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 

Abstract—There are many cases of electromagnetic interference 

caused by supraharmonics emitted by power electronic equipment. 

However, there is currently no effective method for measuring 

supraharmonics. This paper proposes a new supraharmonics 

high-resolution measurement algorithm based on a multiple 

measurement vectors compressive sensing model and an 

orthogonal matching pursuit recovery algorithm. Firstly, the 

algorithm, based on a spectrum array of multiple DFT coefficient 

vectors and a Dirichlet kernel matrix, constructs a multiple 

measurement vectors compressive sensing model by introducing 

an interpolation factor. Then, by using the jointly sparse property 

of high-resolution spectrum array, the multiple measurement 

vectors compressive sensing model is converted into a single 

measurement vector compressive sensing model. Thirdly, by using 

an orthogonal matching pursuit recovery algorithm, we solve the 

support set of the high-resolution spectrum array. Finally, we use 

least squares to realize the high-resolution analysis of 

supraharmonics spectrum array simultaneously. Simulation 

results and verification of the measured data show that the 

algorithm proposed in this paper can save the calculation time by 

100 times, can improve the frequency resolution by an order-of-

magnitude without increasing the observation time, and can 

compute the frequency and magnitude of supraharmonics 

accurately. By combing the algorithm with 3-D display method, we 

can see the dynamic time-varying characteristics of 

supraharmonics clearly. This algorithm shows a good application 

prospect in measuring supraharmonics more accurately. 

 
Index Terms—Supraharmonics, Compressive sensing, 

Multiple measurement vectors model, Orthogonal matching 

pursuit. 

I. INTRODUCTION 

ith the popularity of new energy technologies and smart 

grid control technologies, more and more power 

electronic equipment, such as photovoltaic inverters, electric 

vehicle charging piles, switching power supplies, new lighting 

devices, home appliances and power line carrier 

communication equipment, are applied in the power system. 

While achieving energy-saving, high-efficiency, and 

intelligence, they also emit more and more high-frequency 

distortion [1] in 2 to 150 kHz into the power system, which has 

caused a series of new electromagnetic interference problems 

[2]. For example, the malfunction of automatic meter reading 

and inaccuracy of energy metering; the degraded copying 

quality of a copying machine due to the interference caused by 

a computer number control machine nearby; damage to the 
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filter capacitor of the power supply inverter in the automotive 

punching workshop, so the punching machine cannot work 

properly; a precision instrument sharing the power socket with 

the CNC machine is burned[3]; the resonance between the 

motor tester circuit and the breaker circuit causes abnormal 

noise, et.al.. In 2013, at an IEEE International Conference on 

Power and Energy, Emanuel first defined the high-frequency 

distortion in 2 to 150 kHz as supraharmonics [4]. Subsequently, 

this concept was gradually accepted by the industry. In the latest 

standard IEC 61000-2-2, supraharmonics are clearly divided 

into intentional emission and unintentional emission. The so-

called intentional emission refers to the power line carrier 

communication signal, and the unintentional emission refers to 

conducted emission that is not intended for communication 

purpose. Electromagnetic interference is mainly caused by 

unintentional emission. In 2010, 2013 and 2015, the European 

Committee for Electrotechnical Standardization (CENELEC) 

successively released three research reports on electromagnetic 

interference between electrical equipment and systems in the 

frequency range below 150 kHz [5]. In 2017, the International 

Conference on Electricity Distribution (CIRED) specially set 

up a special report for supraharmonics [6]. Undoubtedly, 

supraharmonics has caused a great deal of attention from 

universities, research institutions and relevant international 

standardization organizations.  

In the newly revised standard IEC 61000-4-30, annex C, 

three measurement methods for supraharmonics are 

recommended. One method is to extend the gapless clustering 

method in IEC 61000-4-7, annex B, from the present 9 kHz 

limit up to the 150 kHz limit. A second method under 

consideration is the newly proposed 32 equal-width segments 

measurement method. A third method is the method of CISPR 

16-1-2. Due to the different measurement principles of the three 

measurement methods, the measurement results obtained by 

them must be quite different [7]. 

The spectral leakage of the gapless clustering measurement 

method is severe. The basic principle of the 32 equal-width 

segments measurement method is to extract 32 sets of 0.5 ms of 

data block from 200 ms of measured signal, and perform a DFT 

transform separately to obtain 32 sets of spectrums with 2 kHz 

frequency resolution, and the maximum, minimum and average 

values of each spectral line are counted. Since this method uses 

only about 8% of the measured data, the number of calculations 

can be significantly reduced and it is most likely to become the 
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standard supraharmonics measurement method. However, this 

method has some disadvantages, e.g. the mutual limitation 

between observation time and frequency resolution, and large 

frequency resolution, means that the components of 

supraharmonics cannot be positioned precisely. At the same 

time, because of the measurement with gap, some parts of the 

signal under test will be undetected because it is always in a gap 

[8]. Furthermore, since the supraharmonics has a dynamic time-

varying characteristic, that is, the frequency, amplitude and 

phase of the supraharmonics will change dynamically with time, 

this method cannot analyze the dynamic characteristics of 

supraharmonics. 

The CISPR 16-1-2 measurement method can only measure 

one value each time, and the measurement time is longer, which 

cannot meet the real-time measurement requirements. 

In order to research the propagation property, interaction 

mechanism, emission limits, and inhibition of supraharmonics, 

it is necessary to measure supraharmonics accurately. Therefore, 

it is a big challenge to propose an effective supraharmonics 

high-resolution measurement algorithm. 

Spatial spectrum estimation methods such as Multiple Signal 

Classification (MUSIC) [9] and Estimation of Signal 

Parameters via Rotational Invariance Techniques (ESPRIT) [10] 

have been applied to harmonics and interharmonics because of 

their super-resolution, but at the cost of higher computational 

complexity. The spectrum of supraharmonics, generated by 

power electronics at its switching frequency and integral 

multiple, is sparse in the frequency domain. Therefore, this kind 

of signal can be analyzed by using compressive sensing (CS) 

[11]-[13]. [14] proposed a high-resolution harmonic analysis 

algorithm based on compressive sensing, which can increase 

the frequency resolution of traditional harmonics by an order of 

magnitude, but can only process one data spectrum. [15] 

proposed a supraharmonics high-resolution measurement 

method based on a single measurement vector (SMV) 

compressive sensing model and orthogonal matching pursuit 

(OMP) [16] recovery algorithm (SCS-OMP). The SCS-OMP 

algorithm can refine the frequency resolution from 2 kHz to 200 

Hz, breaking through the limitation of Shannon’s sampling 

theorem and overcoming the inherent limitations of mutual 

limitation of observation time and frequency resolution. 

Parameters of supraharmonics can be computed accurately and 

spectral leakage can be effectively inhibited. 

Because of the dynamic time-varying characteristics of 

supraharmonics, it requires us not only to analyze 

supraharmonics with high-resolution, but also analyze its 

dynamic characteristics. Therefore, it is obviously not enough 

to analyze only 32 data blocks. However, the SCS-OMP 

algorithm can only process one supraharmonics spectrum each 

time. Therefore, it needs multiple iterations for 200 ms 

measured data, which will undoubtedly require longer time. 

Therefore, the algorithm does not meet the real-time 

requirements for supraharmonics. 

In this paper, we propose a new supraharmonics high-

resolution measurement algorithm based on multiple 

measurement vectors (MMV) [17] compressive sensing model 

and OMP recovery algorithm (MCS-OMP), which can realize 

supraharmonics high-resolution analysis of an original 

spectrum array (OSA) simultaneously. Each column vector 

corresponds to the frequency spectrum of a data block. In order 

to optimize the algorithm, it is noted that the high-resolution 

spectrum array is jointly sparse. According to [18], the original 

spectrum array is converted into a single eigenvector containing 

only supraharmonics components. Therefore, the MMV 

compressive sensing model is transformed into a single 

measurement vector (SMV) [17] compressive sensing model, 

and the support set is calculated using the OMP algorithm. 

Since the SMV compressive sensing model eliminates noise, 

the calculation of the support set is more stable. Finally, the 

supraharmonics high-resolution analysis of OSA is performed 

simultaneously through the least-squares method, and the 

calculation time can be significantly reduced. It is expected to 

be applied to the real-time measurement and analysis of 

supraharmonics. 

This paper is organized as follows. The basic principles of 

the MCS-OMP algorithm is introduced in the next section. 

Section Ⅲ introduces the simulation results of the 

supraharmonics high-resolution analysis and section Ⅳ 

discusses the supraharmonics high-resolution analysis of 

measured data. In section Ⅴ, the contributions and conclusions 

of this paper are reviewed.  

II. PRINCIPLE OF MCS-OMP SUPRAHARMONICS HIGH-

RESOLUTION ALGORITHM 

A. MMV compressive sensing model 

For a 200 ms power signal sampling data sequence 

containing supraharmonics, a digital band-pass filter is used to 

filter out the conventional harmonics below 2 kHz and the 

frequency components above 150 kHz, and then the data is 

uniformly divided into 400 groups of =0.5 msT  small data 

blocks by applying a rectangular window function. 

Supraharmonics components contained in any small data block 

can be expressed as a multi-tone signal 

s( ) cos(2 + ) , (1, )sh s

sh

h shx n A f nT w n N                     (1) 

where shA , shf , and sh  are the amplitude, frequency and 

initial phase of supraharmonics, respectively. sT  is the sample 

interval, which is the reciprocal of the sample frequency sf . 

The sequence length is sN f T  . 

(1) can be expressed in Euler form. 

s s[ +2 ] [ +2 ]
( ) ( )

2 2
sh sh sh shj f nT j f nTsh sh

sh

A A
x n e e

   
                 (2) 

The Discrete Fourier Transform (DFT) of ( )x n  can be 

expressed as follows 

s

2
( ) ( )shj

sh sh

sh

k
X k A e D f T

N N


                                     (3) 

where 0 k N  , the frequency resolution sf f N   is 2 

kHz, and ( )D  is the Dirichlet kernel matrix 

-1
- 2 - ( 1)

0

1 sin
( )= =

sin

N
j n j N

n

N
D e e

N N

    








                               (4) 
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In order to improve the frequency resolution, the 

interpolation factor F is introduced. Therefore, the frequency 

resolution is refined to 
' =f f F   and the total spectral line is 

'N NF . Besides, 

s 'sh

r
f T

N
                                                                         (5) 

where r is the rth spectral line in the new frequency resolution. 

The final expression is as follows 

'

2
( ) ( )shj

sh N

r

k r
X k A e D

N N N


                                      (6) 

where [0, 1]k N  , and '[0, 1]r N    

Here, we transform (6) into a SMV compressive sensing 

model 

'
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where the element ( , )k rD  is 

'
' ( 1)( )

( , ) '

'
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sin ( )
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           (8) 

By (7), we can get a high-resolution spectrum vector from 

the original spectrum vector. The simplified form of (7) is as 

follows 

 s Da w                                                                          (9) 

where s  is the original spectrum vector, D  is the sensing 

matrix, a  is the high-resolution spectrum vector that has a K-

sparsity ( 'K N ), w  is the noise vector. 

In order to realize the supraharmonics high-resolution 

analysis of M original spectrum vectors simultaneously, M 

original spectrum column vectors are assembled into an original 

spectrum array S , and we finally construct a MMV 

compressive sensing model. 

= S DA W                                                                       (10) 
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S  is the original spectrum array, D  is the sensing matrix, A  is 

the high-resolution spectrum array, and W  is the noise matrix. 

The element 
,k ms can be expressed as follows 

'
j( 2 )

, '
( )

sh m

r
i

N
k m sh N

r

k r
s A e D

N N
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

                                (11) 

where im represents the start of the time domain signal for each 

data block. 

B. Support set calculation for high-resolution spectrum array 

1) Transformation MMV model to SMV model 

If the traditional compressive sensing method is directly used 

to estimate the support set in the MMV model, there are two 

drawbacks. One is that the amount of computation is large. 

Second, the signal subspace and the noise subspace cannot be 

distinguished, which means the support set cannot be estimated 

accurately due to noise interference. Since the high-resolution 

spectrum array is jointly sparse, that is, its support set for each 

column is the same, it is possible to express the jointly support 

set of the high-resolution spectrum array by solving a SMV 

support set. In this way, the support set solution problem of the 

MMV compressive sensing model is transformed into the 

support set solution problem of a SMV compressive sensing 

model. 

First, we calculate the autocorrelation matrix SR  of the 

original spectrum array S . 

= H

S E   R SS                                                                    (12) 

where the superscript H  denotes transposition and complex 

conjugation. Replacing S  with (10), then (12) can be 

transformed into  

2

= ( )( )

    

H

S

H

A w

E



   

 

R DA W DA W

DR D I
                                      (13) 

where = H

A E   R AA , 2

w  is the variance of Gaussian white 

noise, and I is the identity matrix. 

The eigenvalue decomposition of H

A
DR D  is 

=H H

A S S SDR D V Λ V                                                           (14) 

And the eigenvalue decomposition of SR  is 

= H

S S SR V ΛV                                                                     (15) 

where 2= S wΛ Λ I . Denote the K largest eigenvalues in the 

diagonal matrix SΛ  as 2

1 , 2

2 , …, 2

K . The eigenvalues of 

SR  are given as follows 

2 2

2

, 1, ,

,         1, ,

i w

i

w

i K

i K N

 




  
 

 

 

If the signal-to-noise ratio (SNR) is large enough, 2

K  is 

significantly larger than 2

w . Then we call the top K largest 

eigenvalues of the autocorrelation matrix SR as primary 

eigenvalues, and the other N-K smallest eigenvalues as 

secondary eigenvalues. The primary eigenvalues are as follows 
2 2

1 1= w   , 2 2

2 2= w   , …, 2 2=K K w   . 

and the secondary eigenvalues are as follows 
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2

1 2K K N w        . 

Correspondingly, the eigenvectors can be divided into  

   1 1, , | , , = ,S K K NV v v v v T G                              (16) 

where 0H T G . Thus, we decompose the data space into 

signal subspace  1Span( ) Span , , KT v v  and noise 

subspace  1Span( ) Span , ,K NG v v . Due to 
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      (17) 

Therefore, we multiply the eigenvectors matrix T  by the 

column vector Kd  composed of the square roots of the top K 

largest eigenvalues, to obtain eigenvalue column vector v  

Kv Td                                                                            (18) 

Since the column vector v  only retains the supraharmonics 

components and eliminates the noise. Finally, the MMV 

compressive sensing model is converted into a SMV 

compressive sensing model 

v Du                                                                              (19) 

Next, we will compute the support set Λ  of support column 

vector u  by using the OMP recovery algorithm. 

2) Using OMP recovery algorithm to calculate support set 

Since the OMP algorithm is a greedy method that implements 

iterative approximation by the least squares method, the 

residual obtained by each iteration is orthogonal to all selected 

column vectors, and has the advantages of fast operation speed 

and easy implementation. We use the OMP algorithm to 

calculate the support set of the constructed SMV model. The 

flows of the OMP algorithm are given in TABLE Ⅰ. 

C. Least squares method to recover high-resolution spectrum 

array 

After recovering the support set Λ  and the sub-matrix sD , 

we can recover the high-resolution spectrum array by using the 

least squares method. 
1

2
ˆ argmin || || ( )H H

S S S S

  A S D A D D D S                     (20) 

where Â  includes M columns of a high-resolution spectrum 

column vector. Each column corresponds to the phasor 

information of each supraharmonic at different times. The 

frequency, amplitude and phase matrix of the supraharmonics 

are obtained by 

( 1)* ' f  f Λ                                                               (21) 

ˆ( )absAm A                                                                   (22) 

ˆangle( )Ph A                                                                  (23) 

When measurement noise is present, replacing (10) into (20), 

and the estimate is shown as  
1ˆ ( )H H

S S S

 Α A D D D W                                               (24) 

If the noise is very weak, we have reason to suppose that the 

support recovery step can still be successfully identified. 

However, when the SNR is below a threshold, the support 

recovery is no longer deterministic and the estimation accuracy 

cannot be guaranteed. 

D. Dynamic time-varying analysis for supraharmonics 

In order to analyze the dynamic time-varying characteristics 

of supraharmonics, we combine the MCS-OMP algorithm with 

3-D display method to display the computed supraharmonics 

high-resolution spectrum array in time-frequency form. Each 

column of the high-resolution spectral array corresponds to a 

time scale. Compared with 200 ms, the data block length of 0.5 

ms is relatively short, so we consider that the supraharmonics 

are steady in each 0.5 ms observation time. Then the recovered 

supraharmonics spectrum array is displayed in 3-D, and the 

dynamic time-varying characteristics of supraharmonics 

components in the signal under test can be directly observed. 

E. Selection of interpolation factor F 

For (0,0.36)  , [19] investigated the relationship between 

the N-dimensional observation vector and the NF-dimensional 

K sparse measurement vector in the SMV model under 

Gaussian distribution. The recovery probability of OMP will 

exceed 1  . 

ln( / )N mK NF                                                           (25) 

where N is the original vector’s dimension, F is the 

interpolation factor, K is the sparsity of the recovery vector, and 

m is a coefficient. The estimation formula of F is 

TABLE Ⅰ 

FLOW FOR OMP ALGORITHM 

1). Initialization 

1. Input eigenvalue column vector v , sensing matrix D , sparsity K, and 

threshold 
th  

2. Initialize parameters: residual 
0 r v , support set 

0=Λ , sub-matrix 

0=[]D , ant iteration time 1t  . 

2). Iteration approximation 

1. Find the index 
'

1=argmax | , |, 1,...,t i t i N   d r  

2. Augment the support set
-1= { }t t tΛ Λ  and sub-matrix 1=[  ]

tt t D D d , 

set the 
t  column of D  matrix to zero (:, ) 0t D . 

3. Calculate a new estimation of support column vector  
1

2
ˆ argmin || || =( )H H

t t t t t t

 u v D u D D D v  

4. Update the residual ˆ=t t tr v D u  

5. If t K or 
t thr , then stop iteration. Otherwise, iterate from step 1. , 

and 1t t  . 

3). Output ˆ ˆ
tu u ,

tΛ Λ ,and 
s tD D . 
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1
exp( )NF

mKN
                                                           (26) 

It should be noted that the frequency resolution of the 

analyzed signal’s spectrum couldn’t be enhanced indefinitely 

by arbitrarily increasing the value of the interpolation factor F. 

The reason is that, firstly, if the interpolation factor is set too 

large, the condition number of the sensing matrix will be large, 

and the condition number reflects the stability of the matrix 

when it is disturbed by noise, i.e., the larger the condition 

number, the more unstable the matrix. Secondly, in the 

compressive sensing calculation, it is always desirable that the 

subset of any column vectors of the sensing matrix is nearly 

orthogonal, and if the interpolation factor F is too large, it will 

be difficult to meet the orthogonal condition. In summary, 

based on the actual needs and theoretical analysis, combined 

with the computation complexity and computation accuracy, 

the value of F is usually no more than 10. 

F. Estimation of sparsity K 

The purpose of the compressive sensing recovery algorithm 

is to map the eigenvalue column vector v  to the support 

column vector u  using the sensing matrix D , so that there are 

only a small number of non-zero components and the number 

of non-zero components is the sparsity level of u . The 

estimation of sparsity is an important iteration condition for 

performing the OMP algorithm. If the sparsity level estimation 

is not accurate, the estimation of the support set will not be 

accurate. In the frequency domain, if there is no spectral leakage, 

the signal’s sparsity is equal to two times the number of 

supraharmonics in the analyzed signal. Some effective methods, 

such as Minimum Description Length (MDL) [20], and 

Gerschgorin Disk Estimation (GDE) [21], perform well in 

estimating supraharmonics components. Practice shows that in 

the white noise case, MDL has better performance in estimating 

the number of supraharmonics in signals under test, but in the 

situation of colored noise, the GDE criterion has a better 

performance. 

III. SIMULATION RESULTS OF MCS-OMP ALGORITHM 

A. Supraharmonics simulation model 

We give the frequency, amplitude and initial phase of each 

supraharmonics component for simulation in TABLE Ⅱ. 

The sampling frequency is set to 500 kHz. We apply a 0.5 ms 

rectangular window to the 200 ms sampled data sequence to 

divide it into 400 small data blocks, and each small data block 

contains 250 data. All small data blocks are transformed to the 

frequency domain by DFT, and we obtain 400 groups of 

spectrums with the frequency resolution of 2 kHz. In order to 

improve the frequency resolution of the 400 groups of 

spectrums, we set the interpolation factor F to 10. The SCS-

OMP algorithm in [15] and the MCS-OMP algorithm proposed 

in this paper are respectively used to increase the frequency 

resolution from the original 2 kHz to 200 Hz, and then to get 

supraharmonics high-resolution analysis for all 400 groups of 

spectrums. 

B. Support set recovery success probability 

Adding Gaussian white noise to the supraharmonics 

simulation model set in TABLE II, the signal-to-noise ratio 

(SNR) range is set -10 to +35 dB, and the increasing step is set 

to 5 dB. Using the two algorithms mentioned above, we 

perform 100 times support set recovery under each SNR value. 

The number of successful recoveries of the support set is the 

success probability, as shown in Fig. 1. 

As can be seen from Fig. 1, when the SNR is above 10 dB, 

the recovery success rates of the two algorithms all reach 100%. 

However, when the SNR is below 10 dB, the success 

probability of the SCS-OMP algorithm decreases significantly. 

The MCS-OMP algorithm still has a high recovery success 

probability. Even when the SNR equals 0 dB, the recovery 

success probability of the support set still reaches over 90%, 

indicating that the MCS-OMP algorithm has better robustness. 

C. Comparison of computation time 

In order to compare the computation time of the DFT 

algorithm, SCS-OMP algorithm and MCS-OMP algorithm, the 

SNR is set to 20 dB. The simulation software runs on 

Matlab2017a, and the computer configuration includes an Intel 

Core i5 processor, 8 gigabytes memory, and a Windows 7 64-

bit operating system. We give the computation time of the three 

TABLE Ⅱ  

PARAMETERS OF SUPRAHARMONICS IN SIMULATION SIGNAL 

No. Frequency (kHz) 
Magnitude 

(a.u.) 
Phase (rad) 

1 10.2 1 0 

2 21.0 1 0 

3 70.6 1 0 

 
TABLE Ⅲ 

COMPUTATION TIME OF THREE ALGORITHMS 

Algorithm Computation time (s) 

DFT 0.036 

SCS-OMP 39.867 
MCS-OMP 0.401 

 

 
Fig. 1.  Support set recovery success probability versus SNR. 

 

 
Fig. 2.  Spectrum for the first data block obtained by MCS-OMP and DFT. 
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algorithms in TABLE Ⅲ. 

We can see from TABLE Ⅲ that the DFT algorithm has the 

shortest computation time, 0.036 s. Since SCS-OMP algorithm 

can only achieve supraharmonics high-resolution analysis for 

one original spectrum vector simultaneously, so computation 

time is the longest, reaching 39.867 s. The computation time of 

the MCS-OMP algorithm is about 0.401 s, which is about 10 

times longer than that of the DFT algorithm. But, compared 

with the SCS-OMP, the computation time saved is about 100 

times, which shows that the MCS-OMP algorithm can meet the 

real-time supraharmonics high-resolution measurement. 

D. Comparison of computation accuracy 

We use the MCS-OMP algorithm and DFT algorithm to 

analyze frequency and amplitudes of supraharmonics. Fig. 2 

shows the spectrum obtained using the MCS-OMP algorithm 

and the DFT algorithm for the first data block. The SNR is set 

to 20 dB. 

It can be seen from Fig. 2 that the spectral leakage of the DFT 

algorithm is very obvious at a frequency resolution of 2 kHz, 

while the frequency resolution of 200 Hz is improved by using 

the MCS-OMP algorithm, which not only eliminates the 

influence of spectral leakage, but also the frequency and 

amplitudes can be computed accurately. 

We compute the frequency and amplitudes of 

supraharmonics by (21) and (22). Magnitude is the average of 

the 400 groups’ data, and the error is very small. See TABLE 

Ⅳ for details. 

With the SNR range of -10 to +35 dB in 5 dB steps, the 

average and standard deviation of the 400 amplitudes for 

supraharmonics at 10.2 kHz are shown in Fig. 3. 

From Fig. 3 we can see that when the SNR is greater than 10 

dB, the average value of the amplitude is closer to the setting 

value, and the corresponding standard deviation is smaller. In 

contrast, when the SNR is lower than 10 dB, the average value 

of the amplitude deviates from the setting value greatly, and the 

corresponding standard deviation is large too. 

E. Dynamic analysis of supraharmonics  

In order to verify the dynamic analysis performance of the 

algorithm proposed in this paper, we set the attenuation factors 

of the supraharmonics at frequencies 10.2 kHz, 21.0 kHz and 

70.6 kHz to 5, 3 and 0, respectively. The interpolation factor F 

is set to 10 and the SNR is set to 20 dB. The 3-D spectrum 

obtained by the DFT algorithm and MCS-OMP algorithm, 

respectively, are shown in Fig. 4. 

It can be seen from Fig. 4 that the supraharmonics component 

at 10.2 kHz attenuates fast, the supraharmonics component at 

21.0 kHz attenuates slowly, and the supraharmonics component 

at 70.6 kHz does not attenuate at all. The trend is consistent with 

the supraharmonics’ attenuation factors set to 5, 3 and 0, 

respectively. At the same time, we can see from Fig. 4(a) that 

the spectral leakage in the frequency spectrum obtained by the 

DFT algorithm is relatively obvious. From Fig. 4(b), we can see 

that by using the MCS-OMP algorithm, we can not only realize 

supraharmonics high-resolution analysis, but also effectively 

inhibit the spectral leakage. Noise only appears at the frequency 

of supraharmonics. This shows that the MCS-OMP algorithm 

has strong anti-interference ability, the high-resolution analysis 

result of supraharmonics is more accurate, and the dynamic 

analysis result can accurately reflect the dynamic characteristics 

of supraharmonics. 

IV. ANALYSIS OF MEASURED DATA 

A. Analysis of Output Data of Wireless Electric Vehicle 

Charging Pile Inverter 

The MCS-OMP algorithm was used to perform 

supraharmonics high-resolution analysis of the measured data 

of a wireless electric vehicle charging device. The working 

principle of the wireless electric vehicle charging pile is shown 

in Fig. 5. 

The three-phase supply voltage is converted into a DC 

voltage by a rectifier, and then converted into an AC signal by 

an inverter operating at a frequency of 80 kHz and transmitted 

by a wireless transmitter. The wireless receiver receives the AC 

signal and converts it into a DC signal with a rectifier to charge 

TABLE Ⅳ 

PARAMETERS OF SUPRAHARMONICS ESTIMATED BY MCS-OMP 

No. 1 2 3 

Frequency(kHz) 10.2 21.0 70.6 

Magnitude(a.u.) 
Error(relative) 

0.9998 
2×10-4 

1.0000 
0 

0.9993 
7×10-4 

 

 
Fig. 3.  Average magnitude and its standard deviation versus SNR. 

 

 
(a) 

 
(b) 

Fig. 4.  3-D spectrogram of supraharmonics. (a) Original spectrum array 

obtained by DFT algorithm. (b) Supraharmonics high-resolution spectrum 

array obtained by MCS-OMP algorithm. 
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the battery of the electric vehicle. Using the HIOKI MR8875 

recorder and CT9692 current clamp, we recorded the voltage 

and current signals of the wireless transmitter input and the 

wireless receiver output. The sampling frequency was set to 200 

kHz. Similarly, we used a Chebyshev bandpass digital filter to 

obtain supraharmonics in 2 to 150 kHz in 200 ms recorded data.  

A rectangular window is applied to the filtered data, which is 

divided into 400 small data blocks of 0.5 ms and then all data 

blocks are transformed into 400 spectrum vectors. We compose 

the 400 spectrum vectors into an array, as in the original 

spectrum array. By using the MCS-OMP algorithm, the 

supraharmonics high-resolution analysis can be achieved. 

Sparsity is set to 8 and the interpolation factor is set to 10. 

Therefore, the frequency resolution of the original spectrum 

array can be refined to 200 Hz. Fig. 6 shows the analysis results 

of the first small data block of the voltage data measured at the 

wireless transmitter input using the MCS-OMP algorithm and 

DFT algorithm. 

It can be clearly seen from Fig. 6 that the analysis results of 

the MCS-OMP algorithm and DFT algorithm are relatively 

consistent, while the MCS-OMP algorithm effectively 

overcomes the inherent spectral leakage problem of the DFT 

algorithm and increases the frequency resolution to 200 Hz. 

Four supraharmonics components were accurately detected, 

and the estimated parameters of the supraharmonics are shown 

in TABLE Ⅴ. 

As can be seen from Fig. 7, the frequencies and amplitudes 

of the four supraharmonics components remain constant within 

200 ms. 

B. Analysis on measured data of power supply of moisture 

detection device in a paper mill 

An ultrasonic moisture detection device used to detect the 

moisture content of paper in a paper mill has caused two 

accidents with the control circuit board. We used a PQ-Box 200 

power quality analyzer to measure the power supply of the 

ultrasonic moisture detection device, and the measured supply 

current data was calculated and analyzed using the MCS-OMP 

algorithm proposed in this paper. The sampling rate was set to 

40.96 kHz, and the 200 ms measurement data was digitally 

filtered to filter out the fundamental component. Then, it was 

continuously divided into 40 small data blocks with a duration 

of 5 ms (each small data block contains 204 sampling points). 

The interpolation factor was set to 10, so that the frequency 

resolution could be refined to 20 Hz.The 3-D high-resolution 

spectrum of the supraharmonics is shown in Fig. 8. 

From Fig. 8, we can see that in addition to the 

supraharmonics at 1.8 kHz, the measured signal also contains 

supraharmonics at 6 kHz, 12 kHz and 18 kHz, which are 

generated at the switching frequency and its integral multiple 

frequency during the power electronic switching device 

operation. These supraharmonics clearly fluctuate with time, 

indicating that the supraharmonics have time-varying 

characteristics. 

V. CONCLUSION 

In this paper, we propose and establish a new supraharmonics 

high-resolution measurement algorithm, called MCS-OMP 

algorithm. Specifically, by introducing an interpolation factor, 

and based on a spectrum array of multiple DFT coefficient 

vectors and a Dirichlet kernel matrix, we construct a MMV 

compressive sensing model. Because of the jointly sparse 

features of the high-resolution spectrum array, we convert the 

MMV compressive sensing model into a SMV compressive 

sensing model, and then use the OMP algorithm to solve the 

support set, which is also the support set of the high-resolution 

spectrum array. According to the support set, the column vector 

of the sensing matrix is extracted to form the sub-matrix. 

Finally, we use the least squares algorithm to achieve the 

supraharmonics high-resolution analysis of the original 

Power

Grid
Rectifier Inverter

Wireless 

transmitter

Wireless 

receiver
Rectifier

Electric 

Vehicle
 

Fig. 5.  Wireless electric vehicle charging pile working diagram. 

 
Fig. 6.  Analysis results of the first data block. 

TABLE Ⅴ 
PARAMETERS OF SUPRAHARMONICS ESTIMATED BY MCS-OMP 

No. Frequency(Hz) Magnitude(V) 

1 22.0k 110.15 
2 30.8k 65.41 

3 66.2k 57.95 

4 78.0k 458.14 

 

 
Fig. 7.  Dynamic analysis of wireless electric vehicle charging pile inverter 

output signal. 

 

 
Fig. 8.  3-D spectrogram of supraharmonics in power supply of moisture 

detection device. 
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spectrum array simultaneously. This algorithm does not have 

the inherent defects of the observation time and frequency 

resolution of the DFT algorithm. Without increasing the 

observation time of the measured data, it breaks through the 

limitation of the Shannon’s sampling theorem, which can not 

only achieve accurate positioning of the supraharmonics 

frequency in the measured signal, but can also compute the 

amplitudes of supraharmonics accurately. The new algorithm 

has a high computation speed and a good anti-interference 

ability, which can meet the requirements of real-time high-

resolution measurement of supraharmonics. The above 

theoretical analysis conclusions are confirmed by simulation 

analysis and verification of the measured data. 

By combining the MCS-OMP algorithm with the 3-D time-

frequency display method, the new measurement algorithm can 

not only display the spectrum of supraharmonics with high-

resolution, but also show clearly the dynamic characteristics of 

each supraharmonics component with time. It can be seen that 

the MCS-OMP algorithm proposed in this paper can provide a 

useful measurement algorithm for in-depth study of the 

propagation characteristics, interaction mechanism, emission 

limit and inhibition of supraharmonics. 
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