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ABSTRACT13

For transportation infrastructure, one of the greatest challenges today is to keep large-scale14

transportation networks, such as railway networks, operational under all conditions. This task15

becomes even more difficult to accomplish if taken into account budget limitations for maintenance16

and repair works. In this paper, it is presented a tool aimed at helping inmanagement tasks related to17

maintenance and repair works for a particular element of this infrastructure, the slopes. The highly18

flexible learning capabilities of Artificial Neural Networks (ANN) and Support Vector Machines19

(SVM) were applied in the development of a tool able to identify the stability condition of rock20

and soil cutting slopes, keeping in mind the use of information usually collected during routine21

inspection activities (visual information) to feed the models. This task was addressed following22

two different strategies: nominal classification and regression. Moreover, to overcome the problem23
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of imbalanced data, three training sampling approaches were explored: no resampling, SMOTE24

and Oversampling. The achieved results are presented and discussed, comparing the performance25

of ANN and SVM algorithms as well as the effect of the sampling approaches. A comparison26

between nominal classification and regression strategies for both rock and soil cutting slopes is also27

carried out, highlighting the different performance observed in the study of the two different types28

of slope.29

INTRODUCTION AND BACKGROUND30

A key element in modern society is its transportation system. Every developed country or31

countries undergoing development have invested and keep investing to build a safe and functional32

transportation network. Nowadays, the main concern, particularly for developed countries that33

already have a very complete transportation network, is to keep such networks operational under34

all conditions. However, due to network extension and increased budget constraints, such a task is35

often difficult to accomplish.36

In order to optimize the available budget it is important to have a set of tools to help decision37

makers to take the best decisions. In the framework of transportations networks, in particular for38

a railway, slopes are perhaps the element for which their failure can have the strongest impact at39

several levels. Therefore, it is important to develop ways to identify potential problems before they40

result in failures.41

Although there are some models and systems to detect slope failures, most of them were42

developed for natural slopes, presenting some constraints when applied to engineered (human-43

made) slopes. They have limited applicability as most of the existing systems were developed44

based on particular case studies or using small databases. Furthermore, another aspect that can45

limit its applicability is related with the information required to feed them, such as data taken from46

complex tests or from expensive monitoring systems.47

Some approaches found in the literature for slope failure detection are identified below.48

Pourkhosravani and Kalantari (2011) summarizes the current methods for slope stability evalu-49

ation, which were grouped into Limit Equilibrium (LE) methods, Numerical Analysis methods,50
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Artificial Neural Networks and Limit Analysis methods. There are also approaches based on fi-51

nite elements methods (Suchomel et al. 2010), reliability analysis (Sivakumar Babu and Murthy52

2005; Husein Malkawi et al. 2000), as well as some methods making use of soft computing algo-53

rithms (Gavin and Xue 2009; Cheng and Hoang 2016; Ahangar-Asr et al. 2010; Lu and Rosenbaum54

2003; Sakellariou and Ferentinou 2005; Cheng et al. 2012b; Yao et al. 2008; Kang et al. 2015;55

Kang et al. 2016b; Kang and Li 2016; Kang et al. 2016a; Kang et al. 2017; Das et al. 2011; Suman56

et al. 2016). More recently, a new flexible statistical system was proposed by Pinheiro et al. (2015),57

based on the assessment of different factors that affect the behaviour of a given slope. By weighting58

the different factors, a final indicator of the slope stability condition is calculated. For a complete59

and full understanding of the SQI system, readers are advised to read Pinheiro et al. (2015).60

As above mentioned, the main limitations of almost approaches so far proposed are related61

with its applicability domain or dependency on information that is difficult to obtain. Indeed, the62

prediction of whether a slope will fail or not is a multi-variable problem characterized by a high63

dimensionality.64

Aiming to overcome this limitation, in this work the authors take advantage of the learning65

capabilities of flexible soft computing algorithms, such as the Artificial Neural Networks (ANNs)66

and Support Vector Machines (SVMs), which can model complex nonlinear mappings. These soft67

computing algorithms were used to fit a large database of rock and soil cutting slopes in order to68

predict the stability condition of a given slope according to a pre-defined classification scale based69

on four levels (classes). One of the underlying premises of this work is to identify the real stability70

condition of a given slop based on information that can be easily obtained through visual routine71

inspections. For that, more than fifty variables related with data collected during routine inspections72

as well as geometric, geological and geographic data were used to feed the models. This type of73

visual information is sufficient from the point of view of the network management, allowing the74

identification of critical zones for which more detailed information can then be obtained in order to75

perform more detailed stability analysis, which is out of the scope of this study. In summary, our76

proposal will allow to identify the stability condition level of a given rock or soil cutting slope based77
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on visual information that, in most of the cases, can be easily obtained during routine inspections.78

Such novel approach is intended to support railway network management companies to allocate the79

available funds in the priority assets according to its stability condition.80

This paper is organised as follows. Section “Data Characterization” characterizes the databases81

used to train the models. Then, after a brief description of the methodologies applied to identify82

the stability condition of rock and soil cutting slopes in section “Methodology”, the main results83

are summarised and discussed in section “Results”. Finally, some final observations are present in84

section “Discussion” comparing the achieved results for both rock and soil cutting slope studies.85

DATA CHARACTERIZATION86

As previously mentioned, in this work two models are proposed to identify the stability condi-87

tion, from this point referred to as EHC (Earthwork Hazard Category (Power et al. 2016)), of rock88

and soil cutting slopes respectively using data modelling tools.89

The EHC system comprises 4 classes (“A”, “B”, “C” and “D”) where “A” represents a good90

stability condition and “D” a bad stability condition. In other words, the expected probability91

of failure is higher for class “D” and lower for class “A”. To fit the models for EHC prediction,92

two databases were compiled containing information collected during routine inspections and93

complemented with geometric, geological and geographic data of each slope. Both databases were94

gathered by Network Rail workers and are concerned with the railway network of the UK. For95

each slope a class of the EHC system was defined by the Network Rail Engineers based on their96

experience/algorithm (Power et al. 2016), which will be assumed as a proxy for the real stability97

condition of the slope for year 2015.98

Both databases contain a significant number of records. The rock slopes database comprises99

5945 records, while the soil cutting slopes database is bigger, having 10928 records available.100

Fig. 1 depicts the distribution of EHC classes for each database. From this analysis, it is possible to101

observe a high asymmetric distribution (imbalanced data), in particular for the rock slopes database.102

Indeed, more than 86% of the rock slopes are classified as “A”. Although this type of asymmetric103

distribution, where most of the slopes present a low probability of failure (class “A”), is normal104
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and desirable from the safety point of view and slope network management, it can represent an105

important challenge for data-driven models learning, as detailed in next section.106

The proposed models for identification of EHC for rock and soil cutting slopes were fed with107

more than fifty variables normally collected during routine inspections and complemented with108

geometric, geographic and geological information. To be precise, 65 variables were used in the109

rock slopes study and 51 variables in the soil cutting slopes. Bellow are listed all variables used in110

rock cutting slopes study:111

• Area112

• Cess Distance To Fence113

• Cess Ditch Width114

• Cess Safe115

• Cess Stand Off116

• Class117

• CV Ground Cover118

• CV Shrubs119

• CV Trees120

• Disc Average Dilation121

• Drainage Problems122

• Easting123

• ELR124

• End Easting125

• End Mileage126

• End Northing127

• Exp Above Slope128

• Exp Toe Slope129

• Groundwater Seepage130

• Lower Slope131

• LS Actual Angle132

• LS Actual Height133

• LS Actual Hyp134

• LS Angle135

• LS Length136

• Material Cess137

• Northing138

• Operational Route139

• Pot Failure On Slope140

• Previous Failure On141

Face142

• Remedial Work Present143

• Rock Mass lt Moderate144

Strength145

• Rock Strength146

• Rock Type147

• Rock Weathering148

• RS Actual Angle149

• RS Actual Height150

• RS Actual Hyp151

• RS Angle152

• RS Azimuth153

• RS Berms154

• RS Dangerous Trees155

• RS Dangerous Trees156

Number157

• RS Detremental Vege-158

tation159

• RS Height160

• RS Length161

• RS Local Overhangs162

• RS Profile163

• RS Root Balls164

• RS Root Balls Number165

• RS Slope Obscured166

• RS Type167

• RSV Ground Cover168

• RSV Shrubs169

• RSV Trees170

• SR171
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• Start Mileage172

• Surface Water Flows173

• Up Down174

• Upper Slope175

• US Actual Angle176

• US Actual Height177

• US Actual Hyp178

• US Angle179

• US Height180

Concerning to soil cutting slopes study, bellow are listed all variables considered:181

• Actual Angle1182

• Actual Angle2183

• Actual Angle3184

• Actual Crest Width185

• Actual Height1186

• Actual Height2187

• Actual Height3188

• Actual Hyp1189

• Actual Hyp2190

• Actual Hyp3191

• Actual Slope to Track192

• Adjacent Catch Area193

• Adjacent Catch Gradi-194

ent195

• Adjacent Geology196

• Adjacent Land197

Drainage198

• Animal Activity199

• Area200

• Attitude Of Trees201

• Boulders Present202

• Catchment Surface203

• Class204

• Composition Crest205

• Composition Toe206

• Construction Activity207

Toe208

• Cutting Cess Drainage209

• Cutting Crest Width210

• Easting211

• ELR212

• End Easting213

• End Height214

• End Mileage215

• End Northing216

• Max Height217

• Min Height218

• Mining219

• Northing220

• Operational Route221

• Slope Angle Adjacent222

• Slope Angle Height223

• Slope To Track Separa-224

tion225

• SR226

• Start Height227

• Start Mileage228

• Tree Cover229

• Up Down230

• Validate Cracking231

• Validate Instability232

• Validate Mass Move-233

ment234

• Validate Retaining235

Walls236

• Validate Slope Form237

• Validate Track Move-238

ment239

METHODOLOGY240
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Modelling approaches and learning models241

Tomodel EHC prediction of rock and soil cutting slopes two of themost flexible DMalgorithms,242

namely ANNs and SVMs were applied. Both algorithms had already been successful applied in243

different knowledge domains (Liao et al. 2012; Javadi et al. 2012) including in civil engineer-244

ing (Tinoco et al. 2014a; Tinoco et al. 2014b; Chou et al. 2016; Gomes Correia et al. 2013). There245

are also some examples of ANN and SVM applications in slope stability analysis (Wang et al. 2005;246

Yao et al. 2008; Cheng et al. 2012a).247

ANN are learningmachines that were initially inspired in functioning of the human brain (Kenig248

et al. 2001). The information is processed using iteration among several neurons. This technique is249

capable of modelling complex non-linear mappings and is robust in exploration of data with noise.250

In this study it was adopted the multilayer perceptron that contains only feedforward connections,251

with one hidden layer containing H processing units. Because the network’s performance is252

sensitive to H (a trade-off between fitting accuracy and generalisation capability), it was adopted253

adopt a grid search of {0, 2, 4, 6, 8} under an internal (i.e. applied over training data) three fold254

cross validation during the learning phase to find the best H value. Under this grid search, the255

H value that produced the lowest MAE (Mean Absolute Error) was selected, and then the ANN256

was retrained with all of the training data. The neural function of the hidden nodes was set to the257

popular logistic function 1/(1 + e−x). Hence, the general model of the ANN is given by (Hastie258

et al. 2009):259

ŷ = wo,0 +
o−1∑

j=I+1
f *
,

I∑
i=1

xi · w j,i + w j,0+
-
· wo,i (1)260

where w j,i represents the weight of the connection from neuron j to unit I (if j = 0, then it is a bias261

connection), o corresponds to an output unit, f is a logistic function and I is the number of input262

neurons. ANN optimization was done via the BFGS method (Venables and Ripley 2003). Method263

"BFGS" is a quasi-Newton method (also known as a variable metric algorithm), specifically that264

published simultaneously in 1970 by Broyden, Fletcher, Goldfarb and Shanno. This uses function265

values and gradients to build up a picture of the surface to be optimized (Cortez 2010).266

SVMs was initially proposed for classification tasks (Cortes and Vapnik 1995). Then it became267
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possible to apply SVM to regression tasks after the introduction of the ε-insensitive loss func-268

tion (Smola and Schölkopf 2004). The main purpose of the SVM is to transform input data into269

a high-dimensional feature space using non-linear mapping. The SVM then finds the best linear270

separating hyperplane, related to a set of support vector points, in the feature space. This transfor-271

mation depends on a kernel function. In this work the popular Gaussian kernel was adopted. In this272

context, its performance is affected by three parameters: γ, the parameter of the kernel; C, a penalty273

parameter; and ε (only for regression), the width of an ε-insensitive zone (Safarzadegan Gilan et al.274

2012). The heuristics proposed by (Cherkassky and Ma 2004) were used to define the first two pa-275

rameter values, C=3 (for a standardised output) and ε = σ̂/
√

N , where σ̂ = 1.5/N ·
∑N

i=1
(
yi − ŷi

)2,276

yi is the measured value, ŷi is the value predicted by a 3-nearest neighbour algorithm and N is the277

number of examples. A grid search of 2{−1,−3,−7,−9} was adopted to optimise the kernel parameter278

γ, under the same internal threefold cross-validation scheme adopted for ANN.279

The problemofEHCprediction of rock and soil cutting slopeswas initially approached following280

a nominal classification strategy. However, aiming to improve themodels performance, the problem281

was also addressed following a regression strategy, adopting a regression scale where A = 1, B = 2,282

C = 4, D = 10.283

Moreover, in order to minimize the effect of the imbalanced data (see Fig. 1), Oversam-284

pling (Ling and Li 1998) and SMOTE (Chawla et al. 2002) approaches were applied over the285

training data before fitting the models. When approaching imbalanced classification tasks, where286

there is at least one target class label with a smaller number of training samples when compared287

with other target class labels, the simple use of a soft computing training algorithm will lead to288

data-drivenmodels with better prediction accuracies for themajority classes andworst classification289

accuracies for the minority classes. Thus, techniques that adjust the training data in order to balance290

the output class labels, such as Oversampling and SMOTE, are commonly used with imbalanced291

datasets. In particular, Oversampling is a simple technique that randomly adds samples (with292

repetition) of the minority classes to the training data, such that the final training set is balanced.293

SMOTE is a more sophisticated technique that creates “new data” by looking at nearest neighbours294
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to establish a neighbourhood and then sampling from within that neighbourhood. It operates on295

the assumptions that the original data is similar because of proximity. More recently, Torgo et al.296

(2015) adapted the SMOTE method for regression tasks.297

All experiments were conducted using the R statistical environment (Team 2009) and supported298

through the rminer package (Cortez 2010), which facilitates the implementation of ANNs and299

SVMs algorithms, as well as different validation approaches such as cross-validation.300

Models evaluation301

The distinct data-drivenmodelswill be evaluated and compared using four classificationmetrics:302

average utility core (AUS), recall, precision and F1-score.303

Acost-benefitmatrix (CBM) is used to compute theAUS (Baía and Torgo 2015), which averages304

all individual predictions in terms of their expected cost or benefit, thus leading to a metric that is305

more directly related to a particular real-world domain. In this work, it was set a CBM that reflects306

the ECH classification system and the characteristics of its slope identification tasks (Table 1). The307

assumption behind the adopted CBM was to penalise every misclassification but using different308

weights according to the “distance” of the misclassification and putting larger penalties to bad309

stability condition (the ones that are more important to be correctly classified). For example, if a310

particular soil slope was identified as class “A” (true condition), then the benefit is +1 if the model311

predicts the same class. For the same sample, the cost is −4 if the model predicts a class “C” and312

it doubles to −8 if the prediction is class “D”. It should also be noted that the adopted CBM is not313

symmetrical. For example, predicting class “D” for a true observation of “A” leads to a cost of −8,314

which is half the cost when predicting class “A” for a true “D” slope condition.315

The recall measures the ratio of how many cases of a certain class were properly captured by316

the model. In other words, the recall of a certain class is given by:317

TruePositives
TruePositives + FalseNegatives

(2)318

On the other hand, the precision measures the correctness of the model when it predicts a certain319
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class. More specifically, the precision of a certain class is given by:320

TruePositives
TruePositives + FalsePositives

(3)321

The F1-score was also calculated, which represent a trade-off between the recall and precision322

of a class. The F1-score correspond to the harmonic mean of precision and recall, according to the323

following expression:324

2 ·
precision · recall
precision + recall

(4)325

For all four metrics, the higher the value, the better are the predictions. The AUS values can be326

negative (if on average, the predictions lead to a cost) and the ideal predictor will have an AUS of327

1. The other metrics, recall, precision and F1-score can range from 0% to 100%.328

The generalization capacity of the models was accessed through a 5-fold cross-validation329

approach under 20 runs (Hastie et al. 2009). This means that each modelling setup is trained330

5 × 20 = 100 times. Also, the four prediction metrics are always computed on test unseen data (as331

provided by the 5-fold validation procedure).332

RESULTS333

This section summarizes the main results achieved in EHC prediction of rock and soil cutting334

slopes through the application of soft computing techniques. As described above, two different335

soft computing algorithms (ANN and SVM) were applied for EHC prediction under two distinct336

modelling strategies: nominal classification and regression. Moreover, in order to overcome337

the problem of imbalanced data, three training sampling approaches were explored: Normal (no338

resampling), OVERed (Oversampling) andSMOTEd (SMOTE). In case of regression, two sampling339

approaches were compared: Normal (no resampling) and SMOTEd (SMOTE for regression). The340

authors note that the different sampling approaches were applied only to training data, used to fit341

the data-driven models, and the test data (as provided by the 5-fold procedure) was kept without342

any change.343
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Rock slopes - EHC prediction344

Concerning the study of rock slopes, Table 2 summarizes AUS, recall, precision and F1-score345

of all fitted models for EHC prediction of rock slopes, according to a nominal classification and346

regression strategies as well as using SMOTE and Oversampling approaches. For a better analysis347

and model comparison, Fig. 2 compares recall, precision and F1-score metrics of all models in348

EHC prediction following a nominal classification strategy. From its analysis it was observed that349

all models present a high performance in class “A” identification of rock slopes (F1-score higher350

than 93%). However, for class “C” and particularly for class “D”, the models have great difficulty in351

predicting these classes correctly. Indeed, and using F1-score as reference, the best performance in352

identification of slopes of class “D” is lower than 14% which was achieved by the ANN algorithm353

after balancing the database through the SMOTE approach.354

Analysing the influence of the SMOTE and Oversampling approaches, it is observed a slight355

increase of model performance for classes “C” and “D” prediction. In other words, the use of a356

balancing approach allows an improvement of the model performance for the minority classes.357

Fig. 3 compares model performance based on recall, precision and F1-score metrics following358

a regression strategy. Also here, a high performance was achieved for classes “A” and “B”359

identification of rock slopes, but a very low response is observed for class “D”. When following a360

regression strategy, the application of a balancing approach, i.e., SMOTE sampling, had almost no361

effect on the model’s performance.362

Comparing both nominal classification and regression strategies based on AUS metric, Fig. 4363

shows that approaching the problem as a nominal classification is slightly more effective than364

following a regression strategy. However, keeping in mind that in a perfect model the AUS is 1, the365

highest value of 0.46 achieved by ANN algorithm without balancing the database, shows that the366

model’s performance is still far away from being perfect. Fig. 4 also shows that the ANN algorithm367

works better than SVM in EHC prediction of rock slopes.368

Figs. 5 and 6 show the relation between observed and predicted EHC values according to the369

best fits, following a nominal classification and regression strategies respectively. From its analysis,370
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can be observe that rock slopes of class “A” are almost correctly identified. However, for classes “C”371

and “D”, for which the expected probability of failure is higher, models show very great difficulty372

in identifying these classes accurately. From Fig. 5a analysis, only 25% of rock slopes classified as373

“D” were correctly identified, which represents a poor performance.374

These results show that a deeper data analysis is required. For example, the number of variables375

taken as model attributes might be too high. To check if a better generalization could be achieved376

using the most relevant inputs, the authors performed additional experimentation using a fast feature377

selection method that is based on a Sensitive Analysis (Cortez and Embrechts 2013), which allows378

to measure the relative importance of each input of a classification or regression method. Taken as379

reference the ANN model with an OVERed approach and nominal classification, which achieved380

the overall best performance in EHC prediction of rock slopes, a Sensitivity Analysis was applied381

to measure the relevance of each input variable in EHC prediction of rock slopes. Fig. 7 shows the382

relative importance of the 20 most relevant variables. Such Sensitivity Analysis shows that 16 (25%383

when compared with the full 65 input model) of the most relevant inputs are responsible for 90% of384

the total input influence. Following these results, the authors tested a new feature selection method385

in which all prediction models (including both strategies and the three re-sampling approaches)386

were retrained applying the same Sensitivity Analysis procedure. Using F1-score as comparison387

metric, Table 3 shows the difference between the full models (with 65 inputs) and feature selection388

ones (with 16 most relevant inputs). The results from Table 3 shows that the feature selection tends389

to present a lower performance, with lower F1-score values.390

Soil cutting slopes - EHC prediction391

For the study of soil cutting slopes, Table 4 shows and compares models performance in EHC392

prediction based on metrics AUS, recall, precision and F1-score, following a nominal classification393

and regression strategies as well as a SMOTE and Oversampling approaches. Figs. 8 and 9394

allow a better assessment of all models for EHC prediction of soil cutting slopes, comparing their395

performance based on recall, precision and F1-score for each EHC class. Following a nominal396

classification strategy, Fig. 8 shows that soil cutting slopes of class “A” can be correctly identified,397
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particularly by ANN model, with or without sampling. Also for classes “B” and “C” a promising398

performance is observed, with an F1-score around 55%, in particular by the ANN algorithm.399

Concerning the class “D”, although an F1-score lower than 36% was achieved, the obtained value400

for recall metric around 57% shows a promising performance for class “D” prediction according to401

ANN algorithm.402

Following a regression strategy, the achieved results are very similar to those obtained from a403

nominal classification strategy. The main differences are related with the effect of the sampling404

approaches, which is not so relevant following a regression strategy, particularly for the minority405

classes. Comparing ANN and SVM algorithms, ANN works better (as observed previously),406

particularly in the prediction of class “C” and “D”.407

Comparing both strategies (nominal classification and regression), as illustrated in Fig. 10 that408

uses AUS as comparison metric, SVM algorithm was not able to learn properly EHC prediction of409

soil cutting slopes. However, when looking to Fig. 11 that show the relation between observed and410

predicted EHC values according to the best fits, following a nominal classification and regression411

strategies, can be seen that the models’ performance are indeed very interesting. Following a412

nominal classification strategy and sampling the database with the SMOTE approach, the ANN413

algorithm is able to predict correctly around 57% of soil cutting slopes of class “D”, which represent414

a very interesting performance if taken into account that this is the minority class. For class “C”,415

around 40% of the records are correctly predicted. Moreover, when not predicted as “C” they are416

classified as belonging to the closest class, that is, “B” or “D”. This type of misclassification is417

also observed for classes “A”, “B” and “D”, which can be interpreted as an advantage. Concerning418

classes “A” and “B”, the ANN model was also able to identify it very accurately.419

Similarly what have been done for rock slopes, also for soil cutting slopes all models were420

retrained considering only 25% of the most relevant variables (12 inputs) taken as reference the421

ANN model following an SMOTEd approach and according to nominal classification strategy,422

which achieved the overall best performance in EHC prediction of soil cutting slopes (see Fig. 12).423

As shown in Table 3, a better performance is also achieved when considering all 51 inputs when424
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compared with the usage of the 12 most relevant inputs.425

DISCUSSION426

An attempt to predict EHC of both rock and soil cutting slopes through the application of427

soft computing techniques, and based on information usually collected during routine inspections428

(visual information) was present. Unfortunately, so far the authors have not found a model able to429

do such task with high efficiency. However, and although for rock slopes the achieved performance430

is slightly far away from the expected, some interesting results were observed for soil cutting431

slopes, suggesting opportunities for pursuing in further developments. Moreover, comparing what432

have been done so far, namely the different strategies/approaches applied in order to overcome the433

different particularities of the problem at hands can also give a good contribution toward further434

developments.435

Comparing the results of rock and soil cutting slopes, for example based on the ANN model436

and using AUS as a comparison metric (see Figs. 4 and 10), better results were observed for rock437

slopes. However, if taken into account the models’ capability of correctly identifying class “C” and438

mainly class “D” (higher probability of failure) the proposed models for soil cutting slopes were439

more effective (see Figs. 5 and 11).440

For both type of slopes analysed in this study (rock and soil cuttings), a high performance was441

achieved for classes “A” and “B”. Moreover, for classes “C” and “D” of soil cutting slopes a very442

promising response was observed also. Concerning classes “C” and “D” of rock slopes a poor443

performance was achieved. A possible explanation for this low performance only in the case of444

classes “C” and “D” prediction of rock slopes could be related with the EHC class being assumed445

as representative of the real stability condition of each slope. Indeed, analysing the number of slope446

failures by EHC class for rock slopes there are some indications that the classification attributed447

to each rock slope could lack some accuracy as reported in the work of Power et al. (2016), that448

used the same source of information, but instead of four classes, they considered five classes (in449

this study the authors merged classes “D” and “E” into a single class named “D” due to modelling450

concerns). It would be expected that most of the failures would occur in slopes of classes “C” and451
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mainly “D”. However, for rock slopes such behaviour is not observed as shown in Fig. 13, which452

shows the annual probability of failure (normalised to the value in EHC “A”) for each EHC class.453

In fact, the number of failures for each EHC class is almost constant from “A” to “D”, particularly454

when compared with soil cuttings. For example, the number of failures observed in rock slopes455

of class “C” is only twice higher when compared to class “A”. This identifies that the identified456

classes for rock slopes show a poor correlation with actual failures.457

Considering the high number of variables taken as models inputs, which may be influencing the458

generalization performance of the models, as well as the achieved results after applying a feature459

selectionmethod based on an input Sensitivity Analysis, the authors intended to apply in future work460

amore sophisticated feature selectionmethod. For instance, by using amulti-objective evolutionary461

computation method that simultaneously maximizes prediction performance and minimizes the462

number of inputs used. As a final observation, and considering the overall performance of all463

models, it can be highlighted that soft computing algorithms, particularly ANN, present a better464

response for EHC prediction of soil cutting slopes than in rock slopes.465
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TABLE 1. Cost-benefit matrix adopted for both rock and soil cutting slopes studies.

Obs/Pred A B C D

A 1 -4 -8 -16
B -2 1 -4 -8
C -4 -2 1 -4
D -8 -4 -2 1
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TABLE 2. Metrics in EHC prediction of rock slopes (best values in bold)

Strategy Model Approach AUS Recall Precision F1-score
A B C D A B C D A B C D

Cl
as
sifi

ca
tio

n ANN
Normal 0.46 96.23 52.95 20.40 3.65 94.66 49.06 39.22 13.71 95.44 50.93 26.84 5.77
SMOTEd 0.37 88.10 67.60 36.58 17.3 98.50 38.36 26.14 10.89 93.01 48.95 30.49 13.37
OVERed 0.44 90.21 67.96 39.58 12.84 98.01 41.27 33.47 12.70 93.95 51.35 36.27 12.77

SVM
Normal 0.33 97.39 39.79 6.44 0.41 91.63 48.57 42.95 18.75 94.42 43.74 11.20 0.80
SMOTEd 0.29 85.53 82.64 2.07 1.49 97.24 33.08 34.36 17.19 91.01 47.25 3.90 2.74
OVERed 0.13 99.78 7.14 0.00 0.00 86.95 62.83 N A 0.00 92.92 12.82 N A N A

Re
gr
es
sio

n

ANN Normal 0.43 93.7 48.3 41.77 3.38 95.01 41.38 40.19 30.49 94.35 44.57 40.96 6.09
SMOTEd 0.35 85.97 68.37 45.84 4.32 98.07 33.85 32.95 35.56 91.62 45.28 38.34 7.70

SVM Normal 0.34 96.32 49.83 0.30 0.00 92.56 46.33 54.17 N A 94.40 48.02 0.60 N A
SMOTEd 0.16 77.13 93.15 11.12 0.00 99.40 27.61 48.33 N A 86.86 42.59 18.08 N A
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TABLE 3. Difference between F1-score values of the full input model (with 65 or 51 variables
respectively) with a feature selection model that included the most relevant inputs according to a
Sensitivity Analysis procedure.

Strategy Model Approach Rock slopes Soil cutting slopes
A B C D A B C D

Cl
as
sifi

ca
tio

n ANN
Normal 1.53 13.9 19.27 3.72 7.11 16.00 18.81 15.09
SMOTEd 2.38 7.51 3.15 5.26 9.15 12.25 23.60 19.04
OVERed 3.28 12.96 10.31 6.30 8.82 20.31 16.31 21.00

SVM
Normal 0.90 13.34 7.31 N A 7.44 15.26 28.56 3.49
SMOTEd 90.87 29.78 N A N A 6.23 13.78 −1.12 13.17
OVERed 0.91 −25.02 N A N A −0.49 −17.01 −8.51 −2.21

Re
gr
es
sio

n

ANN Normal 1.23 −2.20 14.46 5.81 10.00 9.40 17.25 25.82
SMOTEd 1.24 1.47 9.66 N A 10.38 10.90 17.44 28.29

SVM Normal 0.74 3.65 0.18 N A 6.49 14.74 1.69 N A
SMOTEd −1.70 −0.56 2.34 N A 0.72 11.79 17.27 N A
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TABLE 4. Metrics in EHC prediction of soil cutting slopes (best values in bold)

Strategy Model Approach AUS Recall Precision F1-score
A B C D A B C D A B C D

Cl
as
sifi

ca
tio

n ANN
Normal −0.05 90.36 64.01 45.61 14.53 87.23 60.36 59.21 42.57 88.77 62.13 51.53 21.67
SMOTEd −0.08 80.87 66.59 46.07 56.78 91.68 54.49 51.48 21.63 85.94 59.94 48.62 31.33
OVERed −0.04 82.05 58.75 63.77 38.41 91.13 55.02 49.77 33.71 86.35 56.82 55.91 35.91

SVM
Normal −0.12 90.33 66.82 34.11 2.25 86.85 58.34 57.71 22.31 88.56 62.29 42.88 4.09
SMOTEd −0.27 73.65 79.27 24.96 24.88 91.50 47.90 53.53 30.81 81.61 59.72 34.05 27.53
OVERed −1.35 94.79 24.74 1.54 1.32 63.25 52.35 62.98 62.96 75.87 33.60 3.01 2.59

Re
gr
es
sio

n

ANN Normal −0.05 87.41 64.47 47.94 25.62 87.74 57.88 59.2 44.87 87.57 61.00 52.98 32.62
SMOTEd −0.03 85.34 68.68 48.53 23.64 89.32 57.00 60.23 54.08 87.28 62.30 53.75 32.90

SVM Normal −0.16 83.66 82.02 15.7 0.00 91.07 52.89 60.00 N A 87.21 64.31 24.89 N A
SMOTEd −0.27 66.30 85.38 33.77 0.62 93.43 45.81 66.37 66.67 77.56 59.63 44.76 1.23
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Fig. 1. Rock and soil cutting slopes data distribution by EHC classes.
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Fig. 2. Models comparison based on recall, precision and F1-score, according to a nominal
classification strategy in EHC prediction of rock slopes.
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Fig. 5. Models performance comparison according to a nominal classification strategy in EHC
prediction of rock slopes: (a) ANN model following an OVERed approach; (b) SVM model
following a SMOTEd approach.
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Fig. 9. Models comparison based on recall, precision and F1-score, according to a regression
strategy in EHC prediction of soil cutting slopes.
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to a regression strategy and with no resampling.
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Fig. 12. Relative importance bar plot of the 20 most relevant variables according to ANN model
with SMOTEd and following a nominal classification strategy in EHC prediction of soil cutting
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