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Abstract

We present a partition of unity finite element method for wave propagation problems in the
time domain using an explicit time integration scheme. Plane wave enrichment functions are
introduced at the finite elements nodes which allows for a coarse mesh at low order polynomial
shape functions even at high wavenumbers. The initial condition is formulated as a Galerkin
approximation in the enriched function space. We also show the possibility of lumping the mass
matrix which is approximated as a block diagonal system. The proposed method, with and without
lumping, is validated using three test cases and compared to an implicit time integration approach.
The stability of the proposed approach against different factors such as the choice of wavenumber
for the enrichment functions, the spatial discretization, the distortions in mesh elements or the
timestep size, is tested in the numerical studies. The method performance is measured for the
solution accuracy and the CPU processing times. The results show significant advantages for the
proposed lumping approach which outperforms other considered approaches in terms of stability.
Furthermore, the resulting block diagonal system only requires a fraction of the CPU time needed
to solve the full system associated with the non-lumped approaches.

Keywords. Wave Equation; Finite Elements; Partition of Unity; Time Domain; Field Enrichment;
Lumped Mass

1 Introduction

In this paper we look into the solution of the wave equation using an enriched finite element method
and an explicit time integration scheme with a lumped mass matrix. The problem is relevant to a
vast range of applications such as acoustic scattering, mobile phones and MRI-scanners and arises
frequently in designing novel devices [1, 2]. For example the design of waveguides and antennas are
carried out routinely in the laboratories to aid in the design of transceiver circuits used in mobile
phones [3,4]. The problem also arises in the design of concert halls to provide best acoustic experience.
Solving such applications with deterministic approaches, requires discretization of the governing partial
differential equations and a solution of the resulting system of algebraic equations. It is known that
a deterministic approach provides a unique solution to a well-posed problem associated with given
boundary and initial conditions. However, such an approach can be computationally demanding, in
cases that require the solution of a very large number of unknown variables.
Different numerical approaches are available for solving wave problems. In the finite difference method
the differential equation is approximated as a difference equation. This standard method was first de-
veloped in [5] for initial boundary value problems of Maxwell’s equations and later for electromagnetic
scattering problems [6, 7]. The Boundary Element Method is another approach that is based on the
derivation of variational boundary integral equations. Applications for Maxwell’s equations on Lips-
chitz surfaces can be found in [8]. The Galerkin boundary element approach was developed in [9,10] for
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simulation of electromagnetic scattering in the frequency domain. The finite element method (FEM)
is also an alternative that simplifies complicated geometries and non-homogeneous media. The so-
lution space is constructed with special basis functions. The coefficients of these basis functions are
evaluated by solving a system of linear equations forged from the governing equation. In [11, 12], the
FEM is described for wave propagation, scattering and radiation in periodic structures in the context
of wideband antennas and transient electromagnetic phenomena.

One main issue with deterministic numerical methods is the large number of unknowns required for
solving wave problems within a given engineering accuracy. The reason for this could be derived
from the Nyquist sampling theorem, that sets a minimum number of sampling points (and hence
the sampling frequency) required to capture a wave. This often leads to models which have millions
of unknown variables to be determined [13, 14]. A major technique to overcome this drawback is
to use special functions to enrich the deterministic approach approximation space. The partition of
unity method which is based on enrichment with exponential functions is an example. It was first
proposed for solving time-harmonic wave problems governed by the Helmholtz equation [15]. The idea
is to enrich the approximation space with oscillatory functions. The partition of unity finite element
method (PUFEM) was developed for solving the Helmholtz problems at high frequencies [16,17] and to
deal with problems where the wave speed is piecewise constant [18]. The method outperforms the FEM
with the standard polynomials basis functions [17,19]. The partition of unity enrichment technique led
to a vast amount of literature comprising different approaches such as the generalized finite element
method [20,21], the ultra-weak variational formulation [22,23], as well as the discontinuous enrichment
method [24–28]. The PUFEM is also adapted for solving forward problems for heterogeneous materials
[29], elastic waves [30,31] and more recently for inverse problem [32]. In [33–35] the authors adopt the
PUFEM with implicit integration in time for solving various transient diffusion problems. The reader
is also referred to [36] for a recent survey on different approaches that use some form of enrichment.

The wave propagation can be recovered by solving the partial differential equations using either the
frequency- or the time-domain analysis. The above work on enrichment methods are developed for
frequency domain problems. However wave equations in the time domain can deal with a much wider
range of applications than its frequency-domain counterpart. For example pulse sources cannot be
modelled by the frequency domain which require harmonic sources. The frequency domain approach
also fails in cases which require a large range of frequencies such as in radar applications. To deal
with time-domain wave problems, an enriched model for wave propagation was developed for two-
dimensional transient wave problems in [37]. A PUFEM approach for time-domain electromagnetic
waves was also developed in [38] using an implicit time stepping method. In [39], the authors present
the usage of numerical manifold method to construct finite element patches that cover the numerical
domain and produce diagonalised lumped mass matrices that satisfy mass conservation of the elements
for elastodynamic problems. In [40], an explicit scheme for discontinuous deformation analysis is
presented for elasticity problems. Similarly, in [41] a multi-patch approach is used with discontinuous
Galerkin isogeometric analysis to form block diagonalised lumped mass matrices for wave propagation.
The presented numerical analysis for transient hyperbolic problems shows that the step-size in time
scales as O(h/p) for stability where h is the mesh size and p is the order of approximation. An explicit
time stepping scheme with lumped mass matrix can be highly beneficial for enrichment methods
when solving wave problems. However, this was still not achieved. In general high order numerical
schemes for time domain integration are limited by the fact that they have more restrictive Courant–
Friedrichs–Lewy (CFL) conditions and suffer from challenging memory requirements. They are derived
from the Taylor series expansion of the derivatives and assuming coefficients from multiple previous
time steps [42]. In these methods, the mass matrix could pose a problem for computation as it
would be required to be inverted in every time step. One way to reduce computational cost could be
diagonalizing this matrix using the so called lumped mass approach. There are essentially a handful of
ways to achieve a lumped mass matrix [43]. For instance one can use the nodal quadrature technique.
In essence it requires usage of numerical integration points located at the nodes of each element. In
the p-FEM, the banded mass matrix could be reduced to a diagonal matrix by the usage of Gauss-
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Lobatto scheme for both interpolation and numerical integration. This is effective especially for third
or higher order polynomials used in the finite element approximation. The only two criteria are that
the order of accuracy must be maintained, and that the same points must be used for interpolation
as for numerical integration i.e. including the end points [44]. However, due to the contribution of
the enrichment functions it is not possible to diagonalise the mass matrix using similar quadrature
techniques.

In [45], a variational approach is develolped to approximate the consistent mass matrix for partition
of unity methods, which is in line with the classical row-summation technique for linear FEM. In our
work we present a similar approach using plane wave enrichments, and investigate the benefits of mass
lumping in terms of improved conditioning, and also in terms of performance over both structured and
unstructured meshes. The contribution in this work is also derived from projecting arbitrary non-zero
initial conditions over local approximation spaces for the enriched PUFEM. The formulation of block
diagonal lumped mass matrix approach significantly simplifies the solution of the linear systems arising
from the spatio-temporal discretizations of the time-domain wave problems. The mass matrix lumping
also allows to improve the conditioning of such systems which are known to be ill conditioned. We focus
on the difficulties related to capturing the oscillatory nature of solutions to wave phenomenon, such
as the Maxwell equations with a source term (i.e. a non-zero right-hand side). The results obtained
herein can be applied to other fields such as acoustics with the same basic principles, superimposed
in a linear manner. Although developed for the PUFEM method, this lumping approach can be also
used in other enrichment techniques without significant changes. The rest of this paper is organised
as follows. First, the problem and the considered finite element method are defined. Details about
the time integration schemes and the lumping of the mass matrix are provided in section 2. Next,
several numerical experiments are presented in section 3. Finally, section 4 contains some concluding
remarks and recommendations for future work.

2 Wave problem and FEM approximations

First, we present a linear wave equation in two dimensions which would be the basis of all analysis
presented in this work. We define an initial boundary value problem on Ω ⊂ R2 being an open bounded
domain with Lipschitz continuous boundary Γ evolving in [0, T ] which is the time interval for the wave
propagation. The problem is defined as

1

c2

∂2E

∂t2
−∇2E = f(t,x), (t,x) ∈ [0, T [×Ω, (1a)

∂E

∂v̂
+ hE = g(t,x), (t,x) ∈ [0, T [×Γ, (1b)

E(0,x) = E0(x), x ∈ Ω, (1c)

∂E

∂t
(0,x) = V 0(x), x ∈ Ω, (1d)

where x = (x, y)> are the Cartesian coordinates, t is the time variable, v̂ the outward unit normal
on Γ and E the magnitude of the transverse electric field in the direction perpendicular to the plane
of numerical domain while c and h are constants. The functions f(t,x) and g(t,x) in (1) are the
prescribed source and boundary functions, respectively. The functions E0(x) and V 0(x) denote the
given initial conditions. This model can be used to represent various linear electromagnetic and
acoustic wave propagation problems. For instance, applied to the scalar field in a transverse mode of
electromagnetic wave propagation, it can represent an accurate and efficient solution for a short pulse
propagating over long distances.

We reduce the second order differential equation of (1a) to a system of first order derivatives as follows
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∂E

∂t
= V , (2a)

1

c2

∂V

∂t
= f(t,x) +∇2E. (2b)

For discretization in space, we approximate the solution space as a linear sum of traditional, class
C0(Ω), hat functions denoted by N (x) = (N1, · · · , NNd

)> characterized by the property Ni(xj) = δij
with δij denoting the Kronecker symbol. These hat functions are, as usual, defined over the finite
elements Ti used to discretize the spatial domain Ω. Hence, the field E and its first derivative V are
defined in the partition Ωh as

Eh(t,x) =

Nd∑
j=1

Ej(t)Nj(x), Vh(t,x) =

Nd∑
j=1

Vj(t)Nj(x), (3)

where Nd is the total number of nodal points in the partition and h is the discretization parameter
of the mesh. Thus, Ej(t) and Vj(t) are the nodal values of the global functions Eh(t,x) and Vh(t,x),
respectively. Note that only the nodal values of the field (or its derivative) are functions of time t at a
given time. This is just to signify that the coefficients of the hat functions depend on time, and that
the hat functions themselves have no dependency on time whatsoever.
Hence a weak form is obtained by multiplying both sides of (2) with a weighting function φ(x) and
integrating on both sides over Ω. Using the divergence theorem and using the boundary condition
(1b) we obtain the following weak formulation of the problem (1)∫

Ω

∂E

∂t
φ dΩ =

∫
Ω
V φ dΩ, (4a)

1

c2

∫
Ω

∂V

∂t
φ dΩ = −

∫
Ω
∇E · ∇φ dΩ−

∮
Γ
(hE)φ dΓ +

∮
Γ
g(t,x)φ dΓ +

∫
Ω
f(t,x)φ dΩ. (4b)

Following a partition of unity approximation, each mesh node is enriched with plane waves, thus
allowing for a much coarser mesh, and overall a significantly lower total number of degrees of freedom.
Thus, the discretization equations in (3) are re-written as

Eh(t,x) =

Nd∑
j=1

Q∑
q=1

Êqj (t)eikzqNj(x), (5a)

Vh(t,x) =

Nd∑
j=1

Q∑
q=1

V̂ q
j (t)eikzqNj(x), (5b)

where zq = x cosαq + y sinαq for q = 1, . . . , Q − 1 and zQ = 0. Notice that the solution E is split

into two components where ÊQj represents a scaling factor for the nodal shape functions while Êqj |q 6=Q
represents the amplitude of different plane waves used as nodal enrichments. Similar argument follows
for its first derivative V . Thus, each node has exactly Q degrees of freedom, of which Q − 1 are the
amplitudes of plane wave enrichments, and the domain Ωh has a total of NdQ degrees of freedom. For
the numerical integration of these plane wave enrichment functions over the spatial domain, we use
about 10 integration points per wavelength in each direction. In [46], an explicit closed-form solution
for two-dimensional wave-based integrals are developed, for the PUFEM using pressure and shear
plane waves for local enrichment. Similar approach could be developed for the work presented in this
paper, that could significantly reduce the computational cost associated with the assembly process.
The constant k is problem dependent, albeit it is possible to run a parametric sweep in a selected
(discrete) bandwidth to obtain a modal response, however this is beyond the scope of the current
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work. The angles αq for the plane wave enrichment functions are selected by uniformly dividing 2π
based on Q− 1. For example, Q− 1 = 4 leads to αq = 0, π/2, π and 3π/2 as the four distinct angles
for the plane wave enrichments.

For the time integration we set two unknown vectors y1(t) and y2(t) that store the time dependent
coefficients, i.e.

y1(t)|j= {Ê1
j (t), Ê2

j (t), . . . , ÊQj (t)}>, y2(t)|j= {V̂ 1
j (t), V̂ 2

j (t), . . . , V̂ Q
j (t)}>, (6)

where the subscript j denotes reference to a node in the partition Ωh. Note that both y1(t) and y2(t)
are each of total size QNd. Using, the definitions given in (5) and substituting them in (4) we obtain
the following algebraic system of ordinary differential equations

M
dy1

dt
= My2, (7a)

1

c2
M
dy2

dt
= (−K−MΓ)y1 + fΓ + fΩ. (7b)

Here, the vectors and matrices in (7) are defined as follows:

M(i,n)(j,m) =

∫
Ω
NieikznNjeikzmdΩ, (8a)

K(i,n)(j,m) =

∫
Ω

(
∇Nieikzn

)
·
(
∇Njeikzm

)
dΩ, (8b)

MΓ(i,n)(j,m) = h

∮
Γ
NieikznNjeikzmdΓ, (8c)

fΓ(i,n) =

∮
Γ
g(t,x)NieikzndΓ, (8d)

fΩ(i,n) =

∫
Ω
f(t,x)NieikzndΩ, (8e)

where (i, n) ∈ {1, 2, . . . , Nd} × {1, 2, . . . , Q} denote the row incides, and similarly (j,m) denote the
column indices respectively. The matrix equations in (7) can be further simplified by multiplying both
sides with the inverse of the mass matrix M

M−1M
dy1

dt
= M−1My2,

1

c2
M−1M

dy2

dt
= M−1 (−K−MΓ)y1 + M−1 (fΓ + fΩ),

which can be written in a compact form as

dy1

dt
= y2, (9a)

dy2

dt
= Ay1 + r̃, (9b)

where A = c2M−1 (−K−MΓ) and r̃ = c2M−1 (fΩ + fΓ), respectively. Equation (9) can be further
simplified as the standard notation for a differential equation

dy

dt
=

[
0 I
A 0

]
y +

[
0
r̃

]
or simply,

dy

dt
= By + r. (10)
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It is worth noting that the matrix B is independent of the time variable, whereas the vector r depends
on time. Thus, with a difference scheme adopted for time discretization, one needs only to update the
right hand side term r in (10) to solve in y for subsequent time steps.

In the current study, we present the analysis with the aid of the explicit Euler scheme to integrate
in time. Thus, our difference equation is given as yn+1 = yn + ∆t (Byn + rn) where superscript n
is the index of the discretized time and refers to the time instance (n)∆t while ∆t is the time step
size. With this iterative scheme, one does run into the problem of obtaining the coefficient vector y0

pertaining to the given initial condition. The traditional way around this problem is to either (a) use
nodal quadrature method and assign exact values at the nodes at time t = 0 as the coefficients or (b)
obtain the best approximation of the initial condition over the discritization Ωh. To the author’s best
knowledge, these best approximations are generally obtained for lagrangian basis functions. In this
paper, we solve a Galerkin equation to obtain the best approximation for the initial condition over Ωh

using the enriched solution space as defined in equation (5). The corresponding weak forms are given
as ∫

Ω
Eh(0,x)φ dΩ =

∫
Ω
E0(x)φ dΩ, (11a)∫

Ω
Vh(0,x)φ dΩ =

∫
Ω
V 0(x)φ dΩ. (11b)

This could be written compactly as My0 = f0
Ω, where M is the same as in equation (7) and f0

Ω is
effectively the right hand side of (11). Solving this linear system of equations gives us the desired
vector of coefficients y0 to initialize the time-stepping scheme.

It should be noted that the integration in time of the expression (10) is directly achievable for a
wide range of higher order explicit methods such as Runge-Kutta methods. However, in this paper
only the first order Euler scheme is implemented where using higher orders leads to a larger memory
requirement as the number of the stored time steps will increase. Considering that we run reference
solutions with the conventional finite element method, such requirement can cause an extra burden on
the computational resources. At the same time the comparisons between the PUFEM and the FEM
remains to be valid as long as the same time integration scheme is implemented with both methods
no matter whether the scheme is high or low order. Hence, we only use a first order time integration
scheme.

In contrast to the assembly process associated with the proposed explicit scheme, the implicit method
used for the PUFEM in [38] differs in its assembly mostly in the way the integral over Ω is evaluated.
For the implicit method, the M and the K terms of (8) are evaluated and stored as a single term, as
MImp = M + K. Similarly, the the right-hand side fΩ for the implicit formulation is given as

f Imp
Ω =

∫
Ω

(
2En−1 − En−2 + ∆t2f(tn,x)

)
N> dΩ, (12)

where En−1 and En−2 are the solutions at two consecutively previous steps in time. The boundary
integrals in both formulations are very similar. These differences are the direct cause of dissimilarities
observed in the overall computational cost associated with the assembly process in the two methods, as
discussed in section 3.1.3. For more details on the implementation of implicit time stepping methods
for the wave equation we refer to [38] amongst others.

One of the attractive features of using an explicit integration in time is the advantage of exploiting
the diagonalization of the mass matrix. As it can be seen from the system equations in (9), one
requires only to invert the mass matrix. The process of inversion can be significantly simplified by
diagonalizing the mass matrix. In the FEM, one can achieve a purely diagonal mass matrix, by simply
summing up all the columns of the mass matrix along each row into the respective diagonal. The
off-diagonal terms are then set to zero. The approximate mass matrix for a linear FEM following
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this classic row-summation thus is given as

M̄(i)(j) =

{
0, i6=j,∑Nd

l=1

∫
ΩNiNldΩ, i=j.

(13)

Thus, inverting this approximate mass matrix then simply requires inverting the diagonal terms, which
is trivial. Since one only needs to store the diagonal terms, this also reduces the memory requirements
for the mass matrix storage. Such a lumping procedure is rigorously developed for the partition
of unity method, for non-negative weight functions and high-order local approximation space in [45],
where the local approximation spaces are based on a mix of polynomials, singular and discontinious
functions. In our work, we employ this classic row-summation for plane waves used as enrichment.
Thus, in the case of our proposed PUFEM each node now contributes towards a Q × Q block in
the mass matrix. Therefore we propose to its diagonalization in the same manner as in the standard
FEM, which leads to a block-diagonal mass matrix. This is achieved by simply summing up all the
off-diagonal blocks along each row into the respective diagonal block. The approximate mass matrix
is given as

M̄(i,n)(j,m) =

{
0, i6=j,∑Nd

l=1

∫
ΩNie

ikznNleikzmdΩ, i=j.
(14)

This lumped mass matrix is much easier to store and invert as compared to the non-diagonalized
consistent mass matrix where again the inversion of the mass matrix is now reduced to the inversion
of smaller non-overlapping blocks of size Q×Q. The total number of such blocks depends on the total
number of nodes in the spatial mesh.

3 Numerical results and examples

In this section, we analyse the efficiency of the proposed methods, that is the PUFEM with explicit
time integration, henceforth mentioned as PUFEM-E and its lumped mass matrix counterpart as
PUFEM-BD. The results are also compared to the PUFEM with implicit time integration PUFEM-I.
The relative error is evaluated in L1-norm as

Error =
‖Enum − E‖L1(Ω)

‖E‖L1(Ω)

× 100%, (15)

where Enum is the numerical solution obtained with each method while E is the exact solution.

3.1 Example of radial wave

First, we consider a circular wave with the source located at the system origin as studied in [38]. The
analytical solution is given by

E(t, x, y) = ei(kr−ωt),

where r =
√
x2 + y2. A unit square computational domain is assumed Ω = [0.1, 1.1]× [0.1, 1.1]. The

analytical solution is imposed on the domain boundary using (1b) and also used to evaluate the initial
conditions (1c) and (1d). Three different wavenumbers are considered k = 20π, k = 40π and k = 80π
with the angular frequency fixed at ω = 1.

3.1.1 Timestep convergence

Our first concern in this example is to evaluate the convergence of the PUFEM using explicit time
integration where the mass matrix is lumped or full. The domain is discretized into a uniform mesh of
4-noded square elements. Hence, the number of elements is 4 in each direction and the total number
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Table 1: Convergence with refined timestep size in the three considered time integration schemes for
the example of radial wave at final time t = 1 and uniform mesh of 4 × 4 elements. The relative
percentage errors are shown in columns corresponding to PUFEM-I, PUFEM-E and PUFEM-BD
methods respectively.

k = 20π, Q = 27

∆t PUFEM-I PUFEM-E PUFEM-BD

0.01 1.32 0.80 2.99
0.005 1.12 0.84 2.91
0.001 0.98 0.92 2.86

k = 40π, Q = 57

PUFEM-I PUFEM-E PUFEM-BD

1.01 0.47 2.01
1.44 0.38 1.90
29.87 0.44 1.84

k = 80π, Q = 97

PUFEM-I PUFEM-E PUFEM-BD

0.79 0.57 4.08
0.68 0.46 3.96
4.72 0.46 3.88

of elements is 16 while the total number of nodes is 25. For k = 20π we enrich the PUFEM with
Q = 27, whereas for k = 40π and k = 80π, the chosen number of enrichment functions is Q = 57 and
97, respectively. Table 1 compares the errors of PUFEM-I, PUFEM-E and PUFEM-BD methods, for
three different time steps ∆t. The errors are displayed at time t = 1 for the three methods.
It is clear that both PUFEM-E and PUFEM-BD methods converge with respect to the timestep
refinement where smaller errors are obtained with smaller values of ∆t. For k = 20π. both PUFEM-E
and PUFEM-I methods give practically similar accuracy, whereas PUFEM-BD method leads to larger
errors due to the approximation of the block diagonalization of the mass matrix. However, as a higher
wavenumber is considered with a higher Q, PUFEM-I method shows significant increase in the error
for the smallest considered timestep ∆t = 0.001. The results suggest that PUFEM-I method is less
stable than PUFEM-E and PUFEM-BD methods for the accumulation of the round-off errors while
for the smallest ∆t the solution requires 1000 steps to achieve the final time t = 1. PUFEM-I method
seems also more sensitive to the ill-conditioning issue often observed at higher number of enrichment
functions, see for instance [19,47].
An explicit scheme is conditionally stable and usually requires the CFL number to be less than 1.
On the other hand an implicit scheme is unconditionally stable and thus in general can tolerate a
larger ∆t. In a typical finite difference scheme, the CFL number is of the order ∼ um∆t

h where um is
the maximum value of the wave speed present in the analytical solution and h and ∆t are the space
and time discretization constants, respectively. Heuristically speaking, the CFL number provides a
measure of how fast the numerical value is calculated as opposed to the rate of change of the analytical
solution on a given space-time grid. Hence, for the stability of the explicit approach a smaller ∆t is
required for a smaller space discretization. This can be a major issue for wave problems where highly
refined meshes are necessary at high wavenumbers. However, thanks to the enrichment we show in
this example that the same coarse mesh grid can be retained also when higher wavenumbers are
considered. The coarse meshes are associated with relatively large values of the spatial step h. The
CFL condition in this case becomes a trivial requirement unless ∆t is significantly large. Hence, the
sensitivity of the proposed explicit methods against ∆t is quite similar to that of the reference implicit
method PUFEM-I. This, allows utilizing the benefits of the explicit scheme (such as mass lumping
and distributed computation) without compromising on the time step ∆t for numerical stability.

3.1.2 Number of enrichment convergence

Our next aim in this example is to compare the convergence of the three methods when increasing the
number of plane wave enrichments, which is often mentioned as the q-convergence, see for instance [20].
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Table 2: The q-convergence for the three time integration schemes considered for the example of radial
wave. Note that here a ‘–’ replaces the results of a diverged case.

Error (%) Condition number
k Q PUFEM-I PUFEM-E PUFEM-BD PUFEM-I PUFEM-E PUFEM-BD

20π
21 1.84 1.81 7.64 6.13E+04 6.36E+04 1.34E+02
31 2.17 0.89 1.61 5.65E+07 6.81E+07 9.40E+06
41 – – 1.20 6.43E+08 7.10E+08 2.94E+07

40π

37 3.79 3.78 10.92 3.56E+04 3.61E+04 5.93E+01
47 0.8 0.76 4.67 9.8E+05 3.67E+06 1.72E+04
57 – 0.43 1.84 2.09E+07 1.98E+08 1.43E+07
67 – – 1.00 3.47E+07 3.37E+07 1.66E+08

80π

71 3.89 3.89 11.84 9.68E+05 1.40E+06 0.65E+01
81 1.34 1.33 7.73 7.77E+07 2.71E+06 1.17E+03
91 0.74 0.71 5.10 2.33E+07 1.74E+07 3.90E+05
101 – 0.37 3.20 2.91E+08 2.48E+07 1.64E+07
111 – – 1.94 5.11E+07 6.11E+07 2.56E+07

It is well known that the PUFEM suffers from ill-conditioning issues as we increase the number of
enrichment functions, for example see [48, 49]. The idea here is to use a small timestep ∆t to ensure
accuracy while we increase the number of plane wave enrichments until the considered three time
integration schemes start to diverge due to the round-off errors and the ill-conditioning issue. The
time step ∆t = 0.001 is fixed, and used to simulate a total of 1000 steps to reach the final time of
t = 1. The same mesh from the previous study is also retained. Table 2 summarizes the numerical
accuracy of the three time integration schemes obtained at t = 1 for the considered wavenumbers
k = 20π, 40π, and 80π.

From the results in Table 2, it is evident that for all the methods, the increase in the number of plane
waves leads to a better error and that the higher the wavenumber being solved for, the higher is the Q
required to achieve a converged numerical solution. It can also be seen that after a certain number of
enrichment functions, the PUFEM-I and PUFEM-E methods fail to produce any good result (entries
marked with a ‘–’ in the table), whereas the PUFEM-BD method still produces meaningful results.
This suggests that PUFEM-BD method is more stable to increasing Q as compared to PUFEM-I and
PUFEM-E methods. To some extent this could be understood with the aid of the condition numbers
of the system matrices produced by each of the methods. As can also be seen in Table 2, the condition
number related to the matrix produced by PUFEM-BD method is generally lower than that of the
other two schemes, especially for lower values of Q. Obviously, increasing Q further will also lead to
divergence in the PUFEM-BD method.

To have more insight into the results we also plot in Figure 1 the errors and the associated condition
numbers obtained using the considered time stepping schemes for k = 80π against increasing values of
Q. One can see in this figure that in general PUFEM-E and PUFEM-I methods lead to similar errors
and condition numbers but the latter diverges earlier. Although the PUFEM-BD method leads to an
order of magnitude higher errors for the same values of Q as the other two methods but the condition
numbers associated with PUFEM-BD method are several orders of magnitude smaller. As Q increases
beyond a certain threshold i.e. Q ≈ 111, all three methods are affected with ill conditioning property.

3.1.3 Computational cost

The main advantage of explicit methods is often considered to be their lower computational costs
when compared to implicit ones. In this subsection we aim to compare the performance metrics of
a computer central processing unit (CPU) with PUFEM-E, PUFEM-BD and PUFEM-I methods.
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Figure 1: The q-convergence plots (left) and condition number plots (right) obtained using the three
methods considered for the example of radial wave, for k = 80π.

Table 3: Different terms evaluated for the assembly of the finite element linear system of equations
using explicit or implicit time integration schemes, at the nth iteration in time.

Method
Time iteration Explicit Implicit

n = 1
M, K,MΓ MImp,MΓ

(−K−MΓ)y1, fΩ, fΓ f Imp
Ω , fΓ

n > 1 (−K−MΓ)y1, fΩ, fΓ f Imp
Ω , fΓ

All the methods are implemented by the authors as a sequentially running code in Fortran. The
computations are performed on a cluster running CentOS Linux 7 (Core) with an AMD OpteronTM

CPU 6348 @ 1400 MHz × 24 and 264 GB of RAM. The computational cost, for each iteration in
time, is divided into the CPU time spent on the assembly of the linear system and the solution of the
linear system. The assembly time is defined as the time taken by the CPU to compute the system
matrices and vectors, say matrix A and vector b of the linear system of equations Ax = b. The
solution time is the time taken by the CPU to solve this linear system i.e. to obtain the vector x.
Furthermore, the assembly and the solution times are compared in the first timestep separately from
the subsequent timesteps. The reason for this breakdown in the analysis is to consider the fact that
the first iteration in time takes the longest amount of CPU time to complete, for all the three methods.
This step involves assembly of the mass and stiffness matrices which are saved and recycled for their
usage later on. Also, the inversion of matrix A takes place in the first step only. Thus, both assembly
and solution costs are considerably higher for the first time step, as compared to subsequent time
steps. Starting from the second step in time onwards, the total CPU time required for the completion
of a full iteration in time associated with each of the considered methods is practically constant. In
other words, the variance in the total run-time for the nth iteration in time is negligible for n > 1,
for all the considered methods. Thus, it is sufficient to observe the trends in the first and the second
iterations in time to get an overview of the relative performance of the three methods.

Table 3 provides a summary of the different terms evaluated over Ω and Γ in the explicit and implicit
methods in order to assemble the system. The terms evaluated on the boundary Γ are very similar for
both explicit and implicit methods, and hence do not contribute to any significant differences in their
assembly or solution times. The CPU time comparisons are studied for k = 80π considering again
the same cases displayed in Figure 1. Figure 2 shows a comparison of the CPU times (in seconds)
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Figure 2: Comparison of the CPU time (in seconds) needed for assembly (top row) and solution
(bottom row) for first (left column) and later iterations (right column) against degrees of freedom per
node.

against an increased number of enrichment functions Q for each of the three methods i.e. PUFEM-I,
PUFEM-E and PUFEM-BD. In this figure, the assembly time required by each method at the first and
the later timesteps referred to by TMP1 and TMPL, respectively is plotted at the top row whereas the
solution times required at the first and later time steps referred to by TSP1 and TSPL, respectively
at the bottom row.

The results exhibited in Figure 2 show that, using the explicit approach it is possible to significantly
reduce the CPU time needed to build the linear system at the first timestep compared to the implicit
approach. However, the CPU time for both approaches remains of the same order for the range
of Q considered in this study. This can be explained by noting that in the explicit method, the
matrices M and K are stored in separate variables, whereas in the case of the implicit method, the
mass and the stiffness components are added and stored in a single variable (MImp). Even though
algorithmically, the assembly in the first time step in both implicit and explicit methods requires
exactly the same amount of loops, the extra access to memory for storage of two variables instead of
one, costs the explicit methods more CPU time. It is noteworthy that, this overhead due to access to
memory locations may vary depending on the traffic and type of other processes running concurrently
on the CPU node. However, the explicit approach is still intrinsically more efficient because it does
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not require the calculation of the solution from the previous two time steps, as is required by the
considered implicit method while integrating over Ω to compute f Imp

Ω . The equivalent expression
computed in case of the explicit approach is (−K−MΓ)y1, which is much faster to evaluate since
it does not require spatial integrations, and instead is just a vector to matrix multiplication. From
second timestep onward the matrices M and K are only reused. Hence, the CPU time for the assembly
in the case of explicit approach becomes much faster than implicit. It should be also noted that both
PUFEM-E and PUFEM-BD methods require practically similar CPU time for the assembly as they
involve evaluating the same terms.
Similarly, we compare the solution processing times required by the three methods against the number
of enrichment functions Q. Figure 2 shows the comparisons for the first and the later time steps. As
expected, the CPU time for solving the resulting system is practically similar for both PUFEM-I
and PUFEM-E methods, since both these methods produce similar system matrices. Obviously with
increasing Q the CPU time increases for both PUFEM-I and PUFEM-E methods. On the other hand
as delineated from the plots PUFEM-BD provides much better cost effectiveness for increasing Q. For
the entire considered range the CPU time remains practically constant at around 0.001 seconds. The
reason behind this is the fact that in the case of PUFEM-E and PUFEM-I methods, the size of the
inverted matrix is m2Q × m2Q where m2 is the total number of nodes in the given computational
mesh. Whereas, PUFEM-BD method requires the inversion of m2 non-overlapping blocks of smaller
matrices each of size Q × Q, and hence is much faster. It is of interest to note here that the blocks
of matrices along the diagonal of the mass matrix in the PUFEM-BD method have no overlap and
thus can be inverted simultaneously with distributed computing, for example over different nodes of
a cluster, which could further accelerate the performance of the PUFEM-BD method.

3.2 Example of Gaussian pulse

In this section we study the performance of PUFEM-BD method when applied to recover a transient
Gaussian pulse. This problem does not include any wavenumbers that could be used to chose the
enrichment, which presents a challenge for enrichment approaches. The considered computational
domain is Ω = [1, 2]× [1, 2]. The analytical solution of the pulse is

E(t, x, y) = e−a(β+r−ct)2 ,

where r =
√
x2 + y2 is the radial position, β is the offset that controls the onset of the pulse at the

origin, a controls the width of the pulse, and c is the speed at which the pulse propagates. Again the
analytical solution is imposed on the wave equation (1) through the initial and boundary conditions.
The analyses are carried out with the parameter β = 1 kept fixed. Three widths are considered,
namely, a = 8, 16 and 64. The speed of the pulse for all the widths is kept constant at c = 1

8π with
the angular frequency fixed at ω = 1. The simulation is carried out for the time span t ∈]0, 120]
with the timestep size ∆t = 0.001 where the total number of the computed timesteps is 120000. For
the given wave speed this time span allows us to analyse the transit of the pulse through the entire
spatial domain. At the start of the simulation, the solution is very close to zero in the entire domain.
Evaluating the error as in expression (15) will involve division by numbers close to zero. To remedy
this we redefine the relative error as

ε =
‖Enum − E‖L1(Ω)

‖Emax‖L1(Ω)

× 100%, (16)

where Emax is the magnitude of the exact value of the pulse at its maximum, which is unity in this
case.
To evaluate the enrichment wavenumber choice we study the performance of PUFEM-BD method
for the Gaussian pulse as we change the pulse width. The impact of the spatial discretization on
PUFEM-BD method’s accuracy is studied for a range of spatial discretizations. For this study four
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Figure 3: Snapshots of solution obtained with PUFEM-BD method for the example of Gaussian pulse
with widths corresponding to a = 8, 16 and 64 (left to right) at time t = 80. These problems were
solved on a uniform mesh with 81 nodes and 64 elements. For each of them the enrichment wavenumber
is k = 4π and number of enrichment functions is Q = 9.

different meshes are used. The meshes are characterised by the chosen number of nodes in one
direction m = {3, 5, 7, 9}. The considered number of enrichment functions are Q = {5, 9, 13, 17} and
the enrichment wavenumbers are k = {2π, 4π, 8π} along with the three different widths corresponding
to a = {8, 16, 64}. The resulting total number of studied cases is 144. The errors for all these cases
at the time instance t = 60 and at the end of the simulation t = 120 are shown in tables 4 and 5,
respectively. In these tables the ‘–’ replaces the errors for the cases where the solution diverges. For
illustration purposes we show in Figure 3 the solutions obtained with PUFEM-BD method at t = 80
for the three considered widths.

Table 4 shows that increasing m for each of the 3 widths will always lead to an improved error. In
general for a given m, increasing Q also improves the errors. This improvement seems less significant
for k = 8π. The results in Table 5 again show that increasing m improves the error. For a given
m, increasing Q improves the error for the enrichment wavenumber k = 4π in all the cases. For the
wavenumbers k = 2π the error improves for increasing Q for a = 8 and 16 while for a = 64 the error
increases for m = 3 by increasing the number of enrichment functions to Q = 13. For the case k = 8π
the error seems to stay practically unchanged for an increasing Q and for all values of a. This suggests
that the enrichment has limited contribution to the finite element approximation for k = 8π in all
considered widths, and for k = 2π only in a = 64. The FEM approximation in this case is mainly
dependent on the element size where only refining the mesh improves the error. Also as the pulse
width becomes smaller at a = 64 the error becomes larger. This is expected as a finer mesh is needed
to capture a narrower pulse.

To understand why the wavenumber k = 4π seems to be more suitable for the considered widths,
one may link the pulse width to the wavelength of the enrichment functions. For a given value of a,

the pulse width could be calculated as
√

2 ln 2√
2a

. The related enrichment wavelength will then be twice

this number. Thus, for the given values of a = {8, 16, 64}, the width roughly varies between 0.3,
0.2 and 0.1. These widths will be comparable to the enrichment wavelengths that correspond to the
wavenumbers 3.4π, 4.8π and 9.6π. The best results for the given parametric study were found for
an enrichment wavenumber of 4π, which is close to the two wavenumbers 3.4π and 4.8π. The errors
achieved in this case with m = 9 and Q = 9 are ε = 0.3% and 0.4%. It is well known that the PUFEM
suffers from ill-conditioning and stability issues if the characteristic mesh size is not multiple times
larger than the enrichment wavelength [17]. These issues become more evident as we increase Q in the
sense that the plane waves in the basis are more closely packed together. This explains the instability
and the larger errors associated with the PUFEM-BD method, especially observed at higher values of
m and smaller values of wavenumber k as we increase Q, as is seen in the tables 4 and 5.
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Table 4: The q-refinement with PUFEM-BD method for the example of Gaussian pulse for widths
corresponding to a = 8, 16, and 64 at time t = 60.

a = 8 a = 16 a = 64

m m m

Q 3 5 7 9 3 5 7 9 3 5 7 9

k = 2π

5 1.31 0.26 – – 1.30 0.26 – – 0.83 0.24 – –

9 0.55 0.07 – – 0.59 0.09 – – 0.41 0.11 – –

13 0.44 – – – 0.52 – – – 0.30 – – –

k = 4π

5 4.79 1.07 0.34 0.14 2.84 0.64 0.20 0.08 0.99 0.30 0.11 0.06

9 3.57 0.40 0.07 0.01 2.17 0.24 0.05 0.02 0.76 0.14 0.04 0.02

13 3.56 0.38 – – 2.02 0.23 – – 0.54 0.12 – –

k = 8π

5 4.05 1.45 0.71 0.41 3.07 1.29 0.61 0.35 1.33 0.63 0.30 0.13

9 4.08 1.45 0.52 0.19 3.17 1.19 0.37 0.14 1.40 0.48 0.14 0.05

13 4.13 1.36 0.50 0.20 3.12 1.10 0.36 0.14 1.34 0.44 0.13 0.05

Our final aim in this example is to evaluate the effect of approximation due to the lumping of the mass
matrix by comparing the performance of the PUFEM-BD method to that of the PUFEM-E method.
A relatively wide width pulse is considered with a = 1. The pulse speed is again fixed at c = 1

8π .
The problem is solved on a relatively coarse mesh, namely, m = 5 and for an increased Q where
the wavenumber of the enrichment plane waves is set as 2π. This choice of k is based on the pulse
width which is 0.83 in this case. The timestep size is fixed at ∆t = 0.001. For Q = 5 the errors at
t = 60 are 0.002% and 0.14% with the PUFEM-E method and the PUFEM-BD method, respectively.
At the end of the simulations i.e. at t = 120, the error increases to 0.004% with the PUFEM-E
method and to 1.63% with the PUFEM-BD method. When we increase the number of enrichment
functions to Q = 9, it is observed that the PUFEM-E method becomes unstable and fails to produce
any results whereas the errors with the PUFEM-BD method improve to 0.02% at t = 60 and 0.04%
at t = 120. This result confirms the trends observed in section 3.1.2. The error associated with the
PUFEM-BD method is again larger than that of the PUFEM-E method, which is expected because
of the approximation due to mass lumping. Also to be seen here is that the PUFEM-BD method is
more resilient to increasing Q than the PUFEM-E method. In Figure 4 we plot a comparison of the
numerical solutions obtained with the two considered explicit methods, as they evolve in time at a
fixed spatial point on the computational domain. For illustration, snapshots of the numerical solution
for the pulse recovered with PUFEM-E method for Q = 5 at different time instances, are shown in
Figure 5.

3.3 Example of transient envelope wave

In this numerical example we recover a transient envelope wave which is described in [38]. The
analytical solution of the problem is given as

E(t, x, y) = AeiωfL(t, x, y),

where fL is a propagator function that controls the initial condition of the problem. Here we use the
F2 propagator, described in details in the reference appendix [38]. The propagator implies a gradual
increase in the amplitude of the wave expanding symmetrically around the coordinate origin. Two
different wavenumbers, namely, k = 4π and k = 8π are considered.
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Figure 4: Time evolution of the exact and numerical values of the Gaussian pulse for width a = 1,
obtained at a spatial point (1.99,1.49) on the computational domain with PUFEM-E and PUFEM-BD
methods. Both solutions are obtained over a uniform mesh with 25 nodes and 16 elements, and Q = 5
with k = 2π).
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Figure 5: Time evolution of the Gaussian pulse (width corresponding to a = 1) in time, solved using
PUFEM-E method, for Q = 5 and k = 2π over a uniform mesh of 16 elements. Snapshots were taken
at time t = 56, 72, 80, 92, 104, and 108 arranged in the figure from left to right and top to bottom.
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Table 5: The q-refinement with PUFEM-BD method for the example of Gaussian pulse for widths
corresponding to a = 8, 16, and 64 at time t = 120.

a = 8 a = 16 a = 64

m m m

Q 3 5 7 9 3 5 7 9 3 5 7 9

k = 2π

5 14.9 3.8 – – 21.3 8.5 – – 20.3 16.4 – –

9 3.8 0.4 – – 8.9 1.8 – – 15.5 13.8 – –

13 2.6 – – – 8.1 – – – 22.4 – – –

k = 4π

5 22.2 6.9 10.3 5.6 20.2 12.1 10.3 5.0 16.7 18.0 13.1 8.8

9 14.3 6.4 1.0 0.3 15.9 8.6 1.7 0.4 17.7 11.0 4.6 2.3

13 14.2 3.2 – – 12.7 3.5 – – 15.6 8.1 – –

k = 8π

5 17.5 18.5 12.5 7.1 14.4 20.5 18.0 10.9 9.8 17.4 20.3 16.8

9 17.8 13.2 5.0 2.2 15.0 16.4 9.4 4.0 11.6 18.9 13.7 7.3

13 16.8 17.5 4.8 3.8 14.2 21.2 6.3 7.9 11.9 22.2 6.3 10.7

Figure 6: Uniform meshes and their distorted counterparts, used in the example of transient envelope
wave.
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Figure 7: Comparison of errors associated with numerical solutions for the example of transient enve-
lope wave, obtained using the PUFEM-BD method over uniform and unstructured meshes respectively.
The plots are for k = 4π (left) and k = 8π (right), for Q = 13 and Q = 17, respectively.

The aim in this example is to evaluate the impact of using an unstructured mesh on the approximation
levied upon by the lumped mass approach. To this end we consider two sets of meshes, first with
uniform elements similar to the meshes considered in the previous studies, and second with distorted
elements. The unstructured meshes of the distorted elements are obtained by randomly displacing the
nodes of the uniform meshes. It should be stressed that only the locations of the nodes, are displaced so
that the distorted meshes include the same number of nodes and elements as their uniform counterparts
but the elements are no longer square in shape. Furthermore, the distortion of the meshes is performed
to produce severely poor quality elements. Figure 6 shows the two uniform meshes considered in this
study alongside the unstructured meshes. The coarse meshes composed of 25 nodes and 16 elements,
are then enriched using Q = 13 to solve the problem for k = 4π. Similarly the fine meshes composed of
81 nodes and 64 elements are enriched with Q = 17 and used to solve for k = 8π. The step-size in time
in both the cases is kept constant at ∆t = 0.01. The simulation is completed at t = 40 for k = 4π and
t = 50 for k = 8π, respectively, allowing the waves to spread into the entire computational domain. It
is noteworthy that the angular frequency in time is kept constant at 1, thus for a higher wavenumber,
the wave moves slower. The time evolution of the errors associated with the PUFEM-BD method for
the considered two wavenumbers are then displayed in Figure 7. Figures 8 and 9 show the numerical
solutions obtained with the PUFEM-BD method for the two considered wavenumbers, respectively,
at different time instances. The results are very similar to that obtained with the reference implicit
method in [38].

The results in Figure 7 show that the errors are relatively similar if using a structured or an unstruc-
tured mesh for the start of the simulation. For example for k = 4π both meshes lead to similar errors
up to time t ≈ 19, while for k = 8π up to time t ≈ 25. Thereafter, the unstructured meshes cause
a significant deviation in the error evolution. To compare this behavior to the explicit time integra-
tion scheme without lumping, the problem is solved again using the PUFEM-E method on the same
meshes shown in Figure 6. On the uniform meshes, the errors in numerical solution at the end of the
simulation with the PUFEM-E method are 5.97% for k = 4π on the coarse uniform mesh with Q = 7,
and is 7.64% for k = 8π on the fine uniform mesh with Q = 11. These errors are compared to 12.91%
for k = 4π with Q = 13 and 17.21% for k = 8π with Q = 17, using the PUFEM-BD method. However
if we increase Q any further, the PUFEM-E method becomes unstable for both the wavenumbers
considered. Moreover, the PUFEM-E method fails to produce any results when distorted meshes are
used. This shows that the lumping approach is more stable not only for an increased Q, as is also
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Figure 8: Snapshots of numerical solutions obtained with the PUFEM-BD method for the example of
transient envelope wave, solved on a uniform grid with 16 elements and Q = 13 with k = 4π. These
snapshots correspond to time t=10, 20, 30 and 40 (left to right).
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Figure 9: Snapshots of numerical solutions obtained with the PUFEM-BD method for the example of
transient envelope wave, solved on a uniform grid with 64 elements and Q = 17 with k = 8π. These
snapshots correspond to time t=20, 30, 40 and 50 (left to right).

seen in the previous test cases, but also is more stable when using unstructured meshes.

3.4 Example of resonant cavity

In this final numerical example we study the solution of the wave equation subjected to homogeneous
boundary and initial conditions, with a non-zero source inside the domain. Such problems arise in
many real world applications, such as in electromagnetic compatibility analysis and modal analysis for
waveguides [3,12]. In particular, we consider two different areas of applications, as shown in figures 10
and 13. In the first application we consider a waveguide that is typically used inside a microwave oven
to illuminate the oven chamber with electromagnetic radiation [50]. The four walls of the waveguide
create a resonant cavity that reflects the inbound radiation inside it. The second application is for
a circular cross-section of a high voltage insulated steel armoured electrical cable. The steel armour,
that is used to provide sustenance for the high voltage electrical cables to endure mechanical stress
as they are buried underground, also traps electromagnetic disturbances occurring inside the cable
due to current imbalances and material defects [51]. The solution of the wave equation inside these
geometries provides the distribution of the electromagnetic energy within the material, which then
could be coupled with the diffusion equation to analyse various thermal properties [52, 53]. Owing
to the increase in power demands both for industrial and household usage, such analyses are deemed
useful to evaluate performance and prevent ageing of cables. For the purpose of this paper, we define
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Figure 10: Rectangular waveguide inside a microwave oven (left) and modelled waveguide geometry
used for analysis (right).

a model problem as

1

c2

∂2E

∂t2
−∇2E = f(t,x), (t,x) ∈ [0, T [×Ω, (17a)

E(t,x) = 0, (t,x) ∈ [0, T [×Γ, (17b)

E(0,x) = 0, x ∈ Ω, (17c)

∂E

∂t
(0,x) = 0, x ∈ Ω. (17d)

To solve for the scalar field value E inside the domain Ω for a given source term f(t,x), the domain and
the source term are defined separately for the two considered geometries. Since the solution vanishes
on the boundary, the weak form for this example is given as∫

Ω′

∂E

∂t
φ dΩ =

∫
Ω′
V φ dΩ, (18a)

1

c2

∫
Ω′

∂V

∂t
φ dΩ = −

∫
Ω′
∇E · ∇φ dΩ +

∫
Ω′
f(t,x)φ dΩ, (18b)

where Ω′ = {x : x ∈ Ω and x 6∈ Γ}. Notice that now we do not have any matrices or vectors to be
computed over the boundary, and thus we do not need to evaluate MΓ and fΓ, as we did for previous
examples. Also, there’s no need to solve the extra Galerkin equations of (11) due to the homogeneous
initial conditions.

3.4.1 Rectangular waveguide

For the waveguide geometry, as seen in Figure 10, we consider

f(t, x, y) = sin

(
(x− a)π

0.2

)
sin

(
(y − a)π

0.2

)
sin(πt), (19)

where (x, y) ∈ [a, a + 0.2] × [a, a + 0.2] and a = 0.55. The considered computational domain is
Ω = [0.1, 1.1]× [0.1, 5.1], and the problem is solved for the total time period T = 10. The step-size in
time is ∆t = 0.001 and the simulation is run for a total of 10000 time steps. The wave speed c = 1

π .
To arrive at the converged solution, we adopt the same approach of mesh refinement and increasing
number of nodal enrichment plane waves, as used in subsection 3.2 for the example of a Gaussian
pulse. Since for this example the angular frequency, as seen from equation (19), is ω = π we use
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k = ω/c = π2 as the wavenumber for the plane wave enrichments. We consider three uniform meshes,
with rectangular elements, consisting of 45, 171, and 741 nodes respectively, termed here as meshes m1,
m2, and m3. Subsequently for each mesh, we consider three different number of enrichment functions
Q = {5, 7, 9} and solve the wave problem using the PUFEM-BD method, to get a total of 9 different
numerical solutions. These numerical solutions are termed as BD-miQj, where i ∈ {1, 2, 3} denotes
the mesh number and j ∈ {5, 7, 9} denotes the number of enrichment functions used per node. The
total degrees of freedom associated with these BD-miQj solutions ranges from 225 (for BD-m1Q5) to
6669 (for BD-m3Q9). For comparison, we also solve the wave problem on a very fine mesh with a total
of 12561 nodes using the first order FEM, without using any nodal enrichment. Figure 11 compares
these BD-miQj numerical solutions against the solution obtained with the non-enriched FEM. In this
figure we plot the time evolution of the numerical solution recorded at the point (x=0.6,y=2.6) inside
the domain Ω. It can be clearly seen that as we increase the total degrees of freedom used with the
PUFEM-BD method, the solution converges towards the reference FEM solution. Here we define the
percentage error as

ε =
‖Enum − EFEM‖L1(Ω)

‖Emax‖L1(Ω)

× 100%, (20)

where EFEM is the reference solution obtained with the non enriched FEM over a very fine mesh, and
Emax is the magnitude of the source term at its maximum, which is unity in this case. The percentage
error is plotted for individual BD-miQj solutions, recorded at the reference point (0.6,2.6), as shown
in Figure 11. It is observed from this figure that the relative error associated with the three BD-m1Qj
solutions is below 6%, and with the BD-m2Qj and BD-m3Qj solutions is below 1%, throughout the
total duration of the simulation. We also test the performance of the PUFEM-BD method for this
geometry over an unstructured mesh, as shown in Figure 12. The unstructured mesh consists of
655 nodes, and was obtained using the open-source package GMSH. For this mesh, the number of
enrichment functions Q = 9 was used. This resulted into a total of 5895 degrees of freedom, which is
comparable to that associated with the BD-m3Q9 method. The numerical results obtained with the
unstructured mesh are also shown in Figure 12, along with the BD-m3Q9 solution and the reference
FEM solution.

3.4.2 High voltage cable cross section

For the circular cross-section geometry, we consider

f(t, x, y) = sin

(
(x+ 1)π

2

)
sin

(
(y + 9)π

1

)
sin(t), (21)

for (x, y) ∈ [−1, 1] × [−9,−8]. In the modelled geometry, the outer and the inner circles form the
boundary Γ where the solution vanishes. The radii of the outer and the inner circles are 12 and 4
units respectively. The centre of the outer circle corresponds to the origin. The centres of the inner
circles are equidistant from the origin, located at the points (0,6), (-5.19,-3), and (5.19,-3) that form
an equilateral triangle. The considered computational domain is shown in Figure 13. The problem
is solved for the total time period T = 70. The step-size in time is ∆t = 0.001 and the simulation
is run for a total of 70000 time steps. The wave speed c = 1

π . The angular frequency ω = 1 for
the source term as seen in equation (21), which provides the wavenumber k = π to be used for the
enrichment functions. To arrive at a converged solution, we again employ the aforementioned strategy
of q-convergence and mesh refinement. To this end we consider six different meshes with a total of
364, 588, 962, 1336, 1842, and 2342 nodes respectively, termed here as meshes m1, m2, m3, m4, m5,
and m6. Subsequently for each mesh, we consider three different number of enrichment functions
Q = {5, 7, 9} and solve the wave problem of equation (17) using the PUFEM-BD method. This gives
us 18 different numerical solutions, termed here as BD-miQj using the same convention as for the
numerical solutions for the waveguide geometry. Here, the total number of degrees of freedom ranges
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Figure 11: Comparison of the numerical solutions obtained with the PUFEM-BD method against the
reference FEM solution, for the rectangular waveguide example. The graphs show (left column) the
time evolution of the amplitude of the scalar field E at a point (0.6,2.6) inside the computational
domain Ω, and (right column) the relative error in these amplitudes obtained with the PUFEM-BD
solutions as compared to the fine mesh FEM solution.
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Figure 13: High voltage electrical cables (left) and modelled geometry for the circular cross-section of
an electrical cable (right).

from 1820 (for BD-m1Q5) to 21078 (for BD-m6Q9). The time evolution for the numerical solutions
BD-m4Q9, BD-m5Q9 and BD-m6Q9 are shown in Figure 14, depicting mesh refinement for Q = 9 to
obtain a converged solution.

From the test cases studied in this section, it can be clearly seen that the numerical solutions converge
for the PUFEM-BD method with increasing degrees of freedom as expected. The method is also seen
to be applicable with unstructured meshes, and produces similar results when compared with solutions
obtained using structured meshes. The PUFEM-BD method could also prove very useful to reduce
the time complexities associated with solving the numerical problem, by using parallel computing to
distribute the inversion of non-overlapping blocks of the system matrix using concurrent computational
tools such as OpenMP. This feature could be very useful especially when solving real world problems
with massive geometries.

4 Conclusions

In this paper we propose using explicit time integration scheme with block diagonal lumping of the
mass matrix for the partition of unity finite element solution of time domain wave problems. We study
the convergence of the solution for refined temporal and spatial discretizations. The results obtained
with the explicit scheme both lumped and full, are compared to the results obtained with an implicit
time integration scheme. The paper shows major advantages for the explicit approach with a lumped
mass matrix. The advantages are related to significant reduction in the CPU time as well as better
conditioned linear system of equations.

The work also investigates the partition of unity solution of a transient Gaussian pulse which does
not involve a specific wavenumber. A parametric study shows that the plane wave enrichment can
still be used for the solution. Better errors are achieved for the cases where the wavelength of the
enrichment functions is close to the pulse width. More rigorous methods could be developed for
isolating the spatial frequencies present in the solution, albeit that would form the basis of future
work in developing the techniques presented in this paper.

Inherently, the explicit time integration schemes, as opposed to their implicit counterparts, are only
conditionally stable. The CFL condition must be satisfied to ensure their numerical stability. This
condition essentially requires that the problem is solved numerically on a fine enough discretization
in both space and time, such that the numerical solver is able to capture the fastest of the wave
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components present in the actual solution. The oscillatory nature of the enrichment functions used to
improve the finite element basis allows us to use significantly coarse meshes even for high wavenumbers.
The coarse spatial mesh in turn facilitates utilizing the benefits of an explicit scheme without the need
for a fine timestep size. The discussed numerical results show that the timestep size used with the
considered implicit scheme is very similar to that used with the proposed explicit counterparts. The
PUFEM is known to produce ill-conditioned linear system of equations with an increased nodal density
of the enrichment functions. The results discussed in this paper show that the lumped mass approach
improves the conditioning of the PUFEM system matrix by several orders of magnitude. Furthermore,
the resulting block diagonal system matrix is much faster to invert, and can be stored much more
efficiently as compared to the full matrix for the non-lumped approach. The results also suggest that
lumping the mass matrix makes the PUFEM more stable against poor quality distorted elements used
to discretize the spatial mesh. Although the block diagonal lumping of the mass matrix is only tested
for the partition of unity method, and in the context of wave propagation problems, the approach
could also be used for other enrichment techniques such as the generalized finite element method when
solving time-domain problems.
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