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Abstract

In this paper the likelihood ratio to test between two Beta distributions is addressed.
The exact distribution of the likelihood ratio statistic, for simple hypotheses, is ob-
tained in terms of Gamma or Generalized Integer Gamma distributions, when the first
or the second of the two parameters of the Beta distributions are equal and integers. In
the remaining cases addressed, near-exact or asymptotic approximations, are developed
for the likelihood ratio statistic. Both the exact, asymptotic or near-exact representa-
tions are obtained using a logarithm transformation of the likelihood ratio statistic and
by working with the corresponding characteristic function. The numerical studies il-
lustrate the precision of the approximations developed. Simulations are developed to
analyse the power and the reproducibility probability of the tests.
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1 Introduction

In this work we consider the likelihood ratio to test between two completely speci-
fied Beta distributions. The Beta distribution is an important tool for many statistical
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problems with applications in different areas. As examples we point out the following
features; i) the i-th order statistic of a sample of size n, extracted from a continuous uni-
form distribution, has a Beta distribution, ii) in Bayesian statistics it is commonly used
as conjugate prior for binomial and geometric random variables, iii) it is the distribu-
tion of Wilks’s lambda in some particular cases and iv) in the general case, the Wilks’s
lambda distribution can be related with the product of independent Beta random vari-
ables. The test addressed in this work, is a useful procedure in the decision making
between two Beta distributions, thus may be helpful in problems arising from the pre-
vious examples, such as in the Bayesian framework in the selection, between two Beta
models, of the conjugate prior distribution of the probability of success of a Binomial
or Geometric distribution. Some possible applications of this Bayesian approch may
be found in biological assays, medicine (Gupta and Nadarajah, 2004; Griffiths, 1973;
Pham et al., 2010), in social sciences (Wiley et al., 2015) and in financial problems
(Rachev et al., 2008). We say that a random variable X has a Beta distribution with
parameters a > 0 and b > 0, and we denote this fact by X ∼ Beta(a, b), if its density
function is given by

f(x) =
1

B(a, b)
xa−1(1− x)b−1, with 0 ≤ x ≤ 1

where B(., .) denotes the usual beta function. For a sample of size n, X1, . . . , Xn, we
consider the following simple hypotheses

H0 : Xi ∼ Beta(a, b) vs H1 : Xi ∼ Beta(c, d) (1)

and we study the following cases: I) b = d = 1 or a = c = 1, II) b = d = α or
a = c = α with α ∈ N, III) a = c = r or b = d = r with r ∈ R\N, IV) a − c ∈ N
and b − d ∈ N, and finally V) the general case with no restrictions on the parameters.
In cases I and II the exact distribution is presented in terms of Gamma or Generalized
Integer Gamma (GIG) distributions (Coelho, 1998). In case III, near-exact approxima-
tions (Coelho, 2004) are developed for the likelihood ratio statistic. These near-exact
approximations are developed by working with the characteristic function of the log-
arithm of the likelihood ratio statistic. More precisely, first an adequate factorization
of the expression of the characteristic function is obtained, and then one of the factors
is approximated in such way that the resulting characteristic function corresponds to
a known and manageable distribution. In cases IV and V, asymptotic approximations,
based on shifted mixtures of (positive or negative) Gamma distributions are obtained
for the likelihood ratio statistic. These approximations allow the computation of p-
values and quantiles in a fast and precise way. Thus, using the approximations devel-
oped in Subsections 2.3-2.5, other more complex and time consuming techniques may
be avoided to determine quantiles, such as numerical inversion formulas together with
bisection methods or simulations. We should also point out that Wilks theorem (Wilks,
1983) which states that the distribution of the logarithm of likelihood ratio test statistics
used to test composite hypotheses can be approximated by a χ2 distribution can not be
used when both hypotheses are completely specified, since in this case the number of
degrees of freedom under the alternative and null hypotheses is equal to zero. This
reinforces the importance of having approximations which may allow to perform these
tests with the appropriate accuracy.
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This work is organized as follows. In Section 2, five cases are considered; four
with conditions on the parameters of the Beta distributions involved, and one with no
restrictions on the parameters. In Section 3, the power and reproducibility of the test are
illustrated with simulation studies. Section 4 is dedicated to the concluding remarks.

2 The likelihood ratio statistic and its distribution

For a random sample of size n,X1, . . . , Xn, we are interested in a test which may allow
two decide between two Beta distributions with the parameters completely specified.
The hypotheses of interest are defined in (1) .

The likelihood ratio statistic is given by

Λ =

n∏
i=1

f0(xi)

f1(xi)

where f0(.) and f1(.) are the probability density functions of two Beta random vari-
ables with distributions Beta(a, b) and Beta(c, d). Thus, the likelihood ratio may be
written as

Λ =

n∏
i=1

B(c, d)xa−1
i (1− xi)b−1

B(a, b)xc−1
i (1− xi)d−1

=

(
B(c, d)

B(a, b)

)n n∏
i=1

xa−ci (1− xi)b−d .

To study the null distribution of Λ, under H0 in (1), we are essentially interested in the
distribution of

∏n
i=1X

a−c
i (1 − Xi)

b−d, for X1, . . . , Xn independent and identically
distributed as Xi ∼ Beta(a, b) .

2.1 Case I: b = d = 1 or a = c = 1

For b = d = 1 we are interested in testing

H0 : Xi ∼ Beta(a, 1) vs H1 : Xi ∼ Beta(c, 1) .

The expression of Λ, for an observed sample of size n, is given by

Λ =

n∏
i=1

a

c
xa−ci =

(a
c

)n n∏
i=1

xa−ci .

This case was already addressed in Marques et al. (2018), however for completeness
of this work we present it here with more detail, for example, now we specify the cases
a− c > 0 and c− a > 0 .

Theorem 2.1 If X1, . . . , Xn are independent and identically distributed with Xi ∼
Beta(a, 1) then the cumulative distribution function of

Λ =
(a
c

)n n∏
i=1

Xa−c
i ,
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with a, c > 0, is
i) for a− c > 0

1− FΓ(n, a
a−c )

(
− log

(
x

(a/c)n

))
(2)

ii) for a− c < 0

FΓ(n,− a
a−c )

(
log

(
x

(a/c)n

))
(3)

where FΓ(r,λ) is the cumulative distribution function of a Gamma distribution with
shape parameter r > 0 and rate parameter λ > 0.

Proof Let us consider X1, . . . , Xn independent and identically distributed with Xi ∼
Beta(a, 1) and the random variableW = − log(

∏n
i=1X

a−c
i ) =

∑n
i=1−(a−c) log(Xi).

Since we know that − log(Xi) has an exponential distribution with parameter a, the h-
th moment of Xa−c

i is given by

E
[
X

(a−c)h
i

]
=

a

a+ h(a− c)

and, given the relation E
[
eitW

]
= E

[
Λ−it

]
, the expression of the characteristic func-

tion of −(a− c) log(Xi) is given by

Φ−(a−c) log(Xi)(t) =
a

a− it(a− c)
.

If a− c > 0, then, we may say that the characteristic function of W is given by

ΦW (t) =

(
a
a−c
a
a−c − it

)n
.

This is the characteristic function of a Gamma distribution with shape parameter n and
rate parameter a

a−c . Therefore it is easy to show, with the necessary transformations,
that the cumulative distribution function of Λ when a− c > 0 is given by

1− FΓ(n, a
a−c )

(
− log

(
x

(a/c)n

))
.

Following a similar procedure it is possible to obtain the result stated for a− c < 0, we
just have to note that, for a− c < 0

ΦW (t) =

(
a
c−a
a
c−a + it

)n
.

This is the characteristic function of a negative Gamma random variable. Again, after
simple transformations we obtain the expression

FΓ(n,− a
a−c )

(
log

(
x

(a/c)n

))
.

�
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Please note that:

1. if one considers the case a = c = 1, and b− d > 0 or d− b > 0

H0 : Xi ∼ Beta(1, b) vs H1 : Xi ∼ Beta(1, d)

the expression of Λ, for a sample of size n, is given by

Λ =

n∏
i=1

b

d
(1− xi)b−d ,

and using the mirror property of the beta distribution if one takes X1, . . . , Xn

independent and identically distributed from Beta(1, b) we know that 1−Xi ∼
Beta(b, 1), and thus this case is the same as the previous one;

2. clearly, the result in Theorem 2.1, is obtained under the null hypothesis, however
the distribution of the likelihood ratio statistic under the alternative hypothesis is
obtained following the same procedure.

These last notes also apply to the following cases considered.
Just as an illustration we present, in Figure 1, plots of the density functions corre-

sponding to the distributions derived in Theorem 2.1, for two different scenarios: (i)
a = 1

4 , c = 1
5 and b = d = 1 and (ii) a = 4, c = 5 and b = d = 1 .

Figure 1: Plots of the probability density functions, for the first case, in the following
scenarios: (i) a = 1

4 and c = 1
5 , (ii) a = 4 and c = 5
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2.2 Case II: b = d = α or a = c = α with α ∈ N

For b = d = α, with α ∈ N, we consider the hypotheses

H0 : Xi ∼ Beta(a, α) vs H1 : Xi ∼ Beta(c, α) .
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The expression of Λ, for an observed sample of size n, is given by

Λ =

(
B(c, α)

B(a, α)

)n n∏
i=1

xa−ci .

Although the expression of the likelihood ratio statistic is similar to the one in Subsec-
tion 2.1, since the underlying populations may be different (if α > 1), the distribution
of Λ, under the null hypothesis, will also be different.

Theorem 2.2 If X1, . . . , Xn are independent and identically distributed with Xi ∼
Beta(a, α), with a > 0 and α ∈ N, the cumulative distribution function of

Λ =

(
B(c, α)

B(a, α)

)n n∏
i=1

Xa−c
i

with c > 0, is (using the notation in Appendix 1 of Marques et al. (2015) for the GIG
distribution)
i) for a− c > 0

1− FGIG

− log

 x(
B(c,α)
B(a,α)

)n
 ;n, v, α


with

n = {n, . . . , n}1×α , v =

{
a+ 0

a− c
, . . . ,

a+ α− 1

a− c

}
1×α

(4)

ii) for a− c < 0

FGIG

log

 x(
B(c,α)
B(a,α)

)n
 ;n,−v, α


where FGIG(.) denotes the cumulative distribution function of a Generalized Integer
Gamma (GIG) distribution (Coelho, 1998) with integer shape parameters n and rate
parameters v given in (4) .

Proof Similar to the proof of Theorem 2.1, we consider X1, . . . , Xn independent
and identically distributed random variables with Xi ∼ Beta(a, α) and the random
variable W = − log(

∏n
i=1X

a−c
i ) =

∑n
i=1−(a − c) log(Xi). It is known that the

characteristic function of W is given by

ΦW (t) =

n∏
j=1

Γ(a+ α)

Γ(a)

Γ(a− (a− c)it)
Γ(a+ α− (a− c)it)

=

(
Γ(a+ α)

Γ(a)

Γ(a− (a− c)it)
Γ(a+ α− (a− c)it)

)n
.

Since α ∈ N and using the following equality, for z ∈ C

Γ(z + α)

Γ(z)
=

α−1∏
k=0

z + k (5)
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we may write

ΦW (t) =

(
α−1∏
k=0

(a+ k)(a+ k − (a− c)it)−1

)n
=

α−1∏
k=0

(
a+k
a−c

a+k
a−c − it

)n
. (6)

When a − c > 0, the characteristic function in expression (6) corresponds to the sum
of α independent Gamma distributions, all with integer shape parameters, that is a
GIG distribution with shape parameters given by n = {n, ..., n}1×α and rate parame-
ters v =

{
a+0
a−c , . . . ,

a+α−1
a−c

}
1×α

. After the necessary transformations the cumulative

distribution function of Λ is given by

1− FGIG

− log

 x(
B(c,α)
B(a,α)

)n
 ;n, v, α

 .

When a− c < 0, expression (6) can be written as

ΦW (t) =

α−1∏
k=0

(
a+k
−a+c

a+k
−a+c + it

)n
which is the characteristic function of a random variable Y such that −Y has a GIG
distribution with shape parameters given by n = {n, ..., n}1×α and rate parameters
−v =

{
a+0
−a+c , . . . ,

a+α−1
−a+c

}
1×α

. In this case the cumulative distribution function of Λ

is given by

FGIG

log

 x(
B(c,α)
B(a,α)

)n
 ;n,−v, α

 .

�

In Figure 2 we present the probability density functions corresponding to the distribu-
tions in Theorem 2.2 for two scenarios: (i) a = 2, c = 3/2, b = d = 3, (ii) a = 7/5,
c = 3, b = d = 3.

Results for the cases a = c = α, b − d > 0 or b − d < 0 may be obtained in a
similar way.

2.3 Case III: b = d = r or a = c = r with r ∈ R\N

Similar to what was done in the previous section, we will just address one of the cases.
For b = d = r with r ∈ R\N, we consider

H0 : Xi ∼ Beta(a, r) vs H1 : Xi ∼ Beta(c, r)

the expression of Λ, for an observed sample of size n, is given by

Λ =

(
B(c, r)

B(a, r)

)n n∏
i=1

xa−ci .
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Figure 2: Plots of the probability density functions, for the second case, in the following
scenarios: (i) a = 2, c = 3/2, b = d = 3, (ii) a = 7/5, c = 3, b = d = 3
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In this case we do not have the exact cumulative distribution function of Λ in a manage-
able expression but we will show how it is possible to obtain precise approximations.
We consider independent and identically distributed random variables X1, . . . , Xn

with Xi ∼ Beta(a, r) and the random variable

W = − log

(
n∏
i=1

Xa−c
i

)
=

n∑
i=1

−(a− c) log(Xi) .

The characteristic function of W is given by

ΦW (t) =

n∏
j=1

Γ(a+ r)

Γ(a)

Γ(a− (a− c)it)
Γ(a+ r − (a− c)it)

. (7)

If r > 1 we may develop near-exact approximations for the distribution of the likeli-
hood ratio statistic. These approximations, introduced by Coelho (2004), have already
been used in several works involving the study of the distribution of likelihood ratio
statistics used to test the structure of covariance matrices in the multivariate setting
(Coelho et al., 2010; Coelho and Marques, 2012; Marques et al., 2017). The process
may be illustrated as follows. The characteristic function in (7) may be factorized as
follows

ΦW (t) =

(
Γ(a+ r?)

Γ(a)

Γ(a− (a− c)it)
Γ(a+ r? − (a− c)it)

)n(
Γ(a+ r)

Γ(a+ r?)

Γ(a+ r? − (a− c)it)
Γ(a+ r − (a− c)it)

)n
(8)
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with integer r? = brc. Using the equality in (5) we may write

ΦW (t) =

(
r?−1∏
k=0

a+ k

a+ k − (a− c)it

)n(
Γ(a+ r)

Γ(a+ r?)

Γ(a+ r? − (a− c)it)
Γ(a+ r − (a− c)it)

)n

=

r?−1∏
k=0

(
a+k
a−c

a+k
a−c − it

)n
︸ ︷︷ ︸

ΦW1
(t)

(
Γ(a+ r)

Γ(a+ r?)

Γ(a+ r? − (a− c)it)
Γ(a+ r − (a− c)it)

)n
︸ ︷︷ ︸

ΦW2
(t)

. (9)

The characteristic function ΦW1
in (9) corresponds to the characteristic function of a

GIG distribution with shape parameters given by n = {n, ..., n}1×r? and rate parame-
ters v =

{
a+0
a−c , . . . ,

a+r?−1
a−c

}
1×r?

. The characteristic function ΦW2
in (9) corresponds

to the sum of n independent Logbeta random variables, multiplied by a−c, with param-
eters a+r? and r−r?. As a basis for the development of the near-exact approximations
we consider the expansion for the ratio of Gamma functions given in expressions (11)–
(14) of Tricomi and Erdélyi (1951) or in expression (12) of Luke (1969) which may
be used to show that a Logbeta distribution may be represented as an infinite mixture
of Gamma distributions. Thus, we propose as an approximation for the characteristic
function ΦW2

in (9) the characteristic function of a mixture ofm?+1 Gamma distribu-
tions, all with rate parameter λ and with shape parameters r + j, j = 0, . . . ,m? given
by

ΦW?
2

(t) =

m?∑
j=0

πj λ
s+j(λ− it)−(s+j) . (10)

Following the results in Coelho et al. (2010) we define s equal to the sum of the second
parameters of the Logbeta distributions involved in the characteristic function of ΦW2

in (9)
s = n(r − r?) . (11)

Then, the process has two main steps, first the parameter λ is determined as the rate
parameter of a mixture of two Gamma distributions which equates the first 4 moments
of the exact distribution of W2, and second, assuming a fixed value for λ, the weights,
πj , are determined ensuring that the approximating distribution equates the first m?

exact moments, being thus the weights, πj (j = 0, . . . ,m? − 1), obtained as a solution
of the system

∂h

∂th
ΦW2

(t)

∣∣∣∣
t=0

=
∂h

∂th
ΦW?

2
(t)

∣∣∣∣
t=0

, h = 1, . . . ,m? , (12)

with πm? = 1−
∑m?−1
j=0 . The resulting approximating characteristic function is given

by
ΦW?(t) = ΦW1(t)× ΦW?

2
(t)
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and corresponds to a mixture Generalized Near-Integer Gamma (GNIG) distribution
(Coelho, 2004) with weights πj and with the GNIG parameters given by

nj = {n, ..., n, s+ j}1×(r?+1) with j = 0, . . . ,m? and s in (11) (13)

v =

{
a+ 0

a− c
, . . . ,

a+ r? − 1

a− c
, λ

}
1×(r?+1)

. (14)

Using the notation in Appendix 1 of Marques et al. (2015), the corresponding approx-
imating cumulative distribution function for Λ may be represented as

1−
m?∑
j=0

πjFGNIG

− log

 x(
B(c,r)
B(a,r)

)n
 , nj , v, r

? + 1

 . (15)

If a− c < 0, then the procedure to develop near-exact approximations for the distribu-
tion of the likelihood ratio statistic is similar to the previous one, but the approximating
distributions will correspond to mixtures of negative GNIG distributions with weights
πj determined as solutions of the system of equations in (12) and the negative GNIG
distributions with parameters given by nj in (13) and −v with v given in (14).

The previous results may be summarized in the following theorem.

Theorem 2.3 If X1, . . . , Xn are independent and identically distributed with Xi ∼
Beta(a, r), a > 0, r ∈ R\N and r > 1, and by approximating ΦW2

in (9) by ΦW?
2

in
(10) we obtain for

Λ =

(
B(c, r)

B(a, r)

)n n∏
i=1

Xa−c
i

with c > 0, near-exact cumulative distribution functions given by
i) for a− c > 0

1−
m?∑
j=0

πjFGNIG

− log

 x(
B(c,r)
B(a,r)

)n
 , nj , v, r

? + 1


and, ii) for a− c < 0

m?∑
j=0

πjFGNIG

log

 x(
B(c,r)
B(a,r)

)n
 , nj ,−v, r? + 1


where FGNIG(.) denotes the cumulative distribution of a GNIG distribution (Coelho,
2004) with shape parameters nj in (13) and rate parameters v in (14) . The weights πj
are obtained as solution of the system of equations in (12).

If r < 1, then the approximation is obtained using a similar approach but for the
characteristic function ΦW in (8), making s = rn and λ as the rate parameter of a
mixture of two Gamma distributions which equates the first 4 moments of the exact
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distribution of W and the weights πj as the solution of the system of equations given
in (12) replacing ΦW2

by ΦW . The resulting approximation is a simple mixture of
Gamma distributions.

To illustrate the precision of these approximations, in Figure 3 we present for sce-
nario a = 17/5, r = 9/4, c = 3 and n = 20 the plots for: (i) the exact probability
density function, obtained using the inversion formulas in Gil-Pelaez (1951), (ii) the
near-exact probability density function obtained for m? = 2, (iii) the near-exact proba-
bility density function obtained for m? = 4 and (iv) the representation in the same plot
of (i), (ii) and (iii). The use of the inversion formulas in Gil-Pelaez (1951) is somehow
limited. For example, if one wants to determine the exact quantiles of Λ we have to use
these formulas together with the bisection method and this process may require a high
computing time. Moreover, in the following subsections with more complex scenarios
we were not able to plot the exact densities with the inversion formulas in Gil-Pelaez
(1951). In Figure 3, the differences between the exact and approximating densities are
indistinguishable even for small values of m? such as 2 and 4.

Figure 3: Plots of the probability density functions, for Case III, scenario a = 17/5,
r = 9/4, c = 3 and n = 20, of the (i) the exact probability density function, obtained
using the inversion formulas in Gil-Pelaez (1951), (ii) the near-exact probability density
function obtained form? = 2, (iii) the near-exact probability density function obtained
for m? = 4 and (iv) the representation in the same plot of (i), (ii) and (iii).
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2.4 Case IV: a− c ∈ N and b− d ∈ N

For a− c ∈ N and b− d ∈ N, we consider the hypotheses

H0 : Xi ∼ Beta(a, b) vs H1 : Xi ∼ Beta(c, d)

and the expression of Λ, for an observed sample of size n, is now given by

Λ =

n∏
i=1

B(c, d)

B(a, b)
xa−ci (1− xi)b−d .

This is a more complex case, for which we will only be able to derive asymptotic
approximations for the distribution of Λ. The procedure is as follows. Let us consider
independent and identically distributed X1, . . . , Xn with Xi ∼ Beta(a, b) and a, b >
0.

Just as a side note we point out that Xi/(1 −Xi) has a beta prime distribution, so
if b− d < 0 such that b− d = −(a− c) we have as particular case

Λ =

(
B(c, d)

B(a, b)

)n n∏
i=1

Xa−c
i (1−Xi)

−(a−c)

=

(
B(c, d)

B(a, b)

)n n∏
i=1

(
Xi

1−Xi

)a−c
where we may identify the product of beta prime independent random variables to the
power a− c .

Considering again the case addressed in this subsection, we have

Λ =

(
B(c, d)

B(a, b)

)n n∏
i=1

Xa−c
i (1−Xi)

b−d , (16)

with a − c ∈ N, b − d ∈ N and a, b, c and d positive real numbers. The characteristic
function of − log{Xa−c

i (1−Xi)
b−d} is given by

Γ(a− (a− c)it)Γ(b− (b− d)it)

B(a, b)Γ(a+ b− (a− c)it− (b− d)it)

and as such the characteristic function of

W = − log

(
n∏
i=1

Xa−c
i (1−Xi)

b−d

)
=

n∑
i=1

− log{Xa−c
i (1−Xi)

b−d}

is, in the general case, given by

ΦW (t) =

(
Γ(a− (a− c)it)Γ(b− (b− d)it)

B(a, b)Γ(a+ b− (a− c)it− (b− d)it)

)n
. (17)
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Given that in the particular case considered one has a − c ∈ N and b − d ∈ N, after
some technical developments of this last expression and using the Gauss multiplication
formula which, for a positive integer η, is given by

η−1∏
k=0

Γ

(
k

η
+ z

)
= (2π)

η−1
2 η

1
2−ηzΓ(ηz)

we may write the characteristic function of W as

ΦW (t)=K1e−itK2

({
a−c−1∏
k=0

Γ
(
a
a−c+ k

a−c−it
)}{b−d−1∏

k=0

Γ
(

b
b−d+ k

b−d−it
)})n

(
a+b−c−d−1∏

k=0

Γ
(

a+b
a+b−c−d + k

a+b−c−d − it
))n (18)

with the constants K1 and K2 given by

K1 =

(√
2π(a− c)a− 1

2 (b− d)b−
1
2 (a+ b− c− d)−a−b+

1
2

B(a, b)

)n
and

K2 = n(−(a+ b− c−d) log(a+ b− c−d)+(a− c) log(a− c)+(b−d) log(b−d)) .

The characteristic function in (18) may be written as

ΦW (t) = e−itK2

×K1

a−c−1∏
k=0

Γ
(

a
a−c + k

a−c − it
)

Γ
(

a+b
a+b−c−d + k

a+b−c−d − it
)
n

×

b−d−1∏
k=0

Γ
(

b
b−d + k

b−d − it
)

Γ
(

a+b
a+b−c−d + k+a−c

a+b−c−d − it
)
n

︸ ︷︷ ︸
ΦW1

(t)

= e−itK2ΦW1
(t) . (19)

We should note that, in expression (19), K2 corresponds to a shift in the main distri-
bution. In order to obtain approximations for the distribution of the likelihood ratio
one will use a similar procedure to the one given in Coelho and Alberto (2012) and
Marques et al. (2017). More precisely, we will approximate the characteristic function
of W1 in (19) by a simple mixture of Gamma distributions, all with rate parameter λ
and with shape parameters r+ j, j = 0, . . . ,m?. Thus, we obtain as an approximating
characteristic function of ΦW in (17) the characteristic function

ΦW?(t) = e−itK2

m?∑
j=0

πj λ
r+j(λ− it)−(r+j) (20)
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where λ and the weights πj are determined using a matching moments technique in
two steps. First λ is determined as the solution of the following system of equations

∂h

∂th
ΦW1

(t)

∣∣∣∣
t=0

=
∂h

∂th
{

(λ)r1(λ− it)−r1
}∣∣∣∣
t=0

(21)

for h = 1, 2, that is, λ is the rate parameter of a Gamma distribution which matches
the first 2 moments of the exact distribution of W1 and, following a same procedure as
the one used in Subsection 2.3, r is defined as

r = n

({
b−d−1∑
k=0

k

b− d
+

b

b− d
−
(

a− c+ k

a− c+ b− d
+

a+ b

a− c+ b− d

)}
(22)

+

{
a−c−1∑
k=0

k

a− c
+

a

a− c
−
(

k

a− c+ b− d
+

a+ b

a− c+ b− d

)})
.

Given the complexity of the distribution in this case and in order to improve the quality
of the approximations, in some cases one will consider r = r1 given as solution of
the system in (21). Finally, assuming fixed values for λ and r, the weights, πj , are
determined as a solution of the system

∂h

∂th
ΦW1

(t)

∣∣∣∣
t=0

=
∂h

∂th

m?∑
j=0

πj λ
r+j(λ− it)−(r+j)

∣∣∣∣∣∣
t=0

, h = 1, . . . ,m? (23)

with

πm? = 1−
m?−1∑
j=0

πj .

Thus, we have as approximating distributions of W , mixtures of shifted Gamma distri-
butions which, by simple transformation, give rise to the following cumulative distri-
bution function

1−
m?∑
j=0

πjFΓ(r+j,λ)

− log

 x(
B(c,d)
B(a,b)

)n
−K2

 . (24)

This procedure is summarized in the following theorem.

Theorem 2.4 If X1, . . . , Xn are independent and identically distributed with Xi ∼
Beta(a, b), a, b > 0, by approximating ΦW in (17) by ΦW? in (20) we obtain for

Λ =

(
B(c, d)

B(a, b)

)n n∏
i=1

Xa−c
i (1−Xi)

b−d ,

with a − c ∈ N, b − d ∈ N and a, b, c and d positive real numbers, the following
approximating cumulative distribution function

1−
m?∑
j=0

πjFΓ(r+j,λ)

− log

 x(
B(c,d)
B(a,b)

)n
−K2


14



where FΓ(r+j,λ)(.) denotes the cumulative distribution function of a Gamma distribu-
tion with shape parameter r+ j and rate parameter λ. The parameter λ is obtained as
solution of the system in (21) and r is defined as in (22) or is set equal to r1 which is
obtained as solution of the system in (21) . The weights πj are obtained as solution of
the system of equations in (23).

In Case IV, we were not able to plot the exact probability density functions using the
inversion formulas in Gil-Pelaez (1951). Therefore, in order to illustrate the precision
of these approximations we present in Table 1, the exact, 0.01, 0.05 and 0.1, quantiles
of Λ computed using the inversion formulas in Gil-Pelaez (1951) and the bisection
method, and the equal decimal places of the approximating quantiles, obtained using
expression (24). In Table 1 we considered the following scenarios: a = 17/5, b =
16/3, c = 12/5, d = 10/3, n = 10, 50, 100 and m? = 2, 6, 10. We would like to point
out that the computing time needed for the proposed approximations is nearly zero.

Table 1: Comparison between exact and approximating quantiles, Case IV

0.025 0.05 0.1
exact quantile n = 10 0.2199569845289 0.33488111698353 0.5241324001102
m? = 2 0.2199 0.3348 0.5241
m? = 6 0.21995698 0.334881116 0.52413240
m? = 10 0.219956984 0.3348811170 0.5241324001
exact quantile n = 50 0.2042221741896 0.4348764209495 1.00458042559089
m? = 2 0.204 0.4348 1.004
m? = 6 0.204222174 0.43487642 1.004580425
m? = 10 0.204222174189 0.434876420949 1.00458042559
exact quantile n = 100 0.5410521524667 1.4815871653844 4.57678796920922
m? = 2 0.54 1.481 4.5767
m? = 6 0.541052152 1.481587165 4.576787969
m? = 10 0.541052152466 1.481587165384 4.576787969209

The cases where c − a ∈ N and d − c ∈ N, or other possible combinations, may
also be addressed using similar procedures, but in these cases we may have to consider
mixtures of shifted negative gamma distributions.

2.5 General case

Finally, having as basis the procedure described in Subsection 2.4, we propose as an ap-
proximation for Λ, in the general case with no restrictions on the parameters, mixtures
of shifted (positive or negative) Gamma distributions. One will approximate the char-
acteristic function in (17) ofW = − log(Λ) with Λ given in (16) with no restrictions on
the parameters a, b, c, d > 0, by the characteristic function of a mixture of shifted (pos-
itive or negative) Gamma distributions with shape parameters r + j (j = 0, . . . ,m?),
rate parameter λ and shift parameter w, given by

ΦW?(t) =

m?∑
j=0

πj λ
r+j(λ− it)−(r+j)eitw . (25)
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The parameters r, λ and w will be determined as solutions of the system of equations

∂h

∂th
ΦW (t)

∣∣∣∣
t=0

=
∂h

∂th
{

(λ)r(λ−it)−reitw
}∣∣∣∣
t=0

(26)

for h = 1, 2, 3. One should note that, when a − c < 0 or b − d < 0 one will ob-
tain a negative rate parameter, that is λ < 0, which means that in these cases one
will have instead of a mixture of gamma distributions, Yj ∼ Γ(r + j, λ), with a shift
parameter equal to w, a mixture of −Yj ∼ Γ(r + j,−λ) distributions with the same
shift parameter. Through the system of equations in (26) we define the rate, shape and
shift parameters of the gamma distributions involved, and then we move forward to
determine the weights. The weights are determined for fixed values of r, λ and w,
by matching a given number, let us say m?, of exact moments, that is by solving the
system

∂h

∂th
ΦW (t)

∣∣∣∣
t=0

=
∂h

∂th
ΦW?(t)

∣∣∣∣
t=0

, h = 1, . . . ,m? (27)

with

πm? = 1−
m?−1∑
j=0

πj

with ΦW? in (25).

Theorem 2.5 If X1, . . . , Xn are independent and identically distributed with Xi ∼
Beta(a, b), a, b > 0, by approximating the characteristic function in (17) of W =
− log(Λ) by ΦW? in (25) we obtain for

Λ =

(
B(c, d)

B(a, b)

)n n∏
i=1

Xa−c
i (1−Xi)

b−d ,

the following approximating cumulative distribution functions
i) a− c > 0 and b− d > 0

1−
m∑
j=0

πjFΓ(r+j,λ)

− log

 x(
B(c,d)
B(a,b)

)n
− w

 (28)

and when a− c < 0 or b− d < 0

m∑
j=0

πjFΓ(r+j,−λ)

log

 x(
B(c,d)
B(a,b)

)n
+ w

 (29)

where FΓ(r+j,λ)(.) denotes the cumulative distribution function of a Gamma distribu-
tion with shape parameter r+ j and rate parameter λ. The parameters λ, r and w are
obtained as solutions of the system in (26). The weights πj are obtained as solution of
the system of equations in (27).
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In this case, as also happened in Subsection 2.4, we were not able to plot the exact
probability density functions. In Table 2 we present the exact, 0.01, 0.05 and 0.1,
quantiles of Λ computed using the inversion formulas in Gil-Pelaez (1951), and the
equal decimal places of the approximating quantiles computed using expression (28).
In this table we consider the following scenarios: a = 22/5, b = 3, c = 10/3, d = 7/4,
n = 10, 25, 50 and m? = 2, 6, 10.

Table 2: Comparison between exact and approximating quantiles, Case V

0.025 0.05 0.1
exact quantile n = 10 0.1856432083191 0.3166371783289 0.5623492446855
m? = 2 0.185 0.31 0.56
m? = 6 0.185 0.316 0.56
m? = 10 0.185 0.316 0.562
exact quantile n = 50 0.5214269462216 1.3885795976733 4.1295434205751
m? = 2 0.521 1.38 4.1
m? = 6 0.521 1.388 4.129
m? = 10 0.5214 1.3885 4.1295
exact quantile n = 100 7.7459658168541 28.799851109827 125.90314598279
m? = 2 7.74 28.8 126.
m? = 6 7.746 28.80 125.90
m? = 10 7.74596 28.79985 125.9031

The results in Table 2, when compared with the ones in Table 1, show that the
approximation developed for the general case is not as precise as the one developed for
Case IV. Even so, it is a very reasonable approximation equating, in most cases, two
decimal places of the exact quantile in the scenario under consideration.

3 Numerical studies and simulations

In this section, the power and the reproducibility properties of the test are illustrated
through simulations.

3.1 Power study

To illustrate the power of these tests we consider the same scenarios addressed in Sub-
sections 2.1 and 2.3 which are

Case I - i) a = 1/4, c = 1/5 and b = d = 1 (a > c)

H0 : Xi ∼ Beta(1/4, 1) vs H1 : Xi ∼ Beta(1/5, 1)

Case I - ii) a = 4, c = 5 and b = d = 1 (a < c)

H0 : Xi ∼ Beta(4, 1) vs H1 : Xi ∼ Beta(5, 1)

Case III - a = 17/5, c = 3 and b = d = r = 9/4

H0 : Xi ∼ Beta(17/5, 9/4) vs H1 : Xi ∼ Beta(3, 9/4) .
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The α = 0.05 quantile was computed using the expressions of the exact cumulative
distribution functions in (2) or (3) for Case I, and the near-exact cumulative distri-
bution function in (15) for Case III. To compute the empirical power we considered
100 000 replications of samples of size n = 50, 100, 200 and 500 from the following
distributions

Case I - i) Xi ∼ Beta(a, 1) with a from 0.15 to 0.25 step 0.01

Case II - ii) Xi ∼ Beta(a, 1) with a from 4.0 to 5.0 step 0.1

Case III - Xi ∼ Beta(a, 9/4) with a from 3.0 to 3.4 step 0.05 .

In Figure 4 it is possible to observe, as expected, the convergence of the power to 1
when a moves away from the value considered under the null hypothesis and also as
a function of the sample size. These are known properties of likelihood ratio tests. In
addition, we may say that the simulations point to an unbiased test since, underH0, the
simulated power is 0.05.

Figure 4: Power plots for different sample sizes. n = 50 (solid line), n = 100 (dotted
line), n = 200 (dashed line) and n = 500 (dotted-dashed line)

Case I - i) Case I - ii)

Case III)
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3.2 Reproducibility probability

In this subsection we illustrate the reproducibility property of these likelihood ratio
tests. The reproducibility probability (RP) of a test is the probability of making the
same decision if a test were repeated under the same circumstances. This problem was
first addressed by Goodman (1992) and has received, recently, increasing attention.
The nonparametric predictive inference (NPI) for RP was first presented in Coolen and
Bin Himd (2014) for two basic nonparametric tests, the one-sample sign test and the
one-sample signed-rank test, and in Coolen and Alqifari (2018) RPs were computed
for the quantile test and for a precedence test. We consider the NPI method to compute
the lower and upper RPs of likelihood ratio tests for simple hypotheses introduced
in Marques et al. (2018). The method can be summarized as follows. For n data
observations x1 < x2 < · · · < xn we may consider n + 1 intervals (xi−1, xi), i =
1, . . . , n + 1. The values x0 and xn+1 may be defined, for a distribution with support
(0,1), as x0 = x1/2 and xn+1 = (xn + 1)/2. We consider Hill’s assumption (Hill,
1968; Arts et al, 2004) which assigns for a future real-valued observation, given the
n data observations, probability 1/(n + 1) to each open interval between consecutive
data observations. Thus, for the m future observations, the

(
n+m
m

)
different orderings

of all these observations are all equally likely. For each ordering, we may count the
number of future observations in each interval and compute, for the likelihood ratio,
the minimum possible value, LR, and the maximum possible value, LR, and finally
compute the NPI lower and upper RPs (for more details please see Marques et al.
(2018)). In Marques et al. (2018), Section 4, the case considered in Section 2.1 of the
present work was already addressed. Thus, in this subsection we consider more general
set-ups, the cases IV and V in Sections 2.4 and 2.5. One considers the hypotheses

H0 : Xi ∼ Beta(a, b) vs H1 : Xi ∼ Beta(c, d)

and the scenarios considered in Sections 2.4 and 2.5.

Case IV) a = 17/5, b = 16/3, c = 12/5 and d = 10/3

H0 : Xi ∼ Beta(17/5, 16/3) vs H1 : Xi ∼ Beta(12/5, 10/3)

Case V) a = 22/5, b = 3, c = 10/3 and d = 7/4

H0 : Xi ∼ Beta(22/5, 3) vs H1 : Xi ∼ Beta(10/3, 7/4) .

Using the results in Marques et al. (2018) and the 0.1 quantiles in Tables 1 and 2, we
computed NPI lower and upper RPs. For Cases IV and V, we consider n = 10 and
m = n future observations, then we consider 15 and 50 replications simulated under
H0. In Figure 5, the blue dots are the upper RPs and the yellow dots are the lower RPs
evaluated for each simulated value of the likelihood ratio statistic.

In Figure 5 the vertical line marks the value of the exact quantile and the horizon-
tal line marks the value 1. From Figure 5 we may observe the same features already
described in Marques et al. (2018) for Case I, which are: the upper and lower RPs tend
to increase and to be closer to each other when the simulated value of the likelihood
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Figure 5: Lower (yellow dots) and upper (blue dots) reproducibility probabilities

Case IV - 15 replications Case V - 15 replications
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ratio statistic moves away from the quantile considered. When close to the quantile
considered the lower RP is quite small which is a feature present in comparisons of
two groups (Coolen and Bin Himd, 2014). As already mentioned the RP is a measure
of how likely is to make the same decision if we repeat a test under the same circum-
stances. When the lower RP is high it indicates that we may have a reasonable security
that if the test were repeated we would end up with the same decision with regard to re-
jection of the null hypothesis, thus ensuring the reproducibility of the test results. From
Figure 5 we may observe that the lower RP only reaches values close, or equal, to 0.8
for quite distant values of the likelihood ratio statistics from the 0.1 quantile. This may
suggest that in these cases the reproducibility of the test results is only guarantee for
large values of the likelihood ratio.

4 Concluding remarks

In this paper we have studied the distribution of the likelihood ratio test statistic used to
test between two Beta distributions. When two of the corresponding parameters of the
two Beta distributions are equal and integers, representations of the exact distribution
of the likelihood ratio statistic were obtained as transformations of a Gamma or of
a GIG distribution. For the other three cases considered, near-exact or asymptotic
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approximations, were developed. Using the exact distributions or the approximations
developed, quantiles and p-values can be computed in a fast and precise way. This way,
other more complex and time consuming methods, based on numerical methods or
simulations, may be avoided. Similar results for the distribution of the likelihood ratio
under the alternative hypothesis may be easily obtained using similar procedures. The
power of the test increases with the sample size and when the values of the parameters
are considerably different from the ones assumed in the null hypothesis, these are the
already expected behaviours for likelihood ratio tests. The lower and upper RPs show
that only for distant values of the likelihood ratio from the fixed quantile we may ensure
the reproducibility of the test results. The authors aim, in the future, to address the
case where the decision making involves more than two Beta distributions, and also
tests between other types of distributions such as two Beta type II distributions or two
Kumaraswamy distributions.
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