1	<u>TITLE PAGE</u>
2	
3	Title
4	
5	Same-day versus consecutive-day precision error of dual-energy X-ray
6	absorptiometry for interpreting body composition change in resistance trained
7	athletes
8	
9	Authors
10	
11	Adam J Zemski ¹
12	Karen Hind ²
13	Shelley E Keating ³
14	Elizabeth M Broad ⁴
15	Damian J Marsh ⁵
16	Gary J Slater ¹
17	
18	1 School of Health and Sport Sciences, University of the Sunshine Coast,
19	Maroochydore, Australia
20	² Department of Sport Science and Exercise Sciences, Durham University,
21	Durham, United Kingdom
22	³ School of Human Movement and Nutrition Sciences, The University of
23	Queensland, St Lucia, Australia
24	⁴ US Paralympics, US Olympic Committee, Chula Vista, CA, USA
25	⁵ Fiji Rugby Union, Suva, Fiji

Same-day versus consecutive-day precision error of dual-energy X-ray
 absorptiometry for interpreting body composition change in resistance
 trained athletes

30 Abstract

31

32 Introduction: The application of dual-energy X-ray absorptiometry (DXA) in 33 sport science settings is gaining popularity due to its ability to assess body 34 composition. The International Society for Clinical Densitometry (ISCD) 35 recommends application of the least significant change (LSC) to interpret 36 meaningful and true change. This is calculated from same-day consecutive scans, 37 thus accounting for technical error. However, this approach doesn't capture 38 biological variation which is pertinent when interpreting longitudinal 39 measurements, and could be captured from consecutive-day scans. The aims of 40 this study were to investigate the impact short-term biological variation has on 41 LSC measures, and establish if there is a difference in precision based on gender 42 in a resistance trained population. 43 Methodology: Twenty-one resistance trained athletes (age 30.6 ± 8.2 years; 44 stature 174.2 ± 7.2 cm; mass 74.3 ± 11.6 kg) with at least 12 months consistent 45 resistance training experience, underwent two consecutive DXA scans on one 46 day of testing, and a third scan the day before or after. ISCD recommended 47 techniques were used to calculate same-day and consecutive-day precision error 48 and LSC values. 49 Results: There was high association between whole body (R²=0.98–1.00) and

regional measures (R^2 =0.95–0.99) for same-day (R^2 =0.98–1.00) and

51	consecutive-day (R ² =0.95–0.98) measurements. The consecutive-day precision
52	error, in comparison to same-day precision error, was significantly different
53	(p<0.05), and almost twice as large for FM (1261g vs 660g), and over three times
54	as large for LM (2083g vs 617g), yet still remained within the ISCD minimum
55	acceptable limits for DXA precision error. No whole body differences in precision
56	error were observed based on gender.
57	Conclusion: When tracking changes in body composition, the use of precision
58	error and LSC values calculated from consecutive-day analysis is advocated,
59	given this takes into account both technical error and biological variation, thus
60	providing a more accurate indication of true and meaningful change.
61	
62	Key words
63	
64	Least significant change, LSC, DXA, lean mass, fat mass
65	
66	Introduction
67	
68	Dual-energy X-ray absorptiometry (DXA) has historically been utilised primarily
69	in clinical settings to quantify bone mineral content (BMC) and bone mineral
70	density (BMD) as part of osteoporosis assessment [1]. More recently, DXA has
71	gained popularity in sport science and fitness settings for its ability to assess
72	body composition, incorporating measures of whole body and regional lean mass
73	(LM) and fat mass (FM), including visceral adipose tissue (VAT) [2, 3].
74	

75 Highly trained athletes are likely to exhibit small body composition adaptations 76 over time [4, 5], however these minor changes can have a significant influence on 77 performance outcomes [6]. The ability to confidently quantify these small but 78 potentially important changes in body composition can enable better refinement 79 of interventions, and thus, potentially enhance athletic performance. The 80 International Society for Clinical Densitometry (ISCD) recommends the 81 application of the least significant change (LSC) in the interpretation of 82 longitudinal body composition measurements, which is calculated using same-83 day repeat scans [7, 8]. LSC quantifies precision based on two consecutive scans, 84 thus identifying the technical error inbuilt into a specific piece of equipment for a 85 given population [7]. However, in practice, longitudinal measures are taken 86 weeks or months apart, and despite following recommended best practice 87 protocols [9], some level of day-to-day biological variation will be present in 88 variables such as hydration status and muscle solute content, both of which 89 impact results [10, 11]. It is unclear what influence these factors have on body 90 composition LSC calculations.

91

92 Excellent precision for DXA body composition measures has been published in 93 non-athletic adults for both whole body and regional measures [12-15]. Varying 94 degrees of precision errors have been reported in athletic populations, with elite 95 male rugby league athletes having established higher precision errors than those 96 reported in other athletes, suggesting size may influence precision error [16-18]. 97 Presently, there is limited information available on female athletes. This is 98 pertinent given that precision errors should be specific to the population studied, 99 and athletes vary greatly in physique depending on their sport [19]. Sex-specific

100 differences in precision have been recognised in general populations, with 101 precision error in males being higher for FM, and lower in LM [15]. However, it is 102 unclear whether or not these differences exist in athletic populations given the 103 distinctive physique characteristics resistance trained individuals possess. 104 Furthermore, to date, biological variation has not been explored in resistance 105 trained female athletes, and there is little information about LSC values in this 106 sex-specific population. 107 108 The aims of this study were to 1) investigate the impact biological variation has 109 on LSC measures using best practice protocols; 2) establish if there is a 110 difference in precision, and day-to-day biological variation based on gender in a

resistance trained population; and 3) establish precision errors specific to a

112 population of resistance trained athletes on a given densitometer, the results of

113 which can be used to infer LSC in future longitudinal assessments.

114

115 Methods

116

117 Participants

118

119 Twenty-one resistance trained athletes (11 males and 10 females) participated

120 in the study. All participants had been consistently undertaking resistance

121 training for at least 12 months (averaging three resistance based sessions per

122 week). Resistance training modalities included Olympic lifting, body-weight

- 123 exercises, and free-weights exercises, with training focused on strength and
- 124 power related enhancements. All participants provided their signed informed

125 consent to undertake the scans, and all local radiologic safety regulations were126 adhered to.

127

128 Study design

129

130 Participants underwent two consecutive DXA scans on one day of testing (D1S1, 131 D1S2), and a third scan either the day before or after (D2S1), on a Hologic 132 Discovery A (Hologic, Bedford, MA, USA) using the auto whole body fan beam 133 mode. Participants presented and were scanned following the Nana et al. 134 protocol previously described [9]. Specifically, this included being scanned 135 bladder voided in the early morning after an overnight fast in a rested state. 136 Further, prior to both days of testing, participants were instructed to remain well 137 hydrated, consume their normal diet, and refrain from exercise to minimise 138 biological variation over the testing period. The participants were positioned on 139 the densitometer in the position recommended by Nana et al., with foam pads 140 utilised to ensure consistency in positioning [9]. When scans were performed on 141 the same day, participants were re-positioned for the repeat scan after 142 dismounting the scanning table. A single trained technologist, who was an 143 Australian and New Zealand Bone and Mineral Society (ANZBMS) gualified 144 densitometrist with the required radiation use licences, performed all scans. The 145 subsequent analysis was conducted using Hologic software (Version 13.4.2:3) by 146 the same technologist. Regions of interest (ROI) were manually placed according 147 to the manufacture's instructions, including the VAT ROI which has been 148 validated against measures elsewhere [20]. Quality control procedures were 149 undertaken daily using a phantom according to the manufacturer's guidelines.

150 Statistical analysis

151

152	Data analysis was performed using Microsoft Excel (Microsoft, Redmond, WA,
153	USA). Descriptive data is reported as the mean \pm standard deviation (SD).
154	Precision is reported as the root-mean-square standard deviation (RMS–SD) and
155	percentage coefficient of variation (%CV), and the resulting LSC with 95%
156	confidence intervals (LSC-95% CI) is calculated following the ISCD protocol [7].
157	The %CV was derived from the equation %CV = (SD/mean)*100. Coefficients of
158	determination (R^2) were calculated between measurements to establish how
159	well fitted lines of regression approximated the other measure. Paired t-tests
160	were utilised to test for differences based on same-day versus consecutive-day
161	scan results and precision, and independent t-tests were used to test for
162	differences based on gender. Bland Altman plots were created to compare same-
163	day and consecutive-day precision. All statistical significance was set at 0.05.
164	
165	Results
166	
167	Descriptive statistics for the population are given in Table 1. Significant sex-
168	specific differences were observed for the majority of regional body composition
169	measures, and whole body BMC, FM and LM.
170	
171	Table 2 displays the mean differences between same-day (technical error only)
172	and consecutive-day (technical error and biological variation) scans, as a whole
173	group and also based on sex. Whole body differences between same-day and

174 consecutive-day scans are also shown in Figures 1-3. Regionally, variations in

175 trunk LM and FM, plus whole body LM and FM were significantly different

176 between same-day and consecutive-day scans across most groups. Differences

177 were also observed for variations in leg LM based on gender, with males

178 exhibiting significantly greater differences across same-day (males 490 ± 421 g

179 vs females 153 ± 99 g; p = 0.024) and consecutive-day measures (males $629 \pm$

180 432 g vs females 238 ± 130 g; p = 0.013).

181

Table 3 shows the precision error for each region, represented as the %CV, with
the RMS-SD and LSC-95% CI. There was excellent agreement between same-day

184 ($R^2 = 0.99-1.00$) and consecutive-day measures ($R^2 = 0.98-0.99$) of whole body

185 BMC, FM and LM. There was similar agreement for both same-day and

186 consecutive-day measures of regional BMC and LM ($R^2 = 0.98-1.00$). Agreement

between consecutive-day measures of regional FM ($R^2 = 0.96-0.97$) and VAT (R^2

188 = 0.94) was not as strong as same-day measures (FM R^2 = 0.99; VAT R^2 = 0.96).

189 Statistically significant differences were found between same-day and

190 consecutive-day precision in measures of whole body FM and LM, and well as

191 regional measures of FM (arms, trunk and legs), and LM (arms and trunk). Bland

192 Altman analysis (Figure 4) shows a relatively small level of bias between same-

day and consecutive-day DXA precision for BMC (1 g), FM (108 g) and LM (347 g),

194 with relatively wide limits of agreement (BMC -73 to 75 g; FM -902 to 1119 g; LM

195 -2197 to 1502 g).

196

197 **Discussion**

The primary finding of this study was that substantial and statistically significant differences were observed between same-day (technical error) and consecutiveday precision error (technical error and biological variation) for FM and LM in a resistance trained population. Consecutive-day precision error was almost twice as large for FM, and over three times as large for LM. Given that longitudinal monitoring of body composition will include both technical error and biological variation, the use of consecutive-day precision error is advocated.

206

207 Same-day precision was excellent for whole body BMC (CV 0.6%, LSC 1.7%) and 208 LM (CV 0.3%, LSC 0.9%), and higher for FM (CV 1.8%, LSC 5.1%). Previously, 209 studies have investigated either short-term (same-day) precision, which 210 measures technical error [12, 17, 18], or long-term precision, which takes into 211 account both technical error and biological variation [15]. Same-day precision 212 errors were similar to those found on a Lunar iDXA for BMC (CV 0.6%, LSC 1.7%) 213 and LM (CV 0.5%, LSC 1.4%); however, FM on the iDXA was considerably lower 214 (CV 0.8%, LSC 2.3%) [12]. In comparison, the short-term precision (same-day 215 and consecutive-day) identified in this study is better than the long-term 216 precision errors previously reported when inferred over periods of 3-51 days 217 [15]. This is unsurprising given significant body composition adaptations can be 218 achieved in as little as 4-weeks in elite athletes [21], drawing into question the 219 validity of such long-term precision error estimates. 220

The ISCD advocates LSC is calculated for body composition indices before anyquantitative statement of change can be made for FM and LM measures [7]. To

223 our knowledge this is the first study to explore short-term biological variation as

224 part of LSC calculations on body composition, to account for possible biological 225 variation observed over 24 hours, in conjunction with technical error. Biological 226 variation can arise from fluctuations in gastrointestinal content, total body water 227 content, and glycogen reserves [10, 18], in particular on the measurement of LM 228 [10, 22]. This is particularly relevant in resistance trained individuals who have 229 the potential for larger fluctuations in hydration status and intramuscular 230 solutes such as creatine and glycogen over a short time frame [11, 23]. Our 231 consecutive-day testing resulted in wider precision errors for FM (CV 1.8% vs 232 2.9%, LSC 5.1% vs 8.0%) and LM (CV 0.3% vs 1.1%, LSC 0.9% vs 3.2%), 233 indicating small amounts of biological variation despite use of best practice 234 protocols [9], and instructions to the participants to eat normally and not 235 exercise between consecutive-day scans. Further, statistically significant 236 differences were found between the precision of same-day scans in comparison 237 to consecutive-day scans in whole body FM and LM, suggesting short-term 238 biological variation may meaningfully influence the interpretation of results. 239 Nevertheless, it should be noted that the consecutive-day precision errors in the 240 current study were within the acceptable limits for DXA precision as identified 241 by the ISCD which are 3% for FM and 2% for LM [7]. Further, the precision error 242 values were similar to those found in a number of studies as recently reviewed 243 [8].

244

Accounting for biological variation in addition to technical error significantly
widened the LSC for LM and FM, but not for BMC, in this resistance trained
population. However, we consider it valid to incorporate the biological variation
observed over a single day into LSC values, to ensure that when longitudinal

changes are being interpreted, true changes are able to be identified. Indeed, the
consecutive-day LSC values presented here have successfully been used to
interpret changes in physique traits in resistance trained individuals over a 12
week period [24]. Furthermore, these findings are similar to those reported for
bone mineral density, in that same-day precision underestimated true variability,
which could potentially result in an incorrect interpretation of longitudinal
change [25].

256

257 Same-day regional precision in this study was similar to that observed in

previous studies performed in a general population [26], student athletes [19]

and elite rugby league athletes [17]. Precision was better for BMC (CV 0.8–1.5%)

and LM (CV 0.8–1.2%) in all regions compared to FM (CV 2.1–2.7%). Further, the

trunk region exhibited the greatest regional variation, which agrees with reports

elsewhere [17, 27]. VAT measures had moderate same-day and consecutive-day

precision errors (CV same-day 5.3% vs consecutive-day 7.2%), with a high LSC

264 (same-day 15.3% vs consecutive-day 20.0%). In this study, consecutive-day

regional precision was similar to same-day precision for BMC in all areas,

266 however the CV was considerably higher for regional FM (CV 3.4–5.3%) and LM

267 (CV 1.5–1.9%) measures.

268

269 It has been advocated that the LSC values applied should be specific to the

athletic population being assessed [19]. Given the potential for marked

271 differences in physique between males and females, sex-specific precision should

272 be explored. No whole body differences in same-day or consecutive-day

273 precision error were observed between males and females. Prior to our study

274 there has only been one investigation of the short-term precision of DXA for 275 body composition assessment in female athletes. The reported precision errors 276 in that study for LM (CV 0.8%) and FM (CV 2.1%) were similar to that found in 277 this present study, although in the previous investigation only 3 athletes were 278 tested using a same-day protocol [28]. In the present study, whole body BMC, FM 279 and LM precision errors were not significantly different to males, with the only 280 sex-specific differences occurring for leg LM and trunk BMC. This is perhaps in 281 part due to similarities in training of the participants. Despite this, the 282 quantification of precision error specific to the athletic population being 283 investigated likely remains warranted, especially in populations with physique 284 extremes [8]. 285

286 The authors recognise some limitations in the study design which may have had 287 an impact on the findings. Firstly, the sample of participants was relatively small, 288 and slightly smaller than that recommended by the ISCD to calculate LSC. 289 Further, it is recognised that the specialised group of athletes used in the study 290 limits the general applicability of the of the findings. However, it is known 291 precision varies according to body size [16, 17, 29]. Additionally, it is recognised 292 by the ISCD that it is important to understand the precision of DXA within 293 specific groups when interpreting results from others within the same 294 population, making the findings of this study applicable in practice. 295 296 Conclusion

297

298	In a p	opulation of resistance trained athletes, consecutive-day precision error
299	was a	lmost twice as large for whole body FM, and over three times as large for
300	whole	e body LM. Despite this, the Hologic Discovery A Densitometer provided
301	accep	table precision error for whole body measures of BMC, LM, and FM, which
302	rema	ined within the ISCD minimum acceptable limits. When tracking changes in
303	body	composition, it would seem pertinent to use precision error and LSC values
304	calcu	ated from consecutive-day analysis, given this takes into account both
305	techn	ical error and biological variation, and both contribute to precision when
306	inter	preting longitudinal change.
307		
308	Refei	rences
309		
310	1.	Blake, GM, I Fogelman. 2009. The clinical role of dual energy X-ray
311		absorptiometry. Eur J Radiol. 71: 406-414.
312		
313	2.	Meyer, NL, J Sundgot-Borgen, TG Lohman, et al. 2013. Body composition
314		for health and performance: a survey of body composition assessment
315		practice carried out by the Ad Hoc Research Working Group on Body
316		Composition, Health and Performance under the auspices of the IOC
317		Medical Commission. Br J Sports Med. 47: 1044-1053.
318		
319	3.	Ackland, TR, TG Lohman, J Sundgot-Borgen, et al. 2012. Current status of
320		body composition assessment in sport: review and position statement on
321		behalf of the ad hoc research working group on body composition health

322		and performance, under the auspices of the I.O.C. Medical Commission.
323		Sports Med. 42: 227-249.
324		
325	4.	Burke, LM, RS Read, RA Gollan. 1985. Australian Rules football: an
326		anthropometric study of participants. Br J Sports Med. 19: 100-102.
327		
328	5.	Harley, JA, K Hind, P O'Hara J. 2011. Three-compartment body
329		composition changes in elite rugby league players during a super league
330		season, measured by dual-energy X-ray absorptiometry. J Strength Cond
331		Res. 25: 1024-1029.
332		
333	6.	Bilsborough, JC, K Greenway, S Livingstone, J Cordy, AJ Coutts. 2016.
334		Changes in anthropometry, upper-body strength, and nutrient intake in
335		professional Australian football players during a season. International
336		Journal of Sports Physiology and Performance. 11: 290-300.
337		
338	7.	Hangartner, TN, S Warner, P Braillon, L Jankowski, J Shepherd. 2013. The
339		official positions of the international society for clinical densitometry:
340		acquisition of dual-energy x-ray absorptiometry body composition and
341		considerations regarding analysis and repeatability of measures. J Clin
342		Densitom. 16: 520-536.
343		
344	8.	Hind, K, G Slater, B Oldroyd, et al. 2018. Interpretation of Dual-Energy X-
345		Ray Absorptiometry-Derived Body Composition Change in Athletes: A
346		Review and Recommendations for Best Practice. J Clin Densitom.

348	9.	Nana, A, GJ Slater, AD Stewart, LM Burke. 2015. Methodology review:
349		using dual-energy X-ray absorptiometry (DXA) for the assessment of body
350		composition in athletes and active people. Int J Sport Nutr Exerc Metab.
351		25: 198-215.
352		
353	10.	Nana, A, GJ Slater, WG Hopkins, LM Burke. 2012. Effects of daily activities
354		on dual-energy X-ray absorptiometry measurements of body composition
355		in active people. Med Sci Sports Exerc. 44: 180-189.
356		
357	11.	Bone, JL, ML Ross, KA Tomcik, NA Jeacocke, WG Hopkins, LM Burke. 2017.
358		Manipulation of Muscle Creatine and Glycogen Changes Dual X-ray
359		Absorptiometry Estimates of Body Composition. Med Sci Sports Exerc. 49:
360		1029-1035.
361		
362	12.	Hind, K, B Oldroyd, JG Truscott. 2011. In vivo precision of the GE Lunar
363		iDXA densitometer for the measurement of total body composition and fat
364		distribution in adults. Eur J Clin Nutr. 65: 140-142.
365		
366	13.	Rothney, MP, FP Martin, Y Xia, et al. 2012. Precision of GE Lunar iDXA for
367		the Measurement of Total and Regional Body Composition in Nonobese
368		Adults. J Clin Densitom.
369		
370	14.	Lohman, M, K Tallroth, JA Kettunen, MT Marttinen. 2009. Reproducibility
371		of dual-energy x-ray absorptiometry total and regional body composition

372		measurements using different scanning positions and definitions of
373		regions. Metabolism. 58: 1663-1668.
374		
375	15.	Powers, C, B Fan, LG Borrud, AC Looker, JA Shepherd. 2015. Long-term
376		precision of dual-energy X-ray absorptiometry body composition
377		measurements and association with their covariates. J Clin Densitom. 18:
378		76-85.
379		
380	16.	Bilsborough, JC, K Greenway, D Opar, S Livingstone, J Cordy, AJ Coutts.
381		2014. The accuracy and precision of DXA for assessing body composition
382		in team sport athletes. J Sports Sci. 32: 1821-1828.
383		
384	17.	Barlow, M, B Oldroyd, D Smith, et al. 2015. Precision error in dual-energy
385		X-ray absorptiometry body composition measurements in elite rugby
386		league players. Journal of Clinical Densitometry. 18: 546-550.
387		
388	18.	Kerr, A, GJ Slater, N Byrne. 2017. Impact of food and fluid intake on
389		technical and biological measurement error in body composition
390		assessment methods in athletes. Br J Nutr. 117: 591-601.
391		
392	19.	Buehring, B, D Krueger, J Libber, et al. 2014. Dual-energy X-ray
393		absorptiometry measured regional body composition least significant
394		change: effect of region of interest and gender in athletes. J Clin Densitom.
395		17: 121-128.
396		

397	20.	Kaul, S, MP Rothney, DM Peters, et al. 2012. Dual-energy X-ray
398		absorptiometry for quantification of visceral fat. Obesity (Silver Spring).
399		20: 1313-1318.
400		
401	21.	Argus, CK, N Gill, J Keogh, WG Hopkins, CM Beaven. 2010. Effects of a
402		short-term pre-season training programme on the body composition and
403		anaerobic performance of professional rugby union players. J Sports Sci.
404		28: 679-686.
405		
406	22.	Toomey, CM, WG McCormack, P Jakeman. 2017. The effect of hydration
407		status on the measurement of lean tissue mass by dual-energy X-ray
408		absorptiometry. Eur J Appl Physiol. 117: 567-574.
409		
410	23.	Pietrobelli, A, Z Wang, C Formica, SB Heymsfield. 1998. Dual-energy X-ray
411		absorptiometry: fat estimation errors due to variation in soft tissue
412		hydration. Am J Physiol. 274: E808-816.
413		
414	24.	Zemski, AJ, SE Keating, EM Broad, DJ Marsh, K Hind, GJ Slater. 2018. Pre-
415		season body composition adaptations in elite Caucasian and Polynesian
416		rugby union athletes. Int J Sport Nutr Exerc Metab. 1-24 [Epub ahead of
417		print].
418		
419	25.	Kiebzak, GM, SL Morgan. 2011. Long-term versus short-term precision of
420		dual-energy X-ray absorptiometry scans and the impact on interpreting

421		change in bone mineral density at follow-up. Journal of Clinical
422		Densitometry. 14: 108-115.
423		
424	26.	Hind, K, B Oldroyd. 2013. In-vivo precision of the GE Lunar iDXA
425		densitometer for the measurement of appendicular and trunk lean and fat
426		mass. Eur J Clin Nutr. 67: 1331-1333.
427		
428	27.	Libber, J, N Binkley, D Krueger. 2012. Clinical observations in total body
429		DXA: Technical aspects of positioning and analysis. J Clin Densitom.
430		
431	28.	Stanforth, PR, BN Crim, D Stanforth, MA Stults-Kolehmainen. 2014. Body
432		composition changes among female NCAA division 1 athletes across the
433		competitive season and over a multiyear time frame. J Strength Cond Res.
434		28: 300-307.
435		
436	29.	Carver, TE, NV Christou, RE Andersen. 2013. In vivo precision of the GE
437		iDXA for the assessment of total body composition and fat distribution in
438		severely obese patients. Obesity (Silver Spring). 21: 1367-1369.
439		
440		

All participants		Males		Females			
	(II = 21)				(II-10) Maan L CD Danga		
	Mean ± SD	Kange	Mean ± SD	Kange	Mean ± SD	Kange	
Age (years)	30.6 ± 8.2	21.3 - 51.1	28.1 ± 6.3	21.3 - 42.2	33.4 ± 9.4	22.6 - 51.1	
Stature (cm)	174.2 ± 7.2	160.9 - 183.6	178.9 ± 3.7	173.8 - 183.6	169.1 ± 6.7 ^a	160.9 – 182.8	
Mass (kg)	74.3 ± 11.6	57.9 – 98.5	82.9 ± 8.8	69.4 – 98.5	64.8 ± 4.6 ^a	57.9 – 70.9	
BMI (kg/m ²)	24.4 ± 2.7	19.8 – 29.3	25.9 ± 2.2	22.5 – 29.3	22.8 ± 2.4 ^a	19.8 - 26.4	
Arms BMC (g)	421 ± 106	274 – 597	506 ± 61	422 – 597	327 ± 46 ª	274 - 441	
Arms FM (g)	1484 ± 570	943 - 3227	1375 ± 644	943 - 3227	1604 ± 481	1008 – 2528	
Arms LM (g)	7379 ± 2453	4555 - 13070	9883 ± 1571	7697 - 13070	5174 ± 564 ª	4555 - 6153	
Trunk BMC (g)	821 ± 180	576 - 1241	934 ± 158	687 - 1241	696 ± 105 ª	576 - 933	
Trunk FM (g)	4911 ± 2109	2876 - 10187	4470 ± 2113	2876 - 10187	5395 ± 2105	3658 - 9760	
Trunk LM (g)	29413 ± 5965	22125 - 42985	33748 ± 4800	27461 - 42985	24645 ± 2291 ª	22125 - 28905	
Legs BMC (g)	1023 ± 187	781 - 1370	1175 ± 112	1010 - 1370	854 ± 61 ª	781 - 966	
Legs FM (g)	5565 ± 1974	2316 - 9279	4279 ± 1522	2316 - 7583	6981 ± 1355 ª	5258 - 9279	
Legs LM (g)	19888 ± 4301	13730 - 28072	23414 ± 2496	20352 - 28072	16009 ± 1506 ª	13730 - 18799	
WB BMC (g)	2856 ± 476	2189 - 3804	3216 ± 327	2841 - 3804	2460 ± 227 ª	2189 - 2803	
WB FM (g)	12891 ± 4333	7768 - 22070	11115 ± 4152	7768 - 21988	14846 ± 3804 ª	11212 - 22070	
WB FM (%)	17.6 ± 6.6	9.3 - 31.5	13.2 ± 4.6	9.3 - 24.9	22.4 ± 4.8 ^a	17.0 - 31.5	
WB LM (g)	59954 ± 12878	43660 - 87839	70081 ± 8886	59301 - 87839	48814 ± 4191 a	43660 - 56101	
Android FM (g)	785 ± 410	457 - 1962	771 ± 463	457 - 1962	801 ± 366	485 - 1538	
Android FM (%)	16.0 ± 6.9	9.5 - 33.4	13.8 ± 6.5	9.5 - 30.0	18.4 ± 6.9 ^a	13.3 - 33.4	
Android FFM (g)	4808 ± 777	3073 - 5529	4642 ± 574	3953 - 5529	3463 ± 407 ª	3073 - 4253	
Gynoid FM (g)	2654 ± 969	1202 - 4789	2033 ± 673	1202 - 3588	3336 ± 772 ª	2446 - 4789	
Gynoid FM (%)	21.4 ± 8.3	9.8 - 36.3	14.9 ± 4.6	9.8 - 24.8	28.6 ± 4.6 ª	23.2 - 36.3	
Gynoid FFM (g)	10053 ± 2081	7109 - 14428	11692 ± 1428	10285 - 14428	8251 ± 684 ª	7109 - 9664	
VAT FM (g)	200 ± 84	89 - 485	252 ± 81	174 - 485	143 ± 37 ª	89 - 194	
VAT Volume (cm ³)	216 ± 91	96 - 525	273 ± 88	188 - 525	154 ± 39 ª	96 - 210	
VAT Area (cm ²)	42 ± 17	18 - 101	51 ± 17	36 - 101	$30 \pm 8 a$	18 - 40	
Significant difference (<0.05) between males and females							

Table 1: Descriptive statistics of the participants

^a Significant difference (<0.05) between males and females.
 BMI = body mass index; BMC = bone mineral content; FM = fat mass; LM = lean mass; WB = whole body; VAT = visceral adipose tissue.

	Same-day (D1S1 / D1S2)			Consecutive-day (D1S1 / D2S1)		
	Technical error			Technical error & biological variation		
	All participants	Males	Females	All participants	Males	Females
Arms BMC (g)	6 ± 5	6 ± 5	6 ± 6	8 ± 6	8 ± 5	7 ± 7
Arms FM (g)	48 ± 39	55 ± 37	41 ± 41	100 ± 78^{a}	108 ± 96	92 ± 57 °
Arms LM (g)	113 ± 90	114 ± 80	111 ± 104	175 ± 133 ª	167 ± 134	183 ± 139 °
Trunk BMC (g)	10 ± 10	14 ± 11	5 ± 5 ^d	11 ± 9	13 ± 10	8 ± 7
Trunk FM (g)	141 ± 106	128 ± 96	154 ± 121	242 ± 204 ^a	236 ± 181	248 ± 236
Trunk LM (g)	324 ± 323	414 ± 405	224 ± 167	782 ± 570 ª	844 ± 651 ^b	714 ± 491 °
Legs BMC (g)	21 ± 20	21 ± 14	22 ± 25	21±17	17 ± 17	25 ± 17
Legs FM (g)	185 ± 93	199 ± 79	170 ± 109	249 ± 216	212 ± 231	290 ± 201
Legs LM (g)	330 ± 350	490 ± 421	153 ± 99 d	443 ± 376	629 ± 432	238 ± 130 e
WB BMC (g)	24 ± 18	22 ± 15	27 ± 22	28 ± 22	29 ± 22	27 ± 24
WB FM (g)	295 ± 168	314 ± 137	273 ± 202	522 ± 386 ª	463 ± 353	588 ± 428 °
WB LM (g)	262 ± 179	244 ± 202	281 ± 160	925 ± 538 a	905 ± 535 ^b	947 ± 568 °
Android FM (g)	27 ± 25	25 ± 24	30 ± 29	34 ± 24	40 ± 27	28 ± 19
Android FFM (g)	44 ± 38	51 ± 41	37 ± 36	97 ± 58 ª	105 ± 52 ^b	87 ± 65
Gynoid FM (g)	66 ± 49	69 ± 56	63 ± 43	143 ± 95 a	109 ± 101	180 ± 76 °
Gynoid FFM (g)	64 ± 57	53 ± 43	77 ± 70	92 ± 64	85 ± 69	99 ± 62
VAT FM (g)	14 ± 15	10 ± 11	18 ± 18	25 ± 26	16 ± 13	34 ± 34
VAT Volume (cm ³)	16 ± 16	12 ± 12	20 ± 19	28 ± 29	19 ± 14	38 ± 37
VAT Area (cm ²)	3 ± 3	2 ± 2	4 ± 4	5 ± 5	3 ± 3	7 ± 7

Table 2: Mean difference (± standard deviation) between same-day scans (technical error) and consecutive-day scans (technical error and biological variation).

Data presented mean ± standard deviation.

D1S1 = day 1 scan 1; D1S2 = day 1 scan 2; D2S1 = day 2 scan 1; BMC = bone mineral content; FM = fat mass; LM = lean mass; WB = whole body;

VAT = visceral adipose tissue.

^a Significant difference (<0.05) between same-day and consecutive-day differences in all participants

^b Significant difference (<0.05) between same-day and consecutive-day differences in males

^c Significant difference (<0.05) between same-day and consecutive-day differences in females

^d Significant difference (<0.05) between males and females in the differences in same-day measures

^e Significant difference (<0.05) between males and females in the difference in consecutive-day measures

	D1S1 /	/ D1S2		D1S1 / D2S1		
	Technic	al error	Technical error & biological variation			
	RMS-SD	%CV	RMS-SD	%CV		
	(LSC-95% CI)	(LSC-95% CI)	(LSC-95% CI)	(LSC-95% CI)		
		%		%		
Stature*	0.0 (0.0) cm	0.0 (0.0)	0.0 (0.0) cm	0.0 (0.0)		
Mass #	0.0 (0.0) kg	0.0 (0.0)	0.4 (1.1) kg	0.4 (1.2)		
BMI #	0.0 (0.0)	0.0 (0.0)	0.1 (0.4)	0.4 (1.2)		
Arms BMC	5.6 (15.5) g	1.1 (3.0)	6.8 (18.9) g	1.3 (3.7)		
Arms FM #	43.5 (120.5) g	2.5 (6.8)	89.1 (246.8) g	5.3 (14.5)		
Arms LM #	101.1 (279.9) g	1.2 (3.3)	154.1 (426.7) g	1.9 (5.2)		
Trunk BMC	9.7 (27.0) g	0.8 (2.2)	9.8 (27.1) g	0.9 (2.6)		
Trunk FM #	123.7 (342.5) g	2.2 (6.0)	221.3 (612.9) g	3.6 (9.9)		
Trunk LM #	319.4 (884.7) g	0.8 (2.1)	678.7 (1880.0) g	1.9 (5.3)		
Legs BMC	20.2 (56.1) g	1.5 (4.2)	18.6 (51.6) g	1.5 (4.1)		
Legs FM #	146.0 (404.4) g	2.7 (7.5)	230.7 (639.1) g	3.4 (9.5)		
Legs LM	335.6 (929.6) g	1.1 (3.0)	406.5 (1126.0) g	1.5 (4.1)		
WB BMC	21.3 (59.0) g	0.6 (1.7)	25.2 (69.8) g	0.7 (1.9)		
WB FM #	238.4 (660.4) g	1.8 (5.1)	455.2 (1261.0) g	2.9 (8.0)		
WB LM #	222.7 (616.8) g	0.3 (0.9)	752.0 (2083.0) g	1.1 (3.2)		
Android FM	26.1 (72.3) g	2.6 (7.3)	29.0 (80.5) g	3.5 (9.7)		
Android FFM #	40.9 (113.4) g	0.8 (2.1)	79.1 (219.2) g	1.7 (4.7)		
Gynoid FM #	57.8 (160.1) g	2.1 (5.8)	120.2 (333.0) g	4.0 (10.9)		
Gynoid FFM	60.1 (166.5) g	0.5 (1.4)	78.4 (217.3) g	0.7 (1.9)		
VAT FM	12.7 (35.0) g	5.3 (15.3)	18.0 (50.0) g	7.2 (20.0)		
VAT Volume	13.7 (37.9) cm ³	5.5 (15.4)	19.5 (54.1) cm ³	7.3 (20.2)		
VAT Area	2.6(7.3) cm ²	5.5 (15.3)	3.7(10.4) cm ²	7.3 (20.2)		

Table 3: Precision error for each region, represented as the %CV, with the RMS-SD and LSC-95% CI.

BMI = body mass index (kg/m²); RMS–SD = root-mean-square standard deviation; %CV = percent coefficient of variation; LSC = least significant change; D1S1 = Day 1 Scan 1; D1S2 = Day 1 Scan 2; D2S1 = Day 2 Scan 1; BMC = bone mineral content; FM = fat mass; LM = lean mass; WB = whole body; VAT = visceral adipose tissue.

* Stature was not remeasured on Day 2 of scanning.

[#] Significant difference (<0.05) between same-day and consecutive-day precision.

Figure 1: The regressions between measures of bone mineral content for same-day (top; $R^2 = 1.00$) and consecutive-day (bottom; $R^2 = 0.99$) precision.

Figure 2: The regressions between measures of fat mass for same-day (top; $R^2 = 0.99$) and consecutive-day (bottom; $R^2 = 0.98$) precision.

Figure 3: The regressions between measures of lean mass for same-day (top; $R^2 = 1.00$) and consecutive-day (bottom; $R^2 = 0.99$) precision.

Figure 4: Bland Altman plots for differences in same-day scans versus consecutive-day scans on whole body bone mineral content (top), fat mass (middle) and lean mass (bottom).

