Structural and Multidisciplinary Optimization
https://doi.org/10.1007/500158-019-02281-z

RESEARCH PAPER

Automated shape differentiation in the Unified Form Language

David A. Ham' - Lawrence Mitchell? - Alberto Paganini3

Received: 7 December 2018 / Revised: 4 April 2019 / Accepted: 11 April 2019

© The Author(s) 2019

Abstract

®

Check for
updates

- Florian Wechsung?

We discuss automating the calculation of weak shape derivatives in the Unified Form Language (JAMA 40(2):9:1-9:37
2014) by introducing an appropriate additional step in the pullback from physical to reference space that computes Gateaux
derivatives with respect to the coordinate field. We illustrate the ease of use with several examples.

Keywords Shape derivatives - Finite elements

1 Introduction

Physical models often involve functionals that assign real
values to the solutions of partial differential equations
(PDEs). For instance, the compliance of a structure is a
function of the solution to the elasticity equations, and the
drag of a rigid obstacle immersed in a fluid is a function of
the solution to the Navier-Stokes equations.

This type of functional depends on the PDE parameters, and
it is often possible to compute the derivative of a functional
with respect to a chosen set of parameters. This derivative
can in turn be used to perform sensitivity analysis and to run
optimization algorithms with respect to parameters in the
PDE.

Responsible Editor: Ji-Hong Zhu

< Alberto Paganini
paganini @maths.ox.ac.uk

David A. Ham
david.ham @imperial.ac.uk

Lawrence Mitchell
lawrence.mitchell @durham.ac.uk

Florian Wechsung
wechsung @maths.ox.ac.uk

Department of Mathematics, Imperial College London,
London, SW7 2AZ, UK

Department of Computer Science, Durham University,
Durham, DH1 3LE, UK

3 Mathematical Institute, University of Oxford, Oxford, OX2
6GG, UK

Published online: 02 August 2019

The shape of the physical domain that is part the PDE-
model (like the shape of the rigid obstacle mentioned
above) is a parameter that is not straightforward to handle.
Although we can compute the shape derivative of a func-
tional following shape calculus rules (Delfour and Zolésio
2011), this differentiation exercise is often tedious and
error prone. In Schmidt (2018), Schmidt introduces the
open-source library FEMorph: an automatic shape differ-
entiation toolbox for the Unified Form Language (UFL,
Alnes et al. 2014). The library FEMorph is based on
refactoring UFL expressions and applying shape calculus
differentiation rules recursively. It can compute first- and
second-order shape derivatives (both in so-called weak and
strong form), and it has been successfully employed to solve
shape optimization problems (Schmidt et al. 2018).

This article presents an alternative approach to automated
shape differentiation. The key idea is to rely solely on
pullbacks and standard Gateaux derivatives. This approach
is more generic and robust, because it does not require
handling of special cases. In particular, it circumvents the
implementation of shape calculus rules, and required only a
minor modification of UFL, because UFL supports Gateaux
derivatives with respect to functions. As a result, UFL is
now capable of shape differentiating any integral that can be
expressed in it.

This article is organized as follows. In Section 2, we revisit
shape calculus and describe how to shape differentiate using
standard finite element software. In Section 3, we consider
three test cases and show how to compute shape derivatives
using Firedrake and UFL. In Section 4, we describe code
validation of this new UFL feature. In Section 5, we
solve a PDE-constrained shape optimization test case with
a descent algorithm implemented in Firedrake and UFL.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00158-019-02281-z&domain=pdf
http://orcid.org/0000-0003-3309-7657
mailto: paganini@maths.ox.ac.uk
mailto: david.ham@imperial.ac.uk
mailto: lawrence.mitchell@durham.ac.uk
mailto: wechsung@maths.ox.ac.uk

D.A.Ham et al.

Finally, in Section 6, we summarize the contribution of this
article.

2 Shape differentiation on the reference
element

A shape functional is a map J : U — R defined on the
collection of domains I/ in R?, where d € N denotes the
space dimension.

We follow the perturbation of identity approach (Simon
1980) and for a vector field V. e WL®(RY RY), we
consider the family of transformations {Py},>0 defined by
P;(x) = x + sV(x) for every x € R?. Note that P;isa
diffeomorphism for any sufficiently small s € R,

For a domain Q € U, let Q; = P;(2) and assume that
Q, € U for s sufficiently small. The shape directional deriva-
tive of J at 2 in direction V is the derivative
dJ(Q)[V] = lim) —I&

sN\O N

We say that J is shape differentiable in Q if the
directional derivative dJ(£2)[V] exists for every direction
V e WLoo(R9 RY), and if the associated map dJ(2) :
w0 (R4 RY) > R is linear and continuous. In this case,
the linear operator dJ(€2) is called the shape derivative of J
in .

To illustrate the shape differentiation of a shape
functional, we consider the prototypical example

J(€2) =/ up, dx ey
Q

where up, is a scalar function.! The subscript P, highlights
the possible dependence of up, on the domain €.

The standard procedure to compute dJ is to employ
transformation techniques and rewrite

J(€2) = / (up, o Py) det(DPy) dx , @
Q

where DP; denotes the Jacobian matrix of Py and up, o Py
denotes the composition of up, with P, that is, (up, o
P;)(x) = up, (P5(x)) for every x € Q. Note that det(DPy) >
0 for s sufficiently small. Then, by linearity of the integral,
the shape derivative dJ is given by

dI(2)[V] = / ds((up, o Py) detDPy) dx
Q

= / ds(up, o Py) + up,div(V) dx, 3)
Q

where dg(-) denotes the derivative with respect to s at s = 0.
The term ds (up, o Py) is often called the material derivative
(Berggren 2010). Its explicit formula depends on whether

I'Shape functionals that involve vector fields or boundary integrals can
be treated following the same steps and employing suitable pullbacks.

@ Springer

the function up, does or does not dependent on €2, (see
Section 3).

Next, we repeat the derivation of (3) in the context of
finite elements and derive an alternative formula for dJ. Let
{(K;}ieT be a partition of € such that U;K; = Q and such
that the elements K; are non-overlapping. Additionally, let
{F;};c7 be a family of diffeomorphisms such that F; (K) =
K; for every i € Z, where K denotes a reference element.
This induces a partition {P;(K;)};c7 of €2;. To evaluate (1),
standard finite element software rewrites it as

1) = Z/

ieT Ps(K;)

= > [, 0P F)ldet D F . ()
K

i€l

up, dx

Let Fi_1 denote the inverse of F;, that is, F; ! (F; (x)) = x for
every X € K, and F; (F;l (x)) = x for every x € K;. Since
Py = (P;oF)oF ' and P, oF; = F; + 5V o F;, we can
rewrite (4) as follows:

@)=y /K (u(Fi sovetport © Fi sV o F,-))
i€l
| det(D(F; +sVoF)|dE. (5)

Let {gi};c7 be the collection of maps defined by
gi(T) = (uTOFl__1 oT)|det(DT)]|.

Then, formula (5) can be rewritten as

J(Qs)=2/kgi<Fi+svoFi)d£,

i€l

and taking the derivative of (5) with respect to s implies

@IVl =Y f dy(gi(F; + sV o F))) di. (©)
i€l K

Equation (6) gives an alternative and equivalent expression
for the shape derivative (3). However, to derive formula (3),
it is necessary to follow shape calculus rules by hand, which
is often a tedious and error prone exercise. Equation (6), by
contrast, can be derived automatically with finite element
software. Indeed, to evaluate J(£2), standard finite element
software rewrites it as

Q) = Z/Iegi(m

iel
In UFL, the maps {g;};c7 are constructed symbolically and
in an automated fashion. Therefore, it is possible to evaluate
dJ(2)[V] by performing the steps necessary for the assem-

bly of J(£2) and, at the appropriate time, differentiating the
maps {g; }icz. To be precise, this differentiation corresponds

Automated shape differentiation in the Unified Form Language

to a standard Gateaux directional derivative, because the
integrand in (6) corresponds to the following limit

gi(Fi+sVoF;)— g (F)
S b

ds(gi(F; + sV o F;)) = lim
SN0

which can be interpreted as the Gateaux directional
derivative of g; at T = F; in the direction VoF; (Hinze et al.
2009, Def. 1.29). This viewpoint is important to correctly
implement this differentiation step in the existing pipeline
in UFL (see Fig. 1). We emphasize that this also enables
computing higher order shape derivatives by simply taking
higher order Gateaux derivatives in (6).

Remark 1 Lagrange finite element global basis functions
are obtained by gluing local parametric basis functions, that
is, basis functions {bfn}mE M defined only on K; and of
the form b,, = l;m o Ff], where {Em}me/\/l is the set of
reference local basis functions, which are defined only on
the reference element K. If V lives in a Lagrange finite
element space built on the partitioning {K; }; <7, it is possible
to evaluate dJ(T)[V] by computing the Gateaux derivative
in (6) in the direction of the reference local basis functions
{l;m}mE M (instead of in the direction V o F;) and summing
these values. This allows us to fully rely on the symbolic
differentiation capabilities of UFL.

Remark 2 The approach does not rely on the element being
affinely mapped, but extends to elements that are mapped
using a Piola transform such as the Raviart-Thomas or
Nedelec elements. However, the current implementation
does not work for elements such as the Hermite element
that require different pullbacks for point evaluation and
derivative degrees of freedom.

3 Examples

In this section, we consider three examples based on (1)
that cover most applications. For these examples, we give

‘ Input: integrand in physical space ‘

l

’ Estimate quadrature degree ‘

‘ Pullback to reference element |

‘ New: calculate derivatives with respect to coordinates ‘

l

’ Output: integrand in reference space l

Fig. 1 Symbolic workflow in UFL to transform integrals from
physical to reference space

1| from firedrake import *

2imesh = UnitSquareMesh(10, 10)

3jx, y = X = SpatialCoordinate (mesh)
4 J = (x*x + yxy - 1) * dx

5|dJ = assemble(derivative(J, X))

Listing 1 Firedrake code to compute dJ from example 1 when
u(x,y) =x2+y> -1

explicit expressions of dJ using (3) and (6) and show how
to compute dJ with the finite element software Firedrake?
(Rathgeber et al. 2016). To shorten the notation, we define
V,‘ =Vo F,‘ .

Example 1 Let the integrand be independent of €2, i.e.,
up, = u for some function u. Then, the chain rule implies
that ds(up, o Ps;) = ds(u o Py) = Vu - V. Recalling
ds(det DPy) = div(V), we conclude that (3) becomes

dI()[V] = / Vu -V +udiv(V) dx . @)
Q

On the other hand, inserting up, = u into (6), we obtain the
equivalent expression:

A(Q)[V] = Z/ (Vi (VuoFy
K

i€l
+uo Fi)tr(DV,-DFi_l)> | det(DF;)| d . 8)

Example code is shown in Listing 1. Functionals with domain
independent integrands are used in applications including
image segmentation (Hintermiiller and Ring 2004) or, when
u = 1, to enforce volume constraints in shape optimization.

Example 2 Let {V;(Q2)}s be a family of scalar finite
element spaces such that the global basis functions {B!}; of
Vi, () are of the form B! = B’ o P!, where {B'}; are
basis functions of Vj,(£2) and P;l is the inverse of Py, that
is, P;](Ps x) = PS(P;](X)) = x for every x € R?. Let
vp, € V() and up, = vp, + || Vup, ||>. Since

vp, o Ps + [[(Vup,) o P||? = vp, + [DP; T Vupy |2, (9)

equation (3) becomes

dJ()[V] Z/Q(UPOJr IV vp, [1%)div(V)
— 2Vup, - (DVI Vup,) dx . (10)

On the other hand, note that for any X € K and for i €
Z, it holds vp, (P,(F;(x))) = wv;(*), where v; is a linear

2Examples using FEniCS (Logg and Wells 2010; Logg et al. 2012)
will be almost identical, modulo small differences in setting up initial
conditions

@ Springer

D.A.Ham et al.

from firedrake import *

mesh = UnitSquareMesh(10, 10)

V = FunctionSpace(mesh, "CG", 1)

x, y = X = SpatialCoordinate (mesh)

s|v = interpolate(sin(x) * cos(y), V)

6/ J = v * dx + inner(grad(v), grad(v)) * dx
7/dJ = assemble(derivative(J, X))

A w N e

Listing 2 Firedrake code to compute dJ from example 2. Note that in
this case, v does not depend explicitly on x and y

combination of the local basis functions {l;m}me M defined
on the reference element K. Therefore,

vp, o Py o F; + [[(Vup,) o Ps o Fi|)?
=0 + |ID®s o F)~ TV ||> onK, (11)

and (6) becomes
dJ(Q)[V]:Z / ((ﬁ,- + |IDF; " Vu;||*)tr(DV;DF; 1)
T K

2V, - DF;1DV,-DF;1DF;TW,-) | det(DF;)| d%.
(12)

Listing 2 shows code for this case, using as vp,, the
piecewise affine Lagrange interpolant of sin(x) cos(y).

Example 3 Let up, be the finite element solution to the
boundary value problem

—Aup,+up, = f inQ, Vup,,m=0 ondQ. (13)

In this case, the functional (1) is said to be PDE-constrained,
and computing its shape derivative is less straightforward.
The standard procedure is to introduce an appropriate
Lagrangian functional (Delfour and Zolésio 2011, Ch. 10,
Sect. 5). For this example, the Lagrangian is

LS(MP_N vs) = J(82%) + es(uPSs Vs), (14)

where
es(up,, vg) = / Vup, - Vug +up, vy — fusdx (15)
Qs

stems from the weak formulation of the PDE constraint (13).
The shape derivative dJ is equal to the shape derivative of
Ly(u o P71, p o P;1), where u is the solution to (15) for
s = 0and p € V;,(€2) is the solution to an adjoint boundary
value problem. The shape derivative of L (u o Ps_1 ,po PS_I)
can be computed as in example 2. The result is

dJ(Q)[V] = f u+Vu-Vp+up— fp)div(V)
Q

—pVf-V—=Vu-DOV+DVH)Vpdx. (16)

For this example, we omit the equivalent formula on
the reference element because of its length. However, as
Listing 3 shows, UFL removes the tedium of deriving the
shape derivative, and we can easily compute dJ.

@ Springer

from firedrake import *

mesh = UnitSquareMesh(10, 10)

V = FunctionSpace(mesh, "CG", 1)

x, y = X = SpatialCoordinate (mesh)

u, p, v = Function(V),Function(V),TestFunction(V)
e = inner(grad(u), grad(v))*dx + (wfv - x*y*v)*dx
J=u* dx

solve(e == 0, w)

solve(adjoint(derivative(e,u)) == -derivative(J,u,v),p)
10|L = replace(e, {v: p}) + J

11]dJ = assemble(derivative(L, X))

I - N N S R R

©

Listing 3 Firedrake code to compute dJ from example 3 when
f@x,y) =xyin(15)

Remark 3 With appropriate modifications, the same code
can be use for functionals constrained to boundary value
problems with Neumann or Dirichlet boundary conditions.
For the Neumann case, it is sufficient to add the Neumann
forcing term in line 6 of Listing 3. For the Dirichlet case, one
needs to replace u with u+g in lines 6 and 7 (where g is the
function defined in terms of X that describes the Dirichlet
boundary condition) and impose homogeneous Dirichlet
boundary conditions in lines 8 and 9.

Remark 4 To evaluate the action of the shape Hessian of a
PDE-constrained functional, one can follow the instructions
given in Hinze et al. (2009, p. 65). Note that by computing
shape derivatives as in (6), it is straightforward to combine
shape derivatives of Lg(u o Ps_l, po Ps_l) with standard
Gateaux derivatives with respect to u o Py 1.

4 Code validation

We validate our implementation by testing that the Taylor
expansions truncated to first and second order satisfy the
asymptotic conditions

§1J,8) =0(?) and 8(J,s) = O(sY), 17)

where
81, 8) = [[J(€) — J(§2) — sdJ(S)[V]Il
and
52(J,8) = [(€2) — J(S2)
— sdJ(Q)[V] — %szd%(sz)[v, V]| .

In Fig. 2, we plot the values of 8 and &, for s = 271,272,
...,2710 and J as in examples 1 and 3 from the previous
section (we denote these functionals J; and J; respectively).
The vector field V is chosen randomly. This experiment
clearly displays the asymptotic rates predicted by (17).

We have repeated this numerical experiment for many
other test cases, including functionals that are not linear in «,
functionals given by integrals over d<2 involving the normal

Automated shape differentiation in the Unified Form Language

Taylor test

10— 11 4 16:(J1,8) == [82(Ja,)]
== [5:(J2, 8)| == 102(J2,)|

101

S

Fig.2 Taylor test for examples 1 and 3. The convergence rates match
the expected convergence

n, and functionals that are constrained to linear and nonlin-
ear boundary value problems with nonconstant right-hand
sides and nonconstant Neumann and Dirichlet boundary
conditions. In every instance, we have observed the asymptotic
rates predicted by (17). The code for these numerical exper-
iments is available at “Software used in ‘Automated shape
differentiation in the Unified Form Language’ (2019)”.

5 Shape optimization of a pipe

In this section, we show how to use Firedrake and the
new UFL capability to code a PDE-constrained shape
optimization algorithm. As test case, we consider the
optimization of a pipe to minimize the dissipation of kinetic
energy of the fluid into heat. This example is taken from
Schmidt (2010, Sect. 6.2.3). To simplify the exposition, we
use a very simple optimization strategy. At the end of the
section, we will comment on possible improvements.

1.6e+00
|

— 0.5

l 0.0e+00

Velocity Magnitude

Fig.3 Initial (top) and optimized (bottom) shape of a pipe connecting
a given inflow and outflow

The initial design of the pipe is shown in Fig. 3 (top). The
pipe contains viscous fluid (with viscosity v), which flows
in from the left and is modeled using the incompressible
Navier-Stokes equations. To be precise, let Q2 be the shape
of the pipe, I' C 9S2 be the outflow boundary of the pipe
(that is, the end of the pipe on the right), and u and p be the
velocity and the pressure of the fluid, respectively. Then, u
and p satisfy

—vAu+uVu+Vp =0 in 2,
diva =0 in 2,

u=g ondQ\I,

pn—vVy-n =0 onl.

Here, g is given by a Poiseuille flow at the inlet and is zero
on the walls of the pipe

The goal is to modify the central region of the pipe so
that the shape functional

JI(Q) :/ vVu: Vudx
Q

is minimized. To solve this shape optimization problem, we
parametrize the initial design with a polygonal mesh and update
the node coordinates using a descent direction optimiza-
tion algorithm with a fixed step size. As descent directions,
we use Riesz representatives of the shape gradient with
respect to the inner product induced by the Laplacian, i.e.,
at each step the deformation is given by the solution to

— AV = —dJI(Q)
V=0

in Q
on fixed boundaries. (18)

This approach is also known as Laplace smoothing. To
avoid degenerate results, we penalize changes of the pipe
volume. The whole algorithm, comprising of state and adjoint
equations and shape derivatives, is contained in Listing 4 and
described in detail in the following paragraph. The optimized
shape is displayed in Fig. 3 (bottom), the convergence
history is in Fig. 4. These results are compatible with those
in Schmidt (2010, Sect. 6.2.3) and clearly indicate the
success of the shape optimization algorithm.

Description of Listing 4 In lines 2-4, we load the finite ele-
ment mesh pipe.msh and extract the vertex coordinates.
This mesh is generated with Gmsh (Geuzaine and Remacle
2009) and is available as part of “Software used in ‘Auto-
mated shape differentiation in the Unified Form Language’
(2019)”. Lines 5-8 define the Gramian matrix of the inner
product employed to compute descent directions. In lines
9-14, we define the space of P2-P1 Taylor-Hood finite ele-
ments, which we use to discretize the weak formulation of
the Navier-Stokes equations, and set up the functions con-
taining the solutions to the state and adjoint equation as well
as the test functions for the weak form. In lines 15-22, we

@ Springer

D.A.Ham et al.

from firedrake import *

mesh = Mesh("pipe.msh")
coords = mesh.coordinates.vector()
X = SpatialCoordinate (mesh)

v

w

IS

W = mesh.coordinates.function_space()

gradJ = Function(W)

phi, psi = TrialFunction(W), TestFunction(W)

A_riesz = assemble(inner(grad(phi), grad(psi)) * dx)

® N o o«

9| Z = VectorFunctionSpace(mesh, "CG", 2) \
10 * FunctionSpace(mesh, "CG", 1)

1|z, z_adjoint = Function(Z), Function(Z)
12lu, p = split(z)

13| test = TestFunction(Z)

14|V, q = split(test)

inu = 1./400.

16| @ = nuxinner(grad(u), grad(v))*dx - p*div(v)*dx \
17 + inner(dot(grad(u), uw), v)*dx + div(u)*qg*dx
is|uin = 6 * as_vector ([(1-X[11)*X[1], 01)

10/bcs = [DirichletBC(Z.sub(0), 0., [3, 4]1),
20 DirichletBC(Z.sub(0), uin, 1)]

21/sp = {"mat_type": "aij", "pc_type": "lu",
22 "pc_factor_mat_solver_type": "mumps"}

23| J = nu * inner(grad(u), grad(u)) * dx
24/ volume = Constant(l.) * dx(domain=mesh)
25| target_volume = assemble(volume)

26| dvol = derivative(volume, X)

27|L = replace(e, {test: z_adjoint}) + J
28| dL = derivative(L, X)

29/c = 0.1

solout = File("u.pvd")
21| def solve_state_and_adjoint():

32 solve(e==0, z, bcs=bcs, solver_parameters=sp)

33 solve(derivative(L, z)==0, z_adjoint,

34 bcs=homogenize (bcs), solver_parameters=sp)
35 out.write(z.split() [0])

36| solve_state_and_adjoint ()
a7|for i in range(100):

38 dJ = assemble(dL).vector() \

39 + assemble(dvol) .vector() * c * 2\

10 * (assemble(volume)-target_volume)

41 solve(A_riesz, gradJ, dJ,

12 bes=DirichletBC(W, 0, [1, 2, 31))

13 print("i = ¥3i; J = %.6f; ||dJ|| = %.6f"

" % (i, assemble(J), norm(grad(gradJ))))
15 coords -= 0.5 * gradJ.vector()

16 solve_state_and_adjoint ()

Listing4 Firedrake code to optimize the shape of a pipe and minimize
the dissipation of kinetic energy into heat. Lines 26 and 28 use the
newly developed automatic shape differentiation

define the weak formulation of the Navier-Stokes equations
and certain parameters to prescribe the use of the MUMPS
direct solver (Amestoy et al. 2000) to solve the linearized
equations. In lines 23-29, we define the shape functional J,
the functional describing the volume of the shape, as well
as the Lagrangian and its derivative. In particular, note that
the shape derivative of the Lagrangian can be computed

@ Springer

Convergence of gradient and functional value

0.6

-_—J

V]

0.4 14 T T T T T
0 20 40 60 80 100
Iteration

Fig. 4 The value of the objective (plotted in linear scale) is reduced
from approximately 0.61298 to 0.40506. The H '-norm of the gradient
(plotted in logarithmic scale) is reduced from 0.487274 to 0.000870

with the simple command dL. = derivative (L, X)
in line 28. Without the new automatic shape differentiation
capability in UFL, line 28 would have to be replaced with
the following formula
dL = -inner (nuxgrad(u)+grad (W), grad(v)) xdx
-inner (nuxgrad(u), grad(v)xgrad(W)) *dx
-inner (v, grad(u)xgrad (W) xu) xdx
+tr (grad(v) xgrad (W)) *p*dx
-tr (grad(u) xgrad (W)) xg+dx
+div (W) xinner (nuxgrad (u), grad(v)) xdx
) *dx
) *dx
+div (W) xinner (v, grad(u)*u) +xdx

-div (W) *inner (div(v), p
+div (W) *inner (div(u), g
+nuxinner (grad(u), grad(u))*div (W) «dx
-2*nuxinner (grad(u) *xgrad (W), grad(u))
*dx
In lines 3035, we set up a function that updates the solution
to the state and the adjoint equations. We emphasize that this
shape optimization problem is not self-adjoint and that UFL
derives the adjoint equation automatically. Note that, when-
ever the function solve_state_and_adjoint is called,
the new values of the velocity u are stored in the file u.pvd
(which can visualized using Paraview (Ahrens et al. 2005)).
Finally, lines 3646 contain the optimization algorithm: for
100 iterations, we compute the shape derivative and penalize
volume changes (lines 38—40), compute the descent direc-
tion (lines 41-42), update the domain (line 45), and update
the state and adjoint solutions (line 46).

Remark 5 The optimization algorithm of Listing 4 is based
on a simple optimization strategy and can be improved in
several ways, at the mere cost of adding lines of code.
For instance, instead of using a fixed step size and a fixed
number of iterations, one could implement an adaptive
step-size selection and stopping criteria. Additionally, one
could experiment with different inner products to define
descent directions (https://epubs.siam.org/doi/abs/10.1137/
17M1152711), as well as compute second-order derivatives
of J and implement (Quasi-)Newton methods (Schmidt
2018). Despite the room for improvement, we would like to

https://epubs.siam.org/doi/abs/10.1137/ 17M1152711
https://epubs.siam.org/doi/abs/10.1137/17M1152711

Automated shape differentiation in the Unified Form Language

stress that Listing 4 can be readily used for a 3D problem by
simply passing a 3D mesh and changing the inflow boun-
dary condition in line 18.

6 Discussion

We have presented a new and equivalent formulation of
shape derivatives in the context of finite elements as
Giteaux derivatives on the reference element. While the
formulation applies to finite elements in general, we have
implemented this new approach in UFL due to its extensive
support for symbolic calculations. This new UFL capability
allows computing shape derivatives of functionals that are
defined as volume or boundary integrals, and that are con-
strained to linear and nonlinear PDEs. During shape differ-
entiation, our code treats finite element functions and global
functions differently. This behavior is correct and necessary
to handle PDE-constraints properly. In combination with a
finite element software package, such as FEniCS or Fire-
drake, that takes as input UFL, this enables the entirely
automated shape differentiation of functionals subject to
boundary value problems. This notably simplifies tackling
PDE-constrained shape optimization problems.

Compared to the existing shape differentiation toolbox
FEMorph, our code does not compute shape derivatives in
strong form because it neither relies on shape calculus differen-
tiation rules nor performs integration by parts. However, in
practice, we do not consider this a limitation as it has been
shown in Hiptmair et al. (2015), Berggren (2010), and Zhu
(2018) that the weak form is superior when the state and the
adjoint equations are discretized by finite elements.

7 Replication of results

The code for the numerical experiments is available at
Software used in ‘Automated shape differentiation in the
Unified Form Language’ (2019).

Author contributions This work originated in a discussion between
the four authors at the FEniCS 18 conference, where AP and
DAH suggested to calculate shape derivates as in Section 2. FW
implemented this idea in UFL with help from LM. The manuscript was
written by AP and FW, with feedback from LM and DAH.

Funding information DAH is supported by the Natural Environment
Research Council (grant no. NE/K008951/1). LM is supported by
the Engineering and Physical Sciences Research Council (grant no.
EP/L000407/1). FW is supported by the EPSRC Centre For Doctoral
Training in Industrially Focused Mathematical Modelling (grant no.
EP/L015803/1).

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were
made.

References

Ahrens J, Geveci B, Law C (2005) Paraview: an end-user tool for large
data visualization. The visualization handbook, 717

Alnes MS, Logg A, @lgaard KB, Rognes ME, Wells GN (2014)
Unified form language: a domain-specific language for weak
formulations of partial differential equations. ACM Trans Math
Softw 40(2):9:1-9,37. https://doi.org/10.1145/2566630

Amestoy PR, Duff IS, L’Excellent JY, Koster J (2000) Mumps: a gen-
eral purpose distributed memory sparse solver. In: International
workshop on applied parallel computing. Springer, pp 121-130

Berggren M (2010) A unified discrete-continuous sensitivity analysis
method for shape optimization. In: Applied and numerical partial
differential equations, Comput. Methods Appl. Sci., vol 15. Springer,
New York, pp 25-39. https://doi.org/10.1007/978-90-481-3239-3_4

Delfour MC, Zolésio JP (2011) Shapes and geometries. Metrics,
analysis, differential calculus, and optimization advances in design
and control, vol 22, 2nd edn. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia. https://doi.org/10.1137/1.97
80898719826

Geuzaine C, Remacle JF (2009) Gmsh: a 3-D finite element mesh
generator with built-in pre-and post-processing facilities. Int J
Numer Methods Eng 79(11):1309-1331

Hintermiiller M, Ring W (2004) A second order shape optimization
approach for image segmentation. SIAM J Appl Math 64(2):442—
467. https://doi.org/10.1137/S0036139902403901

Hinze M, Pinnau R, Ulbrich M, Ulbrich S (2009) Optimization with
PDE constraints mathematical modelling: theory and applications,
vol 23. Springer, New York

Hiptmair R, Paganini A, Sargheini S (2015) Comparison of approx-
imate shape gradients. BIT 55(2):459-485. https://doi.org/10.10
07/s10543-014-0515-z

Logg A, Wells GN (2010) DOLFIN: automated finite element comput-
ing. ACM Trans Math Softw 37(2):20:1-20,28. https://doi.org/10.
1145/1731022.1731030

Logg A, Mardal KA, Wells GN (eds) (2012) Automated solution of
differential equations by the finite element method: the FEniCS
book. Springer

Rathgeber F, Ham DA, Mitchell L, Lange M, Luporini F, McRae ATT,
Bercea GT, Markall GR, Kelly PHJ (2016) Firedrake: automating
the finite element method by composing abstractions. ACM Trans
Math Softw 43(3):24:1-24,27. https://doi.org/10.1145/2998441

Schmidt S (2010) Efficient large scale aerodynamic design based on
shape calculus. Ph.D. thesis, Universitit Trier

Schmidt S (2018) Weak and strong form shape Hessians and their
automatic generation. SIAM J Sci Comput 40(2):C210-C233.

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/2566630
https://doi.org/10.1007/978-90-481-3239-3_4
https://doi.org/10.1137/1.9780898719826
https://doi.org/10.1137/1.9780898719826
https://doi.org/10.1137/S0036139902403901
https://doi.org/10.1007/s10543-014-0515-z
https://doi.org/10.1007/s10543-014-0515-z
https://doi.org/10.1145/1731022.1731030
https://doi.org/10.1145/1731022.1731030
https://doi.org/10.1145/2998441

D.A.Ham et al.

https://doi.org/10.1137/16M1099972. Software freely available at
https://bitbucket.org/Epoxid/femorph

Schmidt S, Schiitte M, Walther A (2018) Efficient numerical solution of
geometric inverse problems involving Maxwell’s equations using shape
derivatives and automatic code generation. SIAM J Sci Comput
40(2):B405-B428. https://doi.org/10.1137/16M110602X

Simon J (1980) Differentiation with respect to the domain in
boundary value problems. Numer Funct Anal Optim 2(7-8):649—
687. https://doi.org/10.1080/01630563.1980.10120631

@ Springer

Software used in ‘Automated shape differentiation in the Unified Form
Language’ (2019). https://doi.org/10.5281/zenodo.2621254

Zhu S (2018) Effective shape optimization of laplace eigenvalue prob-
lems using domain expressions of Eulerian derivatives. J Optim

Theory Appl 176(1):17-34. https://doi.org/10.1007/s10957-017-
1198-9

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1137/16M1099972
https://bitbucket.org/Epoxid/femorph
https://doi.org/10.1137/16M110602X
https://doi.org/10.1080/01630563.1980.10120631
https://doi.org/10.5281/zenodo.2621254
https://doi.org/10.1007/s10957-017-1198-9
https://doi.org/10.1007/s10957-017-1198-9

	Automated shape differentiation in the Unified Form Language
	Abstract
	Introduction
	Shape differentiation on the reference element
	Examples
	Code validation
	Shape optimization of a pipe
	Description of Listing 4

	Discussion
	Replication of results
	Author contributions
	Funding information
	Compliance with ethical standards
	Conflict of interest
	Open Access
	References
	Publisher's note

