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Abstract—This paper considers secure simultaneous wireless
information and power transfer (SWIPT) in cell-free massive
multiple-input multiple-output (MIMO) systems. The system
consists of a large number of randomly (Poisson-distributed)
located access points (APs) serving multiple information users
(IUs) and an information-untrusted dual-antenna active energy
harvester (EH). The active EH uses one antenna to legitimately
harvest energy and the other antenna to eavesdrop information.
The APs are networked by a centralized infinite backhaul which
allows the APs to synchronize and cooperate via a central
processing unit (CPU). Closed-form expressions for the average
harvested energy (AHE) and a tight lower bound on the ergodic
secrecy rate (ESR) are derived. The obtained lower bound on
the ESR takes into account the IUs’ knowledge attained by
downlink effective precoded-channel training. Since the transmit
power constraint is per AP, the ESR is nonlinear in terms of
the transmit power elements of the APs and that imposes new
challenges in formulating a convex power control problem for
the downlink transmission. To deal with these nonlinearities, a
new method of balancing the transmit power among the APs via
relaxed semidefinite programming (SDP) which is proven to be
rank-one globally optimal is derived. A fair comparison between
the proposed cell-free and the colocated massive MIMO systems
shows that the cell-free MIMO outperforms the colocated MIMO
over the interval in which the AHE constraint is low and vice
versa. Also, the cell-free MIMO is found to be more immune to
the increase in the active eavesdropping power than the colocated
MIMO.

Index Terms—Cell-free massive MIMO, SWIPT, active eaves-
dropping, secrecy, energy harvesting, artificial noise

I. INTRODUCTION

In contrast to multi-cell massive multiple-input multiple-
output (MIMO) systems in which the users in each cell (of a
confined area) are served by an array of colocated antennas,
cell-free massive MIMO is an architecture in which the users
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over a large area are served by a large number of distributed
antennas (access points (APs)) [1]. Given the provision of
backhaul phase-coherent cooperation between the APs [2]–[4],
the distributed deployment of the APs offers many advantages
such as: eliminating the correlation between the transmitting
antennas, the ability to overcome deep shadow fading, and
more importantly, large freedom in balancing the simultaneous
transmissions of information, jamming and energy signals.

In massive MIMO systems, the asymptotic orthogonality
between independent users’ channels makes downlink trans-
mission very robust against passive eavesdropping attacks [5].
Therefore, the active eavesdropping attack in massive MIMO
systems (which introduces correlation between the estimated
channels of both the attacker and the attacked user) is relevant.
Active information-eavesdropping relies on attacking the up-
link channel estimation phase by sending an identical training
sequence as the legitimate information user (IU), such that the
estimated IU’s channel is correlated with the channel of the
attacking eavesdropper (EV). Therefore, the active EV benefits
from the downlink transmission which is beamformed based
on the estimated IU’s channel [5], [6].

The broadcast nature of the wireless channel imposes chal-
lenges in securing wireless communication systems, particu-
larly, in the presence of adversarial EVs [7]. One example
of such systems is simultaneous wireless information and
power transfer (SWIPT) systems that comprise information-
untrusted EHs. The secrecy issue in SWIPT massive MIMO
systems, particularly under active attack, has previously lacked
in-depth study in the literature. The main body of research
concerning the secrecy problems in SWIPT systems has con-
sidered the colocated massive MIMO architecture [8]–[11].
Throughout the literature, much of the research regarding
optimizing the performance of cell-free MIMO systems deals
with the spectral efficiency [2, and the references therein], the
energy efficiency [12]–[14], and the secrecy rate of wire-taped
systems [15].

This paper investigates the design and the performance
evaluation of SWIPT in cell-free massive MIMO, particularly,
the secrecy of the information transmission under an active
attack from a dual-antenna information-untrusted EH. From
the service provider (cooperative APs) point of view, the dual-
antenna active EH’s request for service equivalently appears as
a separate legitimate EH using a training power φPE (where
0 < φ < 1 and PE is the total available training power) via the
energy harvesting antenna, and illegitimate active EV attacking
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a certain IU with training power (1−φ)PE . However, the coop-
erative APs can rely on their large dimensionality to monitor
the levels of training powers, therefore, they can blame the
legitimate EH for the active attack. Instead of dropping the
IU under attack from service, i.e., to stop sending information
to the IU being attacked, the cooperative APs deal with the
case by optimising the secrecy of the downlink transmission.
Taking this action is useful and practical, particularly with the
advantage of the large dimensionality of the APs.

Contributions: We are motivated by the lack of literature on
the security of cell-free MIMO systems to provide a new glob-
ally optimal solution to the problem of joint power and data
transfer in a cell-free massive MIMO system. The proposed
system is established by a large number of randomly (Poisson-
distributed) located APs which cooperate via a central process-
ing unit (CPU). The communication links between the APs and
the IUs are vulnerable to be wire-tapped by an information-
untrusted dual-antenna active EH. Since the transmit power
constraint is per AP, the secrecy rate is nonlinear in terms
of the transmit power elements of the APs and that imposes
new challenges in formulating a convex power control prob-
lem for the downlink transmission. The main contributions
of our work are: 1) To jointly improve the ESR and the
AHE (of the legitimate EH), we propose optimized downlink
transmissions of three different signals: information, AN and
energy signals beamformed towards the IUs, legitimate and
illegitimate antennas of the EH, respectively; 2) We derive
closed-form expressions for the AHE and a tight lower bound
on the ESR. The derived expressions are deterministic at
the CPU and take into account the IUs’ knowledge attained
by downlink effective precoded-channel training; 3) Knowing
that the ESR is nonlinear in terms of the transmit power
elements of the APs, a new globally optimal iterative method
for cooperatively balancing the transmit powers at the APs
via relaxed semidefinite programming (SDP) is derived; 4) We
provide a proof for the rank-one global optimality of our SDP
solution (Theorem 3) and the convergence of our iterative SDP
problem (Subsection IV-C2); 5) Finally, a fair performance
comparison between the proposed cell-free and colocated
massive MIMO systems is performed. The comparison shows
informative results of the secrecy performance with respect to
the active eavesdropping training power and the range of the
AHE constraint values.

Related Work: To the best of the authors’ knowledge, the
secrecy performance in cell-free massive MIMO systems has
only been studied in [15] where the focus was on maximizing
the secrecy rate of a given IU when being attacked by an active
EV under constraints on the individual rates of all IUs. We
can compare the work in this paper to the work in [15] from
two perspectives: 1) From system and signal design perspec-
tives, our work considers the worst-case SWIPT problem by
optimizing three different downlink signals: information, AN
and energy signals beamformed towards the IUs, legitimate
and illegitimate antennas of the dual-antenna EH, respectively;
while the work in [15] considers the secrecy problem of a
certain IU by optimizing the downlink information signals
(no jamming or power transfer are considered); 2) From a
problem-solving perspective, the employed lower bound on

the secrecy rate in [15] imposes constraints on the domain
of the linear programming (LP) optimization variables (the
allocated power of the downlink information vectors) [15,
(23)], i.e., the values of allocated power vectors are feasible
on a sub-region of RN+ , where N is the total number of APs.
Since the update in the proposed iterative algorithm does not
include the power vector of the considered IU, the obtained
solution is locally optimal, or at least, the globally optimal
solution is not guaranteed. In contrast, in our work, both the
objective function and constraints of the SDP formulation are
differentiable and there are no constraints on the domain of
the optimization variables which implies the satisfaction of
Slater’s condition. Therefore, by proving the optimal rank
requirements (please see Theorem 3 and its proof) and the
convergence of the employed iterative problem (please see
Subsection IV-C2), we claim the global optimality of our
solution. In our early work in [11], an active dual-antenna
information-untrusted EH (equivalent to the proposed EH
in this paper) has been considered for a colocated SWIPT
massive MIMO system. However, considering such a secrecy
problem for cell-free massive MIMO will result in a non-linear
objective function in terms of the allocated power elements at
the APs. Inevitably, this problem can not be solved by the LP
method used for a colocated massive MIMO in [11], and this
leads to a completely different SDP optimization challenge.

Notation: Vectors and matrices are denoted by boldface
lower case and boldface upper case letters, respectively. IN
denotes the N ×N identity matrix. diag(s) is a matrix whose
diagonal entries are the entries of vector s and zeros elsewhere.
diag(S) is a column vector whose entries are the diagonal
entries of matrix S. S � 0 indicates that S is a positive
semidefinite matrix. The operators (·)T , (·)H , tr(·), log2(·)
and | · | denote the transpose, conjugate transpose, trace of
a matrix, logarithm to base 2 and the absolute value of
scalars, respectively. R, Rn+, Sn+ and Cm×n denote the sets of
real numbers, nonnegative real numbers, symmetric positive
semidefinite n× n real matrices and complex m× n matrices,
respectively. x ∼ CN (0,Σ) denotes a circularly symmetric
complex Gaussian random vector x ∈ CN×1 with zero mean
and covariance matrix Σ. cov(x, y) and var(x) denote the
covariance between the random variables x and y, and the
variance of x, respectively. {an} denotes a set of all vectors
indexed by n. {am,n}m denotes a set of all scalars indexed by
m. [a]n and [A]n,m indicate the nth entry of a and the nth
entry of the mth column of A, respectively. f(N)

N→∞→ a

is equivalent to limN→∞ f(N) = a. [x]+ = max (x, 0).
B = null (A) means AB = 0 and BBH = I.

II. SYSTEM MODEL

As illustrated in Fig. 1, we consider the downlink of a
cell-free massive MIMO system consisting of a large number
of APs which are randomly located on a two dimensional
Euclidean area Aa based on an homogeneous Poisson point
process (PPP) Φa with an intensity λa; M single antenna IUs
interested in information decoding, {IUi}, i = 1, 2, ...,M ;
and an active information-untrusted EH, equipped with two
antennas, where one antenna is used to legitimately harvest
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Fig. 1. An illustration of the proposed SWIPT cell-free
massive MIMO system, only a small number of APs is

illustrated for clarity.

energy, while the other antenna is used to illegitimately and
actively eavesdrop and decode an information signal intended
for a certain IU, IUk, k ∈ {1, 2, ...,M}. Unless otherwise
stated, the IUs and the EH are randomly located on a two
dimensional Euclidean area Au < Aa1. The origins of both
Au and Aa coincide. The APs are networked by a centralized
infinite backhaul that allows them to synchronize and cooper-
ate via a CPU.

Let {AP1, . . . ,APN} be the set of the adopted real-
ization of APs. hi = [hi,1, . . . , hi,N ]T = Γ

1
2
i h̄i denotes the

uplink channel vector between IUi and the set of APs,
where h̄i ∼ CN (0, IN ) is the small-scale fading vector
and Γi = diag([γi,1, . . . , γi,N ]), γi,j is the large-scale fad-
ing coefficient of the channel between IUi and APj .
g = [g1, . . . , gN ]T = Γ

1
2 ḡ and gE = [gE1

, . . . , gEN ]T = Γ
1
2 ḡE

denote the uplink channel vectors between the legitimate and
the illegitimate (eavesdropping) antennas of the EH and the
set of APs, respectively, where ḡ = [ḡ1, . . . , ḡN ]T , ḡE =
[ḡE1 , . . . , ḡEN ]T ∼ CN (0, IN ) are independent, uncorrelated
small-scale fading vectors. Γ = diag([γ1, . . . , γN ]) where γj is
the large-scale fading coefficient of the channel between the
EH and APj . The large-scale fading coefficients {γi,j , γj}
change very slowly compared to the small-scale fading co-
efficients, therefore, we assume that {γi,j , γj} are perfectly
known at the APs [16].

A. Uplink Channel Estimation

The user small-fading channels manifest block fading, i.e.,
they remain constant over one time block, but change indepen-
dently from one block to another. Each time block is divided
into three time slots of lengths: τ transmission samples for

1Since each user (IU or EH) is dominantly served by a subset of the APs,
the assumption Au < Aa introduces an overlap between the dominant AP
groups serving different users. From the secure SWIPT design point of view,
this case is more severe than the case when the users are widely apart, i.e.,
Au = Aa.

uplink training, τd transmission samples for downlink training
and τs samples for downlink data transmission. Without loss
of generality, we assume a unit time slot for the downlink
data transmission τsTs = 1s, where Ts is the duration of the
transmitted data symbol [8], [17]. During the uplink training
phase, a training sequence is sent from each IU with an
average power PI . Pessimistically, we assume that the EH
has the potential to acquire the training sequence of a certain
IU (made possible by overhearing the leaking electromagnetic
signalling between the APs and the IUs [18]). Therefore, the
EH sends a copy of the training sequence of the attacked IU,
IUk, k ∈ {1, 2, . . . ,M}, via its eavesdropping antenna using
part of its total average power φPE , 0 < φ < 1, such that
the cooperative APs estimate the uplink composite channel
coefficients of both IUk and the eavesdropping antenna of
the EH. Consequently, the estimated channel of IUk will be
corrupted and correlated with the illegitimate channel of the
EH [5], [19]. The remaining training power (1−φ)PE is used
for transmitting the legitimate uplink training sequence via the
energy harvesting antenna. The uplink training sequences of
the IUs and legitimate EH are assumed to be orthogonal. The
signal at the APs received across τ training transmissions is

Y =

M∑
i=1

√
PI hi ψ

T
i +

√
φPEgEψ

T
k +

√
(1− φ)PEgψ

T
E +N ,

(1)
where N ∈ CN×τ is the additive noise matrix with entries
following the distribution CN (0, σ2

n). k is the index of the
attacked IU, IUk. ψi, ψk, ψE ∈ Cτ×1 are the uplink training
sequences of IUi, the IU under attack, IUk, and the legitimate
antenna of the EH, respectively. ψHi ψj 6=i, ψ

H
i ψE = 0;

and ψHi ψi, ψ
H
EψE = τ . We assume centralized channel

estimation via the CPU. Given that IUk is the attacked IU,
the minimum mean square error (MMSE) estimate of hi,
ĥi = [ĥi,1, . . . , ĥi,N ]T , and of g, ĝ = [ĝ1, . . . , ĝN ]T , are
given as

ĥi = Ciyi, Ci =
√
PIΓi

(
τPIΓi + δik τφPEΓ + σ2

nIN
)−1

,

(2a)

yi = Y ψ∗i = τ
√
PIhi + δik τ

√
φPE gE +Nψ∗i , (2b)

ĝ = Cy, C =
√

(1− φ)PEΓ
(
τ(1− φ)PEΓ + σ2

nIN
)−1

,

(2c)

y = Y ψ∗E = τ
√

(1− φ)PE g +Nψ∗E , (2d)

where δik = 1 if i = k (i.e., IUi is the attacked IU) and δik = 0

if i 6= k. The covariance matrices E[ĥiĥ
H

i ] and E[ĝĝH ] are
equal to Ri = τ

√
PIΓiCi and R = τ

√
(1− φ)PEΓC,

respectively. To emphasize whether IUi is being attacked or
not, we use Ri to describe the covariance matrix of IUi if
not being attacked and R̄i to describe the covariance matrix
of IUi if being attacked. Both Ri and R̄i are calculated by
the same aforementioned formula, but with k 6= i for Ri

and with k = i for R̄i. The results in (2a) and (2c) follow
from standard channel estimation theory [20], [21]. Active
eavesdropping attack detection and the identification of the
attacked IU, IUk, are possible and have been studied in [22]–
[24]. Alternatively, the cooperative APs can exploit their large
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dimensionality to detect the active eavesdropping attack by
monitoring the values of training powers which have been
proven to be accurate as N →∞. The CPU can calculate the
eavesdropping (illegitimate) and the legitimate training powers
of the EH, φPE and (1 − φ)PE , respectively, by using the
following lemma.2

Lemma 1: For a large density of APs as λa → ∞, which
leads to a large number of APs as N → ∞, any illegitimate
active training power can be identified and calculated as

yHi yi − τ2PI tr (Γi)−Nτσ2
n

τ2tr (Γ)
N→∞→ δik φPE , (3)

where IUi is under attack if δik = 1, i.e., k = i, and IUi is not
being attacked if δik = 0, i.e., k 6= i. All the scalars, vector
and matrices in the left-hand side of (3) are deterministic at
the CPU.

Proof: See Appendix A.
As will be seen in the next subsection, the downlink signal

design at the cooperative APs does not require knowledge of
which antenna is used for energy harvesting and which one
is used for eavesdropping. The cooperative APs need to know
the estimated channel of the IU under attack which can be
identified by using Lemma 1, and the estimated channel of
the legitimate energy harvesting antenna of the EH whose
identification is possible since it uses a training sequence
orthogonal to the training sequences of the other users.

B. Downlink Transmission

The APs cooperate via the CPU to control the power
allocation of the downlink data, AN, and energy signal trans-
missions. From the service provider (cooperative APs) point
of view, the EH’s request for service equivalently appears to
the cooperative APs as a separate legitimate EH which uses
a training power φPE and illegitimate active eavesdropper
attacking a certain IU, IUk, with a training power (1−φ)PE .
However, the CPU relies on the large dimensionality of the
APs to monitor the levels of training powers, and based on
Lemma 1, it can blame the legitimate EH for the active attack.
Upon the detection of the active attack, the CPU has no option
but to deal with this attack, and only two possible actions
might be taken:
• Dropping the IU under attack from service, i.e., to stop

sending information to the IU being attacked. With an
exception for IUs receiving information with a high
degree of importance, such an action seems impractical.
Therefore, there is no secrecy design for the downlink
transmission.

• Dealing with the case by optimizing the secrecy of down-
link transmission (by employing controlled transmissions
of information, jamming and energy signals). Taking
this action is useful and practical, particularly with the
advantage of the large number of randomly located APs.
Compared to the case of collocated APs (conventional

2Since the cooperative APs are able to monitor the changes in the training
powers of the IUs and the EH using Lemma 1, we assume that the cooperative
APs blame the information-untrusted EH for the active eavesdropping attack.

MIMO), the average path-loss from an AP to the active
EH and the attacked IU varies from one AP to another.
This property of randomly distributed APs would increase
the efficiency of power control in tackling the active
eavesdropping.

Given that the IUk is the attacked IU, the APs employ the
matched filter (MF) precoder to transmit the downlink signal
vector

xk =

M∑
i=1

wiqi + w̄kz +w, (4)

where the jth entry of xk, [xk]j , is the signal transmitted by
APj , wiqi is the information signal vector directed towards
IUi, w̄kz is the AN signal vector directed towards the eaves-
dropping antenna of the EH, and w is the energy signal vector
directed towards the legitimate antenna of the EH. {qi} and z
are the information signal symbols intended for {IUi} and the
AN symbol, respectively, and they are mutually independent
and follow the distribution CN (0, 1). The MF beamforming
vectors in (4) are defined as3

wi = diag (pi) ĥ
∗
i , pi =

[√
pi,1, . . . ,

√
pi,N

]T
, (5a)

w̄k = diag (p̄) ĥ
∗
k, p̄ =

[√
p̄1, . . . ,

√
p̄N
]T
, (5b)

w = diag (p) ĝ∗, p = [
√
p1, . . . ,

√
pN ]T . (5c)

For example, | [wi]j |2 = pi,j |ĥi,j |2, | [w̄k]j |2 = p̄j |ĥk,j |2 and
| [w]j |2 = pj |ĝj |2 are the allocated powers at APj for IUi’s
data, AN and energy signals, respectively. Power allocation is
controlled via the factors {pi,j}, {p̄j} and {pj}. Referring to
(2a) and (5b), it can be noticed that the received AN signal
power at the eavesdropping antenna of the EH, |gTEw̄k|2,
is directly proportional to the eavesdropping training power,
φPE , i.e., the larger the eavesdropping training power, the
larger the jamming received power by the EH. Therefore,
although the AN is aligned to the IUk’s estimated channel
coefficients, the cooperative APs can improve the information
secrecy by exploiting the nature of the cell-free system – in
which IUk and the EH experience different path-losses to a
single AP – by optimizing the per AP per user power control.

Given that IUk is the attacked IU. The received signals at
IUi, yk,i; the legitimate antenna of the EH, yk; and at the
eavesdropping antenna of the EH, yEk , are

yk,i = hTi xk + ni, yk = gTxk + n̂, yEk = gTExk + n̄, (6)

where ni, n̂ and n̄ are zero mean σ2
n variance complex

Gaussian noises at IUi, the legitimate and eavesdropping
antennas of the EH, respectively.

Remark 1: Although the AN signal might be designed
for both actions of interfering eavesdropping antenna and
providing wireless energy at the energy harvesting antenna
[17], the cooperative APs transmit two different beamformed
signals since the EH’s request for service equivalently appears

3Please note, due to active attack, the ĥk used to design w̄k in (5b) is the
estimate of the composite channel of both hk and gE . By optimizing the per
AP AN power factors {p̄1, . . . , p̄N}, the AN power can be maximized at
the EH and minimized at the IUk .
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to the cooperative APs as a separate legitimate EH and ille-
gitimate active eavesdropper attacking a certain IU. We assign
different names for the two signals since they are beamformed
with different beamforming vectors: 1) w̄k (aligned to the
composite estimated channel vector of the illegitimate antenna
of the EH and the IUk, ĥk) for the AN signal (jamming signal)
when the EH attacks IUk; 2) w (aligned to the estimated
channel vector of the legitimate antenna ĝ) for the energy
signal.

C. Downlink Effective Precoded-Channel Estimation

With a large number of APs, the channel estimation at all
IUs requires training sequences of a length ≥ N which is
practically infeasible. Alternatively, we propose the estimation
of the effective precoded-channels, {ai,i = hTi wi} at the IUs4.
The downlink estimation of the effective precoded-channels at
the IUs requires M orthogonal training sequences that can be
of a finite length, ≥M . Therefore, such a downlink estimation
is practically possible. Notice that IUi needs to estimate its
effective precoded-channel ai,i which includes the values of
power control factors {pi,j}, {p̄j} and {pj}. Therefore the
values of {pi,j}, {p̄j} and {pj} to be used for downlink
data transmission are employed for downlink training. The
cooperative APs transmit the downlink training signal matrix
Xd =

∑M
i=1wi ψ

T
di , where {ψdi} (ψHdiψdi = τd and

ψHdiψdj 6=i = 0) are the downlink training sequences of the
IUs5. The received training signal vector at IUi, yIi ∈ C

1×τd

is

yIi = hTi Xd + ni =

M∑
j=1

ai,jψ
T
dj + ni, (7)

where ai,j = hTi wj and ni ∼ CN (0, σ2
nIτd) is the noise

vector at IUi. First, let us examine the MMSE estimate of ai,i
at IUi which can be calculated as [20], [21]

pTi ΓiRipi
pTi ΓiRipi + τdσ

2
n
yIi , (8)

where yIi = yIiψ
∗
di = τdai,i + niψ

∗
di . However, since the

allocated power control factors in pi are not available at IUi,
the calculation of (8) is not possible, and instead, we assume
that IUi performs a simple least square error (LSE) estimate
of ai,i, âi,i which is given as

âi,i =
yIi
τd

= ai,i + ãi,i, (9)

where ãi,i =
niψ

∗
di

τd
is the estimation error which is statistically

independent from the effective precoded channel ai,i.

4The EH has the potential to estimate the precoded channel for the attacked
IU, bk = gTEwk , however, as will be seen in Subsection III-B, the worst case
in which the EH can perfectly estimate bk is assumed.

5The same training sequences could be used in the uplink and downlink.

III. SECRECY ANALYSIS

A. Lower Bound on the IU Rate

The received signal at IUi, yk,i, given in (6) can be recast
as follows

yk,i = ai,iqi + Zk,i

= E
[
ai,i|âi,i

]
qi +

(
ai,i − E

[
ai,i|âi,i

])
qi + Zk,i,

(10)

where
Zk,i =

∑
j 6=i

ai,jqj + hTi (w̄kz +w) + ni. (11)

E
[
ai,i|âi,i

]
qi is the desired information signal received

through a deterministic precoded channel E
[
ai,i|âi,i

]
, while(

ai,i − E
[
ai,i|âi,i

])
qi is the desired information signal re-

ceived through a non-deterministic precoded channel ai,i −
E
[
ai,i|âi,i

]
. E
[
ai,i|âi,i

]
qi and

(
ai,i − E

[
ai,i|âi,i

])
qi are statis-

tically dependent. Zk,i is the equivalent noise6 which accounts
for inter user interference, energy signal interference and the
thermal noise. Referring to (9), we can see that ai,i is explicitly
decoupled and therefore ai,i and ãi,i are uncorrelated and
statistically independent. Since âi,i is deterministic at IUi, then

E
[
ai,i|âi,i

]
= E

[
âi,i|âi,i

]
− E

[
ãi,i|âi,i

]
= âi,i − E

[
ãi,i
]

= âi,i, (12a)

ai,i − E
[
ai,i|âi,i

]
= ãi,i, (12b)

where E
[
âi,i|âi,i

]
= âi,i follows as an expectation over a

deterministic value; E
[
ãi,i|âi,i

]
= E

[
ãi,i
]

follows from the
statistical independence between ãi,i and âi,i; and E

[
ãi,i
]

= 0

follows since E
[
niψ

∗
di

]
= 0. Using the results in [25, Theorem

1] and in [26], the downlink information rate at the attacked
user IUk, Rk (given in (16) in Theorem 1) is achievable and
forms a lower bound on the ergodic information rate Rk [26,
(22)]

Rk = E [log2 (1 + SINRk)] , (13)

where

SINRk =

∣∣âk,k∣∣2
E
[∣∣ak,k − E

[
ak,k|âk,k

]∣∣2]+ E
[∣∣Zk,k∣∣2]

=

∣∣âk,k∣∣2
var
(
ãk,k

)
+ var

(
Zk,k

) .
(14)

Theorem 1: For N →∞, the value of SINRk is tightly lower
bounded by a deterministic value SINRk

N→∞
< SINRk, which

is given by

SINRk =
τ2PIc

2
k∑

j 6=k
ck,j + τ2PI c̄

2
k + c̄

(1)
k + c̃k + σ2

n
τd+1
τd

, (15)

6Zk,i is considered as an equivalent noise since Zk,i and E [ai,i|âi,i] qi
are independent and that follows since {qj}, z, ni and w are statistically
independent.
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where

ck = pTk diag (ΓkCk) , ck,j = pTj ΓkRjpj , c̃k = pTΓkR p,

c̄k = p̄T diag (ΓkCk) , c̄
(1)
k = p̄TΓkR

(1)
k p̄, and

R
(1)
k = R̄k − τ2PIC

2
kΓk.

Since SINRk is deterministic (independent of the small-fading
randomness, E[SINRk] = SINRk), and based on (13) and (15),
Rk = log2(1 + SINRk) is a tight lower bound on the ergodic
rate of the attacked user IUk, and known at the CPU, i.e.,

Rk = log2 (1 + SINRk)
N→∞
< Rk. (16)

Proof: See Appendix A.

B. Upper Bound on the EH Ergodic Rate

The received signal at the eavesdropping antenna of the EH,
yEk , given in (6) can be recast as follows

yEk = bkqk +
∑
j 6=k

bjqj + b̂kz + b+ n̄, (17)

where
bj = gTEwj , b̂k = gTEw̄k, b = gTEw.

In the following, we assume the worst-case scenario in
which the EH has full knowledge of its own channel vectors,
gE and g; and the beamforming vectors {wi}. With this worst-
case assumption, an upper bound on the ergodic information
rate at the EH is given in the following theorem.

Theorem 2: With a worst-case scenario assumption that the
EH has full knowledge of its own channel and the beamform-
ing vectors of the IUs, the EH is capable of cancelling the
inter-user interference [27, Chapter 8]. Since the information,
{qi}, the AN signal, z, and the energy signal, w, are statisti-
cally independent, we have the following upper bound, REk ,
on the ergodic rate of the EH intending to eavesdrop IUk,
REk , given by

REk = log2 (1 + E [SINREk ]) ≥ REk = E [log2 (1 + SINREk )] ,

(18)

for which

E
[

SINREk =
|bk|2

|b̂k|2 + |b|2 + σ2
n

]
N→∞→

E
[
|bk|2

]
E
[
|b̂k|2 + |b|2 + σ2

n

] =
τ2φPEd

2
k + d

(1)
k

τ2φPE d̄
2
k + d̄

(1)
k + d+ σ2

n

,

(19)

where

dk = pTk diag (ΓCk) , d
(1)
k = pTkΓR

(2)
k pk, d = pTΓR p, d̄k =

p̄T diag (ΓCk) , d̄
(1)
k = p̄TΓR

(2)
k p̄, and

R
(2)
k = R̄k − τ2φPEC

2
kΓ.

Proof: See Appendix A.
Such a worst-case scenario is commonly employed by much

of the current research to guarantee maximum information

security [17], [28]. Ensuring the confidentiality of the informa-
tion for the worst-case scenario design ensures confidentiality
for more optimistic scenarios.

C. Lower Bound on the Ergodic Secrecy Rate of IUk

Using the lower bound and the upper bound on the infor-
mation rates at the attacked user IUk and the EH given in (16)
and (18), we assess the secrecy of information at IUk in terms
of ESR, which has the following lower bound

RSk
N→∞→

[
Rk −REk

]+
. (20)

D. Average Harvested Energy at the EH

The EH relies on the dual functionality of its antennas to
harvest energy and eavesdrop information simultaneously. The
whole signal received via the legitimate antenna is devoted for
energy harvesting, while the signal received via the illegitimate
antenna is used for information decoding. However, since
the CPU blames the EH for the active attack, the received
signals via both antennas are accounted by the CPU for energy
harvesting. The AHE by the EH intending to eavesdrop IUk
is7

Ek = ζ E
[
|bk|2 +

∑
j 6=k

|bj |2 +
∣∣∣b̂k∣∣∣2 + |b|2 +

∑
j

∣∣∣b̃j∣∣∣2 +
∣∣∣˜̂bk∣∣∣2

+
∣∣∣b̃∣∣∣2 ] = ζ

[
τ2φPEd

2
k + d

(1)
k +

∑
j 6=k

dk,j + τ2φPE d̄
2
k + d̄

(1)
k

+ d+
∑
j

dk,j + d̃k + τ2(1− φ)PE d̃
2 + τσ2

nd̃
(1)

]
,

(21)

where

b̃j = gTwj ,
˜̂
bk = gT w̄k, b̃ = gTw, dk,j = pTj ΓRjpj ,

d̃k = p̄TΓR̄k p̄, d̃ = pT diag (ΓC) , and d̃(1) = pTΓC2p.

IV. POWER CONTROL OF DOWNLINK TRANSMISSION

A. Problem Formulation

In our system, a single AP, APj , transmits a set of M + 2

different types of signals, {{[wi]jqi}i, [w̄k]jz, [w]j}. With
the random geometric distribution of the APs with respect
to the IUs and the EH, the power control in the cell-free
MIMO system has an advantage over the conventional MIMO
that different users have different subsets of dominant serving
APs. In the long-term, the CPU can achieve a fair and secured
SWIPT transmission towards the IUs and the EH by balancing
the average levels of transmit powers at the APs within
the power limits of each AP. The power control aims to
maximize the worst-case ESR, mink RSk , with a constraint

7Detailed derivation of the results in (21) are in Appendix A.
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on the minimum AHE requirement of the legitimate EH.
Therefore, our constrained problem is

maximize
{pi}, p̄, p

min
k
RSk

subject to Ek ≥ Ē, ∀k, (22a)[
M∑
i=1

E[wiw
H
i ] + E[w̄kw̄

H
k ] + E[wwH ]

]
j,j

≤ Pt,

∀j, ∀k, (22b)

where Pt is the available power budget at each AP. The
constraint (22b) guarantees the average power consumption at
each AP is within the limit, Pt. Problem (22) is non-convex
since the objective function is a logarithm of multiplicative
fractional functions. Without loss of generality, we assume
that (22) is always feasible and focus on solving it. We use
the exponential variable substitution method used in [29] and
[30] to transform the logarithmic objective function of (22)
into an equivalent linear function. By using the properties of
logarithmic and exponential functions, the objective function
of (22) can be expressed as loge2 ln(euk−skevk−tk) where

euk = τ2PIc
2
k +

∑
j 6=k

ck,j + τ2PI c̄
2
k + c̄

(1)
k + c̃k + σ2

n
τd + 1

τd

(23a)

esk =
∑
j 6=k

ck,j + τ2PI c̄
2
k + c̄

(1)
k + c̃k + σ2

n
τd + 1

τd
(23b)

etk = τ2φPEd
2
k + d

(1)
k + τ2φPE d̄

2
k + d̄

(1)
k + d+ σ2

n (23c)

evk = τ2φPE d̄
2
k + d̄

(1)
k + d+ σ2

n. (23d)

Since the logarithmic functions are monotonically increasing
in their arguments, then (22) can be recast as

maximize
{pi}, p̄, p{uk, sk, tk, vk}

min
k

(uk − sk + vk − tk)

subject to

τ2PIc
2
k +

∑
j 6=k

ck,j + τ2PI c̄
2
k + c̄

(1)
k + c̃k + σ2

n
τd + 1

τd
≥ euk , ∀ k,

(24a)∑
j 6=k

ck,j + τ2PI c̄
2
k + c̄

(1)
k + c̃k + σ2

n
τd + 1

τd

≤ es̄k (sk − s̄k + 1) , ∀ k, (24b)

τ2φPEd
2
k + d

(1)
k + τ2φPE d̄

2
k + d̄

(1)
k + d+ σ2

n

≤ et̄k (tk − t̄k + 1) , ∀ k, (24c)

τ2φPE d̄
2
k + d̄

(1)
k + d+ σ2

n ≥ evk , ∀ k, (24d)

(22a), (22b). (24e)

Our new objective in (24) is monotonically increasing
with mink RSk . The constraints (24a)–(24e) bound the slack
variables uk, sk, tk, vk of the objective function within their
limits defined in (23a)–(23d). The exponential variables esk
and etk are linearized as es̄k(sk− s̄k+1) and et̄k(tk− t̄k+1).
s̄k, t̄k are the initial values around which esk and etk are
linearized.

The formulation in (24) is still non-convex since the right-
hand sides of the constraints (24a)–(24e) contain expressions
which are nonlinear in the optimization variables (the power
control factors {{pi}, p̄, p}), such as c2k =

(
pTk diag (ΓkCk)

)2.
These nonlinearities arise from the per AP per user power
control (specific for cell-free massive MIMO systems) where
each AP has its own transmit power constraint. In comparison,
these nonlinearities do not exist in the power control for the
conventional (collocated) massive MIMO systems in which the
constraint is on the total transmit power from all collocated
antennas [11]. To deal with these nonlinearities, we introduce
a new method of cooperative balancing of the transmit powers
at the APs via relaxed SDP formulation which has been proven
to be optimal as will be described in the next subsection.

B. SDP Formulation for Optimal Power Control

In this subsection, we reformulate the non-convex problem
(24) into a relaxed SDP convex problem. To achieve this, the
nonlinear expressions in the power control factors {{pi}, p̄, p}
are represented as linear expressions in terms of new rank-one
positive semidefinite matrix variables {{P i = pi p

H
i }, P̄ =

p̄ p̄H , P = p pH}. For instance, given that k is the index of
the IU under attack, the expression of c2k can be recast in an
SDP form as

c2k =
(
pTk diag (ΓkCk)

)2

= pTk diag (ΓkCk) diag (ΓkCk)T pk

= tr
(
pkp

T
k diag (ΓkCk) diag (ΓkCk)T

)
= tr (P kAk) ,

(25)

where Ak = diag(ΓkCk) diag(ΓkCk)T . In a comparable
way, the rest of the expressions {ck,j , c̄2k, c̄

(1)
k , c̃k},

{d2
k, d

(1)
k , d, d̄2

k, d̄
(1)
k } and {dk,j , d̃k, d̃2, d̃(1)} in (24)

can be transformed into linear expressions in terms of
{{P i}, P̄ , P }. With these transformations, we can recast
the non-convex problem in (24) into a convex relaxed8 SDP
formulation as in (26) at the top of the next page, where
S = {{P i}, P̄ , P , {uk, sk, tk, vk}} is the set of optimization
variables and
Ak,j = ΓkRj , Āk = ΓkR

(1)
k , Ãk = ΓkR, B̄k = ΓR

(2)
k

Bk = diag (ΓCk) diag (ΓCk)H , B = ΓR, B̃ = ΓRj

B̈ = diag (ΓC) diag (ΓC)H , B̂ = ΓC2, and B̃k = ΓR̄k.

The constraints (26e) and (26f) are an SDP recast of (22a) and
(22b), respectively. The constraint (26f) is equivalent to (22b),
where Dl ∈ RN×N has zero entries except [Dl]l,l = 1. This
equivalent representation in (26f) is required to facilitate the
proof of Theorem 3 presented in Appendix A.

The formulation in (26) is convex and can be solved
iteratively based on the following initial value update method:
The initial values of the nth iteration {s̄[n]

k } and {t̄[n]
k } are

updated by the optimized values of the (n − 1)th preceding
iteration {ln(es̄

[n−1]
k (s

[n−1]
k −s̄[n−1]

k +1))} and {ln(et̄
[n−1]
k (t

[n−1]
k −

t̄
[n−1]
k + 1))}, respectively. The iterations continue until the

errors {|s̄[n−1]
k − s̄[n]

k |} and {|t̄[n−1]
k − t̄[n]

k |} converge to a certain
small tolerance.

8The formulation in (26) does not impose any constraints on the rank of
{{P i}, P̄ , P }, i.e, {rank(P i)}, rank(P̄ ), rank(P ) ≤ N .
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maximize
S

min
k

(uk − sk + vk − tk)

subject to

τ2PI tr (P kAk) +
∑
j 6=k

tr (P jAk,j) + τ2PI tr
(
P̄Ak

)
+ tr

(
P̄ Āk

)
+ tr

(
PÃk

)
+ σ2

n
τd + 1

τd
≥ euk , ∀ k, (26a)

∑
j 6=k

tr (P jAk,j) + τ2PI tr
(
P̄Ak

)
+ tr

(
P̄ Āk

)
+ tr

(
PÃk

)
+ σ2

n
τd + 1

τd
≤ es̄k (sk − s̄k + 1) , ∀ k, (26b)

τ2φPE tr (P kBk) + tr
(
P kB̄k

)
+ τ2φPE tr

(
P̄Bk

)
+ tr

(
P̄ B̄k

)
+ tr (PB) + σ2

n ≤ et̄k (tk − t̄k + 1) , ∀ k, (26c)

τ2φPE tr
(
P̄Bk

)
+ tr

(
P̄ B̄k

)
+ tr (PB) + σ2

n ≥ evk , ∀ k, (26d)

ζ

(
τ2φPE tr (P kBk) + tr

(
P kB̄k

)
+
∑
j 6=k

tr
(
P jB̃j

)
+ τ2φPE tr

(
P̄Bk

)
+ tr

(
P̄ B̄k

)
+ tr (PB) +

∑
j

tr
(
P jB̃j

)
+ tr

(
P̄ B̃k

)
+ τ2(1− φ)PE tr

(
PB̈

)
+ τσ2

ntr
(
PB̂

))
≥ Ē, ∀ k, (26e)

tr
(
P kDlR̄k

)
+
∑
j 6=k

tr (P jDlRj) + tr
(
P̄DlR̄k

)
+ tr (PDlR)− Pt ≤ 0, ∀ l, ∀ k, (26f)

{P k} , P̄ , P � 0. (26g)

It can be shown that the complex-valued SDP problem (27)
(which is equivalent to (26)) contains: M + 2 semidefinite
complex-valued N ×N matrix variables, 5M + 1 real scalar
variables, 6M+NM+2 constraints on matrix variable of size
N×N , and M constraints on scalar variables. The complexity
(in terms of number of complex operations) of obtaining a per
iteration solution of (26) within accuracy ε is asymptotically
upper bounded by O(M4N

9
2 log( 1

ε )) [31]. This result assumes
unstructured input data matrices. However, the optimization
solver (such as SeDuMi employed by CVX software [32])
can exploit the structure of input data matrices – for example,
the structure of single non-zero element matrices {Dl} – to
reduce the computational complexity [31].

C. Global Optimality of the SDP Formulation

To investigate the optimality of the solution obtained by
(26), let us rewrite (26) in the equivalent form in (27) by
replacing the objective mink (uk − sk + vk − tk) by a new
slack variable π and K linear constraints as

maximize
{P i}, P̄ , P

{diag([uk, sk, tk, vk])}, π

π

subject to diag([uk, sk, tk, vk])− πI4 � 0, ∀k, (27a)

(26a)–(26g). (27b)

By examining (27) with the first-order and the second-order
conditions of convexity, we have

∂π

∂π
= 1, and

∂2π

∂π2
= 0. (28)

This means that (26) is convex with an affine objective func-
tion. Since the constraints of (26) are differentiable and there
are no constraints on the domain of the optimization variables
{P i}, P̄ , P ∈ S+, {uk, sk, tk, vk}, π ∈ R, then Slater’s
condition holds and the solution obtained by solving (26) is

globally optimal subject to: 1) satisfying the rank requirement
of {P i}, P̄ and P ; 2) and the convergence of the constraints
(26b) and (26c) (which results in the convergence of the
iterative problem (26)).

1) Rank-one Optimality: Generally, the optimality of the
solutions obtained via SDP programming might require a rank
higher than one. The rank requirement for the optimality of
the solutions obtained by SDP problems has been investigated
in [33, Lemma 3.1] which is quoted as:

Lemma 2: Suppose that the separable SDP (P1) and its dual
(D1) are solvable. Then, problem (P1) always has an optimal
solution {X?

1, . . . , X
?
L} such that

∑L
l=1 rank2(X?

l ) ≤M .
{X1, . . . , XL} in Lemma 2 are the semi-definite matrix
variables of (P1), {X?

1, . . . , X?
L} are their optimal values

and M (for Lemma 2 only) is the number of constraints.
Nevertheless, for our problem (26), the obtained solution
{P ?

i }, P̄
? and P ? needs to satisfy the rank-one structure

{rank(P ?
i )}, rank(P̄

?
), rank(P ?) = 1 which complies with the

optimality condition given in Lemma 2. The compliance of
{P ?

i }, P̄
? and P ? with rank-one requirement is given in the

following theorem.
Theorem 3: Given that S? = {{P ?

i }, P̄
?
, P ?, {u?k, s?k, t?k,

v?k}} is the solution obtained by solving (26),
then, the optimized power control factor matrices
{P ?

i }, P̄
?
, P ? always satisfy the rank-one constraint,

i.e., {rank(P ?
i )}, rank(P̄

?
), rank(P ?) = 1.

Proof: See Appendix B.
2) Convergence of the Iterative Problem: Here, we prove

that the iterative optimization (26) converges to a globally
optimal value, and the objective value (which is monotonically
increasing with mink RSk ) is increasing with the iterations. To
facilitate our proof, let us introduce the following results.

Lemma 3: For arbitrary real values of x and x̄ 6= x, the first
order approximation ex̄ (x− x̄+ 1) is always an underesti-
mate of ex, i.e. ex̄ (x− x̄+ 1) ≤ ex, ∀ x̄ < x, x̄ > x. In ad-
dition, the successive first order approximations of ex; f [n] =
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ex̄
[n] (

x− x̄[n] + 1
)

and f [n+1] = ex̄
[n+1] (

x− x̄[n+1] + 1
)
,

ex̄
[n+1]

= f [n]; always satisfy f [n+1] > f [n] for x̄[n] 6= x.
Proof: Due to space limitation, the proof of Lemma 3 is

omitted here, however, it is provided in a longer version of
this paper (please refer to Appendix C therein) [34].

Without loss of generality, we assume that (26) is feasible
in its first iteration. Since our problem is convex and Slater’s
condition holds (see (28) and the paragraph that follows),
constraints (26b) and (26c) can strictly hold. With the first
order linearization in (26b) and (26c), and according to Lemma
3, the constraints (26b) and (26c) are tighter than their original
formulations in (24b) and (24c), i.e., the feasibility region of
(24) is smaller than the feasibility region of (26) (and forms
a subregion of it). Therefore, any non-converged solution is
suboptimal.

According to Lemma 3, and since the constraints (26b)
and (26c) are initialized in the nth iteration by the optimal
values obtained at the (n − 1)th preceding iteration such as
es̄

[n]
k = es̄

[n−1]
k (s?

[n−1]

k −s̄[n−1]
k +1) and et̄

[n]
k = et̄

[n−1]
k (t?

[n−1]

k −
t̄
[n−1]
k + 1), ∀ k, the feasibility of the (n − 1)th iteration

will ensure the feasibility of the succeeding nth iteration.
Furthermore, the feasibility region at the nth iteration is larger
than the feasibility region at the (n − 1)th iteration and
contains it. This ensures that the optimized objective value is
monotonically increasing with the successive iteration. Given
that the constrained values in (26b) and (26c) are finitely
bounded (since both constraints are linear and the power
budget at every AP is finite, ≤ Pt), therefore, it can be
concluded that the increasing optimized objective value will
certainly converge, let us say at the nth iteration, i.e.

es̄
[n]
k

(
s?

[n]

k − s̄[n]
k + 1

)
= es̄

[n−1]
k

(
s?

[n−1]

k − s̄[n−1]
k + 1

)
.

(29)
By solving the updating method, es̄

[n]
k = es̄

[n−1]
k (s?

[n−1]

k −
s̄

[n−1]
k + 1) and (29), we have s?

[n]

k = s̄
[n]
k , and es̄

[n]
k (s?

[n]

k −
s̄

[n]
k + 1) = es

?[n]

k . This indicates that constraint (26b) con-
verges to its original nonlinearized form. Likewise, constraint
(26c) converges to its original nonlinearized form.

V. EVALUATIONS

In this section, we evaluate the asymptotic performance of
our SWIPT cell-free massive MIMO system. The APs are
randomly located on a two dimensional Euclidean area Aa
based on an homogeneous PPP Φa with an intensity λa. The
IUs and the EH are randomly located on a two dimensional
Euclidean area Au with the origins of Aa and Au coincident
(please refer to footnote 1 regarding this assumption). The
large-scale fading coefficients {γi,j , γj} are modeled with
the standard distance-based model as γi,j , d−αi,j 10

νi,j
10 and

γj , d−αj 10
ν
10 , where di,j and dj are the distances from IUi

and the EH to APj , respectively. α is the pathloss exponent
and ν, νi,j ∼ CN (0, σ2) are the shadow fading coefficients
with standard deviation σ. All users experience independent
shadow fading, i.e., νi,j and νi,js are independent random
variables (RVs). P , PE and Pt are the training power budget
at every IU, the training power budget at the EH, and the
transmit power budget at every AP, respectively. τ and ζ are

200 100 0 100 200

200

100

0

100

200
AP
IU
EH

Fig. 2. AP-user deployment zoomed into the central
500× 500 m2 area, N = 145 and M = 3.

the length of the training sequences and the energy harvesting
efficiency at the EH, respectively. Unless otherwise stated, and
for referencing convenience, the selected values of system
parameters are: Aa = 1 × 1 Km2, λa = 1.5 × 10−4 m−2,
Au = 300 × 300 m2, M = 3, α = 2.5, σ = 8 dB [35], P ,
PE = 1 W , Pt = 500 mW , τ, τd = 10 and ζ = 0.5 [36].
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Fig. 3. E-R regions of colocated MIMO.
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Fig. 4. E-R regions of cell-free MIMO.

Fig. 2 shows the AP-user deployment geometry of a real-
ization in which the number of APs is N = 145 (E(N) =
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Fig. 5. ESR versus the power budgets per AP for
φ = 0.5, λa = 10−4m−2 and α = 2.
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Fig. 6. ESR versus the intensity of homogeneous PPP, λa.

λaAa = 150), M = 3 IUs and one EH zoomed into the
central 500× 500 m2.

The SWIPT secrecy performance is presented by the E-R
plot which relates the achievable worst-case ESR, mink RSk ,
to the constraint on the minimum AHE by the EH, Ē. The
larger the area under the E-R curve, the better the SWIPT
performance. Our design analyses are made based on the
asymptotic assumption N → ∞, then, the system’s perfor-
mance can be examined for a realistic scenario of a large but
finite number of APs.

In colocated MIMO systems, the user exhibits a constant
average path-loss to all of the base station’s (BS’s) colocated
antennas, and that average path-loss varies from one user
to another based on the user’s location. In contrast, in cell-
free MIMO systems, the average path-loss of a given user
varies from one AP to another. Intuitively, this property of
randomly distributed APs is anticipated to increase the effi-
ciency of power control in tackling the active eavesdropping.
For fair comparisons between the performance of cell-free and
colocated MIMO systems, a comparable model of a single-
cell colocated massive MIMO system is derived such that: 1)
the total number of colocated antennas at the BS is equal
to the total number of APs, N ; 2) the average value of
a user’s pathloss to the BS in colocated MIMO (all users
experience equal pathlosses) is equal to the average value of

the users’ pathlosses in cell-free MIMO; 3) the total transmit
power is equal for both systems, and the power limits at the
colocated MIMO is per antenna; 4) the antennas of the BS are
uncorrelated. Defining γ̄i and γ̄ as the pathlosses of IUi and
the EH in the colocated MIMO system, respectively, we have
γ̄i =

∑
j
γi,j
N and γ̄ =

∑
j
γj
N . The downlink beamforming

and power control of the colocated MIMO can be performed
by the same methods used for cell-free MIMO.

Fig. 3 shows the E-R regions of the colocated MIMO
system for two different values of active eavesdropping power
corresponding to training power splitting factors φ = 0.3 and
φ = 0.4. It can be noticed that there is a tradoff between the
ESR and the constraint on the AHE. As the AHE constraint
increases, more downlink transmission resources are optimized
to satisfy the increase in AHE constraint at the expense of
the ESR which tends to decrease. Also, there is a clear gap
between the ESR performances at different levels of active
eavesdropping powers. The larger the eavesdropping power
the lower the ESR.

Fig. 4 shows the E-R regions of the cell-free MIMO system
for the same values of active eavesdropping powers used for
colocated MIMO system. By comparing Fig. 3 and Fig. 4, it
can be noticed that the cell-free massive MIMO outperforms
the colocated massive MIMO within the interval in which the
harvested energy constraint is low and vice versa. The cell-
free massive MIMO is also found to be more immune to the
increase in the active eavesdropping power than the colocated
massive MIMO. In colocated massive MIMO, all antennas
contribute to the AHE by an equal average value which is
not the case for the cell-free massive MIMO. Therefore, the
colocated massive MIMO is more efficient at power transfer
than the cell-free massive MIMO. The difference between
channel gains of the IU and the EH in the cell-free system
offers the optimizer more freedom to balance the tradeoff
between the information, AN and the energy signal powers
than in the case of the colocated massive MIMO system. That
justifies the advantage of cell-free massive MIMO over the
colocated massive MIMO in the feasible region (the low AHE
constraint region).

Fig. 5 shows the variations in the ESR with respect to
power budget per AP (all APs have equal power budgets).
These results are obtained at different values of the constraint
on the AHE, Ē = [2, 3] mW . It can be observed that the
ESR increases with the available power budgets at the APs,
Pt. The rate of increase of the ESR with respect to Pt is
larger at the lower range of Pt than at the upper range of Pt.
This can be justified since the APs will not benefit effectively
from the large budget because increasing the transmit power
will increase interference among the APs and that reduces the
advantage of the location diversity of APs.

Fig. 6 shows how the density of APs affects the secrecy
performance. The achievable worst-case ESR is measured
versus a set of practically large values of AP densities λa =
10−4 × [0.2, 0.4, ..., 2.6] m−1. The values of the worst-
case ESR in Fig. 6 are obtained by Monte Carlo simulation
averaged over 50 independent realizations of AP deployments,
with Ē = 0 and φ = 0.3. As expected, as the AP density
(which is directly proportional to E[N ]) increases, the worst-
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Fig. 8. Convergence speed of the iterative program in (26)
for Ē = 2 mW and φ = 0.4.

case ESR increases.
The secrecy performance is affected by the relative location

of the attacked IU with respect to the EH. Fig. 7 shows the
ESR performance for the case where the system comprises
one IU and one EH lying on the x-axis symmetrically around
the origin of the APs’ deployment given in Fig. 2. The results
represent the achieved ESR for different separation distances
between the IU and the EH, ∆ = [0, 100, . . . , 500]. As
the separation ∆ increases, the ESR performance improves.
This can be justified since as the separation increases, the
AP subsets that dominantly serve the IU and the EH become
more distinctive. Beyond a certain value of ∆ > 200, the
achieved ESR starts to saturate since the dominant subsets of
the APs that serve the IU and the EH remain unchanged, but
the position of each user within its set varies. The value ∆ = 0
means that the IU and the EH are colocated, i.e., Γ1 = Γ.

Fig. 8 shows the convergence speed of our iterative problem
(26) at φ = 0.4, Ē = 2 mW and the initial values are selected
arbitrarily as s̄[1]

i = t̄
[1]
i = [−8, − 6] ∀i. As discussed in

Subsection IV-C2, the optimized objective value is increasing
with iterations until convergence.

VI. CONCLUSIONS

In this paper, relaxed SDP programming has been proposed
to optimize nonlinear power control of the downlink trans-

mission in a SWIPT cell-free massive MIMO system in the
presence of an information-untrusted dual-antenna active EH.
The downlink SWIPT transmissions include: information, AN
and energy signals beamformed towards the IUs, legitimate
and illegitimate antennas of the EH, respectively. Analytic
expressions for the AHE and a tight lower bound on the
ESR were derived taking into account the IUs’ knowledge
attained by downlink effective precoded-channel training. It
has been proved that the proposed SDP iterative problem
can always achieve a converged rank-one globally optimal
solution. A fair comparison between the proposed cell-free and
the colocated massive MIMO systems showed that the cell-free
massive MIMO outperformed the colocated massive MIMO
over the interval in which the AHE constraint is low and vice
versa. Also, cell-free massive MIMO was more immune to the
increase in the active eavesdropping power than the colocated
massive MIMO.

Considering the same problem under different eavesdrop-
ping models is an interesting topic for future work. Particu-
larly, the eavesdropper might use the time switching or the
power splitting receiving model for attacking one or multiple
IUs for the purpose of information eavesdropping or energy
harvesting, respectively.

APPENDIX A
PROOFS OF LEMMA 1, THEOREMS 1 AND 2

A. Proof of Lemma 1

Since the spectral radius of the diagonal matrices Γi, Γ and√
ΓiΓ are bounded [11, Lemma 2], then by expanding yHi yi

followed by applying Corollary 1 in [37] we get

yHi yi − τ
2PI tr (Γi)−Nτσ2

n
N→∞→ δij τ

2φPE tr (Γ) , (30)

which satisfies the asymptotic convergence in (3). This con-
cludes the proof.

B. Proof of Theorem 1

Before commencing our proof, let us introduce the follow-
ing result.

Proposition 1: For a non-negative bounded RV 0 ≤ X1 ≤
U , U is a positive real value, and a symmetrical zero mean
RV X2. Knowing that the RV Y = X1 +X2 is non-negative,
then Y is upper bounded as Y ≤ 2U .

Proof: The proof is presented through the following
points:
(a) Given that Y is non-negative RV, then P ((Y = X1 +

X2) < 0) = 0 is always true.
(b) P (U +X2 < 0) = 0 (i.e., P (X2 < −U) = 0) is always

true, since by contradiction P (X2 < −U) 6= 0 can result
in X2 < −U and therefore X1 + X2 < 0 (note that
X1 ≤ U is given). This result contradicts the assumption
of the non-negativeness of Y .

(c) Since the probability distribution of X2 is symmetrical
around zero (given assumption), and since we have
proven in (b) that P (X2 < −U) = 0, then by symmetry
of distribution P (X2 > U) = 0 is always true (otherwise
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X2 is not a symmetrical zero mean RV). The obtained
result P (X2 > U) = 0 implies that the RV X2 is upper
bounded as X2 ≤ U .

(d) From the given upper bound on X1, X1 ≤ U , and the
proved upper bound on X2, X2 ≤ U , it can be concluded
that Y = X1 +X2 is upper bounded as Y ≤ 2U .

This concludes the proof.
Let IUk be the attacked IU. Based on (2), (5a), (7) and (9)

we have

|âk,k|2 = τ2PI

∣∣∣∣h̄Hk Γ
1
2
k diag (pk)CkΓ

1
2
k h̄k

∣∣∣∣2
+

∣∣∣∣h̄Hk Γ
1
2
k diag (pk)Ckh̃k

∣∣∣∣2 +

∣∣∣∣nkψ∗dkτd

∣∣∣∣2 ,
(31)

where h̃k = ĥk − τ
√
PICkhk = τ

√
φPE gE +Nψ∗k, and the

entries of h̃k, hk and nk are statistically independent. Using
Corollary 1 in [37] and Lemma 2 in [11], the first term in (31)
asymptotically converges to the deterministic value

∆1 = τ2PI tr2(Γkdiag(pk)Ck)

= τ2PI
(
pTk diag(ΓkCk)

)2

= τ2PI tr (P kAk) = τ2PIc
2
k =

τ2PI

(∑
j

γ2
k,j c̄

2
k,jpk,j +

∑
I

γk,jγk,mc̄k,j c̄k,m
√
pk,jpk,m

)
,

(32)

where I = {{k, j}j × {k,m}m|{k, j} 6= {k,m}} and c̄k,j =

[Ck]j,j . With the assumption that the noise variance σ2
n �

τφPE , we can approximate the sum of the second and the
third terms in (31) as ∆2 = τ2φPE |h̄

H
k Γ

1
2
k diag (pk)CkgE |2,

which is equivalent to

∆2 =τ2φPE

( N∑
j=1

γk,jγj c̄
2
k,jpk,j κj+

∑
I

√
γk,jγjγk,mγmc̄k,j c̄k,m

√
pk,jpk,m κj,m

)
,

(33)

where κj = |ĥk,j ĝEj |2 (equivalent to the product of two
independent exponential RVs of parameter 1) is a non-negative
random variable with the mean value E[κj ] = 1. κj,m =

ĥk,j ĝEj ĥk,mĝEm , j 6= m, is a zero mean RV with a symmetric
distribution [38], [39]. Since ∆2 is always positive, i.e.,
P (∆2 < 0) = 0, then, by applying Theorem A in [40] (which
defines an upper bound on the sum of non-negative RVs) and
Proposition 1, ∆2 is upper bounded by a deterministic value
as

∆2 ≤ ∆2 = 4eτ2φPE

N∑
j=1

γk,jγj c̄
2
k,jpk,j . (34)

Given that the additive terms that constitute ∆1 in (32) and
the upper bound of ∆2, ∆2, in (34) are of a finite order of
magnitude, then, asymptotically, we have ∆1

N→∞→ O
(
N2
)

and ∆2
N→∞→ O (N). Therefore, as N → ∞, ∆1 and ∆2

differ by O (N) order of magnitude which implies that the
bound |âk,k|2 ≥ ∆1 = τ2PI tr (P kAk) is tight. Based on this
result, (14), (15), and since SINRk and SINRk share the same
denominator, then SINRk > SINRk in (15) is of the same degree
of tightness. To validate the tightness of SINRk

N→∞
> SINRk

TABLE I. RELATIVE VALUES OF ∆1 AND ∆2

Realization 1st 2nd 3rd 4th
∆1 9.8×10−3 7.3×10−3 1.6×10−2 4.6×10−3

∆2 6.9×10−5 1.1×10−4 3.8×10−5 1.2×10−4

∆1

∆2
1.4× 102 0.65×102 4.1× 102 0.3× 102

numerically, Table III presents the values of ∆1, ∆2 and ∆1

∆2

for different realizations of {Γi} and Γ at a large average value
of N = 100, and at Ē = 5 mW . The optimized values of {P i},
P̄ and P used to obtain the values of ∆1 are used to calculate
corresponding value of ∆2. The obtained results validate our
analysis.

The values of var(Zk,k) =
∑
j 6=k ck,j + τ2PI c̄

2
k + c̄

(1)
k + c̃k

and var(ãk,k) = σ2
n
τd+1
τd

(as in (14)-(15)) can be derived in
a similar way to that used for deriving the value of c2k =

tr (P kAk) in (32) and (31). Therefore, due to space limitation,
their analyses are omitted here, however, they can be found
in a longer version of this paper (please refer to Appendix A
therein) [34]. This concludes the proof.

C. Proof of Theorem 2

Based on the assumption that the EH has a full knowledge
of the IUs’ beamforming vectors and its own channel, the
EH is capable of cancelling the inter-user interference [27].
Furthermore, the information, AN and energy signals; {qi},
z and w; are statistically independent. Therefore, based on
the concavity of the logarithmic function, applying Jensen’s
inequality (which has been proven to be tight and suitable
for characterizing the performance of massive MIMO systems
[41]) will result in the following upper bound on the ergodic
rate at the EH

REk = log2 (1 + E [SINREk ]) > E [log2 (1 + SINREk )] , (35)

where SINREk is the SINR at the EH when attacking IUk.
As defined in (19), SINREk = Xk

Yk
, Xk = E[|gTEwkqk|

2] = |bk|2

and Yk = E[|gTE(w̄kz +w) + n̄|2] = |b̂k|2 + |b|2 + σ2
n . Using

the multivariate Taylor expansion, E[SINREk ] can be expanded
as [42]

E [SINREk ] = E
[
Xk
Yk

]
=

E[Xk]

E[Yk]
− cov(Xk, Yk)

(E[Yk])2
+

var(Yk)

(E[Yk])2

E[Xk]

E[Yk]
+R.

(36)

where R = f(var(Yk), cov(Xk, Yk)) is the remainder of the
series expansion. We have

E[Xk] = E[|bk|2] = E[|gTEwk|2]

= E
[∣∣∣gTEdiag (pk)

(
τ
√
φPECkg

∗
E + h̃

(2)

k

)∣∣∣2] = τ2φPE

E
[∣∣∣ḡTEΓ

1
2 diag (pk)CkΓ

1
2 ḡ∗E

∣∣∣2]+ E
[∣∣∣gTEdiag (pk) h̃

(2)

k

∣∣∣2] ,
(37)
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where

E
[∣∣∣ḡTEΓ

1
2 diag (pk)CkΓ

1
2 ḡ∗E

∣∣∣2] =
∣∣∣pTk diag (ΓCk)

∣∣∣2
= tr

(
P kdiag (ΓCk) diag (ΓCk)H

)
= tr (P kBk) , (38a)

E
[∣∣∣gTEdiag (pk) h̃

(2)

k

∣∣∣2]
= E

[
ḡTEΓ

1
2 diag (pk)E

[
h̃

(2)

k h̃
(2)H

k

]
diag (pk) Γ

1
2 ḡ∗E

]
= tr

(
Γ

1
2 diag (pk)R

(2)
k diag (pk) Γ

1
2

)
= tr

(
pTkΓR

(2)
k pk

)
= tr

(
P kΓR

(2)
k

)
= tr

(
P kB̄k

)
, (38b)

where h̃
(2)

k = ĥ
∗
k − τ

√
φPECkg

∗
E and R(2)

k = E[h̃
(2)

k h̃
(2)H

k ] =

R̄k − τ2φPEC
2
kΓ. The third equality in (37) is obtained by

substituting the value of wk from (5a), (2a) and (2b). The
fourth equality in (37) follows from the statistical indepen-
dence between gE and h̃

(2)

k . The first equality in (38a) follows
from applying Corollary 1 in [37] and the diagonality of the
matrices Γ, Ck and diag (pk). In the first equality in (38b),
the expectation is moved to h̃

(2)

k h̃
(2)H

k based on the statistical
independence between ḡE and h̃

(2)

k . The second equality in
(38b) follows from applying Corollary 1 in [37]. The third
and the fourth equalities in (38b) follow from the diagonality
of the matrices Γ, R(2)

k and diag (pk). By substituting (38a)
and (38b) in (37), we get E[Xk] = E[|bk|2] = τ2φPEd

2
k + d

(1)
k ,

d2
k = tr(P kBk) and d

(1)
k = tr(P kB̄k). The details of deriving

the value of

E [Yk] = E
[
|b̂k|2 + |b|2 + σ2

n

]
= τ2φPE d̄

2
k + d̄

(1)
k + d+ σ2

n,

where

d = tr(PB), d̄2
k = tr(P̄Bk) and d̄

(1)
k = tr(P̄ B̄k),

(as presented in (19)) are similar to the analyses used to obtain
the value of E[|bk|2] previously described. Therefore, due to
space limitation, the analyses of obtaining E[Yk] are omitted
here, however, they can be found in a longer version of this
paper (please refer to Appendix A therein) [34]. For var(Yk)
we have

var(Yk) = E
[
|Yk − E[Yk]|2

]
= E

[∣∣∣∣∣∣∣gTEw∣∣∣2 − tr (PB)

∣∣∣∣2
]

+ E

[∣∣∣∣∣∣∣gTEw̄k

∣∣∣2 − τ2φPE tr
(
P̄Bk

)
− tr

(
P̄ B̄k

)∣∣∣∣2
]

+ σ2
n.

(39)

The second equality in (39) follows from substituting the value
of Yk, and the statistical independence between w, w̄k and n̄.
The first and the second terms in (39) are as follows

E

[∣∣∣∣∣∣∣gTEw∣∣∣2 − tr (PB)

∣∣∣∣2
]

= 2tr2 (PB)− tr
(
(PB)◦2

)
, (40)

E

[∣∣∣∣∣∣∣gTEw̄k

∣∣∣2 − τ2φPE tr
(
P̄Bk

)
− tr

(
P̄ B̄k

)∣∣∣∣2
]

= 2 tr2
(
P̄ B̄k

)
− tr

((
P̄ B̄k

)◦2)
,

(41)

where ◦ denotes the Hadamard power operation and I =
{{j} × {m}| j 6= m}. The detailed analyses of obtaining
the results in (40) and (41) are provided in a longer version
of this paper (please refer to Appendix A therein) [34].

Given that the entries of the matrix Bk have non-zero
positive values, the matrices B̄k and B are diagonal, and
the additive terms in (tr(P̄Bk) + tr(P̄ B̄k) + tr(PB))2

are of a finite order of magnitude; then, asymptotically,
we have (E[Yk])2 N→∞→ O

(
N4
)

and var(Yk)
N→∞→

O
(
2N2

)
. This implies that var(Yk)

(E[Yk])2
N→∞→ 0 and R =

f(var(Yk), cov(Xk, Yk))
N→∞→ 0. Based on (36) and this

result, and since cov(Xk, Yk) = 0 (follows from the statistical
independence between Xk and Yk), we have

E [SINREk ]
N→∞→ E[Xk]

E[Yk]
=

τ2φPEd
2
k + d

(1)
k

d+ τ2φPE d̄2
k + d̄

(1)
k + σ2

n

. (42)

By substituting (42) in (35), we get (18)–(19). This concludes
the proof.

D. Deriving the asymptotic value of AHE in (21)
The details of deriving the values that constitute Ēk in

(21) are similar to the analyses used to obtain the values of
E[|bk|2] and τ2PIc

2
k = τ2PI tr (P kAk) previously described

in (37)–(38b) and (32), respectively. Therefore, their detailed
derivations are omitted. However, the detailed derivations can
be found in a longer version of this paper (please refer to
Appendix A therein) [34].

APPENDIX B
PROOF OF THEOREM 3

To prove that the optimal solution {P ?
i }, P̄

?
, P ? ob-

tained by solving (26) is always of unity rank, we exploit
the boundedness property of the dual Lagrangian function
to show that the optimal primal matrices {P ?

i }, P̄
?
, P ?

can satisfy the KKT conditions of optimality at one case in
which {rank(P ?

i )}, rank(P̄
?
), rank(P ?) = 1, and that has been

validated by computer simulation. Before commencing our
proof let us introduce the following Lemma.

Lemma 4: Let L = {{λ1k}, . . . , {λ7k}, {F k}, F̄ , F } be
the Lagrange multipliers of the constraints (27a), (26a)–(26f)
and the constraints on {P k}, P̄ and P in (26g), respectively,
with {λjk} ≥ 0, {F k}, F̄ , F � 0. The existence of the
Lagrangian function for problem (27) and the satisfaction of
the KKT’s stationarity and complementary slackness condition
imply tr(P ?

kF
?
k) = 0, ∀k, where

F ?k =− λ2kτ
2PIAk +G?

k, (43)

G?
k = −

∑
j 6=k

λ?2jAj,k − λ?6kζ
(
τ2φPEBk + B̄k

)
− λ?6j ζ(∑

j 6=k

B̃k +
∑
j

B̃k

)
+
∑
l

(
λ?7kDlR̄k +

∑
j 6=k

λ?7jDlRk

)
. (44)

Proof: Due to space limitation, the proof is omitted in
this paper, however, it is provided in a longer version of this
paper (please refer to the proof of Theorem 3 in Appendix B
therein) [34].
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Let null (F ?k) = Ωk = [ωk,1, ...,ωk,N−rank(F ?
k

)] and null(G?
k) =

Ψk = [ψk,1, ...,ψk,N−rank(G?
k

)]. By making use of the inequality
of matrix sum [43, subsection 3.3.4] and (43) we have9

rank(F ?k) ≥ rank(G?
k) − 1. Based on this result, and since

rank(Ωk) = N − rank(F ?k) and rank(Ψk) = N − rank(G?
k), then

the following result is true

rank (Ωk) ≤ rank (Ψi) + 1. (45)

Now, let us examine the null space of G?
k, ψk,j ∈ Ψk, by

computing the inner product between ψk,j and F ?k in (43) as
follows

ψHk,jF
?
kψk,j = −ψHk,j

(
λ?2kτ

2PIAk

)
ψk,j ≤ 0, (46)

where the inequality in (46) follows from10 Ak � 0. How-
ever, since F ?k � 0, (46) can only hold with equality, i.e.,
ψHk,j

(
λ?2kτ

2PIAk

)
ψk,j = 0. This result implies that the null

space of G?
k always forms the null space of F ?k, i.e., Ψk is a

sub-matrix of Ωk, therefore, and according to (45), ωk,j ∈ Ωk

belongs to one of the following two spaces: 1) the column
space of Ψk, ωk,j ∈ {ψk,j}; 2) 1-dimensional vector space,
ωk,j = a ∈ CN×1 where a /∈ {ψk,j}.

Since the optimal value of P ?
k needs to satisfy the comple-

mentary slackness condition, tr(P ?
kF

?
k) = 0, ∀k, the structure

of P ?
k is

P ?
k =

L≤N∑
i=1

mk,jqjq
H
j , qj ∈ {ψk,j , a}, (47)

where {mk,j} are non-negative scaling factors. The P ?
k’s com-

ponent mk,jψk,jψ
H
k,j introduces zero information signal power

at IUk since ψHk,jAkψk,j = 0, and therefore contributes by a
negative ESR. Thus, mk,jψk,jψ

H
k,j is a non-optimal component

of P ?
k. By this, we can conclude that P ?

k is constructed by
the single component P ?

k = mk,1aa
H , a /∈ {ψk,j}, therefore,

rank(P ?
k) = 1 is always true. This concludes the proof.
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