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We study the gravitational collapse of axion dark matter in null coordinates, assuming spherical 
symmetry. Compared with previous studies, we use a simpler numerical scheme which can run, for 
relevant parameters, in a few minutes or less on a desktop computer. We use it to accurately determine 
the domains of parameter space in which the axion field forms a black hole, an axion star or a relativistic 
Bosenova.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Amongst the possible dark matter candidates, a coherent scalar 
field with very low mass is an enticing possibility. The idea orig-
inated with the QCD axion [1], but the concept has since been 
extended to a class of axion-like particles (ALP’s) with ultra-light 
masses [2]. In ALP scenarios, the dark matter forms gravitation-
ally bound objects which may form into galaxy cores [3], or for 
larger masses into axion mini-clusters [4–6]. These objects are of-
ten stable only for a particular mass range, leaving the possibility 
of detectable cosmological signatures from the axion bound struc-
tures or from the remnants of their collapse [3,7].

ALP’s are characterised by their mass m and decay constant (or 
symmetry breaking scale) f . Coherent ALP dark matter scenarios 
envision the dark matter energy density in the form of large-scale 
coherent axion oscillations of frequency ∼ m, with density param-
eter [1,7]

�ALP ∼ 0.1

(
f

1017 GeV

)2 ( m

10−22 eV

)1/2
, (1)

although this is rather dependent on initial conditions. Spatial gra-
dients in the oscillating axion field induce “quantum” pressure 
forces which are capable of supporting structures on the Kpc scale 
for axion masses around m ∼ 10−22 eV, or galaxy Halo scales for 
m ∼ 10−24 eV [2].

We follow the recent trend of referring to stable axion struc-
tures as axion stars (though the term Bose star is also frequently 
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used in this context). So far three distinct scenarios of gravitational 
collapse for APL’s have been identified [8,9]: they can settle down 
quietly to an axion star; they can radiate away energy in bursts of 
relativistic axions or they can collapse to a black hole. The second 
outcome is a relativistic analogue of the Bosenova phenomena in 
cold-atom physics [10]. Like the cold atoms in a Bosenova, the ax-
ions have an attractive self-interaction force which can overcome 
the quantum pressure. We will use the term Bosenova in this pa-
per to refer to the axion collapse and radiation phenomenon.

The fate of an axion clump can be represented on phase dia-
grams labelled by parameters describing the axion properties and 
the initial conditions. Recently, Helfer et al. [9] have produced a 
phase diagram for spherically symmetric collapse with axion decay 
constant f and the initial mass of the axion clump, and they have 
speculated that there is a tricritical point joining phase boundaries 
between the three outcomes. The aim of this paper is to provide 
convincing numerical evidence for the tricritical point using a par-
ticularly amenable form of the field equations, and to determine 
the parameter values accurately at the phase boundaries.

We use the null-coordinate integration schemes introduced into 
spherically symmetric gravitational collapse by Goldwirth and Pi-
ran [11]. The null techniques are particularly efficient because the 
coordinate grid flows inwards with the collapsing matter. For ex-
ample, the null methods can reproduce the universal scaling phe-
nomena in massless scalar collapse [12], which otherwise is only 
possible with less efficient mesh refinement techniques [13].

Throughout this work, we use units in which the reduced 
Planck constant h̄ and velocity of light c are equal to unity. The 
reduced Planck mass Mp = (8πG)−1/2, where G is Newton’s con-
stant.
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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2. Model and field equations

We take the generic axion potential V , which is typical of the 
potentials which represent axion dark matter [14–16]:

V (φ) = m2 f 2
(

1 − cos

(
φ

f

))
. (2)

The parameters m and f are related by (1) if the cosmological dark 
matter density is in the form of coherent axion oscillations, but 
we will generally take m and f as free parameters. The Lagrangian 
density of the axion field is

Lφ = − gμν

2
(∂μφ)(∂νφ) − V (φ) , (3)

where gμν is the metric.
The focus of this paper is on spherically-symmetric collapse. 

Following [11,12,17], we use a very efficient integration scheme 
obtained by introducing the retarded time coordinate u and radial 
coordinate r, with metric

ds2 = −g(u, r)ḡ(u, r)du2 − 2g(u, r)dudr + r2d�2. (4)

As usual, d�2 is the metric on the unit sphere, and we suppose 
that g, ̄g are two smooth functions. Without loss of generality, up 
to a redefinition of u, we can impose boundary conditions at the 
origin, ḡ(u, 0) = 1. Imposing that there is no conical singularity at 
r = 0 then implies that g(u, 0) = 1 [11].

We follow the conventions of [11,12] and introduce the nota-
tion h̄ for the scalar field φ. Radial derivatives of h̄ are used to 
define an auxiliary field h. One can show that the Einstein equa-
tions are fully equivalent to a system of first order equations:

∂uh − ḡ

2
∂rh = h − h̄

2r

[(
1 − 8πGr2 V

(
h̄
))

g − ḡ
] − g

2
rV ′(h̄

)
, (5)

∂r ln(g) = 4πG

r

(
h − h̄

)2
, (6)

∂r (r ḡ) = (
1 − 8πGr2 V

(
h̄
))

g, (7)

∂r
(
rh̄

) = h. (8)

The first of these equations is a form of the Klein–Gordon equation 
which can be integrated using the method of characteristics. This 
is the only true evolution equation in the system, the other three 
equations are geometrical constraints.

Starting from the initial data surface u = 0, we label the ingoing 
radial null geodesics by a coordinate v . The ingoing null geodesics 
for the metric Eq. (5) satisfy the characteristic equation for (5),

∂ur|v = − ḡ

2
. (9)

Changing to null coordinates, so that h(u, r) becomes h(u, v), gives 
the evolution along the characteristic surfaces of constant v ,

∂uh = h − h̄

2r

[(
1 − 8πGr2 V

(
h̄
))

g − ḡ
] − g

2
rV ′(h̄

)
. (10)

In order to solve these field equations, we have adapted the nu-
merical procedure from Refs. [11,18,12]. Starting from given initial 
data for h̄ and r at u = 0, we first compute h(0, v), g(0, v), and 
ḡ(0, v) using (6)–(8). We evolve r and h in the u direction using 
Equations (9) and (10), discarding points for which r becomes neg-
ative. At each step, the constraints (6)–(8) are solved by integrating 
in the v direction.

Evolution methods based on the 3+1 space and time coor-
dinates solve their constraints on the initial time hypersurface, 
usually as a boundary value problem, and can be subject to con-
straint violation at later times. This is not an issue with the null 
coordinate formalism. The method only requires us to solve the or-
dinary differential equations, (10) and (9), with integrations over v
at each time step. As a result, the method is remarkably accurate, 
fast and reliable.

When a black hole forms, it is possible to follow the evolution 
up to the null surface u = uT which contains a marginally trapped 
surface at r = rT . We define the final black hole mass MH as the 
Bondi mass [19,20],

MH = lim
u→uT

lim
v→∞

r

2G

(
1 − ḡ

g

)
, (11)

since this is appropriate for null coordinate systems. A Schwarz-
schild black hole metric with mass M , for example, has g = 1, 
ḡ = 1 − 2GM/r and MH = M . At the marginally trapped surface 
g → ∞, and the computational grid has to be compressed to 
counter the growth in the right hand side of (10). In practice, the 
integration is stopped when ḡ/g reaches a predetermined value. 
The Bondi mass is calculated at the final value of u and with v at 
the extreme edge of the coordinate grid.

Removing the limits from (11) gives a local quantity MB (u, v)

which evolves according to

∂u MB = −2πr2
(

2

g

(
∂uh̄

)2 + ḡV (h̄)

)
. (12)

When g , ḡ , and V are positive, then ∂u MB ≤ 0. We will use 
−∂u MB as a measure of the energy flux from the collapsing star. 
Any increase of M along in the ingoing null direction indicates (at 
least if V remains positive) an artefact from the numerical integra-
tion, and the corresponding runs are discarded. We can also use 
(12) to put bounds on the error in the black hole mass from trun-
cating the integration before the trapped surface at u = uT . This 
gives better control of the black hole mass than we would have 
using the mass at the trapped surface, rT /2G , which was used in 
previous work.

3. Numerical results

We preface the full analysis with some results on the collapse 
of a massive, real, scalar field without self-interaction. Depending 
on initial conditions, the system can collapse to a black hole or a 
stable oscillaton, i.e. an oscillating field configuration that main-
tains its radial profile [6,5]. The phase diagram for relativistic col-
lapse in terms of mass and radius was obtained semi-analytically 
in Ref. [21]. The fully relativistic collapse of a massive scalar field 
was studied in some detail using null coordinates in Ref. [17] and 
using a 3+1 approach in Ref. [22].

We use the null coordinate approach to plot the phase dia-
gram in terms of the axion mass m, the initial radius R and Bondi 
mass MB . The choice of initial density profile is somewhat arbi-
trary, but we choose to work with a Gaussian profile which has 
been used previously for Bose stars [23]. The scalar field is oscilla-
tory in time, and when projected on to the light-cone in flat space,

h̄i(r) =
√

2M

π3/2m2 R3
e−r2/(2R2) cos(mr). (13)

The pre-factor has been chosen so that the mass of the star is M
in the non-relativistic limit Rm � 1. The relationship between the 
radius and the ingoing null coordinate on the initial surface can 
be specified freely, but the uniform choice r = 2v will be used 
for simplicity. Initial conditions on the remaining fields are de-
termined by the constraints (6)–(8), which ensure that we have 
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Fig. 1. This plot shows the phase plane for the collapse of a massive scalar field 
without self-interaction, for an initial profile of the form (13). The two parameters 
used are the initial Bondi mass MB and the initial radius R , scaled with the axion 
mass m. The dots show the boundary between black hole formation (left) and boson 
stars (right). The dashed line shows R = 2GMB , i.e., the mass of a static black hole 
of radius R . The dash-dot line shows the mass-radius relation for a non-relativistic 
boson star.

a consistent set of initial conditions for the fully relativistic col-
lapse.

The metric and scalar fields are evolved using the method 
described above. After dimensional rescaling, the solutions only 
depend on the initial parameters in the combinations mR and 
mMB/M2

p . Fig. 1 shows the phase diagram for collapse in terms of 
these rescaled parameters. When the mass and radius are appro-
priate for a stable axion star, the scalar field profile settles down 
to the axion star field profile within a few oscillations. The phase 
transition boundary is traced out by dots, obtained by a bisection 
search technique. The condition for black hole collapse becomes 
nearly independent of radius when mR � 2, with critical Bondi 
mass MB ≈ 15.22M2

pm−1 and mass parameter M ≈ 15.55M2
pm−1. 

The Bondi mass is in very good agreement with the results
of the 3+1 approach, where the critical ADM mass is
MADM ≈ 15.2M2

pm−1 (after accounting for the switch from Planck 
mass to reduced Planck mass) [22].

Inclusion of self-interaction leads to a third possible outcome of 
gravitational collapse, a Bosenova, where the collapsing field loses 
mass in pulses of axion radiation. The possibility of scalar collapse 
under gravity with a quartic self-interaction potential was first dis-
cussed many years ago [24]. More recent work on this model using 
the non-relativistic limit can be found in Refs. [23,25]. In actual 
fact, axion radiation turns out to be highly relativistic, as pointed 
out in Ref. [8]. This latter work considered relativistic fields with 
Newtonian gravity, as did the semi-analytic discussions of axion 
stars in Refs. [26,27]. A fully relativistic treatment of axion col-
lapse with general relativity was given in Ref. [9]. The phase plane 
of mass and axion scale was also discussed in [9], where evidence 
was given for the existence of a tri-critical point between the three 
outcomes. We make use of our rapid integration scheme to give a 
clearer picture of the phase plane.

The Gaussian profile is used for the initial data as before, but 
with fixed initial radius. It is desirable to have stable axion stars 
settle down as quickly as possible to their final form in order 
to keep down the integration time. In order to achieve this, we 
choose the initial radius using the radius for non-relativistic Bose 
stars [23,25], R ≈ 2(24π3)1/2M2

p/Mm2. Fig. 1 shows that this ra-
dius lies in the region of the phase diagram where the dependence 
on radius is weak.

The Bosenova is characterised by collapses of the stellar core 
followed by bursts of axion radiation. The collapse and burst pat-
tern is repeated until a significant portion of the initial mass has 
been radiated away. An example is illustrated in Fig. 2, which 
shows the central density and the radiation escaping at the edge 
of the integration volume as functions of retarded time. The radi-
ation escapes a short retarded time after each collapse, indicating 
that the radiation is highly relativistic. Burst can be highly irregu-
lar, both in their timing and amplitude. When a black hole forms 
instead of a Bosenova, this tends to happen at the same retarded 
time as the first spike in the central density.

The phase diagram is shown in Fig. 3. There is a tricritical point 
in agreement with Ref. [9], but the mass and axion scale at the tri-
critical point are substantially different from the earlier results. The 
difference is too large to be explained by the difference between 
using initial conditions on a null surface instead of a timelike sur-
face. Our results are broadly consistent with the non-relativistic 
limit though, where there is a critical mass for the collapse of a 
Bose star [28,25], M ≈ 50.77 f Mp/m, shown on Fig. 3.

The phase boundary between axion stars and black holes is 
sharply defined, and the mass of the black hole is discontinu-
ous at the phase boundary. However, the phase boundary between 
black holes and Bosenovas becomes diffuse at small values of the 
axion scale parameter f , in the sense that there is a range of 
masses near the phase boundary where the outcome of gravita-
tional collapse can go either way, as shown in Fig. 4. Some of 
the axion clumps with initial conditions near the phase boundary 
emit enough axion radiation to avoid forming a black hole. This 
seems to happen erratically. A similar phenomenon was observed 
for the collapse of non-self interacting scalar fields in Ref. [22], 
where the effect was ascribed to gravitational cooling, using a term 
introduced for scalar field emission by collapsing Boson stars in 
Ref. [6]. We have checked that the results are not due to numeri-
cal noise.
Fig. 2. The central density (left) and the energy flux (right) for a collapsing Bosenova are plotted against the retarded time u. The flux is measured on the outer null edge 
of the integration volume, mv = 103. In this example mMB/M2

p = 8.9, where m is the axion mass, MB is the Bondi mass, and the axion scale f = 0.1Mp . The plot shows 
density spikes inside the star which produce pulses of axion radiation travelling at close to the speed of light.
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Fig. 3. Phase diagram for axion scalar field collapse with axion mass m, scale pa-
rameter f and Bondi mass MB , with Mp = (8πG)−1/2. The thin line shows the 
maximum mass of a non-relativistic Boson star with quartic self interaction. The 
boundary between black holes and Bosenovas is diffuse, and the plot shows only 
the largest mass initial condition which fails to form a black hole. The diagram is 
compiled using a bisection search technique, with retarded time range u = 103m−1. 
Trapped surface detection uses ḡ/g = 10−3 and the Bosenova is defined as a col-
lapse of the core with central density ρ > 10−1m2 M2

p . Some points have been 
checked using u = 2 × 103m−1 and ḡ/g = 10−4.

Fig. 4. Part of the phase diagram where the phase boundary is diffuse. Each black 
pixel denotes a set of initial conditions which forms a black hole, and each blue 
pixel denotes a set of initial conditions which forms a Bosenova. (For interpretation 
of the colours in the figure(s), the reader is referred to the web version of this 
article.)

4. Discussion

Gravitational collapse with nothing more than gravity and a 
scalar field is a remarkably rich subject. It seems sensible to build 
up an understanding of it in small steps, the simplest being spher-
ically symmetric collapse. We have considered three possible sce-
narios for axion collapse: axion stars, black holes and Bosenovas. 
The numerical results clearly point to a critical point with Bondi 
mass MB ≈ 10.6M2

pm−1 and axion decay constant f ≈ 0.25Mp
when the initial conditions are presented on a phase diagram. 
Mostly, the distinction between the different phases is clear, but 
in some parts of the phase diagram, there is no clean line between 
initial conditions which collapse to a black hole and those which 
remain non-singular. There may also exist special final states like 
the self-similar solutions for massless scalar collapse [13] which 
we have not considered.

The fate of a Bosenova is to eject mass until it eventually settles 
down into a stable axion star. In terms of the eventual outcome, 
the stars and Bosenova’s are similar. However, the difference has a 
large physical significance for dark energy scenarios, since the ax-
ion radiation from many bursts and many sources would combine 
into a background of incoherent ALP particles.

Just how dependent the results are on the initial density pro-
file and the use of null initial data surface may be determined 
through further work. The Gaussian initial density profile is known 
to work to within a few percent for results on non-relativistic Bose 
stars [25], but we have done some runs with radically different 
density profiles and find O (1) changes in the masses at the phase 
boundaries.

The null coordinate approach is fast, accurate and reliable, but 
it is limited to spherically symmetric collapse. We would expect 
properties like phase boundaries to retain their qualitative nature 
close to spherical symmetry, but in reality this can only be ad-
dressed with non-spherically symmetric codes. The strength of out 
method is that it provides an important check on the results ob-
tained from more sophisticated 3+1 integration schemes. We hope 
the clearer view of the simplest-case scenario considered here will 
help guiding future studies in this direction.
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