψ∂νψ −

ρ2

2
∂µχ∂νχ = 0 ,

1√
−g

∂µ
(√
−g ∂µψ

)
− ∂ψV = 0 ,

1√
−g

∂µ
(
φ2√−g ∂µχi

)
= 0 ,

1√
−g

∂µ
(√
−g ∂µρ

)
− ∂ρV − ρ (∂χ)2 = 0 . (5.3)

The above equations admit a unit-radius AdS4 vacuum solution with ρ = ψ = χ = 0,

which is dual to a d = 3 CFT. Placing the CFT at finite temperature corresponds to

considering the Schwarzschild black hole. Here we choose to deform our boundary theory

by a relevant operator Oψ with scaling dimension δψ = 2. The corresponding back-reacted

solution will then be given by black holes with a non-trivial profile for the scalar field ψ. As

the temperature goes to zero, T → 0, these configurations will approach a flow between the

unit-radius AdS4 in the UV with ψ = 0, and an IR AdS4 with radius L2
IR = 12c2/(1+12c2)

supported by ψ = 1/c.

To see this explicitly, we consider the following ansatz for the normal phase of our

system

ds2 = −U(r) dt2 +
1

U(r)
dr2 + e2V (r) dx2

i ,

ψ = ψ(r) , ρ = 0 , χ = 0 , (5.4)

where i = 1, 2. Plugging this in the equations of motion (5.3) we obtain one first order and

two second order ODEs, which we solve numerically using a shooting method, subject to

the following boundary conditions at the horizon

U (r) = 4π T (r − rh) + · · · , V = Vh + · · · ,
ψ = ψh + · · · , (5.5)

and the following boundary behaviour

U → r2 + · · ·+ W

r
+ · · · , V → log(r) + · · · ,

ψ → ψs
r

+
ψv
r2

+ · · · . (5.6)
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Figure 1. The left panel shows the logarithmic derivative of the entropy of the system with

respect to the temperature, while the right panel shows the horizon constant ψh as a function of

the temperature. Here ψs = 1/2 and c = 1, q = −1.

Note that, in the above expansion, T is the black hole temperature and ψs is the deforma-

tion parameter.

Given the above expansions, and through a simple counting argument, we expect to

find a two-parameter family of black holes labelled by (T, ψs).

In the left panel of figure 1, we plot the logarithmic derivative of the entropy of the

system with respect to the temperature, TS′(T )/S(T ) for ψs = 1 and c = 1, q = −1. We

clearly see that both at very high and very low temperatures the entropy scales like T 2

which is compatible with having AdS4 on both sides of the RG flow. Furthermore, in the

right panel of 1 we plot ψh against the temperature and we see that, in the deep IR, ψ → 1

as expected when c = 1.

On top of these thermal states, we will consider instabilities associated to the scalar

field ρ which plays the role of the real part of the scalar Z in section 2. To ensure that

such instabilities exist in our model we need to make sure that the scalar field ρ violates

the BF bound associated with the AdS4 in the IR, i.e.

L2
IRm

IR
ρ

2
=

12c2

1 + 12c2

(
m2
ρ + 2

q

c2

)
< −9

4
, (5.7)

but is nevertheless stable in the UV: m2
ρ ≥ −9

4 . For example, this is the case for c = 1,

q = −1 and so we expect an instability to occur for this choice of parameters. Thus,

for temperatures below a critical one, we expect a new branch of black holes to emerge

characterised by a non-trivial condensate for ρ. To determine the critical temperature at

which these instabilities set in we need to study the associated zero modes. In particular,

we consider a linearised perturbation around the background (5.4) of the form

ρ(r, x1) = δρ(r) cos (k x1) , (5.8)

where k is the wavenumber that characterises the broken, generically spatially modulated

phase. Note that in this paper we are mainly interested in the translationally invariant case

with k = 0; here we present the non-zero k branches just for completeness. Plugging the
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Figure 2. Plot of the critical as a function of the wavenumber k.

above perturbation in the equations of motion, we obtain the following second order ODE

δρ′′ +
ρ

U
(2 + 2ψ2 − k2e−2V ) +

ρ′

4V ′ U

(
12 + 2ψ2 − ψ4 + U(4V ′2 + ψ′2

)
= 0 . (5.9)

To solve the latter, we impose the following boundary conditions at the black hole horizon

δρ = δρh + · · · , (5.10)

and asymptotically

δρ = 0 +
δρv
r2

+ · · · , (5.11)

where we have already set the source for δρ to 0, so that the emergence of the new phase is

spontaneous. Overall, the boundary conditions are determined by 2 constants δρh = 1 , δρv
one of which can be set to 1 because of the linearity of equation (5.9). Therefore, for a

fixed value of k there will be at most a discrete set of temperatures for which equation (5.9)

will admit a solution without a boundary source. Consequently, performing the numerical

integration for different values of k will fix the highest value of the temperature for which

one can find non-trivial solutions for δρ. In figure 2 we plot this critical temperature as a

function of k. We indeed see that the dominant branch will correspond to k = 0 as it is the

first black hole that will appear as we lower the temperature. This certainly agrees with

the analysis of the non-linear backgrounds that we discussed in subsection 2.1. We also

note that the critical temperature displays the usual Bell curve behaviour [21–23] only for

small values of k. For larger values of k we see that it deviates from that form due to the

fact that the near horizon geometry describing the zero temperature limit of the normal

phase black holes is AdS4 rather than AdS2 × R2.

The next step is to construct the back-reacted solutions corresponding to the broken

phase for k = 0. This is achieved using the following ansatz

ds2 = −U(r) dt2 +
1

U(r)
dr2 + e2V (r) dx2

i ,

ρ = ρ(r) , ψ = ψ(r) , χ = 0 , (5.12)

where i = 1, 2. When plugging this ansatz in the equations of motion we obtain a set of

three second-order equations and one first-order equation. Thus, a solution is specified in
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terms of 7 constants of integration. To ensure that we have a regular Killing horizon we

assume that we have the following expansions near the horizon

U (r) = 4π T (r − rh) + · · · , V = Vh + · · · ,
ρ = ρh + · · · , ψ = ψh + · · · . (5.13)

The expansion (5.13) is then specified in terms of 4 constants, in addition to the tempera-

ture T . Asymptotically, we have the following expansion

U → r2 + · · ·+ W

r
+ · · · , V → log(r) + · · · ,

ρ→ 0 +
ρv
r2

+ · · · , ψ → ψs
r

+
ψv
r2

+ · · · . (5.14)

Note that, just like in the discussion for the zero modes, we have fixed the source for ρ to

be zero ρs = 0, so that the condensation is spontaneous. The asymptotics are parametrised

by 3 constants in addition to ψs. Overall, in the IR and UV expansions we have a total

of 7 constants as well as T and ψs, which matches the 7 constants of integration. We

proceed to solve this boundary condition problem numerically using double-sided shooting

for (T, ψs) = (0.02, 1) and c = 1, q = −1.

5.1 Diffusive mode and gap

Having constructed the back-reacted black holes, we now turn our attention to studying

the two-point function GY Y (ω, q) and the gap δωg associated with these thermal states;

the real field Y was defined in (3.1) as Y = Im[Z]. To do this, we consider the following

linearised perturbation

δχ(t, r, x1) = e−iωv(t,r)+iqx1δχ(r) , (5.15)

where v is the infalling Eddington-Finkelstein coordinate defined as

v(t, r) = t+

∫ r

∞

dy

U(y)
, (5.16)

thus fixing the function S(r) used in sections 3 and 4. Note that we picked the momentum

q to point in the direction x1 without loose of generality given that the background is

isotropic for k = 0. Plugging this ansatz in the equations of motion, we obtain one second

order ODE. We now turn to the boundary conditions for these functions. In the IR we

impose infalling boundary conditions at the horizon at r = rh

δχ = cIR + · · · , (5.17)

where cIR is a constant. Thus, for fixed value of q and ω, we see that the expansion is fixed

in terms of 1 constant. The UV expansion for χ changes depending on whether we have

ρs = 0 (needed for the computation of GY Y (ω, q)) or ρs 6= 0 (needed for the computation

of δωg), so we will discuss them separately. In both cases we proceed to solve this equation

numerically subject to the appropriate boundary conditions using a shooting method.
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Figure 3. We compare the analytic (dashed) and the numerical (solid) results for the two point

functions G(ω, 0) and G(0, q) as a function of the frequency and the wavevector.

5.1.1 Computing the two-point function

When ρs = 0 in the background, the UV expansion for the perturbation takes the form

δχ = r δχs + δχv + · · · . (5.18)

In this case the parameter counting goes as follows. For fixed ω, q, the UV and IR expan-

sions are determined by δχ(v) and cIR, where we have already used linearity to set one of

the parameters to unit δχ(s) = 1. This matches the 2 integration constants of the problem.

After numerical integration, we proceed to calculate the two-point function

GY Y ≡ G =
ρv δχv
ρv δχs

. (5.19)

In figure 3 we plot ω Im[G(ω, 0)]/ψ2
s and q2 Re[G(0, q)]/ψ3

s as functions of the (dimension-

less) frequency ω/ψs and the (dimensionless) wavevector q/ψs respectively. The dashed

lines in the two plots correspond to the analytic result (3.10), given by ρ2v
σb

= ρ2v
e2Vhρ2h

= 12.47

and ρ2v
w1 1 = 0.067, showing good agreement. Note that w1 1 was computed by performing

explicitly the bulk integral

w1 1 =

∫ ∞
rh

drρ2 , (5.20)

defined in equation (2.13). For completeness, here we explicitly give all the constants that

appear in the analytic expressions: w1 1 = 0.807 , ρv = 0.233 , σb = 0.0043. In figure 4

we plot the real and imaginary part of the G(ω, 0.01) for ω taking values in the reals;

once again we see good agreement with the analytic results captured by the dashed lines.

Finally, in figure 5, we plot the real part of G(ω, 0.001) as a function of imaginary frequency

ω for q = 1/1000 and we see explicitly the appearance of a pole at ω = 0.00018.

5.1.2 Computing the gap

The computation of the gap boils down to computing quasinormal modes with q = 0 in the

presence of a small explicit breaking in the background, δρs 6= 0, also known as pinning.
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Figure 4. We compare the analytic (dashed) and the numerical (solid) result for the two point

function G(ω, 0.01) for real frequencies.

Figure 5. We compare the analytic (dashed) and the numerical (solid) result for the two point

function G(ω, 0.001) for purely imaginary frequencies.

Having a non-vanishing source for the scalar field ρ leads to the following UV expansion

for the perturbation

δχ1 = δχs +
δχv
r

+ · · · , (5.21)

and we need to remove the source by setting δχ(s) = 0 from the UV expansion as prescribed

for the computation of quasinormal modes. Thus, we see that the UV expansion is fixed in

terms of 1 constant. Overall, in this boundary condition problem we have 2 undetermined

constants ω, δχ(v) together with cIR = 1 due to the linearity of the equation. This matches

precisely the 2 integration constants of the problem.

In figure 6, we plot the gap as a function of the pinning parameter δρs. The dashed

line corresponds to the analytic result. We see that for small values of δρs the gap scales

linearly with the pinning parameter ωg ∼ δρs, with the proportionality constant given

precisely by ρv/σb ∼ 53.57 as predicted in equation (4.8). As expected, for larger values of

δρs we observe deviations from the above formula.
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Figure 6. Plot of the gap ωg as a function of the pinning parameter δρs.

6 Summary and discussion

In this paper we derived a hydrodynamic description of the gapless mode that emerges as a

result of a holographic phase transition in which a global U(1) symmetry is spontaneously

broken in the bulk. In section 3 we computed explicitly the long wavelength and small

frequency retarded Green’s function (3.10) of boundary operators which are generated

by the bulk symmetry action on condensed ones. The anticipated hydrodynamic pole

of (3.10) turned out to be diffusive, as one might have expected by the lack of involvement

of a conserved charge.

Moreover, in section 4 we introduced a perturbative symmetry breaking deformation

which acted as a restoring force for the gapless mode of the undeformed theory and therefore

introduced a gap. As a result of the deformation, the thermodynamic susceptibilities of the

operators we studied in section 3 become finite but parametrically large, reflecting the fact

that we have gapped a hydrodynamic mode. By computing the retarded Green’s function

of this operator, we managed to give an analytic expression for the gap in (4.8).

In section 5 we checked numerically the key results (4.7) and (4.8) in a simple setup

where the phase transition can be realised. In the context of a CFT, thermal transitions

can occur only after introducing a scale which can set the critical temperature. The way we

chose to do this was by deforming the theory with a relevant operator dual to the bulk field

ψ. The bulk Lagrangian was chosen so that it admits an IR fixed point at which the flow

could terminate at low energies and which was dynamically unstable against perturbations

of the complex field Z = φ eiχ. The UV fixed point is stable and therefore our normal

phase black holes are stable at high temperatures. These ingredients are not necessary but

they guarantee the existence of a broken phase branch of black holes along which the field

theory dual of Z will take a VEV spontaneously.

In the case where translations are explicitly broken by a holographic lattice, the modes

involved in thermoelectric transport are purely diffusive [20, 24–26] resulting from the
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conservation of energy and charge. In this paper we described in detail the long wavelength

dynamics of the global phase of a complex order parameter in the broken phase. This turned

out to be diffusive as well but describing very different physics.

The complex order parameter in the black hole phases that we considered here does

not break translations at thermodynamic equilibrium. However, when it does by having a

phase which is linear in one of the spatial coordinates, the global phase symmetry can also

be thought of as a translation of the order parameter in space. This is very similar to the

physics of phasons in incommensurate crystals. There, the free energy is independent of the

position of the modulation with respect to the basic structure of the crystal. The phason is

a diffusive mode which is the result of this symmetry. The dispersion relation of that mode

can be either linear or purely diffusive [27, 28]. In this context we have identified a scenario

where the phason would be diffusive; it would be interesting to construct holographic

models where the dispersion relation would be linear instead of diffusive.

When the order parameter itself breaks translations, the two types of diffusive modes

that describe different physics mix together in a rather non-trivial way. An interesting

future direction to pursue is to study the details of the mixing of the hydrodynamic mode

we considered here with the modes involved in thermoelectric transport [12], both ana-

lytically in the hydrodynamic limit and numerically by studying quasinormal modes. It

is this mixing that led to the low frequency, ω � δωg, behaviour of the thermoelectric

conductivities seen in [11], which actually resembles the conductivity measurements for

pinned density waves.

Over the last few years, there have been interesting observations regarding bounds

on the thermoelectric hydrodynamic modes of fully explicit holographic lattices [29, 30].

However, in situations like we described in the previous paragraphs, the new collective

degrees of freedom we described in our paper will mix with thermoelectric transport. It

would be interesting to examine the previously proposed bounds in such a scenario.
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[14] R.A. Davison, B. Goutéraux and S.A. Hartnoll, Incoherent transport in clean quantum

critical metals, JHEP 10 (2015) 112 [arXiv:1507.07137] [INSPIRE].
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