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Abstract

We present a coarse-grained single-site potential for simulating chiral interactions, with adjustable

strength, handedness, and preferred twist angle. As an application, we perform basin-hopping global op-

timisation to predict the favoured geometries for clusters of chiral rods. The morphology phase diagram

based upon these predictions has four distinct families, including previously reported structures for poten-

tials that introduce chirality based on shape, such as membranes and helices. The transition between these

two configurations reproduces some key features of experimental results for fd bacteriophage. The potential

is computationally inexpensive, intuitive, and versatile; we expect it will be useful for large scale simula-

tions of chiral molecules. For chiral particles confined in a cylindrical container we reproduce the behaviour

observed for fusilli pasta in a jar. Hence this chiropole potential has the capability to provide insight into

structures on both macroscopic and molecular length scales.
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I. INTRODUCTION

Chirality is ubiquitous and important in nature. Many key biological molecules, such as pro-

teins and nucleic acids, are chiral. Their homochirality,1 and the role chirality plays in interac-

tions at the molecular, cellular, and multicellular levels, remain important questions crucial for

morphogenesis,2–4 and thus our understanding of life. In the context of materials science, chiral

structures, ranging from chiral liquid crystal phases5–7 to colloidal clusters8,9 and nanotubes,10–12

have also attracted great interest, due to their unusual optical, mechanical, and chemical proper-

ties. The cholesteric liquid crystal phase has attracted recent attention due to the challenges of

efficient modelling.13–15

Both in biology and materials science, one of the most pertinent questions is to understand how

chirality is transmitted across length scales.16 A number of studies have shown that chiral structures

do not actually require chiral subunits; they can arise from achiral building blocks,17–19 or even

chiral building blocks of opposite handedness.20,21 Conversely, given a chiral building block, it is

useful to understand and predict the large-scale functional superstructures that may self-assemble,

and whether we can control the corresponding morphologies and physical properties, particularly

if these structures are themselves chiral.

We are primarily interested in the second issue in this contribution. Our motivation is to de-

scribe a computationally inexpensive and intuitive coarse-grained chiral potential, thus facilitating

future large-scale simulations of chiral assemblies. The chiropole interaction potential we de-

scribe is single-site. It is easier to evaluate than for models where chirality is introduced through

the shape of the molecule, which requires multisite interaction potentials.18,22–25 Unlike a similar

single-site potential proposed by van der Meer et al.26 for lattice simulations of liquid crystals, our

potential is polar in that it distinguishes the two ends of the molecule. We can adjust the strength,

handedness, and preferred twist angle independently, with the degree of chirality controlled by the

twist angle between two chiral molecules. Hence, we hope the single-site chiral potential could

prove to be an intuitive and versatile representation.27

For two rod-shaped rigid bodies, chiral interactions can be modelled by enforcing a relative

twist of the two long axes.28 A familiar example is provided by fusilli pasta contained within a jar,

where the spirals near the centre align almost vertically, but towards the edges a significant twist is

observed.29 The propensity for local twisting interferes with the ability to achieve close packing.

As an application, we exploit our potential by running global optimisation for structure predic-
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tions of clusters of chiral rods, over a wide range of simulation parameters. We observe many mor-

phologies that have been previously reported in experiments and/or computer simulations using

more complex potentials.18 In particular, we compare to recent experiments on fd bacteriophage,30

which reported morphologies including membranes, twisted ribbons, and rings by tuning the chi-

rality. These results suggest that the chiropole potential successfully captures key aspects of the

interparticle forces, enabling us to extract the minimal conditions for particular morphologies to

emerge.

Our report is organised as follows. We introduce the single-site chiral potential in the next

section. We then summarise the basin-hopping algorithm31–33 for reference, and define a sphero-

cylinder potential34,35 in section III. The spherocylinder potential is used to give the chiral particles

a rod shape, but in principle any other potential, from Lennard-Jones36 or Morse37 for a spherical

shape, to Gay-Berne38 or Paramonov-Yaliraki39 for an ellipsoidal form, could be used. We discuss

the global optimisation results for clusters of chiral rods in section IV, and finally we summarise

the most important results and discuss avenues for future research in section V.

II. THE SINGLE-SITE CHIRAL POTENTIAL

Our single-site chiral potential is given by

U c
ij = −

µ2σ3
0

r3ij
[cosα (µ̂i · µ̂j) + sinα (µ̂i × µ̂j) · r̂ij] , (1)

where µ is the interaction strength, σ0 defines the length scale, and rij is the intercentre distance

between two chiral particles i and j. µ̂i and µ̂j describe the orientations of the chiral poles, and

the angle α determines preferred twist angle.

The (µ̂i · µ̂j) term is similar to the first term in a dipolar interaction. It favours orientations

in which µ̂i and µ̂j are parallel, since U c has an overall minus sign. The (µ̂i × µ̂j) · r̂ij term,

on the other hand, favours orientations in which µ̂i and µ̂i are at right angles and (µ̂i × µ̂j) is

parallel to r̂ij , where r̂ij =
ri−rj
rij

and ri is the centre of mass of particle i. Let us now concentrate

on a dimer configuration. If the distance rij is fixed, see figure 1, then (µ̂i · µ̂j) = cos θ and

(µ̂i × µ̂j) · r̂ij = sin θ, where θ is the angle between the chiral poles. The potential is then

proportional to

cosα cos θ + sinα sin θ = cos (α− θ) , (2)

and it is minimised when θ = α. For α = 0, the interaction is achiral, and the poles prefer to
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FIG. 1: The configuration for a dimer of chiral poles, showing the intercentre vector rij , the orientations

of the chiral poles µ̂i and µ̂j , and the angle separating the chiral poles θ. At the minimum energy for the

chiral interaction, θ = α.

be aligned. For α = π, the interaction is still achiral, but the poles prefer to be antiparallel. The

interaction is chiral for α = π/2 as the two ends of the pole are distinguishable. We further note

that reversing the sign of α reverses the handedness of the chiral interaction.

The potential is attractive when the particles are close to alignment. A purely repulsive po-

tential, with minimum repulsion when the particles are aligned, could also be considered. Since

the chiropole potential will be added to some other function defining the shape of the particles,

and must be attractive overall for particles to assemble, these different choices merely amount

to shifting the magnitude of the overall potential and will not qualitatively affect the behaviour.

Choosing the simplest possible representation that could model the chiral nature of interactions

was our primary concern.

The chiropole potential is similar to that proposed by van der Meer et al.26 in the context of
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liquid crystals, which has since been used in lattice simulations.40,41 The corresponding function

is

U c
ij = −

µ2σ3
0

r3ij

[
cosα (µ̂i · µ̂j)

2 + sinα (µ̂i · µ̂j) (µ̂i × µ̂j) · r̂ij
]
, (3)

The inclusion of the extra (µ̂i · µ̂j) term makes the potential symmetric with respect to inverting

the direction of a particle. The maximum supportable preferred angle is therefore π
2

and the point

group symmetry of a particle is D∞. Our potential is not symmetric on inverting the direction of

a particle, producing point group C∞, and it is suitable for modelling particles in which the two

ends are not identical. fd bacteriophage is one such system.42

III. METHODS

A. Spherocylinders

As for the dipolar interactions, the potential defined in Eq. (1) has a singularity at rij = 0.

Building blocks used in simulations should therefore have repulsive cores added to prevent sites

from falling into this singularity. For example, a Lennard-Jones36 or Morse37 potential could be

used for spherical particles, while Gay-Berne38 and Paramonov-Yaliraki39 potentials are suitable

options for ellipsoids. Here we are particularly motivated by recent experimental results for the

fd bacteriophage.30 The fd virus is 880 nm long and has a diameter of 6.6 nm, yielding an aspect

ratio of over 100. We therefore use spherocylinders34,35 to give the chiral particles a rod shape.

The corresponding additional potential is then

U r
ij = 4εr

[(σr
d

)12
−
(σr
d

)6]
, (4)

where εr and σr provide the energy and length scales for the rod/core interactions, and d is the dis-

tance of closest approach between the two rods, computed using the algorithm of Vega and Lago,35

described in the appendix. A further parameter, L, sets the aspect ratio of the spherocylinder and

is equal to the distance from the centre of the rod to an end point. L appears in the computation of

d: see the appendix.

B. The Pasta Jar

To model the pasta jar phenomenon described above,29 a cylindrical container was introduced,

with height h and radius R, centred at the origin and with the long axis aligned along the z di-
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rection. To repel rods from the container walls, the smallest distance rmin was calculated between

both ends of each rod and each of the three surfaces of the cylinder. A repulsive r12min potential

was then calculated for each of these six distances to provide a sharp cut-off close to the container

walls. For particle i, the contributions are

U±i,top = εw

(
σw

h
2
− (ri ± Lµ̂i)z

)12

(5)

U±i,bottom = εw

(
σw

h
2
+ (ri ± Lµ̂i)z

)12

(6)

U±i,curve = εw

 σw

R−
√

(ri ± Lµ̂i)
2
x + (ri ± Lµ̂i)

2
y

12

, (7)

where σw and εw are scaling parameters for the length and energy of the container repulsion,

respectively, which we set equal to σr and εr. The x, y and z subscripts represent Cartesian

components of the relevant vectors, and the ± symbols apply to the top and bottom of each rod.

To prevent particles from escaping the container, after any step that would bring either of the

end positions outside of the boundary, the rods in question are progressively scaled towards the

centre and aligned close to the z axis, and this process is iterated until the rod is entirely within

the cylinder. If a rod escapes the cylinder during energy minimisation then that step is rejected.

Attention was focused on parameters with α < π
2 , where the rods should prefer to arrange parallel

to each other rather than antiparallel, so that the runs could be started with the rods aligned close to

the positive z direction of the cylinder, from which it was expected that convergence to the global

minimum would be faster. The results presented below were calculated with a value of unity for

all energy and length scales, and L = 6 was chosen to provide a moderate aspect ratio.

As fusilli pasta has approximate point group symmetry D∞, with the ends being equivalent, we

compared the results for the chiropole potential with the van der Meer potential.

C. Basin-hopping

We have located the putative global minima of clusters of chiral spherocylinders using basin-

hopping global optimisation.31–33 In this approach, after a trial move based on coordinate perturba-

tions is proposed, it is followed by an energy minimisation; the move is then accepted or rejected

based upon the change in energy for the local minima. A simple, yet effective, approach is to
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use a Metropolis acceptance criterion: a step is accepted if Unew < Uold, or if Unew > Uold and

exp{(Uold − Unew)/kT} is larger than a random number drawn from the range [0,1]. Since the

energy is minimised after the proposed move, the geometric perturbations proposed as steps can

generally be much larger than the displacements used in typical Monte Carlo sampling for thermo-

dynamic properties. In this study we simply used random perturbations for both the centre of mass

positions and orientations of the chiral poles, with amplitudes 5.0 (reduced unit) and 2.0 radians,

respectively. We ran 5×105 basin-hopping steps for each set of parameters at T = 2.0 (in reduced

units), unless specified otherwise. All the results presented here were obtained using our global

optimisation program GMIN,43 which is available for use under the GNU General Public License.

D. Percolation

To prevent particles from evaporating during quenches, we enforced a percolating graph of rod

centres, where a path can be constructed between all particles such that the minimum distance

between each pair is less than a chosen percolation distance.44 A harmonic compression was ap-

plied to help produce such a structure, which was turned off once the root-mean-square force was

below a chosen cut-off value. Once a percolating structure had been found, any step that pro-

duced a disconnected structure after local minimisation was rejected. It was therefore necessary to

use a sufficiently large percolation distance for minima with disconnected centres but significant

rod/core interactions to be accepted, but not so large that the chains of rods never interact signifi-

cantly during global optimisation. For this system, a percolation distance of 7.5 was found to be

sufficient.

IV. RESULTS

A. Unconstrained System

Here we present global optimisation results for clusters of chiral rods. We set the length scales

σ0 = σr = σw = 1, and the energy scales εr = εw = 1, so there are three free parameters: the

chirality angle α, the chiral pole strength µ, and the rod length L. We focus on morphologies

with L � 1, where shape anisotropy plays an important role, setting L = 6 as a representative

example. At small L, the rods tend to a spherical shape and the global minimum structures are

similar to standard Lennard-Jones clusters.45 In fact, the structure of the global minimum is mostly
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FIG. 2: The morphology phase diagram as a function of chirality angle α and chiral pole strength µ, for

N = 25 rods and L = 6. Filled symbols indicate points at which three basin-hopping runs converged to the

same structure. Open symbols indicate points where the lowest minimum was not the same in every run.

There was no convergence for any of the string structures.

determined by the rod potential (spherocylinders) for small µ; since this is not the regime of

interest here, we focus on µ ≥ 2.5.

The morphology phase diagram for the global minima is shown in figure 2 as a function of the

chirality angle α and chiral pole strength µ for clusters of N = 25 chiral rods. We have run global

optimisations for other sizes (N ≤ 50) and the results are qualitatively similar. For each point in

parameter space, three basin-hopping runs were started from different random coordinates and run

until all had converged to the same putative global minimum. However, for several values of µ and

α, this condition was not achieved after 3×106 basin-hopping steps. In some of these cases, lower

energy minima could be found by starting the search at the coordinates of minima from slightly

different µ or α that had successfully converged. For parameters where the global minimum was

not consistently located by all three runs, the lowest energy structure found in any of the runs was

taken as the best candidate for the global minimum.

The results are generally insensitive to µ, and instead the main structural features are deter-

mined by variations in the angle α. Once µ is large enough that the chiral potential becomes

the dominant factor, the precise strength has little effect. Representative structures are shown in
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figures 3 and 4; they are all chiral.

For α ≤ 0.9 the rod centres arrange in an approximately hexagonal two-dimensional mem-

brane structure [figure 3 (a)], which gives the closest packing for parallel cylinders. As expected,

the chiral interactions between the rods give rise to an overall twist and chirality (of the same hand-

edness) in the resulting membrane. Reversing the chirality of the interactions reverses the twist in

the hexagonal membrane morphology. The twisting of the rods away from parallel increases with

α and also towards the edges of the array. In the central region, the stability gained from closer

packing constrains the rods to align together, whilst at the edges there is more space available for

rotations away from parallel, and so the chiral interactions can be stronger. At α = 0.9 the rod

centres nearest the boundary become less ordered and are slightly displaced from the plane of the

array, but the hexagonal symmetry of the central region remains mostly intact.

For 1.0 ≤ α ≤ 1.6, the planar structure changes into a helical structure. When α = 1.0

there is still an approximately hexagonal arrangement around each rod, and then as α increases

the number of nearest neighbours decreases. For µ > 4.0 and α = 1.2 or α = 1.3, the helix

forms three distinct branches, twisted relative to one another [figure 3 (b)], which changes to a

single-stranded, twisted ribbon structure, as α increases. For smaller µ the number of branches

formed is less consistent.

This transition from hexagonal membrane to ribbon/helix morphologies is in fact reminiscent

of recent experimental observations for the fd bacteriophage.30 By varying the temperature of their

system, Gibaud et al. were able to modulate the chirality of the virus assembly. At low chiral-

ity, a membrane morphology is stable. However, with increasing chirality, the perimeter of the

membrane undulates, leading to branching of the virus particles into several arms. Experimen-

tal evidence shows that the morphology of each arm corresponds to a twisted ribbon. There is a

significant difference in the number of particles between the results presented here and the exper-

imental structures, but the similarity between the observed morphologies suggests that the present

potential could provide insight into larger chiral structures.

For 1.7 ≤ α ≤ 2.5 the rod centres tend to align in a sequential string-like chain [figure 3 (c)].

At µ > 4 the ends of this chain tend to meet and form a ring-like structure [figure 4 (b)], which is a

challenging target for unbiased global optimisation. Often low-energy branched structures are eas-

ier to find. The ring structure is expected to be more stable, due to the increase in nearest-neighbour

pairs, as well as transannular interactions between rods pointing across the ring. Generally a sharp

decrease in energy appears between the branched and ring structures. The transition from strings
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to rings is the only effect we see due to increasing µ. Larger µ increases the contribution of the

extra nearest-neighbour pairs, decreasing the energy of the ring structure compared to the string,

so making it easier to locate.

For µ ≤ 3.5 no rings were located. In fact, for µ = 2.5 the most common local minima found

were two or three chains of rod centres, for which the closest intercentre distance is relatively large

[figure 4 (a)]. Since the chiral interactions of equation (1) are calculated between the centres of

each pair of rods, we expected that a connected structure of rod centres would be lowest in energy.

However, at small µ the the rod-rod interactions can be competitive with the chiral interactions,

in which case the global minimum structure may become a more complex three-dimensional ar-

rangement of interspersed rods.

For 2.6 ≤ α ≤ 3.5 and 4.0 ≤ µ ≤ 6.0 a planar ordered array of rod centres was again observed,

this time in a square lattice with an antiparallel orientation between nearest neighbours [figure 4

(c)]. The square arrangement allows all sets of nearest-neighbour pairs to be aligned antiparallel,

which is not possible in the closer-packed hexagonal structure. This square arrangement is only

possible due to the unsymmetrised nature of the potential, as it requires α to approach π. As for

the hexagonal structure, twisting is most significant at the edges. As α increases towards π, the

twisting decreases, and for α > π the direction of twisting in the array is reversed. For example,

for µ = 5.0, the structures for α = 2.8 and α = 3.5 are similar both in morphology and energy,

but with opposite chirality.

For µ = 3.5 and 2.6 ≤ α ≤ 3.5 a similar antiparallel arrangement was observed, although the

planar array was incomplete, with linear chains positioned below or above the lattice, or with mul-

tiple fragments of antiparallel lattice. The incomplete structure has fewer second-nearest neigh-

bour pairs, for which there is a repulsive chiral interaction, but a larger number of favourable

rod-core interactions involving the particles below the plane and the ends of the rods in the array.

As µ decreases, it appears that the nearest-neighbour chiral interactions are insufficient to maintain

a complete 5 × 5 square arrangement. The same phenomenon is not observed for the hexagonal

phase, probably due to better packing and favourable chiral interactions between all pairs of rods.

The system was also studied for L = 12 and L = 24 with the same parameters as the represen-

tative structures in the figures. Apart from minor differences in energy, two significant trends were

found. Longer rods disfavour rings, as it is more difficult to arrange the favourable transannular

interactions. Strings were observed rather than rings at µ = 4.0, α = 2.0. Also, longer rods

decrease the maximum twist supportable in the square lattice. For µ = 4.0, α = 2.7, at L = 12
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FIG. 3: Representative structures for various regions of the parameter space for 25 particles. On the left,

the particles are represented as rods, with red and blue designating the different ends of the rod. In between,

the colours are twisted, with the rate of twist proportional to α. On the right, the particles are represented

as spheres at the centre of mass. (a) A hexagonal lattice (µ = 4.0, α = 0.5), (b) a helix with three branches

(µ = 4.0, α = 1.3), (c) a branched string-like structure (µ = 4.0, α = 1.7).
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FIG. 4: Further representative structures for various regions of the parameter space for 25 particles. (a) A

string-like structure broken into multiple chains (µ = 2.5, α = 2.2), (b) a ring (µ = 4.0, α = 2.0), and (c)

a square antiparallel lattice (µ = 4.0, α = 2.7).
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FIG. 5: The lowest energy structure located for 244 particles constrained in a jar, with µ = 5, α = 1.5 and

R = 4.75. The jar is shown in outline; rods are represented as in figures 3 and 4.

a broken lattice with some square regions was observed, while a string structure was found for

L = 24.

B. Constrained System

Further basin-hopping runs were carried out with the system constrained in a cylinder. A cluster

of 61 particles can form a symmetric hexagonal disc, so we carried out runs with 244 particles,

starting from four hexagonally arranged layers. The angles were initially randomly distributed

within 0.15 radians of alignment with the positive z direction. Jars with radii of R = 4.75,

R = 5.25 and R = 5.75 were modelled. The first of these values is a tight constraint with little

freedom for the particles to twist. Higher values of R allow more twisting. These radii are large

enough to preserve the approximate hexagonal layered arrangement, but small enough to influence

the packing. The jar height was chosen as h = 55; small enough to preserve the initial layered

arrangement, while large enough to allow some translational freedom. We selected µ = 5 and

values of α between 0 and 1.7, where the chiral interaction for the chiral interaction to have a

significant influence on the structure.

The lowest energy structure found for the system with α = 1.5 andR = 4.75 is shown in figure

5. The four layers are maintained, with approximately hexagonal packing and each layer shows

a distinct twist. Although this is unlikely to be the true global minimum, we believe it should be

representative of the favoured morphology.

To analyse the twist, we have evaluated the projection of a unit vector pointing along each rod

onto a unit vector perpendicular to the vector connecting the rod centre of mass and the axis of the

cylindrical container. For the lowest energy structure found at each value of α, we have plotted
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these projections against the distance of the particle from the container axis, as shown in figure

6 for selected values of α with R = 4.75. For small α, there is little energetic preference for an

overall twist in one direction and the particles sample a range of values. At moderate α, there is

some preference for a layer to organise with an overall twist, but a disordered or oppositely twisted

layer is also possible in individual layers, with a small increase in energy. At larger α, the twisted

layers become more energetically favourable, with a more regular hexagonal ordering within the

layer. Comparing α = 0.9 and α = 1.5 in figure 6, the clustering of points for higher α is due

to a greater degree of hexagonal ordering. Beyond α = π/2, the structure becomes disordered,

with the layer organisation breaking down, as aligning particles in similar directions is no longer

favourable.

The gradient of the linear best fit of twist against distance was calculated for each value of α,

with R = 4.75, 5.25 and 5.75. For higher of R, the basin-hopping run was begun by relaxing the

lowest energy structure found for R = 4.75 at the same value of α. In no cases did the basin-

hopping runs locate a structure lower in energy than the initial relaxed structure. The values are

shown in figure 7. The gradient is large for values of α between 0.2 and 1.5, where there is a

tendency for the particles to twist, but does not change significantly with α within this range for

R = 4.75, since the maximum twist is tightly constrained by the small radius. At higher R, the

gradient increases further as larger twists are compatible with the size of the jar. The layers have a

preferred twist from the chirality of the particles, that may be limited by the jar. Beyond α = π/2,

the particles no longer adopt well-ordered twisted layers.

The simulations withR = 4.75 were rerun with the van der Meer potential. Basin-hopping runs

were started from the lowest energy structure found for each value of α. The minimum energy

found was that obtained by an initial local minimisation, except for α = 1.6. For smaller values of

α, the structures and tilts were very similar. At low twisting, there is little difference between the

two potentials. For the disordered structures above α = π
2
, the structures are qualitatively similar.

V. CONCLUSIONS

We have described a single-site potential for simulating chiral interactions, and used it to in-

vestigate the energetically favoured morphologies for chiral rod clusters over a wide range of

chiral parameters, using basin-hopping global optimisation. We found that these structures are

predominantly determined by the angle α, which encodes the preferred twist angle for a pair of
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FIG. 6: Representative plots for different chiral angles α (in radians) and R = 4.75 of the twist of each

particle against its distance from the container axis. Top: α = 0; middle: α = 0.9; bottom α = 1.5.15



FIG. 7: Gradient of the linear best fit for the variation of the rod direction against the distance of the particle

centre of mass from the z axis of the cylindrical container, for the lowest energy structures found at different

values of α. The results for the van der Meer potential with R = 4.75 are also shown. The error bars show

the asymptotic standard error of the fit. 16



particles. We observed (i) hexagonal membrane, (ii) ribbon/helix, (iii) ring, and (iv) square lattice

morphologies for increasing values of α.

The transition between hexagonal membrane and ribbon/helix morphologies is particularly in-

teresting, as it is very similar to results observed for fd bacteriophage, although the number of

particles we have used in this preliminary survey is much smaller than in the experiments. Since

the proposed potential is very convenient in computational terms, one avenue for future research

is to carry out large scale simulations of chiral rods, which will be presented elsewhere. We

also note that previous studies have reported structures similar to the hexagonal membrane and

ribbon/helix morphologies, which suggests that these are generic and robust structures for chiral

assemblies.18,22,30

We have also investigated the behaviour when particles are confined within a cylindrical jar.

Layers of particles adopt an overall twist, dependent on their preferred chiral angle, with the degree

of twisting increasing towards the outside of the jar. These results reproduce the arrangements of

chiral fusilli pasta arranged in a macroscopic jar29 and are very similar for our potential and the

van der Meer potential, demonstrating the value of our potential for use in both microscopic and

macroscopic simulations.

Appendix A: Gradients of the Chiral Potential

We now derive the analytical gradients for the chiral potential, which are required for efficient

geometry optimisations. The derivative with respect to the displacement of the particle centres is
dU c

ij

drij
= −µ

2σ3
0

r4ij
{cosα [−3 (µ̂i · µ̂j) r̂ij] + sinα [(µ̂i × µ̂j)− 4 ((µ̂i × µ̂j) · r̂ij) r̂ij]} . (A1)

To compute the angular gradients, we first write

µ̂i = Riµ̂
0
i , (A2)

where Ri is the rotation matrix for chiral particle i, and µ̂0
i is its orientation in a fixed reference.

We use the angle-axis framework46–48 to describe the rotational degrees of freedom. Here, the

vector p = ψp̂ describes a rotation by an angle ψ around the axis defined by the unit vector p̂.

The derivatives of the chiral potential with respect to angle-axis components are
dU c

ij

dpxi
= −µ

2σ3
0

r3ij
{cosα

[(
Rx
i µ̂

0
i

)
· µ̂j

]
+ sinα

[(
Rx
i µ̂

0
i

)
× µ̂j

]
· r̂ij} , (A3)

dU c
ij

dpxj
= −µ

2σ3
0

r3ij
{cosα

[
µ̂i ·

(
Rx
j µ̂

0
j

)]
+ sinα

[
µ̂i ×

(
Rx
j µ̂

0
j

)]
· r̂ij} , (A4)

17



where x signifies one component of the angle-axis vector and Rx
i is the derivative of the rotation

matrix for particle i with respect to the x component of the angle-axis vector.

Appendix B: Spherocylinders

Two rods of half-length L and L centred at ri and rj with orientations defined by their poles µ̂i

and µ̂j have a distance of closest approach

d = min
xi∈Si,xj∈Si

|xi − xj|, (B1)

where Si is the set of all the points in rod i. It is convenient to write the points of closest approach

xi and xj as

xi = ri − λiµ̂i, (B2)

where −L ≤ λi ≤ L. Thus,

d = min
|λi|≤L,|λj |≤L

|rij − λiµ̂i + λjµ̂j|. (B3)

The pairwise energy, in terms of d, is given in equation (4). The values of λi and λj are necessary

for computing the energy and gradients, and there is a deterministic algorithm for finding them:35

1. Check if µ̂i is parallel to µ̂j . If the rods are parallel and exactly side-by-side, set λi = λj =

0. If the two rods are parallel, but not side-by-side, set λi = ±L, where the sign is the one

that places xi nearer the interior of the other rod, and set λj to the value that chooses the

correct contact point in Sj .

2. If the two rods are not parallel, compute

λi =
[
1− (µ̂i · µ̂j)

2]−1 [rij · µ̂i − (µ̂i · µ̂j) (rij · µ̂j)] (B4)

λj =
[
1− (µ̂i · µ̂j)

2]−1 [−rij · µ̂j − (µ̂i · µ̂j) (rij · µ̂i)] . (B5)

3. If λi is outside the permitted range, change it to the closest of the two values±L. Recompute

λj using this λi as input.

4. If λj is outside the permitted range, change it to the closest of the two values±L. Recompute

λi using this λj as input. If λi is still outside the permitted range, change it to the closest

endpoint.
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We note that there is a discontinuity in the gradient (but not the potential itself) when the

rods are parallel or antiparallel. This effect can be traced to the discontinuity in the position of

closest approach as the rods are perturbed from a parallel or antiparallel configuration. Since this

discontinuity leads to instabilities in global optimisation, we smooth the cusp in the gradient by

introducing a correction potential of the form

ε

(
1− (µ̂i · µ̂j)

2

δ
− 1

)γ
. (B6)

The results are not sensitive to ε and γ if suitably large values are chosen. We use ε = 1020εr and

γ = 100. We also choose δ = 10−3, so that this correction plays a role only when θ < 2◦.
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