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Abstract Rockfalls commonly exhibit power law volume‐frequency distributions, where fewer large
events are observed relative to more numerous small events. Within most inventories, the smallest
rockfalls are the most difficult to detect and so may not be adequately represented. A primary challenge
occurs when neighboring events within a single monitoring interval are recorded as one, producing
ambiguity in event location, timing, volume, and frequency. Identifying measurement intervals that
minimize these uncertainties is therefore essential. To address this, we use an hourly data set comprising
8,987 3‐D point clouds of a cliff that experiences frequent rockfalls. Multiple rockfall inventories are
derived from this data set using change detections for the same 10‐month period, but over different
monitoring intervals. The power law describing the probability distribution of rockfall volumes is highly
sensitive to monitoring interval. The exponent, β, is stable for intervals >12 hr but increases nonlinearly
over progressively short timescales. This change is manifested as an increase in observed rockfall
numbers, from 1.4 × 103 (30 day intervals) to 1.4 × 104 (1 hr intervals), and a threefold reduction in mean
rockfall volume. When the monitoring interval exceeds 4 hr, the geometry of detected rockfalls becomes
increasingly similar to that of blocks defined by rock mass structure. This behavior change reveals a
time‐dependent component to rockfall occurrence, where smaller rockfalls (identifiable frommore frequent
monitoring) are more sensitive to progressive deformation of the rock mass. Acquiring complete
inventories and attributing discrete controls over rockfall occurrence may therefore only be achievable
with high‐frequency monitoring, dependent upon local lithology.

Plain Language Summary Rockfall inventories are required to model erosion, such as along
coastlines or in mountain landscapes, and hazard from rockfall activity. The frequency distribution of
rockfall volumes, commonly termed “magnitude‐frequency”, is important for this modeling and for our
understanding of how rockfalls occur and what drives them. For rockfalls and landslides in general, these
distributions typically follow a power law, with relatively few larger rockfalls as compared to more
numerous small events. Advances in hardware and algorithms have considerably improved the spatial
resolution and precision with which a given rock face can be monitored using LiDAR. This has in turn
improved our ability to detect small rockfalls, which in sum contribute significantly to overall volume
loss from rock slopes in this setting. The improvement in spatial resolution has, however, considerably
outpaced improvements in the temporal resolution of monitoring. If the interval between surveys is
greater than the return interval of rockfalls, neighboring rockfalls within a single monitoring interval are
recorded as one, producing ambiguity in event, timing, and volume. For the latter, this effect may amount
to an order of magnitude variation. Our research aimed to examine the timescales over which rockfalls
occur, allowing us to identify suitable monitoring intervals to discretize rockfalls. While conventional
monitoring campaigns tend to acquire surveys at monthly intervals or longer, we draw upon a 1 hr
resolution data set acquired over 10 months. We find that the interval of monitoring has a considerable
impact on the probability distribution of measured rockfall volumes. An order of magnitude increase in
rockfall numbers and a threefold decrease in mean rockfall volume are observed over timescales
(monitoring intervals) of 1 hr, rather than 30 days. This is represented by a change in the power law
exponent of the magnitude‐frequency relationship, which increases nonlinearly below timescales of ~12 hr.
Interestingly, above ~12 hr, the exponent is stable, suggesting that changes in monitoring interval above
this timescale will attain almost identical rockfall inventories. We explain this change in behavior by
relating the geometry of rockfalls to the geometry of the blocks from which they are released. The average
size of rockfalls identified over timescales below ~4 hr is comparable to the scale of individual
discontinuities, indicating that fragmented detachments are more likely to control the increase in small

©2019. American Geophysical Union.
All Rights Reserved.

RESEARCH ARTICLE
10.1029/2019JF005225

Key Points:
• The magnitude‐frequency

distribution of rockfall inventories is
highly sensitive to the time interval
between monitoring surveys

• Monitoring intervals below ~12 hr
yield a nonlinear increase in the
number of rockfalls observed and a
decrease in mean rockfall volume

• At monitoring intervals above ~12
hr, the distribution is stable and
rockfall geometry converges with
that defined by rock mass structure

Supporting Information:
• Supporting Information S1

Correspondence to:
J. G. Williams,
jack.williams@uni‐heidelberg.de

Citation:
Williams, J. G., Rosser, N. J., Hardy,
R. J., & Brain, M. J. (2019). The
Importance of monitoring interval for
rockfall magnitude‐frequency
estimation. Journal of Geophysical
Research: Earth Surface, 124,

https://doi.org/10.1029/
2019JF005225

Received 26 JUN 2019
Accepted 29 OCT 2019
Accepted article online 18 NOV 2019

WILLIAMS ET AL. 2841

2841 2853.–

Published online 5 \DEC 2019

https://orcid.org/0000-0002-3031-0769
https://orcid.org/0000-0002-1435-2512
https://orcid.org/0000-0003-1031-0160
https://orcid.org/0000-0001-8505-120X
http://dx.doi.org/10.1029/2019JF005225
http://dx.doi.org/10.1029/2019JF005225
http://dx.doi.org/10.1029/2019JF005225
http://dx.doi.org/10.1029/2019JF005225
http://dx.doi.org/10.1029/2019JF005225
mailto:jack.williams@uni-heidelberg.de
https://doi.org/10.1029/2019JF005225
http://publications.agu.org/journals/


events. As the timescale of rockfall monitoring increases, detachments become more similar to the rock
mass structure, indicating structural control on failure. This behavior change suggests that smaller
rockfalls are more sensitive to progressive deformation of the rock mass. This type of analysis is required
to constrain the timescales over which this process occurs, which is necessary to understand prior to
attributing specific drivers (such as storms) to rockfall occurrence.

1. Introduction

Geomorphic processes that erode landscapes involve a broad range of event sizes, commonly characterized
by fitting magnitude‐frequency curves to event inventories. For mass movement volumes, these models
underpin event return period and erosion estimates used in hazard modeling (Fell et al., 2008; Guzzetti
et al., 2003) and are important for identifying controls on both individual events and longer‐term rock slope
behavior (Dussauge et al., 2003; Hungr et al., 1999). Despite this, inherent ambiguities remain in our
knowledge of rockfall volume‐frequency relationships derived from repeat monitoring (Abellán et al.,
2011; Krautblatter & Dikau, 2007; Lato et al., 2009; Wang & Tonon, 2011), primarily due to two effects:
superimposition (overlapping of sequential rockfall scars through time) and coalescence (amalgamation of
adjacent rockfall scars) (van Veen et al., 2017;Williams et al., 2018). Whenmonitoring intervals exceed event
return periods, or the actual rate of erosion, superimposed or amalgamated rockfalls are recorded as single
detachments. As a result, the frequencies of the smallest and largest rockfall volumes may either be under-
estimated or overestimated, respectively. A consequence is that events that would otherwise be observed as
larger individual rockfalls may actually be the sum of multiple smaller components (Kromer et al., 2017;
Royán et al., 2015; Stock et al., 2012). This is important because the smallest events are often the most
numerous, which holds implications for the assessment of both the largest credible and most probable event
based upon previous observations (Corominas et al., 2018). Logically, censoring of the smallest events must
increase with monitoring interval (Tint) and, importantly, when rockfalls may be related in both space and
time (Rosser et al., 2007), exactly how remains unknown.

The difficulty in detecting individual rockfalls, where Tint is long relative to the timescale of their occur-
rence, also affects explanations for rockfall timing. A common assumption is that the frequency of rockfall
occurrence equates to the time‐averaged number of events between surveys. Many attempts therefore
draw upon potential triggering conditions, such as rainfall, over a given monitoring period, rather than
those conditions at the precise moment of detachment (e.g. Lim et al., 2010). Importantly, however, Tint
is considerably longer in most studies (e.g., weeks to months) than the timescales over which potential
triggers fluctuate (D'Amato et al., 2016) and over which successive rockfall releases can occur from the
same location. As a result, it remains difficult to attribute individual rockfall events to discrete triggers
due to ambiguities within our measurements of both rockfall volume and timing (e.g., Dietze,
Mohadjer, et al., 2017; Dietze, Turowski, et al., 2017; Strunden et al., 2015).

While some studies suggest that these effects are minimal over an entire rockfall inventory, others have
shown them to be substantial. For example, less than 1% of rockfalls surveyed with high but variable time
resolution (~1 hr) were found to be coincident on the limestone cliffs at Mont Saint‐Eynard, France
(D'Amato et al., 2016); however, recent work has suggested that aggregation effects can be observed via a
rockfall volume‐frequency scaling with Tint. Comparing ~2‐ and 15‐month intervals, van Veen et al.
(2017) showed an increase in the exponent of the power law relationship between rockfall volume and
frequency as Tint was reduced. The exponent, β, describes the rate of change in the frequency density of
different event sizes. The density of rockfall volumes can be modeled by integrating the probability density
function, f (VR):

f VRð Þ ¼ sVR
−β (1)

where VR is the rockfall volume (magnitude), s is the intercept, and β is the exponent (Brunetti et al., 2009).
The f (VR) is evaluated between VR and VR + δV, and an increase in the value of β indicates a rise in the pro-
portion of small events as compared to larger events. This is important in the context of a power law distri-
bution, where small events in sum contribute significantly to overall volume loss. At present, however, no
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study has considered the effect of Tint over periods sufficient to generate large (>10
4) rockfall inventories in a

manner that allows potential censoring to be quantitatively assessed.

An application of terrestrial LiDAR, designed to minimize the effects of rockfall superimposition and coales-
cence, has been used in this study to measure rockfall volumes from an actively failing coastal rock slope.
The objective was to assess changes to the frequency distribution of rockfall volumes over various timescales,
derived using a range of monitoring intervals (Tint). In doing so, we aimed to explain why Tint may hold an
influence by relating our findings to the mechanisms of rockfall occurrence and the timescales over which
these mechanisms operate.

2. Site Description and Data Collection

Rockfall data are presented from an actively eroding coastal cliff in Whitby, UK. The cliff comprises near‐
horizontal interbedded Jurassic shales, sandstones, and mudstones, capped with ~2 m of glacial till
(Alexander & Gawthorpe, 1993; Rosser et al., 2005). The face is subvertical with dilated jointing and inten-
sive surficial weathering, as exhibited elsewhere along the coastline (de Vilder et al., 2017). Erosion of this
stretch of coast (~25 km) is characterized by cliff‐averaged retreat rates of 0.059 m a−1, measured between
2014 and 2017. During this period, the maximum observed rockfall volume was 1.5 × 104 m3 (Benjamin,
2018), although the volume loss is generally dominated by smaller‐scale rockfalls with median volumes
approaching 1.0 × 10−3 m3 (Rosser et al., 2013). In this study, rockfalls were identified from terrestrial
LiDAR surveys acquired over a 10‐month period, between 5 March and 30 December 2015. Eight data gaps
occurred as a result of system outages, totaling 73 days of the 301 days monitoring campaign, principally due
to failure of the laser scanner between late July and early September. Rockfalls that occurred during these
periods are excluded from this analysis.

A total of ~8.9 × 103 surveys were collected at Tint = 1 hr using our automated rockfall monitoring system,
which operates from a permanent installation mounted in front of the cliff (Figure 1). The resulting point
clouds cover a 210 m wide section of 55 m high cliff, with a point spacing of ~0.05 m at the minimum
instrument‐target range (342 m) and ~0.14 m at the distal portion of the cliff (533 m). As each scan was
acquired in 8 min and identical in terms of its configuration, the data are considered near‐instantaneous
and the remeasurement of any point occurs at Tint = 1 hr. Atmospheric correction of range measurements
was undertaken at 3 hr intervals by scanning six highly reflective reference targets at very high resolution
(point spacing ~5.0 × 10−4 m), which were modeled by least squares plane fitting. Correction factors of
the order of 1 × 10−5 m were then applied to all points in each point cloud based on the offset to the
reference plane.

By examining the local point cloud geometry, a method to identify and filter points of high positional
uncertainty, specifically those close to topographic edges, was applied. Edges generate uncertainties in
laser measurements that are exacerbated by increases in target range and laser incidence angles. These
arise from the averaging of multiple range measurements (x dimension, approximately cliff normal) within
a single beam footprint; uncertainty in the position (y dimension, approximately cliff parallel; z dimension,
elevation) of the feature within the laser beam footprint (Hodge, 2010); and the tendency for scan lines to
systematically include or omit linear features when scan line spacing exceeds the length scale of these fea-
tures. To overcome this, a 3‐D edge detection is applied that uses the ratio between (1) the distance of a
point to the center of a fixed‐radius neighborhood and (2) the number of points within this neighborhood.
For points close to an edge, the distance to the center of the neighborhood (1) is higher. Given that point
density varies across the point cloud, this distance must be normalized based on the neighborhood point
density (2) to allow the use of a single threshold to classify points on edges. As the laser incidence angle to
the surface increases, uncertainties in the range measurement also increase, making these points less reli-
able for change detection. To address this, the radiometric response (the reflected energy‐time distribu-
tion) of each individual measurement was used to identify and filter high incidence angle surfaces.
While nadir surfaces reflect an energy‐time distribution identical to the emitted laser pulse, increasing sur-
face inclination distorts the energy‐time distribution of the reflected pulse. The ratio of the emitted to the
reflected pulse duration can therefore be used to represent laser incidence angle. The sensitivity analyses
for threshold selection are described in Williams et al. (2018) and resulted in an edge threshold >25 (‐) and
radiometric deviation threshold >5 × 10−4 (‐). Imposing these thresholds typically resulted in no more
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than 15% of the point cloud being removed and reduced the standard deviation of change values between
two stable surfaces by 30%.

Change detection was undertaken using a modification of the M3C2 algorithm (Lague et al., 2013) known as
DAN VCL. The modification overcomes the considerable uncertainty in change estimates caused by
occluded regions within point clouds. When change is calculated along a vector orthogonal to the local sur-
face, the average surface position within each point cloud may vary considerably where there is a paucity of
consistently positioned data points. Such regions must be accounted for in near‐continuous monitoring, as
they are increasingly prevalent within point cloud data captured from a single position (see Williams et al.,
2018). Rockfalls were extracted from 2.5‐D rasters representing each point cloud and the change relative to
the next scan. The resulting rockfall volumes were recorded along with their location, geometry, and timing
to within 1 hr. The areal extent of the largest rockfall observed remained an order of magnitude less than the
monitored cliff face area. It was therefore unnecessary to impose upper bounds on the resulting rockfall geo-
metries due to monitoring resolution or the extent of the monitored area (Dussauge et al., 2003).

To examine how Tint influences the apparent frequency distribution of rockfall volumes, 10 multitemporal
inventories were derived from individual surveys separated by increasing values of Tint at multihour (1, 3, 6,
12, 24, and 96) andmultiday (7, 14, 21, and 30) intervals. Each inventory spanned 270 days. Although shorter
than the total 300 days of monitoring, this period provided temporally consistent measurements of surface
change with the same start and end date. For the purpose of inventory comparison, the minimum rockfall
volumewas set by doubling the level of confidence in the change detection from 0.03 to 0.06m, and themini-
mum detectable area from 0.15 × 0.15 m (the size of a single pixel) to 0.30 × 0.30 m (supporting information
Text S1). While conservative (Vmin = 0.0054 m3 compared to Vmin = 0.0007 m3), this approach prevented any
instances of noise >0.0007 m3 from accumulating in proportion to the number of surveys and thereby
appearing as numerous small volume events. This ensured that any shift in the frequency density of

Figure 1. The study site, with the instrument location (East Pier lighthouse) at ~300 m from the monitored cliff face. The
system uses a Riegl VZ‐1000 terrestrial laser scanner with scan scheduling by SiteMonitor®. Inset shows the position
of the site within Great Britain. Transect A‐A′ indicates the extent of monitoring along the cliff top, replicated in Figure 2.
(Ordnance Survey© Crown Copyright and Database Right 2016. Ordnance Survey, Digimap Licence).
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recorded erosion volumes was controlled by the interval between surveys (Tint), rather than the number of
surveys (which increases as Tint is lowered).

The exceedance probability of rockfall volumes is provided by the complementary cumulative distribution
function (Cirillo, 2013; Clauset et al., 2009):

P VRð Þ ¼ VR≥Vð Þ ¼ VR

Vmin

� �−β−1

(2)

where P (VR) is the probability of a randomly selected rockfall exceeding a given volume VR, and the slope is
denoted by α (with α = β − 1; see supporting information Text S2). While the power law may simplify some
of the complexities of the inventory (Dussauge et al., 2003), we consider this simplification to be acceptable
given that the objective was to compare across multiple distributions. The relationship between Tint and β is
described using nonlinear least squares estimation, which we used to fit a three‐parameter
asymptotic function:

βTint
¼ β0 þ C1C2

log10T int (3)

where β0 is the highest value of βwhen Tint is at the finest temporal resolution (here 1 hr). The parameter C1

is the difference between the value of β when Tint =∞ and β0; and C2 is a constant that describes the rate of
change in β as a function of Tint. The parameter C1 therefore indicates the change in the power law scaling
coefficient at the smallest attainable survey interval compared to when Tint →∞, and C2 describes the time-
scale over which censoring dominates β as a function of Tint. As field observations suggested that rockfalls at
this site are never composed of fully disaggregated fine grains of rock, β must tend to a constant at some
value of Tint below 1 hr.

The underlying controls on rockfall behavior were explored by considering the similarity in rockfall size to
that of joint‐defined blocks on the cliff face. Block release defined by discontinuities is typically considered to
determine individual rockfall geometry (Mavrouli & Corominas, 2017); this is an implicit assumption that
underpins how rockfall release is also modeled (e.g., Hoek, 1994). Structure has previously been shown to
relate to rockfall size on these cliffs when Tint is ~30 days (Barlow et al., 2012; Lim et al., 2010), but examin-
ing this control at more frequent monitoring intervals has previously not been possible. A single high‐
resolution point cloud (~0.02 m point spacing) was therefore collected from three different survey positions
after the monitoring period. This was used to generate a full 3‐Dmodel of the cliff face with minimal occlu-
sion and, therefore, minimal data gaps. To estimate the size of potential joint‐defined rockfall blocks, we
extracted aggregated elementary planar objects (facets), from the point cloud (visible, exposed, and persistent
joint surfaces), considered here to approximate rockfall release surfaces/scars, using the method outlined by
Dewez et al. (2016) (see supporting information Text S3). Seven beds exhibited a clearly defined rock mass
structure at the cliff face, with the remainder being without clear structure or draped in surficial material.
We measured the facets within each of the seven beds to derive summary statistics (distribution, mean,
and standard deviation in major axis length,aF and σaF), which were compared directly to rockfall geometry
within the bed. Measurement of these facets could not be undertaken in parallel with rockfall detection due
to the occlusion within the point clouds acquired from the fixed monitoring position.

3. Results

More than 1.3 × 104 detachments are reported upon from hourly monitoring, with a minimum, maximum,
and mean hourly rate of 0, 39, and 1.5 hr−1 (Figure 2) and volumes 0.0054 < VR < 7.25 m3. The maximum
rockfall volume observed was 2 orders of magnitude lower than previously reported at this location, reflect-
ing a relatively low erosion period (previously reported maximum VR along this coastline include 12.73 m3,
Vann Jones et al., 2015; 200.4 m3, Rosser et al., 2005; 2,614.88 m3, Lim et al., 2010; 1.5 × 104 m3, Benjamin,
2018). Rockfalls altered 18.9% of the total monitored cliff face area (1,602 m2), equating to a yield of 0.17 m3

day−1 or an area‐ and time‐averaged erosion rate of 0.015 m a−1. Measured rockfall area (the areal extent in a
2‐D view of each rockfall on the cliff face), scaled with measured VR, adhered to a power law with coefficient
γ = 1.152, and constant α = −1.265 (r2 = 0.76; p < 0.001).
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Changing Tint had a considerable impact on the character of the rockfall inventory. For example, sampling at
Tint = 30 days generated a mean rockfall rate of 6 day−1, whereas Tint = 1 hr generated 61 day−1; reducing
Tint from 30 days to 1 hr therefore derived an order of magnitude increase in the total number of observed

rockfalls. The mean rockfall volume, VR , varies in proportion to Tint, whereby VR = 0.0475 m3 when
Tint = 30 days but 0.0169 m3 when Tint = 1 hr, equating to a near threefold reduction. The volume‐frequency
power law coefficient β decreased in an asymptotic manner from β0 = 2.382 (Tint = 1 hr) tending toward
β = 1.995 (Tint = 30 days), indicating that small rockfalls represent a greater proportion of the total
detached material (Figures 3a and 3b; see supporting information Text S3). Fitting equation (3) to the
data derived C1 = 0.43 and a rate constant Cs = 0.09 (r2 = 0.96, p < 0.05). Using out‐of‐sample estimation
to assess the overall model and its predictive capacity, β reached 90% of β∞ after Tint = 9 hr, and 99% of
β∞ after Tint = 82 hr, indicating that β begins to stabilize with increasing Tint.

To explore why the volume‐frequency relationships vary with Tint, we compared rockfall geometry for all
monitoring intervals to rock mass structure from beds with visible joint structure. We observe that when
Tint increased, the difference in mean major axis length between rockfalls and the source rock facets, δa,
decreased from positive to negative differences (Figure 4a). The same pattern can be observed in the
difference between the standard deviation of major axis lengths for rockfalls and the source rock facets,
δσa. Fitting equation (3), but estimating δa rather than β as a function of Tint (see supporting information
Text S7), rock mass structure increasingly controls rockfall block geometry when Tint is increased. When
plotted using both the mean of δα and its range across all beds, rockfalls appear to become more similar
to blocks sizes when monitored more frequently. The distributions of rockfall dimensions are shown to
become increasingly close to the size distribution of individual facets when Tint is reduced (Figure 4b). We
note that as facets were measured at 0.02 m resolution as compared to the 0.15 m resolution rockfall data,
our observations are not a function of how rockfalls or facets are measured. Their similarity despite this
difference in resolution suggests that the rockfall inventory is increasingly dominated by fragments with
geometry that is equal to, and possibly smaller than, that of structurally defined blocks/facets.

4. Discussion
4.1. Influence of Monitoring Interval on Observed Rockfalls

Adjusting the interval of rockfall monitoring from 30 days to 1 hr revealed an order of magnitude increase in
the apparent number of rockfalls. Given that even the smallest rockfalls can pose a hazard to life (Turner &
Jayaprakash, 2012), this increase holds implications for calculations of absolute rockfall hazard in settings
where similar behavior may be observed. Where the total sediment yield from rockfalls must remain equal
irrespective of Tint (cf. Williams et al., 2018), increasing rockfall numbers when Tint → 1 hr must result in

smaller rockfalls on average. This behavior is observed here, with a threefold reduction in VR for Tint = 1
hr, as compared to Tint = 30 days. Conversely, while our monitoring should not alter the assessment of

the largest or worst‐case event (Corominas et al., 2017), an increase in f (VR) and a reduction in VR at the
point of release is significant for rockfall remediation (Corominas et al., 2012), for models that predict the

Figure 2. Terrestrial LiDAR‐derived surface model of East Cliff Whitby, shown in elevation view. Monitored rockfalls are superimposed and colored by the date
and time of occurrence at 1 hr resolution. Transect A‐A′ at the cliff top is included for reference in relation to Figure 1. Areal extent of Figure 5 is provided.
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ease with which rockfall debris can be remobilized or weathered based on clast volume or surface area
(Messenzehl et al., 2018), and for interpretations of rockfall magnitude‐frequency from deposit
granulometry (Crosta et al., 2007; Ruiz‐Carulla et al., 2017).

Small events both precede and relate to larger events, with the range of rockfall volumes and the high fre-
quency of small fragments pointing to the difficulty in defining rockfalls using minimum volume thresholds

Figure 3. Rockfall magnitude‐frequency. (a) Complementary cumulative empirical distributions for rockfalls identified
over varying Tint, fitted with power laws using the maximum likelihood method (equation (2)). P (VR > V) represents
the probability that a rockfall will exceed volumeV. (b) Change in power law scaling exponent βwith Tint. Solid line shows
modeled values of β derived using equation (3). Error bars on β reflect the upper and lower volume estimates for each
individual rockfall, which arise based on aerial uncertainty in the scar geometry. Coefficient of determination (r2) fit to
power law, and variation in the decay of β with the LoD applied in rockfall extraction, are provided in supporting
information Text S4.

Figure 4. Convergence of rockfall geometry to the geometry of blocks identified in each respective bed, with increasing
value of Tint. (a) As Tint increases, the difference in mean axis lengths between rockfalls and the facets that define the
rock mass structure (circles; δa) decreases from ~0, indicating RF sizes match the facet sizes, toward negative values
indicating that retrieved RF sizes become larger than those of the facets. This pattern is reflected in the standard deviations
of rockfall and facets geometries in each bed (squares). The three‐parameter asymptotic regression intersects zero,
interpreted as the transition from structural control over rockfall geometry, at Tint = 4 hr. (b) Distributions of facet major
axes lengths and rockfall major axes lengths for a single bed (#3). Distributions for all beds visible in supporting
information Text S7.
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(cf. Whalley, 1984). Given that only the subvertical regions of cliff were used, we consider all detachments in
this study as primary rockfalls released from their original source, as opposed to secondary remobilization of
previously failed material (Krautblatter & Dikau, 2007). As we measured individual rockfalls at a point in
both time and space when Tint = 1 hr, we explain the change in volume‐frequency scaling at longer intervals
as a consequence of larger rockfall events detaching as fragments from within their scar as they fail over
time. This is illustrated by the time histories of sequences of fragmented detachments, which occurred
within the scars of larger individual rockfalls (e.g., Figure 5). As observed more widely in the probability dis-
tribution of rockfall volumes, the impact of reducing Tint is both an increase in rockfall numbers and a reduc-

tion in VR (Figures 5 and S6). For many rockfalls, fragments are released in a sequence that occurs in
response to initial instability, collapse, and then stabilization of the rock face over periods generally shorter
than 12 hr (Rosser et al., 2007). This observation highlights the need to consider rockfalls as either (1) indi-
vidual blocks that could be components of a larger‐scale instability, and that are likely to be more prevalent
when Tint is short or (2) a discrete zone or volume of unstable rock that is released over a period of time via a
sequence of related smaller events, and that is likely to be more prevalent in rockfall inventories when Tint is
long. Our analysis shows that the choice of definition is important and will depend on the application for
which the data are acquired. For example, the former definition is applicable in an assessment of absolute
hazard or in an assessment of rockfall triggers and mechanisms, where recording the number of individual
falling blocks is critical. The latter definition is key for slope stability modeling, which may aim to assess the
full extent of a possible area of instability irrespective of failure timing.

4.2. Implications for Rockfall Failure Mechanisms

The increasing proportion of small rockfalls over timescales≤ 12 hr (Figure 3b), combined with observations
of the evolution of individual rockfall scars through time (Figure 5), suggests that rockfall detachment at our
site is part of a time‐dependent process. The nonlinear relationship between Tint and β illustrates that more
frequent monitoring captures increasingly small rockfall fragments, but interestingly this is apparent only
for intervals where Tint ≤ 12 hr. Specifically, our data provide clear evidence of path dependency between
sequential rockfalls, whereby smaller events preferentially occur proximal to, or directly in the location of,
other later rockfalls (see supporting information Text S5 and Figure S6). Their occurrence also fits a pattern
of increasing frequency and volumes through time, mirroring precursory rockfall behavior observed in lower
frequency monitoring (Rosser et al., 2007). If our observations were an artefact of sampling a purely random
process in time and space, at reduced values of Tint, we would not anticipate such a systematic shift in the
volume‐frequency scaling. Further, the examined rockfalls are spatially focused, with 18.9% of the total area
of rock face having been resurfaced, suggesting that the observed behavior cannot be considered a result of
events distributed randomly or extensively across the cliff. This behavior is similar to observations of the
incremental release of blocks that combined to form other, larger rockfalls (Kromer et al., 2015; Royán

Figure 5. A sequence of rockfalls detected by monitoring at variable Tint (1 hr, 12 hr, and 7 days shown) for the area defined in Figure 2. (a) For hourly monitoring,
the period presented is 44 days, beginning on 12 November 2015. Prefailure rockfall activity occurs at the upper periphery of the incipient rockfalls. When
compared to (b) and (c), a reduction in the number of rockfalls and mean rockfall volume, evident in the change in β with Tint, is observed. Variations in rockfall
color between plots (a)–(c) emerge because change detections at different surveys intervals are not synchronized.

10.1029/2019JF005225Journal of Geophysical Research: Earth Surface

WILLIAMS ET AL. 2848



et al., 2015; Stock et al., 2012). For the first time using a large inventory (> 103 rockfalls), we put bounds on
the timescales over which fragmented detachment operates. In turn, our observations suggest that indivi-
dual rockfalls could be considered to be (1) part of a process that takes time to evolve via a sequence of block
fragments, as a surface expression of an underlying time‐dependent mechanism leading to rockfall release
(e.g. Rosser et al., 2007); (2) a manifestation of processes that take time to relax back to a quiescent, stable
state after failure through an incremental release of fragments as and when kinematically permissible, or
via stress redistribution (e.g., Drescher & Handley, 2003; Kimber et al., 1998); (3) occurring in response to
the timing, character, and duration of triggering conditions (e.g., storms; D'Amato et al., 2016); or (4) a com-
bination of (1)–(3).

Characterizations of rock masses and rockfalls have conventionally lacked a temporal dimension beyond
their probability at a given point in time, where any uncertainty in the latter is often considerably greater
than the 1 hr intervals detected here. This temporal dimension enables a description of how rockfalls are
likely to respond to discrete triggers, or the timescales of rockfall response to controlling mechanisms
described in (1)–(3) above. Similarly, while rockfall inventories describe the duration over which they were
compiled, they rarely report a monitoring interval. Where weather conditions, dynamic loading, and time‐
dependent failure each develop through time and have clear time‐dependent effects (e.g., Eppes &
Keanini, 2017; Goudie, 2016; Gunzburger et al., 2005), a temporal descriptor of rockfalls and/or rock mass
instability that enables comparison between slopes is of value. We propose the use of equation (3) to define
the change in volume‐frequency scaling as a function of Tint and therefore to quantify the widely recognized
complexity of how rockfall events evolve and detach (Turner & Jayaprakash, 2012). The approach also
enables testing for, and quantification of, the censoring of small events within multitemporal inventories
by coalescence and superimposition. The use of the change in volume‐frequency power law scaling
described offers some advantages in this regard as it is insensitive to individual rockfalls or event rates, pro-
viding a means to account for event superimposition and coalescence. An increased understanding of the
nature of volume‐frequency power law scaling as a function of Tint is reliant upon the use of this approach
across varying monitoring durations and spatial extents.

4.3. Wider Implications for Understanding Rock Slope Failure

Analysis of the tendency of small rockfalls to approach a geometry defined by the in situ rock mass structure
in this setting reveals that here, below Tint = 4 hr, the discontinuity structure may have a lesser influence on
the geometry of the individual fragments that are released. Instead, the geometry of many rockfalls in our
inventory appears to be more a function of the time‐dependent mass wasting processes than of rock mass
strength alone. The smallest detachments we detect may be of a scale that spans both small rockfalls related
to discontinuities and rock fracturing, but also detachments associated directly with weathering. Shales and
siltstones, for example, undergo surficial weathering creating a frittered crust (Moon & Healy, 1994) that
readily releases centimeter‐scale platelets (de Vilder et al., 2017).

The timing and location of fragment release observed here implies a failure mechanism that evolves progres-
sively, such as the time‐dependent growth of microfractures (Petley et al., 2005) and breakage of rock bridges
(Kemeny, 2005). Although here we only capture the spatial and temporal patterns of rockfalls that occur as a
consequence of the underlying failure process, our findings concur with forensic studies of rockfall failure
mechanisms from these cliffs, whereby a combination of discontinuities and rock bridge breakage are the
primary rockfall release mechanisms (de Vilder et al., 2017). Our present study, for the first time, adds clarity
around the timing of how and when such rockfalls occur. Where nonpersistent joints are present, the distri-
bution of rock mass damage is strongly related to the presence of rock bridges (Elmo et al., 2018; Guerin
et al., 2019; Stead & Eberhardt, 2013). Rockfalls of a size smaller than the discontinuity spacing may not
require fracturing through intact rock for release and hence may be more sensitive to external forcing.
For rockfalls where release requires the breakage of rock bridges, weakening by weathering or stress redis-
tribution from previous rockfalls is required.

Our inventory comprises rockfalls from across an actively eroding sedimentary coastal cliff; while the rate of
mass wasting means that we have been able to collate an inventory consisting of thousands of rockfall
events, the variability in release location, and hence lithology, may conflate variations in behavior between
individual lithological units. Although it may be reasonable to assume that the disintegration of joint‐
defined blocks may be a more prevalent process at our coastal sites than in less weathered, or more
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massively jointed rock masses, our observations highlight a potentially significant process elsewhere. On
more massive and pristine rock masses, the rate constant (C2) that describes the decay in rockfall volume‐
frequency scaling with Tint may tend to 0. This would indicate that rockfalls occur predominantly via failure
of larger, coherent blocks, with little precursory or postfailure fragment loss. In such instances, altering Tint
would be expected to have a limited influence on β. We note that even in the granodiorite monoliths of
Yosemite (California, USA), an incremental pattern of block release over a period of days has been observed
when monitoring intervals are short (e.g., Stock et al., 2012). This implies that the behavior described above
could be observed with sufficiently high‐frequency monitoring even in more massive rock walls; it may
therefore capture a time‐dependent character that cannot be explained by comparison with structure alone.
Identifying settings where this behavior might be observed or is relevant could be based on estimates of β.
For example, high values of β, representing a disproportionate contribution of small events to net volume
loss, may be likely candidates. Despite this, however, it remains to be demonstrated whether the frequency
of small events alone determines if their occurrence is structured in the manner seen here. Examples of set-
tings that might exhibit comparable behavior include weak rocks that are either lithified (e.g., Californian
coastal cliffs; Collins & Sitar, 2008), materials where grain size may control the onset of brittle fracturing
(e.g., Eberhardt et al., 1999), settings with aggressive weathering (e.g., Krautblatter & Dikau, 2007), or in
mining where slopes are cut steep and may be heavily damaged by blasting. In these examples, the effect
may be more pronounced, disaggregating the failing mass as it destabilizes over a short time such that large
single failures never actually occur (Ruiz‐Carulla et al., 2017). In order to better understand the controls on
the rate constant C2, wider testing of equation (3) is required, either using existing data sets where the ratio
between monitoring duration and Tint is sufficiently high, or through new high‐frequency data sets.

4.4. Implications for Rock Slope Monitoring

Our data highlight the importance of selecting a monitoring period, frequency, and extent that is tailored to
the aim of the investigation. Notably, it is clear that short interval monitoring is essential to capture the full
volume‐frequency distribution, wherein the monitoring interval should be chosen with respect to the fre-
quency of the smallest events of interest. Similarly, the duration of the monitoring, or the extent of the area
monitored, ideally needs to encompass sufficient numbers of the largest events of interest. Assuming that
monitoring frequency is constant, the trade‐off between its interval and duration/extent will determine if
it is practical to monitor rockfalls in a manner that allows direct links with triggering to be made.
Alternatively, our results imply the potential benefits of a sampling strategy with increased monitoring
interval, but only when changes are observed in the lead up to a larger rockfall.

If the purpose of monitoring relates to the observation of triggers, it is critical to monitor rockfalls at an inter-
val commensurate with the smallest events of relevance, and a duration that is sufficiently large to sample
the largest and least frequent events. The latter is also a function of themonitoring area. For wider rock slope
monitoring, one reassurance is that, for timescales of Tint > 82 hr in our inventory, β stabilizes to within 1%
of its long‐term value, β∞. While defining the equivalent value of Tint would be of value for other inventories,
these are likely to be consistent and comparable irrespective of the precise monitoring interval used, given
that most have Tint ≫ 82 hr. This observation is of value particularly where large cumulative errors, arising
from numerous small but high‐frequency events, need to be minimized in long‐term monitoring (Williams
et al., 2018). Depending on the purpose of the rockfall monitoring, such as to inform erosion modeling, more
frequent monitoring may therefore not always be preferable or indeed necessary. For example, in quantify-
ing the long‐term retreat of coastal cliffs, volume loss estimates are subject to lower errors when this loss ori-
ginates from fewer, large events (i.e., from less frequent monitoring) than from sequences of more numerous
small events (i.e., from more frequent monitoring over the same period). For hazard estimation from the
same cliffs, where arguably even the smallest events captured here could easily be fatal, then there is clear
value in high‐frequency monitoring. The drawbacks of increased temporal resolution do not extend to the
monitoring of all types of surface change. For example, for monitoring across deforming surfaces, such as
rock glaciers, a reduction in Tint increases the similarity of the surface morphology between surveys, thereby
enabling more accurate detection of fine‐scale movements (Zahs et al., 2019).

Our study has proposed amethod to quantify the timescales of rockfall occurrence, providing a definition for
high‐frequency monitoring as that which falls beneath the timescale at which β stabilizes. An area where
high‐frequency monitoring is key is for identifying triggers to mass movements. Where the variability in
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triggering conditions operates over minutes to hours, such as rainfall (D'Amato et al., 2016; Krautblatter &
Moser, 2009) or thermal effects (Collins & Stock, 2016), rockfall data of a comparable temporal resolution are
essential for attributing cause to effect. Without this, relationships will be hindered by the uncertainties that
arise from the superimposition and coalescence demonstrated here. The generally low correlation strengths
between environmental conditions and rockfall timing presented in several studies (e.g., Rosser et al., 2007;
Strunden et al., 2015) are likely to have arisen at least in part due to the temporal averaging of both rockfall
and weather data over monthly intervals, or greater. Equally, this may also result from the fact that rockfalls
can also be released by smaller perturbations, making the trigger event hard to identify. Given the apparent
difficulty in identifying rockfall triggers, some have explored the possibility of lagged effects (e.g., Lim et al.,
2010; Strunden et al., 2015). Our findings suggest that monitoring at higher frequencies has the potential
both to capture such lagged responses and to observe indicators of the underlying mechanisms, such as
small‐scale precursory rockfalls, prefailure deformation, or fracture dilation (Carlà et al., 2016; D'Amato
et al., 2016; Rosser et al., 2007; Royán et al., 2015). While broad seasonal rockfall patterns or the rockfall
response to distinct events can be obvious, even in low‐frequency monitoring data, without data captured
at a high temporal resolution it will remain difficult to distil a mechanically meaningful understanding of
rockfall triggers from time‐averaged data alone.

5. Conclusions

High‐frequency monitoring over a 10‐month period has revealed new insights into the nature of rockfall
activity on a coastal cliff. We have identified a high degree of sensitivity of rockfall volume‐frequency scaling
(magnitude‐frequency) to the time between monitoring surveys. When monitoring at long intervals, here
≥ 12 hr, the probability distribution of measured rockfall volumes remains ostensibly constant. Below this
interval, however, an increasingly short survey interval results in a nonlinear increase in the number of indi-
vidual rockfalls observed, which on average each have a lower volume than rockfalls observed over longer
intervals. Our data suggest that we are observing the separation through time of otherwise superimposed
and/or coalesced rockfalls as individual fragments. Our comparison of rockfall geometry to the rock mass
structure reveals that predicting individual block size based upon rock mass structure alone may be proble-
matic over short (instantaneous) timescales. Over the longer term, and as monitoring intervals increase,
rockfall geometry has been shown to converge with that defined by rock mass structure. Importantly, the
data imply that small rockfalls cannot be considered independent in space or time, with the patterns we
reveal being indicative of progressive failure mechanisms driving rockfalls that fundamentally display a time
dependency. If this behavior is not considered, identifying rockfall triggers and accurately constraining the
hazard they pose will remain difficult, due to the underestimation of rockfall frequency and averaging of
relationships with external drivers over timescales beyond those of individual rockfall occurrence. With
wider use of the relation between monitoring interval and magnitude‐frequency exponent (equation (3)),
an appraisal of the role of small, frequent events in driving larger events will improve our understanding
of the time dependence and drivers of landscape evolution.
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