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It has recently been argued that steady-state vorticity bands cannot arise in shear thickening suspensions
because the normal stress imbalance across the interface between the bands will set up particle migrations.
In this Letter, we develop a simple continuum model that couples shear thickening to particle migration. We
show by linear stability analysis that homogeneous flow is unstable towards vorticity banding, as expected,
in the regime of negative constitutive slope. In full nonlinear computations, we show, however, that the
resulting vorticity bands are unsteady, with spatiotemporal patterns governed by stress-concentration
coupling. We furthermore show that these dynamical bands also arise in direct particle simulations, in good
agreement with the continuum model.
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Recent years have seen rapid advances in understanding
the rheology of dense non-Brownian suspensions, com-
prising solid particles in a Newtonian fluid at volume
fraction ϕ close to isotropic jamming. In particular, the
phenomenon of shear thickening [1,2], in which the
viscosity increases with shear stress σ, has recently been
understood as an evolution from lubricated to frictional
particle interactions, as the hydrodynamic forces that push
particles together overcome short-ranged repulsive forces
keeping them apart [3–16]. When strong, this effect creates,
for states of homogeneous shear rate _γ, a constitutive curve
σð_γÞ that is S-shaped [17,18]: A positively sloping hydro-
dynamic branch of low viscosity at low stresses connects to
a positively sloping frictional branch of high viscosity at
high stresses via a negatively sloped region at intermediate
stresses. A slowly increasing imposed shear rate then
provokes a discontinuous jump, between the low- and
high-viscosity branches, in the measured or “macroscopic”
flow curve. This is known as discontinuous shear thickening
(DST) [1,2].
At an imposed macroscopic shear stress, when

dσ=d_γ < 0, one expects the homogeneous steady flow to
be unstable, at least for large system sizes [19]. (For the
system sizes used in particle-based simulations, this
expectation is not always met [18].) Consistent with this
expectation, an S-shaped constitutive curve as described
above admits (in principle) steady states comprising layers
of material coexisting at a common shear rate but with
different shear stresses. These are force balanced so long as
they stack with normals in the vorticity direction and are
then known as “vorticity bands” [20]. In dense suspensions,
however, steady-state vorticity bands are argued to be ruled

out by the differences in normal stress that generally arise
across the interface between bands, leading to a particle
migration flux [21]. Suggestively, experiments on suspen-
sions and a modeling and simulation study on the related
system of dry frictional grains have revealed an unsteady
strain rate signal under conditions of a constant imposed
macroscopic shear stress in the DST regime, with compli-
cated time dependence [21–24].
In this Letter, we advance the understanding of dynamic

vorticity banding in dense suspensions. First, we propose a
scalar continuum constitutive model for the relevant rheol-
ogy, by combining the Wyart-Cates theory [17] (which
captures shear thickening but assumes homogeneous flow)
with a suspension balance model of particle migration
[25–29]. Second, for this model we use a linear stability
analysis to determine when a homogeneous shear flow is
unstable to fluctuations along the vorticity axis, finding
instability whenever dσ=d_γ < 0 in the limit of a large system
size. Third, we elucidate numerically the model’s full
nonlinear vorticity-banding dynamics, identifying two dis-
tinct spatiotemporal patterns that we shall term “traveling
bands” (TBs) and “locally oscillating bands” (LOBs). The
LOB state shows an oscillating bulk shear rate signal, as seen
experimentally [21,23]. Finally, we perform particle-based
simulations using the so-called critical load model [9] and
show that this also has TB and (at least transiently) LOB
states, in close counterpart to the continuum model.
We consider a Stokes flow of a dense suspension sheared

between hard flat plates at y ¼ 0, Ly under conditions of a
constant imposed shear stress. This produces a velocity
field v̄ðyÞ ¼ (_γðtÞy; 0; 0) with a shear rate _γðtÞ that is, in
general, time dependent. (Here v̄ denotes the suspension

PHYSICAL REVIEW LETTERS 121, 108003 (2018)

0031-9007=18=121(10)=108003(6) 108003-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.121.108003&domain=pdf&date_stamp=2018-09-07
https://doi.org/10.1103/PhysRevLett.121.108003
https://doi.org/10.1103/PhysRevLett.121.108003
https://doi.org/10.1103/PhysRevLett.121.108003
https://doi.org/10.1103/PhysRevLett.121.108003


velocity averaged over the particle and solvent components
introduced below.) The velocity is along the x direction, its
gradient is along y, and the vorticity direction is z. (See
Ref. [30] for a diagram.) As appropriate to describe
vorticity banding, we assume spatial invariance in the flow
direction x and flow-gradient direction y, allowing spatial
variations only along z. There can be no such variation for
the shear rate _γðtÞ, which follows the relative speed of the
plates. The dynamical variables that we consider are
therefore the component σzzðz; tÞ of the particle phase
stress tensor [whose behavior is similar to that of σxyðz; tÞ
[17]], the fraction of frictional contacts fðz; tÞ, which is the
microstructural order parameter entering the Wyart-Cates
theory [17], and the volume fraction ϕðz; tÞ. Note that the
zz component of stress is actually negative in dense
suspensions [1], but we work throughout with its absolute
value and denote this simply by σzz.
The Wyart-Cates theory [17] gives a scalar constitutive

model for the steady-state homogeneous shear rheology of
dense suspensions. While initially presented as a model for
the shear stress σxy, this equally describes σzz, because all
stress components evolve in a similar way near jamming
[35] and across DST [9]. The associated viscosity is taken
to diverge as the volume fraction ϕ approaches a critical
jamming point ϕJ:

ηðϕ;ϕJÞ≡ σzz=_γ ¼ η0ðϕJ − ϕÞ−ν; ð1Þ
where η0 is, within the range of ϕ of interest here, of the
order of the solvent viscosity ηf and effectively constant,
so hereafter we set η0 ¼ ηf for simplicity; ν is likewise a
constant. Shear thickening is then captured by assuming
that at low stresses repulsive forces maintain a lubrication
film between particles, with a fraction of frictional contacts
f ≈ 0, whereas at high stresses frictional contacts dominate
the rheology, f ≈ 1. The critical volume fraction for
jamming depends smoothly on stress, varying linearly with
f to connect the critical value ϕ0

J for frictionless jamming at
low stresses to the one for frictional particles ϕμ

J < ϕ0
J at

large stresses:

ϕJðfÞ ¼ ϕ0
J − fðϕ0

J − ϕμ
JÞ: ð2Þ

Here μ is the particle friction coefficient.
For the dependence of the fraction of frictional contacts f

on stress σzz, particle simulations suggest a relation

fSSðσzzÞ ¼ expð−σ�=σzzÞ ð3Þ
in the steady state, where σ� ¼ CF�=a2. This depends on
the typical repulsive force F� that must be overcome to
create a contact and the typical particle radius a; particle
simulations suggest C ≈ 1.45 [9,36]. Departing now from
the steady-state assumptions of Ref. [17], we assume that f
does not react infinitely fast to changes in stress [18,37],
following instead

∂tf ¼ −
_γ

γ0
½f − fSS�: ð4Þ

Note that this evolution involves a characteristic strain scale
γ0, of the order of the strain required to evolve from one
steady state to another (for instance, on flow reversal [38]).
For the typical volume fractions considered here, particle
simulations suggest γ0 ¼ Oð10−2Þ [18].
Next we assume that particle migration between vorticity

bands is driven by the difference in normal stress σzz that
will, in general, exist across the interface between them. We
model this via a “two-fluid” [39] or “suspension balance”
model [25–29]. The divergence of the particle stress gives a
force imbalance on the particle phase, which must be
rebalanced by a drag between the particles (p) and fluid
(f) due to an interphase relative velocity vpz − vfz ¼ vpz =
ð1 − ϕÞ, found using v̄z ¼ ϕvpz þ ð1 − ϕÞvfz . The resulting
balance condition ∂zσzz ¼ −ϕαvpz , involving an interphase
drag parameter α, then implies that particles migrate from
regions of high to low stress.
Conservation of mass now imposes ∂tϕþ ∂zðvpzϕÞ ¼ 0,

which gives

∂tϕ ¼ 1

α
∂2
zσzz: ð5Þ

Particle simulations [40] suggest the drag coefficient α
ranges from 4.5ηfa−2 for ϕ → 0 to 225ηfa−2 for ϕ ¼ 0.64.
However, in this work, variations in ϕ will be 5% or less, so
we treat α as a ϕ-independent model parameter.
Equations (1)–(5) define our model. It contains the

parameters ηf, ν, ϕ
μ
J, ϕ

0
J, σ

�, γ0, and α, along with the
cell length in the vorticity direction Lz, the global volume
fraction ϕ̄ ¼ L−1

z

R Lz
0 dzϕ, and the global mean particle

stress σ̄ ¼ L−1
z

R Lz
0 dzσzz as imposed at the walls. We

choose Lz as the length unit, σ� as the stress unit, and
ηf=σ� as the time unit. Except when explicitly comparing
with the simulation data, we also choose to rescale all
strains by γ0, so setting γ0 ¼ 1. We set rheological
parameters compatible with the ones of spherical particles
with moderate polydispersity, setting ν ¼ 2.0 [35,36], ϕμ

J ¼
0.58 (for friction μ ≈ 1 [9,35]), and ϕ0

J ¼ 0.64 [41,42].
There then remain just three dimensionless parameters: a
rescaled drag α̃ ¼ L2

zα=ηfγ0 (effectively, a measure of the
system size Lz=a), rescaled stress σ̃ ¼ σ̄=σ�, and volume
fraction ϕ̄. We drop tildes and denote these as α, σ̄, and ϕ̄,
respectively, hereafter.
The overbars are, in turn, dropped when discussing

strictly homogeneous, unbanded steady states, as described
by the constitutive curves σð_γÞ. These are just the stationary
solutions of Eqs. (1)–(4) and coincide directly with those
of Ref. [17]. They are shown as black lines in Fig. 1.
At low volume fraction ϕ < ϕDST, they are monotonic. For
ϕDST < ϕ < ϕμ

J, they are S-shaped, with a regime in which
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dσ=d_γ < 0, giving discontinuous shear thickening. At even
larger ϕ > ϕμ

J, they bend right back to ascend the axis
_γ ¼ 0 above a ϕ-dependent shear jamming stress σJ, with
flow possible only for stresses σ < σJ.
For any initial state on such a constitutive curve, the

volume fraction ϕ and fraction of frictional contacts f are
defined to be uniform. We now perform a linear stability
analysis to determine whether any such “base state” is
stable, by adding to it small-amplitude perturbations ∝ eikz

in both f and ϕ. Expanding Eqs. (1)–(5) to first order in the
corresponding amplitudes, we find linear instability [43]

�
dσ
d_γ

�
−1

< −
k2

α

1

η

∂η
∂ϕ : ð6Þ

In regimes of high σ or low ϕ, we also find an oscillatory
component to the growing perturbations. For an infinitely
large system, that is, α → ∞, this yields the familiar
mechanical instability criterion for vorticity banding,
dσ=d_γ < 0. When the system size is finite, the unstable
region shrinks, with stability boundaries shown as colored
lines in Fig. 1.
The mechanism of this instability is as follows.

Temporarily ignoring variations in ϕ, Eqs. (1)–(4) effectively
reduce to (a) _γ ¼ σ=ηðfÞ and (b) _f ¼ −_γ½f − fSSðσÞ�.
Recalling that _γ must remain uniform in z while σ and f
can vary, we imagine a localized fluctuation in which σ
slightly increases at some z: (b) then requires that f
correspondingly also increases. For large enough
dη=df > 0, σ must increase even further to maintain uni-
form _γ along z via (a). This gives positive feedback and
instability, irrespective of wave vector k. We now relax the
assumption of constant ϕ, noting that the ϕ relaxation

depends on k and is always stabilizing: Whenever σ
increases locally, there is an outward migration of particles,
thereby locally decreasing ϕ and, hence, the viscosity. The
competition between these processes restricts the unstable f
dynamics to large length scales, because the time for particle
migration increases with distance.
Having shown a state of initially homogeneous flow to

be linearly unstable if Eq. (6) is satisfied, we now numeri-
cally integrate the model equations to elucidate the full
nonlinear dynamics that prevails at long times. We do so
for a representative value of α ¼ 109 and for two volume
fractions: ϕ̄ ¼ 0.575, for which the constitutive curve is
S-shaped, and ϕ̄ ¼ 0.582, for which it folds right back to
the _γ ¼ 0 axis. Taking as our initial condition a state of
homogeneous shear on the constitutive curve for some
imposed σ̄, subject to small-amplitude perturbations, we
find one of two possible competing long-time states of
dynamical vorticity bands: a LOB state for imposed shear
stresses in the vicinity of σ̄ ¼ 10 and a TB state otherwise.
Starting from the LOB (respectively, TB) state, we then
quasistatically sweep σ̄ up and (in a separate run) down
from these values, generating the red (respectively, black)
macroscopic flow curves shown in Fig. 2 (see [30] for
details).
A TB state, pertaining to the black flow curve, is shown

in Fig. 3 (top left). Here the steady-state bulk shear rate
_γðtÞ ¼ const, and localized pulses travel along the vorticity
axis at a constant speed in one direction. (The direction
represents a spontaneously broken symmetry, depending
sensitively on the initial noise.) An LOB state, pertaining to
the red flow curve, is shown in Fig. 3 (bottom left). Here the
bulk shear rate at constant imposed stress shows sustained

FIG. 1. Nondimensionalized homogeneous constitutive curves
(black lines) for volume fractions ϕ ∈ ½0.55; 0.6� and stability
boundaries (colored lines) enclosing the region of unstable
homogeneous flow for several α̃ ∈ ½5 × 106;∞�, for α̃−1=2 values
linearly spaced. A given value of α̃−1=2 corresponds to a given
value of the inverse system size a=Lz, for fixed bulk rheology
parameters ηf and γ0.

FIG. 2. Macroscopic flow curves for α ¼ 109 with ϕ̄ ¼ 0.575
and ϕ̄ ¼ 0.582, obtained by sweeping stress up and down from a
TB state (black lines) and from a LOB state (red lines). For the
LOB, solid lines are the time-averaged flow curves, while dashed
lines are the low and high limits of shear rate oscillations. The
underlying homogeneous steady-state flow curves (gray lines)
show domains of linear stability (solid lines) and instability
(dashed lines).
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oscillations in time, reminiscent of experimental observa-
tions [21,23]. In Fig. 2, the average of the oscillation is
shown by the solid red line and the limits by the dotted red
lines. These states lie within the region of oscillatory linear
instability; spatiotemporally, they exhibit locally oscillating
bands comprising two excitations that travel in opposite
directions and intermittently collide. Such collisions
coincide with a drop in the oscillating bulk shear rate
signal. For the higher volume fraction ϕ̄ ¼ 0.582, homo-
geneous flow is recovered above some stress threshold
σ ¼ σhom < σJ, but flow then arrests completely at σ ≥ σJ,
where the underlying constitutive curve rejoins the vertical
axis [44].
We now compare these continuum results to direct

particle simulations. These use 8000 bidisperse spheres
(radii a and 1.4a in equal volume proportions), sheared
under constant global shear stress σ̄xy in a triperiodic box of
size Lx ¼ Ly ¼ 10.2a and Lz ¼ 815a to allow for fully
developed vorticity bands [30], using Lees-Edwards boun-
dary conditions [46]. (Note that σ̄zz was controlled in the
continuum model; this should not matter, as previously
discussed.) The spheres interact through both lubrication
and contact forces [9], with any contact force becoming
frictional (with friction coefficient μ ¼ 1) once the normal
part exceeds a fixed value F� [30]. This “critical load
model” captures both DSTand jamming, but previous work
[9] used much smaller Lz values, precluding the vorticity
instabilities addressed here. With μ ¼ 1, the values of ν, ϕμ

J,

and ϕ0
J are consistent with the ones we set for the

continuum model, giving a good agreement for the homo-
geneous steady-state flow curves [36].
In our large-Lz simulations, we indeed find dynamic

vorticity banding, with two distinct dynamical states, in
close analogy with those of our continuum model. As seen
in the top right in Fig. 3, we recover the TB solutions at
lower stresses. We find good qualitative agreement between
simulations and our continuum model (top left in Fig. 3) in
the overall dynamics of stress and volume fraction fields.
To perform the comparison, we used model parameters
γ0 ¼ 0.023 and α ¼ 1.3 × 108, based on their measured
value in the simulations [47]. Both the continuum model
and particle simulations show a slight accumulation of
particles at the front of the traveling thickened band, albeit
with somewhat flatter stress profiles in the simulations than
in the model (not shown). The continuum model’s pre-
diction for the speed of the TB is in good qualitative
agreement with our particle simulations but roughly a
factor of 2 larger. At higher stresses, our simulations also
exhibit the LOB states of the continuum model, but we
have so far found these only as a transient effect in the
particle simulations, with LOB always eventually giving
way to TB: See the lower panel in Fig. 3.
In summary, we have proposed a continuum model for

the vorticity instabilities of a shear thickening suspension
held at a constant macroscopic stress in the unstable part of
the constitutive curve where dσ=d_γ < 0. Its predictions
compare very well with our particle-based simulations,
including a regime of oscillating macroscopic shear rates as
found experimentally [21,23]. Crucially, the unsteady
behavior results from a bulk rheological mechanism, not
from coupling with the mechanical response of the rhe-
ometer, even if the latter plays a part in some experiments
[23]. Particle migration is crucial: The banding dynamics
relies on small concentration variations that have large
rheological effects close to jamming, as reported previously
for colloidal glasses in pipe flow [48].
Observing the predicted spatiotemporal bands directly in

experiments, by measuring local stress fields and small
concentration fluctuations, may prove challenging. The
velocity field along the vorticity direction also bears a
signature of the bands due to particle migration, which
could be more accessible. Very recent experiments do
report vorticity bands in cornstarch suspensions under
controlled stress, similar to those presented here in shape,
size, and velocity [49]. However, the banding signature
involves the flow (vx) velocity component; this may stem
from differential wall slip induced by a frictional band
moving along the vorticity direction.
While we focused here on a constitutive model involving

only the normal stress along the vorticity direction, the
physical ingredients in our model may also admit insta-
bilities along the gradient and/or flow directions. Without
volume fraction variations, however, homogeneous shear

FIG. 3. Comparison of volume fraction and stress space-strain
plots between long-time inhomogeneous flows in the (left)
continuum model and (right) direct particle simulations at a
volume fraction ϕ̄ ¼ 0.58. The parameters for the continuum
model are γ0 ¼ 0.023 and α ¼ 1.3 × 108, while the particle
simulation uses Lz=a ¼ 815 and we measure γ0 ¼ 0.023 [18]
and α ¼ ð1.4� 0.3Þ × 108. TB solutions at an imposed stress
σ̄ ¼ 6.525 (top) and LOB solutions at σ̄ ¼ 7.25 (bottom). (All
stresses are nondimensionalized by setting σ� ¼ 1.) LOBs are
visible only transiently in the simulations. Note the different
scales for the strain in the continuum model and the particle
simulations: The model predicts bands moving roughly twice
faster than in the simulations.
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flow is predicted to be stable against gradient perturbations
in the absence of inertia [18], for constitutive curves of the
shapes considered here. Any instability in the gradient
direction would therefore have to be driven by particle
migration (and/or inertial) effects and is likely to be
subdominant to the vorticity banding considered here.
Indeed, some experiments in the discontinuous shear
thickening regime report a flowing gradient band of lower
concentration coexisting with a densely jammed band [50].
For very large systems, inertia will separately trigger
gradient instabilities [51]. Our coupled model of shear
thickening and particle migration represents a first step
towards explaining the full range of unsteady flows close to
the jamming transition in dense suspensions and, we hope,
will stimulate systematic experimental studies of this
regime.
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