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Abstract

This research was undertaken to investigate the global role of the plant inositol phosphoryl-

ceramide synthase (IPCS), a non-mammalian enzyme previously shown to be associated

with the pathogen response. RNA-Seq analyses demonstrated that over-expression of

inositol phosphorylceramide synthase isoforms AtIPCS1, 2 or 3 in Arabidopsis thaliana

resulted in the down-regulation of genes involved in plant response to pathogens. In addi-

tion, genes associated with the abiotic stress response to salinity, cold and drought were

found to be similarly down-regulated. Detailed analyses of transgenic lines over-expressing

AtIPCS1-3 at various levels revealed that the degree of down-regulation is specifically corre-

lated with the level of IPCS expression. Singular enrichment analysis of these down-regu-

lated genes showed that AtIPCS1-3 expression affects biological signaling pathways

involved in plant response to biotic and abiotic stress. The up-regulation of genes involved

in photosynthesis and lipid localization was also observed in the over-expressing lines.

Introduction

According to UN estimates, growing at a rate of 1.1% per year, the world population is set to

reach 9.8 billion by 2050 [1], which would require a 70% increase in food production [2]. A

finite amount of arable land, coupled with the detrimental effects of climate change on crop

yields, mean that strategies other than intensification will need to be employed to increase pro-

duction. One that is being adopted, in combination with intensification, is the use of biotech-

nology to produce genetically modified crops with enhanced yields. The ability to make plants

that are more tolerant to biotic and abiotic stress is predicated on identifying molecular targets

which modulate plant stress responses.

One such target of interest is the non-mammalian plant enzyme inositol phosphorylcera-

mide synthase (IPCS) which catalyses a key step in sphingolipid biosynthesis. Complex
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sphingolipids can be grouped into two main classes in plants: glycosylceramides and deriva-

tives of inositol phosphorylceramide (IPC) [3]. IPCS is central to synthesis of the latter, cata-

lyzing the transfer of phosphoinositol from phosphatidylinositol to ceramide to form IPC [4].

Ceramide is the base unit of complex sphingolipids and is composed of a long chain base

(LCB) and a fatty acid (FA) component [5]. The structural diversity of complex sphingolipids

is conferred by the FA and LCB, with variation in carbon chains (C16-26), hydroxylation and

desaturation, and the addition of various saccharides/oligosaccharides attached, via a phos-

phoinositol group in some cases, to the primary hydroxyl of ceramide. These modifications

account for the 168 sphingolipid species identified in Arabidopsis thaliana [6], and are

involved in a plethora of biological pathways, including programmed cell death (PCD) [7],

reproduction [8], senescence [9] and cold acclimation [10]. Disruption of the sphingolipid

pathway has repeatedly been shown to be inextricably connected to plant defense signaling

[11].

First identified in wax bean microsome [12] and later in A. thaliana [4, 13], IPCS has

been shown to play a role as a negative regulator of PCD [13] and is required for reproduc-

tion and normal growth [14]. In planta three IPCS isoforms exist, and further characteriza-

tion in Oryza sativa showed that the expression of all three IPCS isoforms was temporally

altered to varying degrees in a tissue and stress specific manner [15]. For example, under

cold stress OsIPCS1 (NP_001044812) and OsIPCS2 (NP_001055712) were up-regulated in

roots and stems, but down-regulated in leaves; in contrast OsIPCS3 (NP_001055096) was up-

regulated in all tissues. Together, these results suggested that OsIPCS1-3 have key roles in

rice growth and abiotic stress responses [15]. With respect to the plant biotic stress response,

T-DNA insertion mutants of AtIPCS2 (AT2G37940) in A. thaliana showed increased levels

of ceramide and phytoceramide, both well-documented inducers of PCD, and displayed

necrotic lesions associated with PCD [13]. When exposed to the biotropic pathogen Golovi-
nomyces cichoracearum UCSC1, these plants showed a reduction in fungal mass compared to

controls [13]. AtIPCS1 (AT3G54020) and AtIPCS3 (AT2G29525) have not been character-

ized so far.

The data from both monocot O. sativa (rice) and dicot A. thaliana [13, 15] indicate that

manipulation of IPCS activity, chemically or genetically, could be used to modulate biotic

and abiotic plant stress responses. To explore this further, in this study, A. thaliana lines over-

expressing each IPCS isoform were created and RNA-Seq carried out to monitor conserved

changes in the transcriptome.

Materials and methods

Over-expression of AtIPCS1-3 in Arabidopsis thaliana
PCR products of the full-length cDNA of AtIPCS1-3 [4] were cloned into pENTR/D-TOPO

using T4-ligase (ThermoFisher) and into the destination vector pK7WG2 [16] via Gateway LR

Clonase (ThermoFisher) to create pK7WG2_AtIPCS1-3.

Primers:

AtIPCS1-NotI-F:

GCGCGCGGCCGCCACAATGACGCTTTATATTCGCCGCG
AtIPCS1-AscI-R:

GCGCGGCGCGCCTCATGTGCCATTAGTAGCATTATCAGTGTG
AtIPCS2-NotI-F:

GCGCGCGGCCGCCACAATGACACTTTATATTCGTCGTGAATCTTCCAAG
AtIPCS2-AscI-R:

GCGCGGCGCGCCTCACGCGCCATTCATTGTGTTATC
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AtIPCS3-NotI-F:

GCGCGCGGCCGCCACAATGCCGGTTTACGTTGATCGC
AtIPCS3-AscI-R:

GCGCGGCGCGCCTCAATGATCATCTGCTACATTGTTCTCGTTT
Agrobacterium tumefaciens strain C58C1 was transformed with pK7WG2_AtIPCS1-3,

transformants plated on Luria broth (100 μg/μl rifampicin and 100 μg/μl spectinomycin)

and incubated for 3 days at 28˚C. Col-0 wild-type A. thaliana were subsequently transformed

using the floral dipping method [17].

Arabidopsis thaliana growth conditions

Col-0 and AtIPCS1, 2 and 3 over-expressing plants were grown for 10 days on Murasige and

Skoog (MS) agar before transfer to peat plugs. Growth conditions were 20 ˚with a 16-hour day

/ 8-hour night cycle.

RNA preparation

RNA extraction was carried out on samples flask frozen in nitrogen, using the ReliaPrep™ Tis-

sue Miniprep System (Promega) according to the manufacturer’s protocol. Following DNase

(ThermoFisher) treatment, the integrity of the RNA was determined by running the samples

on a 2100 Bioanalyzer (Agilent) to obtain an RNA Integrity Number (RIN) score.

Quantification of AtIPCS1-3 in over-expressing Arabidopsis thaliana
transgenic lines

cDNA samples prepared as above and the Applied Biosystems 7300 Real-Time PCR System

and the SYBR Green Jump-Start Taq Ready Mix were used to quantify transcript as previously

described [4, 18, 19]. Gene specific primers were designed using Primer3plus (http://www.

bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi) for real-time PCR with PEX4

used as a reference gene. Primers: AtIPCS1_F: TGCGTCCCGTAAACATTACA, AtIPCS1_R:

ACACCGTTCCCATTCAAGAG, AtIPCS2_F: TACCAGATCGGACTGCTGTG, AtIPCS2_F:

GTGAACTCCGTTGCTGTCAA, AtIPCS3_F: CTGGGCCGAATTATCATTGT, AtIPCS3_R:

CCTTCGTGTGCCGTATCTTT

RNA-Seq

Single end libraries for RNA-Seq were generated from DNase treated total RNA using TruSeq

Stranded mRNA sample preparation kit according to manufacturer’s instructions (Illumina).

Briefly, mRNAs were fragmented and purified for use as template for the synthesis of double

stranded cDNA. End repair of the double stranded cDNA was carried out and the 3’ end ade-

nylated. Sample specific indexing adapters were ligated to the ends of double stranded cDNA

samples, amplified by PCR and then purified. Samples were normalized, pooled and then

sequenced using a NextSeq 500 instrument (Illumina) to obtain 150 base pair single end reads.

RNA-Seq analyses. The RNA sequence data in Fastq format 11 were filtered and trimmed

(sliding window 4:15 and 50 bp minimum) to remove low quality reads using Trimmomatic

[20]. Reads were aligned to the Arabidopsis genome (Arabidopsis Araport 2017) using STAR

[21]. The sequence alignment files were sorted by name14 for HTSeq-count and indexed using

SAMtools [22]. Files were converted to BAM files and number of reads mapped onto a gene

calculated using HTSeq package [23]. Gene counts were normalized and compared sample by

sample using DESeq2 [24] (Bioconductor [25]) in R [26]. Differential expression was deter-

mined using with a log2 fold-change output. GO term enrichment was performed for analyses
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of genes up- and down-regulated in both biological replicates using the agriGO analysis tool

(http://bioinfo.cau.edu.cn/agriGO/analysis.php) with the default settings [27]. Gene annota-

tions was carried out against Arabidopsis gene model (TAIR9) background (https://www.

arabidopsis.org/). These data are freely available in GEO (https://www.ncbi.nlm.nih.gov/geo/

GEO Accession GSE129016).

MapMan

Analyses were carried out using MapMan 3.5.1 R2 software [28]. RNA-Seq abundance data

from the At2++ transgenic line were uploaded to MapMan and log2 fold change selected as the

experimental data set for analyses. Mapping was carried out using Ath_AGI_TAIR9_Jan2010.

Osmotic stress assay

Seedlings were grown under standard conditions on MS agar for 8 days before floating on the

various concentrations of mannitol (without MS) in a sterile culture dish under the same con-

ditions as the plate (16h day photo-period, 20˚C). Photographs were taken after 6 days.

Pathogen stress assay

Control and over-expressing transgenic lines were grown under short day conditions for 5

weeks and leaves excised then incubated on MS agar at 37˚C for 72 hours following the addi-

tion of 5μl of Erwinia amylovora culture grown to an OD600 = 0.5.

Genevestigator

Genevestigator [29] was utilised to identify available data showing the upregulation of

AtIPCS1, AtIPCS2 or AtIPCS3 in Arabidopsis thaliana seedlings exposed to different agents

and conditions.

Results

Identification of genes down- or up-regulated on over-expression of

AtIPCS
A. thaliana plants over-expressing the full-length cDNA of AtIPCS1, AtIPCS2 and AtIPCS3
respectively, were generated as described in Methods. For each isoform, two transgenic lines

(biological replicates) over-expressing the respective AtIPCS were selected, one with high levels

relative to wild-type Columbia-0 (Col-0) (At1-3++) and one with a lower level of over-expres-

sion (At1-3+) (Fig 1A–1C). Importantly, over-expression of one isoform did not affect the

expression of the other two AtIPCS isoforms (S1 Fig). Genome wide transcriptomic data anal-

yses indicated that the number of expressed genes detected was very similar in all transgenic

lines and in the Col-0 control (Table 1).

Genes that were identified as differentially expressed in both biological replicates, compared

to Col0, were carried forward for further analyses. Function enrichment of the down-regulated

genes using agriGO (http://bioinfo.cau.edu.cn/agriGO/index.php) revealed a significant

enrichment of genes (Fisher exact test, two-tailed, p-value < 0.001) under the GO terms

response to stimulus (p = 3.50E-18) and response to stress (p = 1.50E-14 ), whilst a significant

amount of the up-regulated genes fell under the GO terms cellular process (p = 2.90E-07) and

cellular metabolic process (p = 4.10E-08) (Fig 2). Those genes identified under GO term response
to stimulus were the same genes as identified under response to stress and response to abiotic
stress. Subsequently, to add specificity, focus was placed upon the latter two GO terms.

AtIPCS2 over-expression led to the down-regulation of 135 genes, considerably more than
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Fig 1. Relative quantitation of mRNA levels of (A) AtIPCS1 (B) AtIPCS2 (C) AtIPCS3 in over-expressor

transgenic lines compared to Col0 standardised to equate to a value of 1; qPCR was performed to measure mRNA

levels in 10-day old seedlings. Relative quantitation was done after normalization using PEX4 levels; relative

quantitation value is the mean of three biological replicates with standard deviation; significance of mRNA levels

determined by one-way ANOVA with Turkey’s post hoc test (p< 0.05).

https://doi.org/10.1371/journal.pone.0217087.g001
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AtIPCS1 (54) and AtIPCS3 (59) (Fig 3A). Of these, 26 genes were down-regulated in all lines.

With respect to up-regulated genes, again most (275) were in response to AtIPCS2 over-

expression, with 70 and 19 in AtIPCS1 and AtIPCS3 over-expressers respectively; 15 genes

were found to be up-regulated in all lines (Fig 3B).

Analyses of genes identified as responding negatively to AtIPCS over-

expression

Global analyses of the down-regulated genes in response to AtIPCS1 over-expression revealed

significant enrichment under the GO term GO:0006950, response to stress (p = 1.50E-14), 42.6%

(23/54) when they represent only 6.14% of the Arabidopsis transcriptome (S1 Table). Similarly,

on AtIPCS2 over-expression down-regulated genes were enriched under this term, 34.1% (46/

135; p = 2.20E-22) (S2 Table); and on AtIPCS3 over-expression 40.7% (24/59; p = 2.40E-14).

Other biological processes showing a significant enrichment of genes down-regulated in these

transgenic lines, included those under GO terms: GO:0042221 (response to chemical stimulus);
GO:0010033 (response to organic substances), GO:0051707 (response to other organisms);
GO:0009607 (response to biotic stimulus); GO:0009628 (response to abiotic stimulus); and

GO:0006952 (defense response) (S1–S3 Tables).

Of particular interest were genes that showed a dose-dependent decrease in expression

associated with increased AtIPCS expression. Genes (GO:0006950, response to stress) whose

decrease in expression was negatively correlated (log2 change�2) with higher AtIPCS1
levels (At1++ versus At1+], Fig 1A and Table 2) are: TYROSINE AMINOTRANSFERASE

3 (TAT3; AT2G24850); PLANT DEFENSIN 1.2B (PDF1.2B; AT2G26020); the salicylic acid

inducible PATHOGENESIS-RELATED GENE, PR1 (AT2G14610) and PR2 (AT3G57260);

Table 1. Genes expressed in Col-0 and AtIPCS1-3 over-expressing transgenic lines. A. thaliana Col-0 parent; At1, 2 or 3 lines over-expressing AtIPCS1, 2 or 3 (2 lines

of each); Rep—experimental replicates (3); FPKM—Fragments Per Kilobase Million.

Genotype Rep Expressed genes (FPKM) Average Non-expressed genes (FPKM) Average

Col-0 1 22740 22749 2524 2515

Col-0 2 22700 2564

Col-0 3 22807 2457

At1+ 1 22410 22518 2854 2746

At1+ 2 22503 2761

At1+ 3 22640 2624

At1++ 1 22914 22805 2350 2459

At1++ 2 22823 2441

At1++ 3 22677 2587

At2+ 1 22643 22631 2621 2633

At2+ 2 22546 2718

At2+ 3 22705 2559

At2++ 1 22520 22574 2744 2690

At2++ 2 22573 2691

At2++ 3 22628 2636

At3+ 1 22657 22595 2607 2669

At3+ 2 22593 2671

At3+ 3 22535 2729

At3++ 1 22708 22731 2556 2533

At3++ 2 22708 2556

At3++ 3 22777 2487

https://doi.org/10.1371/journal.pone.0217087.t001
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Fig 2. Pie chart of biological processes enriched for genes down- and up-regulated in response to the over-

expression of (A) AtIPCS1, (B) AtIPCS2 and (C) AtIPCS3 isoforms when compared to wild type Col0.

https://doi.org/10.1371/journal.pone.0217087.g002
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LIPID TRANSFER PROTEIN (LTP; AT4G12490); and an ETHYLENE- AND JASMONATE-

RESPONSIVE PLANT DEFENSIN (AT5G44420), a well characterized component of the

defense network against pathogens [30] (Table 2).

Interestingly, the dose response effects noted was largely specific for the AtIPCS1 isoform

(Table 2). However, it is immediately clear that the plant defense system is more sensitive to

increased AtIPCS2 expression (At2+ and At2++), despite the increase being relatively small

(up to 10-fold) compared to AtIPCS1 and 3 (up to 390 and 440-fold respectively) (Fig 1A–1C

and Table 2). The overall impact of AtIPCS2 over-expression may be due to an increases in

what represents the most abundant AtIPCS transcript (approximately 100-fold AtIPCS1) in

all tissues of wild type A. thaliana [4]. Interestingly, there is no major dose response apparent

on an increase in the over-expression of AtIPCS3 (At3++ versus At3+, Table 2), despite an

increase in AtIPCS3 transcript similar to that observed for AtIPCS1 (Fig 1C). However, tran-

scripts that were down-regulated�2 log2 in AtIPCS3 (either line) and were also suppressed on

AtIPCS1 or AtIPCS2 over-expression include: TAT3; lipid binding A putative lipid transfer

protein (PEARLI 1; AT4G12480); PDF1.2B; PR1 and PR2; LATE UP-REGULATED IN

RESPONSE TO HYALOPERONOSPORA PARASITICA (LURP1; AT2G14560); GIGANTEA

(GI; AT1G22770); ETHYLENE- AND JASMONATE-RESPONSIVE ELEMENT PLANT

DEFENSIN. Of the genes down-regulated with a log2 fold change�2 in response to AtIPCS2
over-expression a large number were specific: ELICITOR-ACTIVATED GENE 3–2 (ELI3-2;

AT4G37990); RECEPTOR LIKE PROTEIN 23 (RLP23; AT2G32680); PHOSPHOLIPASE A

2A (PLA2A; AT2G26560); CIRCADIAN CLOCK ASSOCIATED 1 (CCA1; AT2G46830);

OCTADECANOID-RESPONSIVE ARABIDOPSIS AP2/ERF 59 (ORA59; AT1G06160);

DARK INDUCIBLE 11 (DIN11; AT3G49620); EXTENSIN 4 (EXT4; AT1G76930); TERPENE

SYNTHASE 04 (TPS04; AT1G61120); HISTONE H1-3 (HIS1-3;AT2G18050); SERINE-TYPE

ENDOPEPTIDASE INHIBITOR (TI1; AT2G43510); GLUTATHIONE S-TRANSFERASE

PHI 2 (GSTF2; AT4G02520). From these analyses, it is clear that AtIPCS2 expression affects a

wider network of genes (including some of those involved in plant defence responses) com-

pared with AtIPCS1 and AtIPCS3 transgenic lines, perhaps due to its higher expression pattern

in all tissues of Arabidopsis [4].

Fig 3. Venn diagrams of number of genes that were down-regulated (A) or up-regulated (B) in response to AtIPCS1, AtIPCS2 and
AtIPCS3 overexpression. Log2 fold change relative to wild type Col-0.

https://doi.org/10.1371/journal.pone.0217087.g003
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The effects of over-expression (At2++) were further analysed and visualised using MapMan

(https://mapman.gabipd.org). These analyses illustrated multiple negative effects on metabo-

lism (S2 Fig), however the clearest correlation of significantly down-regulated genes (log2-fold

change) in At2++ was with the plant response to biotic stress: PR proteins, peroxidases, R

genes, B-glucanases, heat shock proteins, transcriptional factors and signalling proteins

involved in the response to pathogens (Fig 4). Furthermore, there is a remodelling of plant

architecture as seen in the down-regulation of genes involved in cell wall modifications in

response to pathogen attack (Fig 4).

The 26 genes down-regulated in response to the over-expression of AtIPCS1, 2 and 3 are

primarily involved in the plant biotic stress response to pathogens (Table 3), including BDA1 a

well characterised transmembrane protein found to be necessary in the regulation and aug-

mentation of the plant response to pathogens [31]; and AED1 [32] an aspartyl protease impli-

cated in Arabidopsis systemic acquired resistance. This conserved down-regulation of genes

involved in the plant response to pathogens further stresses the functional importance of

Fig 4. Schematic, generated in MapMan, of genes identified as down-regulated in the At2++ over-expression line and enriched under plant response to

biotic stress. Log2 fold changes in gene expression are indicated by the colour scale. Abbreviations: Resistance (R) genes, salicylic acid (SA), jasmonic acid (JA),

ethylene resposnse facotor (ERF), abscisic acid (ABA), DNA binding one zinc finger (DOF), heat-shock protein (HSP) and pathogenesis-related (PR) proteins.

https://doi.org/10.1371/journal.pone.0217087.g004
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Table 3. Genes down-regulated in all three AtIPCS over-expression lines compared to Col0. At1-3+ over-expressing AtIPCS1-3; At1-3++ higher level expressors of

AtIPCS1-3. Fold changes are the value of three technical triplicates of a transformed line. Transcripts listed had a p-value<0.001 (Wald test, cut off p-value< 0.05).

Gene ID Gene annotation At1+ At1 ++ At2+ At2++ At3+ At3++

log2

fold

change

p-

value

log2

fold

change

p-

value

log2

fold

change

p-

value

log2

fold

change

p-

value

log2

fold

change

p-

value

log2

fold

change

p-

value

AT2G26020 PDF1.2B (PLANT DEFENSIN 1.2B) -1.9 8.15E-

18

-5 1.44E-

66

-4.9 1.47E-

60

-4.9 3.31E-

62

-2.6 3.65E-

30

-3.4 3.34E-

40

AT2G24850 TAT3 (TYROSINE

AMINOTRANSFERASE 3)

-1.8 6.29E-

17

-4 1.33E-

53

-2.6 3.03E-

28

-2.3 4.60E-

26

-1.8 6.10E-

18

-2.3 1.65E-

24

AT2G14610 PR1 (PATHOGENESIS-RELATED

GENE 1)

-3.4 1.83E-

172

-7.3 4.08E-

238

-7.3 1.05E-

206

-7.9 4.60E-

217

-4.6 1.09E-

252

-4.9 2.85E-

235

AT1G06040 STO (SALT TOLERANCE) -1.1 2.13E-

28

-1.5 1.78E-

49

-1.3 2.23E-

38

-1.1 8.10E-

27

-1 6.04E-

26

-1.5 2.41E-

48

AT2G14560 LURP1 (LATE UPREGULATED IN

RESPONSE TO

HYALOPERONOSPORA

PARASITICA)

-2.7 5.62E-

112

-3.4 1.13E-

162

-4.1 5.67E-

173

-3.3 1.62E-

149

-3.2 9.88E-

155

-2.2 5.56E-

82

AT5G10140 FLOWERING LOCUS C -1.2 2.18E-

09

-1.5 4.16E-

14

-1.4 5.23E-

11

-1.3 4.55E-

10

-1.1 8.80E-

12

-1.4 3.25E-

08

AT5G44420 AN ETHYLENE- AND

JASMONATE-RESPONSIVE

PLANT DEFENSIN

-2.7 1.49E-

54

-6.1 2.23E-

122

-6 3.77E-

111

-6.1 3.17E-

118

-2.7 1.34E-

55

-3.6 7.78E-

78

AT3G57260 PR2 (PATHOGENESIS-RELATED

GENE 2)

-1.9 1.17E-

30

-5.3 4.64E-

102

-4.8 2.99E-

86

-4.4 4.08E-

87

-2 2.97E-

36

-2.2 8.40E-

38

AT3G45860 RECEPTOR-LIKE PROTEIN

KINASE

-1.5 6.64E-

09

-2.9 3.18E-

24

-2.9 3.03E-

22

-3 8.20E-

25

-1.5 4.12E-

09

-1.7 4.81E-

10

AT4G12490 LIPID TRANSFER PROTEIN (LTP) -1.3 7.93E-

05

-4.6 4.17E-

43

-2.8 8.38E-

18

-4.7 1.76E-

45

-1.9 1.32E-

08

-2.6 1.46E-

15

AT1G13470 UNCHARACTERIZED -2.1 2.12E-

11

-3.7 3.73E-

29

-3.3 2.67E-

23

-2.8 2.70E-

18

-2.1 6.88E-

12

-2.4 3.04E-

14

AT1G33960 AVRRPT2-INDUCED GENE 1 -1.5 6.39E-

23

-5.4 1.23E-

127

-5.7 9.38E-

116

-5.2 1.80E-

119

-2.2 7.45E-

48

-3.3 6.79E-

81

AT3G47480 CALCIUM-BINDING EF-HAND

FAMILY PROTEIN

-1.3 3.75E-

11

-3.0 3.27E-

39

-2.8 4.26E-

33

-3.3 6.57E-

42

-1.6 4.36E-

16

-2.2 5.55E-

24

AT4G03450 ANKYRIN REPEAT FAMILY

PROTEIN

-2.0 3.19E-

10

-3.4 9.96E-

24

-3.1 1.96E-

20

-3.2 1.03E-

21

-2.3 8.75E-

13

-2.1 1.90E-

10

AT4G23150 CYSTEIN-RICH RLK -1.7 5.61E-

07

-3.2 1.05E-

20

-2.9 5.61E-

18

-3.1 5.53E-

20

-2.1 1.08E-

09

-2.5 2.97E-

13

AT5G52760 COPPER TRANSPORT PROTEIN

FAMILY

-1.2 4.82E-

05

-2.6 2.28E-

17

-2.4 3.65E-

14

-2.7 1.53E-

17

-1.4 5.87E-

07

-2.2 2.08E-

12

AT5G54610 BDA1 -2.9 1.16E-

25

-4.2 8.48E-

45

-4.0 6.73E-

39

-3.7 2.34E-

36

-2.9 1.54E-

26

-2.2 4.99E-

16

AT5G10760 AED1 -1.7 2.88E-

39

-4.6 1.85E-

126

-4.2 6.95E-

105

-4.1 1.41E-

112

-2.1 1.09E-

55

-1.9 6.10E-

45

AT5G60900 RLK1 -1.1 9.02E-

06

-2.9 1.86E-

24

-2.3 1.51E-

16

-2.8 2.43E-

22

-1.3 1.25E-

07

-1.5 2.05E-

09

AT2G18660 EGC2 -1.6 2.23E-

11

-3.5 8.48E-

35

-3.9 7.62E-

38

-3.5 1.52E-

33

-2.3 8.03E-

20

-2.6 6.45E-

22

AT2G26400 ARD1 -2.0 2.90E-

12

-2.2 6.94E-

15

-2.9 2.32E-

20

-2.3 1.82E-

15

-2.4 2.33E-

16

-3.1 9.05E-

23

AT2G29120 GLR2.7 -1.2 6.10E-

09

-2.3 6.40E-

25

-1.8 1.01E-

15

-2.0 9.39E-

20

-1.0 1.54E-

07

-1.4 3.64E-

11

AT3G28510 AAA-ATPase -2.1 2.93E-

23

-1.4 2.97E-

13

-2.9 1.42E-

32

-1.8 1.70E-

17

-1.5 2.91E-

14

-2.2 6.87E-

23

AT1G52400 BGLU18 -1.4 1.35E-

49

-1.9 3.86E-

91

-1.8 1.92E-

85

-1.0 2.44E-

28

-1.1 2.69E-

34

-1.0 5.51E-

28

(Continued)
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AtIPCS as a non-discriminate and far-reaching negative regulator of the response to biotic

stress.

Genes involved in the plant response to abiotic stress are also highlighted as down-regulated

in Fig 4, although they did not map to specific pathways. Notably, the sphingolipid biosyn-

thetic pathway itself has been linked to the abiotic stress response. Only one gene in this path-

way, sphingosine kinase (AT4G21534), had significantly altered expression (down-regulated)

in At2++ (see data deposited in GEO, Accession GSE129016). The protein product of this

gene phosphorylates sphingosine (to S1P) and phytosphingosine (to phytoS1P) in plants [33],

and increased levels of S1P and abscisic acid dependent stomatal closure have been reported

in response to drought [34]. Knock-down of sphingosine kinase expression significantly

decreased sensitivity to abscisic acid induced stomatal closure compared to Col0 [35], indicat-

ing that At2++ with reduced sphingosine kinase may be more sensitive to drought. One gene

showed a negative correlation under GO term GO:009819 (drought recovery), a serine/thero-

nine kinase (AT1G78290), a member of the SNF1-related protein kinase (SnRK2) family

whose activity is activated by osmotic stress and dehydration [36]. Similarly, DREB genes have

been implicated in the plant response to abiotic stress, including osmotic stresses such as high

salinity and drought [37], and DREB1B and DREB1C were down-regulated in all the higher

level over-expressors (At1-3++; Table 2). Together, these data place AtIPCS at the heart of the

abiotic, as well as biotic, stress response.

Overall, these data show a complex picture of the modulation of the plant stress response

on over-expression of AtIPCS isoforms. Some changes were relatively specific for an isoform,

some showed dose response effects that correlated with AtIPCS expression levels, and all are

genes modulated in response to biotic and abiotic stress.

Analyses of genes identified as responding positively to AtIPCS over-

expression

Analyses of genes whose expression was positively correlated with AtIPCS1 over-expression

(At1+ and At1++) revealed a significant enrichment (Fisher exact test, two tailed, p< 0.001)

for those under GO term GO:0015979, photosynthesis (p = 9.10E-27) 25.7% (18/70) when they

represent 0.43% of the Arabidopsis transcriptome (S4 Table). Similarly, for AtIPC2 over-

expressor transgenic lines (At2+ and At2++) there was a significant enrichment (p = 1.70E-31)

with 13.3% (30/226) of the genes associated under this GO term (S5 Table). AtIPC3 over-

expressor lines (At3+ and At3++) also had a significant enrichment under photosynthesis
(p = 6.00E-18)—34.5% (10/29). Other GO terms with significant enrichment for up-regulated

genes in response to AtIPCS1, 2 or 3 over-expression include: GO:0010876 (lipid localization),

GO:0006091 (generation of precursor metabolites and energy) and GO:0033036 (macromolecu-

lar localization) (S4–S6 Tables).

Table 3. (Continued)

Gene ID Gene annotation At1+ At1 ++ At2+ At2++ At3+ At3++

log2

fold

change

p-

value

log2

fold

change

p-

value

log2

fold

change

p-

value

log2

fold

change

p-

value

log2

fold

change

p-

value

log2

fold

change

p-

value

AT1G32960 SBT3.3 -1.4 5.56E-

06

-3.4 1.61E-

25

-3.5 3.54E-

26

-3.2 2.01E-

22

-2.0 6.04E-

11

-2.0 5.74E-

10

AT3G17609 HYH -1.7 1.92E-

14

-1.5 3.92E-

12

-1.6 8.78E-

12

-1.5 4.75E-

11

-1.5 1.75E-

12

-1.7 1.87E-

13

https://doi.org/10.1371/journal.pone.0217087.t003
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Utilising the differential over-expression in the analysed lines, the influence of AtIPCS1-3
expression levels on gene up-regulation was analysed. A dose dependent increase in the

expression of up-regulated genes under GO term GO:0015979 (photosynthesis) was associated

with the increase in AtIPCS1 and 2 transcript found in the transgenic lines (At1+ and At1++,

and At2+ and At2++; Table 4). Those showing�2 log2 fold change dose response to both

AtIPCS1 and AtIPCS2 are: YCF4, a PROTEIN REQUIRED FOR PHOTOSYSTEM I ASSEM-

BLY AND STABILITY (ATCG00520); a SUBUNIT OF THE CHLOROPLAST NAD(P)H

DEHYDROGENASE COMPLEX, NDHI (ATCG01090); NADH DEHYDROGENASE ND1

NDHA (ATCG01100); PSAC SUBUNIT OF PHOTOSYSTEM I (ATCG01060); 49KDA

PLASTID NAD(P)H DEHYDROGENASE SUBUNIT H PROTEIN (ATCG01110); NDHC,

NADH DEHYDROGENASE D3 SUBUNIT OF THE CHLOROPLAST NAD(P)H DEHY-

DROGENASE COMPLEX (ATCG00440); YCF3, a PROTEIN REQUIRED FOR PHOTOSYS-

TEM I ASSEMBLY AND STABILITY (ATCG00360). All isoforms clearly influence the

expression of the genes under this GO term and are therefore likely to influence photosynthe-

sis itself. Over-expression of AtIPCS2 has the broadest and largest effect, correlating again with

its status as the most abundant, and perhaps most important, AtIPCS isoform (approximately

100-fold AtIPCS1) in all tissues of wild type A. thaliana [4].

The effects of over-expression (At2++) were further analysed and visualised using MapMan

(https://mapman.gabipd.org). This illustrated multiple positive transcriptional effects on genes

associated with metabolism (S3 Fig), a greater effect than those negatively affected (S2 Fig).

Amongst those particularly influenced were genes associated with the metabolism of light

reactions and flavonoids. The effects clustered under light reactions correlated with the enrich-

ment under GO term GO:0015979, photosynthesis discussed above. Further analyses using

MapMan showed that genes up-regulated in At2++ had high enrichment under photorespira-

tion, the Calvin cycle and light reactions (Fig 5). This indicated that there was an associated

increase in energy production and, perhaps, the rate of growth.

The MapMan analyses (S3 Fig) also indicated an upregulation of flavonoid metabolism.

Flavonoids are antioxidant molecules usually produced as a result of ROS accumulation

in response to abiotic and biotic stress [38]. These data indicated that over-expression of

AtIPCS2 may play a protective role in plant defense, not only as a negative regulator of plant

pathogen defense genes, but also as a positive regulator of metabolites that have antioxidant

properties.

After photosynthesis, the next best supported GO term for up-regulated genes across all

AtIPCS isoform over-expressers was GO:0010876 (lipid localization; p = 8.20E-16, 1.80E-26

and 6.00E-18 for AtIPCS1, 2 and 3 respectively (S4–S6 Tables). The degree of enrichment

across these genes (8/70, 17/275, and 7/19 for AtIPCS1, 2 and 3 respectively) was greater than

that observed with GO:0015979 (photosynthesis); in addition, higher transcript log2 fold

changes correlated with the rise in AtIPCS isoform expression levels (Table 5). Increased

AtIPCS1 expression (At1+ to At1++; 200–390 fold wild type Col-0 (Fig 1A) saw�2 log2

increase in expression of the following genes under GO:0010876: OLEOSIN 1, 2 and 4

(OLEO1, 2 and 4; AT4G25140, AT5G40420 and AT3G27660); 2S SEED STORAGE PRO-

TEIN 1–4 (AT4G27140, AT4G27150, AT4G27160 and AT4G27170); and LIPID TRANSFER

PROTEIN (LPT; AT5G54740). All of these genes were also up-regulated in response to

AtIPCS2 over-expression, including all 4 SEED STORAGE PROTEIN genes (AT4G27140,

AT4G27150, AT4G27160 and AT4G27170). However, only isoforms 1, 3 and 4 increased �2

log2 in expression on further increase in AtIPCS2 expression (At2+ to At2++; 7–9 fold

wild type Col-0; Fig 1B; Table 5). In addition, LIPID TRANSFER PROTEIN 4 (LTP4;

AT5G59310); LIPID BINDING PROTEIN PREDICTED TO ENCODE A PR (PATHOGEN-

ESIS-RELATED) protein (LTP6; AT3G08770); and LIPID TRANSFER PROTEIN (LPT;
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AT5G55410 and AT2G37870) are all up-regulated �2 log2 on over-expression of this iso-

form. None of these are increased �2 log2 in the higher AtIPCS2 expressors, however LPT4

is decreased. As above, AtIPCS2 over-expression had the broadest effect on the selected

genes (GO:0010876), again presumably due to its high levels in all tissues of wildtype A. thali-
ana [4]. All 4 SEED STORAGE PROTEIN genes, LTP (AT5G54740) and OLEO1 and 4, are

up-regulated in response to AtIPCS3 over-expression. Furthermore, all are further up-regu-

lated (�2 log2) on increased expression (At3+ to At3++; 220–440 fold wild type Col-0; Fig

1C; Table 5). Although isoform specific effects, particularly with respect to AtIPCS2, were

observed, over-expression of each lead to an up-regulation in expression of genes associated

with GO term GO:0010876 (lipid localization). Analyses of the genes up-regulated in all

over-expression lines demonstrated that they mainly encode seed storage proteins (Table 6),

including CRUCIFERIN 2 and 3 genes (CRU2 and 3). CRU2 and 3 are expressed during the

later stages of embryogenesis [39], with CRU3 having a role in protein and oil storage [40].

Together, these data indicated that the increased metabolic activity, perhaps induced by

AtIPCS over-expression (S3 Fig), may result in an increase in protein and lipid storage dur-

ing seed development.

Fig 5. MapMan schematic of showing genes identified as upregulated in the At2++ over-expression line enriched under the plant light reaction, Calvin cycle

and photorespiration. Log2 fold changes in gene expression are indicated by the colour scale.

https://doi.org/10.1371/journal.pone.0217087.g005
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Phenotype of Arabidopsis over-expressing AtIPCS isoforms

To examine the effects of these global alterations in gene expression on plant development, the

phenotypes of A. thaliana over-expressing each of the AtIPCS isoforms (both levels) were ana-

lysed. All lines showed early flowering (4 days earlier than wild type Col-0) associated with the

formation of bolts (Fig 6). This correlated with a slight (<2-fold log2) up-regulation of the flo-

rigen FT (see data deposited in GEO, Accession GSE129016), a well characterized systematic

signal for plant transition from the vegetative to the reproductive (flowering) phase [41]. How-

ever, the mechanism underlying this phenotype remains unclear, and perhaps reflects the met-

abolic changes indicated in the analyses above.

Table 5. Genes showing a positive correlation with AtIPCS expression under GO term GO:0010876 (lipid localization). At1-3 over-expressing AtIPCS1-3; At1-3

+ higher level expressers of AtIPCS1-3. Fold changes are the value of three technical triplicates of a transformed line. Transcripts listed had a p-value<0.001 (Wald test, cut

off p-value< 0.05) and highlighted in bold log2 fold change� 2.

GeneID Gene annotation At1+ At1++ At2+ At2++ At3+ At3++

log2fold p-

value

log2fold p-

value

log2fold p-

value

log2fold p-value log2fold p-

value

log2fold p-

value

AT5G59310 LTP4 (LIPID TRANSFER PROTEIN

4)

3.7 2.07E-

28

1 0.00358

AT5G48490 DIR1 LIPID TRANSFER PROTEIN 1.2 4.21E-

16

1.3 4.78E-

18

AT3G08770 LTP6; LIPID BINDING

PREDICTED TO ENCODE A PR

(PATHOGENESIS-RELATED)

PROTEIN

2 3.96E-

65

1.3 4.44E-

27

AT5G40420 OLEO2 (OLEOSIN 2) 1.4 1.45E-

07

4.6 3.63E-

70

2.5 9.95E-

21

2.8 5.74E-

25

AT4G25140 OLEO1 (OLEOSIN 1) 3.5 4.38E-

45

7.1 2.82E-

192

4.6 2.85E-

80

5 1.20E-

91

2.5 1.01E-

21

6.1 3.11E-

141

AT4G27140 2S SEED STORAGE PROTEIN 1 4.2 5.35E-

65

8 1.03E-

238

4.3 1.28E-

68

6.3 1.95E-

148

3 4.86E-

32

7.2 6.10E-

193

AT4G27150 2S SEED STORAGE PROTEIN 2 3.8 2.16E-

40

7.3 2.16E-

147

4.7 1.09E-

61

5.4 1.89E-

81

2.3 8.24E-

16

6.4 7.03E-

115

AT4G27160 2S SEED STORAGE PROTEIN 3 5 1.84E-

81

8.5 2.51E-

239

4.2 4.18E-

58

6.3 1.28E-

129

3.6 4.03E-

43

7.3 2.59E-

176

AT5G64080 LPT (LIPID TRANSFER PROTEIN) 1.6 1.28E-

30

1.2 3.85E-

18

AT5G05960 LPT (LIPID TRANSFER PROTEIN) 1.7 4.62E-

51

1.2 6.31E-

26

AT3G18280 LPT (LIPID TRANSFER PROTEIN) 1.3 7.33E-

28

1.1 3.46E-

19

AT5G54740 LPT (LIPID TRANSFER PROTEIN) 5.1 3.42E-

97

8.2 3.86E-

259

5.8 1.57E-

127

6.3 5.98E-

153

3.9 4.20E-

57

7.7 9.99E-

230

AT5G55410 LPT (LIPID TRANSFER PROTEIN) 2.2 4.37E-

12

2 1.50E-

09

AT4G27170 2S SEED STORAGE PROTEIN 4 2.7 1.03E-

19

5.7 5.84E-

88

1.8 6.48E-

09

3.9 2.71E-

39

1.8 6.80E-

09

4.9 9.93E-

64

AT3G27660 OLEO4 (OLEOSIN 4) 2.1 1.35E-

15

5.2 7.26E-

100

2.8 6.81E-

27

2.6 5.28E-

23

1.1 8.65E-

05

4 2.28E-

58

AT2G37870 LPT (LIPID TRANSFER PROTEIN) 2.9 2.88E-

27

1.5 4.73E-

08

AT3G01570 OLE05 (OLEOSIN 5) 1.5 8.26E-

13

1.3 1.92E-

08

https://doi.org/10.1371/journal.pone.0217087.t005
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Reflecting the broad negative regulatory effect AtIPCS over-expression has on biotic and

abiotic stress responses in Arabidposis (transcriptomic data—Table 2 and Fig 4), the pheno-

types of Arabidopsis At1++, At2++ and At3++ were observed under osmotic (abiotic) and

pathogen (biotic) stress. Firstly, the over-expressing lines were analysed for tolerance to

osmotic stress using the non-ionic osmolyte, mannitol (S4 Fig). In agreement with the down-

regulation of genes involved in the abiotic stress response (Table 2; Fig 4), At1++, At2++ and

At3++ over-expressing lines were all more susceptible to osmotic stress at high concentrations

of mannitol (500mM).

Subsequently, the phenotype of the pathogen response was assessed. Previously, a specific

role for AtIPSC2 in plant resistance to biotrophic pathogens (powdery mildew, G. cichora-
cearum) was proposed. A homozygote AtIPSC2 T-insert mutant showed a reduction in fungal

mass compared with a G. cichoracearum infected control, whereas resistance to the hemibio-

trophic pathogen Pseudomonas syringae was unaffected [13]. The AtIPSC2 T-insert mutant

resistance to G. cichoracearum was associated with increased PR1 [13], whereas as we demon-

strated that AtIPCS over-expression reduced PR1 (and PR2) expression. This places AtIPCS at

the centre of the biotic stress response. Therefore, to examine the potential role of AtIPCS in

the necrotophic pathogen response, Arabidopsis At1++, At2++ and At3++ were challenged

with Erwinia amylovora. Interestingly, based on the spread of the pathogen across the surface

of the leaves, At2++ and At3++, but not At1++, were less susceptible than the Col0 controls

(S5 Fig). At first glance these results appear counter intuitive, the over-expression lines show-

ing down-regulation of the biotic response transcriptome but phenotypically showing a rise in

pathogen resistance. Therefore, these data were considered in light of the expression data avail-

able in Genevestigator for AtIPCS1-3 (Fig 7). Response to various stimuli is observed for

AtIPCS2 with a fold increase of up to 600 compared to the highest 100 fold increase observed

for AtIPCS1 during developmental leaf senescence [42]. The highest increase in AtIPCS2 tran-

script levels was found to be in response to plants treated with ozone to activate apoplastic

reactive oxygen species (ROS) signalling, correlating with the increase in transcript associated

with antioxidant flavonoid metabolism seen in At2++ (S3 Fig). AtIPCS1 also showed an

increase in the transcript, although 40-fold lower than AtIPCS2 [43]. Notably, AtIPCS1 and 2

Fig 6. At 44 days wild type Col-0 had flowered (A and B). The AtIPCS over-expressing lines had also flowered at this time point, however all had bolted: (C) At1+;

(D) At1++; (E) At2+; (F) At2++; (G) At3+; (H) At3++.

https://doi.org/10.1371/journal.pone.0217087.g006
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transcript increases were also observed in ozone tolerant plants [44]. Other elicitors of

AtIPCS2 transcript increase include the fungi Botryris cinereal [45] and Blumeria graminis
[46], the bacterium P. syringae [47], and bacterial flagellin protein [48]. Therefore, increased

expression of AtIPCS2 (and perhaps AtIPCS1 and 3) is part of the response to necrotropic, bio-

trophic and hemibiotropic pathogens. All this in a background of the suppression of the biotic

stress response at the transcriptomic level.

Discussion

Each of the 3 IPCS isoforms are differentially expressed in the tissues of A. thaliana [4], and in

Oryza sativa (rice) IPCS expression in response to specific abiotic stimulus is tissue specific

[15]. To further probe the downstream effects of IPCS, in this study we analysed the transcrip-

tomic response to the over-expression of AtIPCS1, 2 and 3.

Multiple genes responded both positively and negatively, and specifically, in response to

elevated AtIPCS1, 2 and 3. Analyses of genes up-regulated in response to AtIPCS over-expres-

sion showed most enrichment under GO term GO:0010876 (lipid localization), with levels

showing strong correlation with increased expression of AtIPCS1 and 3, indicating a regula-

tory (rheostat) function (Table 5). Specifically, 2S SEED STORAGE PROTEIN 1, 2, 3 and 4

genes, LIPID TRANSFER PROTEIN gene (LPT; AT5G54740) and OLEOSIN 1, 2 and 4 genes

(OLEO1, 2 and 4) are up-regulated in response in AtIPCS1, and further up-regulated with

Fig 7. Predicted AtIPCS1-3 expression in response to pathogens, pathogen effectors and chemical stimuli. x-axis: experiment number; y-axis: transcript level.

Produced from RNA-Seq data using Genevestigator.

https://doi.org/10.1371/journal.pone.0217087.g007
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increased expression. In addition, all apart from OLEO2 responded similarly to AtIPCS3
(Table 5), and all were up-regulated in response to AtIPCS2 over-expression. Several other

LPT genes also positively responded to AtIPCS2 over-expression. OLE genes encode oleosins

that prevent the abnormal fusion of oil bodies in seeds during imbibition and thereby protect

the seeds from undergoing mechanical stress that would result in mortality [49]. Also upregu-

lated were the 2S SEED STORAGE PROTEIN genes which act as nitrogen and sulphur

reserves for seeds during germination [50]. Both were particularly influenced by the expression

levels of AtIPCS1 and 3 (Table 5) suggesting these isoforms have a role in seed development. A

small number of genes were enriched under GO term GO:000979 (post-embryonic develop-
ment) and up-regulated in response to AtIPCS1 and 3 (S4 and S6 Tables). An shown in S7

Table, the effects seen with AtIPCS1 and 3 were again magnified on increased expression.

Notably, in addition to those genes already discussed, up-regulated CRUCIFERIN 2 and 3

genes (CRU2 and 3) are seed storage proteins expressed during the later stages of embryogene-

sis [39] with CRU3 having a role in protein and oil storage [40]. From these data, it appears

that AtIPCS is involved in regulating protein and lipid storage in seeds. This potential role is

further supported by the observation that 1-CYSTEIN PEROXIREDOXIN 1 (AtPER1) and

EXTENSIN PROLINE-RICH 1 (AtEPR1) are also up-regulated in response to AtIPCS. Both

are expressed in the embryo and in developing seeds, providing protection from ROS during

seed desiccation [51, 52]. EMBRYOGENIC CELL PROTEIN 31 gene (AtECP31) and CALEO-

SIN PROTEIN gene 1 (AtCOL1), both expressed in the later stages of seed development, are

important for seed viability and desiccation tolerance [53, 54]. Therefore, AtIPCS may be

important in the protection, viability and therefore the germination of seeds. The mechanisms

behind this are not known, however the function of these enzymes in regulating ceramide and

phytoceramide levels point towards multiple roles in the signal transduction networks under-

lying development [5].

The next most enriched genes up-regulated in response to AtIPCS over-expression were

under GO term GO:0015979 (photosynthesis). The importance of this in relation to IPCS func-

tionality is unclear. However, the most compelling change in transcript levels was seen under

the influence of AtIPCS2 over-expression; whilst AtIPCS3 appeared to function as a rheostat

(Table 4) with increased expression inducing the up-regulation of all 6 genes influenced (�2

log2). Notably this isoform is least expressed in rosette and cauline leaves of A. thaliana [4] per-

haps indicating a role of up-regulation in photosynthetic regulation. However, the mechanism

behind this possible function is unclear.

To further visualise the possible effects of AtIPCS over-expression, and given the scale and

scope of its influence on the transcriptome, the AtIPCS2 higher level over-expressor (At2++)

data was analysed using MapMan (S3 Fig). The expression of many genes associated with

metabolism were positively influenced, particularly those associated light reactions and antiox-

idative flavonoids. Further analyses showed up-regulated genes to be enriched under photores-

piration, the Calvin cycle and light reactions (Fig 5), perhaps positively influencing energy

production and the rate of growth. Interestingly, all AtIPCS over-expressing lines showed

bolts (Fig 6) perhaps indicating accelerated growth, however this requires further analysis.

Flavonoid metabolism was also up-regulated in At2++ Arabidopsis at the transcriptome

level, and these antioxidant molecules are synthesized to protect plant tissues from ROS pro-

duced in response to abiotic and biotic stress [38]. Therefore, over-expression of AtIPCS2

may also have a protective role in plant defense, a stress response. Interestingly, and perhaps

correlating with this, on over-expression of each of the isoforms down-regulated genes were

significantly enriched under GO term GO:0006950 (response to stress) (S1–S3 Tables). These

included Pathogenesis-Related (PR) genes, PR1 and 2 were particularly effected and transcript

levels were reduced�2 log2 (Table 2), this effect was magnified on increased expression of
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AtIPCS1 suggesting that this isoform may have a regulatory role in the stress response.

(Table 2). Systematic Acquired Resistance (SAR) is characterised by the increased expression

of the PR genes which are induced in response to elevated endogenous growth hormones such

as salicylic acid (SA) and ethylene (ET), the levels of which increase in response to infection

[55]. A. thaliana manipulated to express elevated levels of PR1, 2 and 5 are resistant to the

oomycete obligate biotroph Hyaloperonospora parasitica and the bacterium biotroph Pseudo-
monas syringae pv. Maculicola [56]. Furthermore, PR genes are also induced by environmental

stress such as cold and light [57]; PR1, PR2 and PR5 were induced in cold treated and drought

stressed A. thaliana [58, 59].

Plant Defensin genes, PDF1.2B and an ET- AND JA-RESPONSIVE PLANT DEFENSIN,

are similarly repressed in response to over-expression of AtIPCS1, 2 and 3, and again the effect

was magnified on increased expression of (rheostatic) AtIPCS1 (Table 2). Like the PR genes,

PDF genes are markers of SAR induced by endogenous growth hormones in response to biotic

and abiotic stress [55]. Wound associated TYROSINE AMINO TRANSFERASE 3 (TAT3) was

also induced in A. thaliana in response to an endogenous growth hormone (JA) [60], and was

down-regulated in response to all isoforms but with a magnified effect on increased expression

of AtIPCS1 (Table 2). LATE UP-REGULATED IN RESPONSE TO HYALOPERONOSPORA
PARASITICA (LURP1) was down-regulated in response to over-expression of all isoforms

and, as the name suggests, has been shown to be needed for basal resistance to the oomycete

Hyaloperonospora parasitic [61]. More specifically PHOSPHOLIPASE 2A (PLA2A) expression

is negatively regulated only by over-expression of AtIPCS2. An orthologue of this enzyme is

induced in mosaic virus infected tobacco leaves independently of the growth hormone JA [62]

(Table 2).

Similarly, in relation to abiotic stress response, MYB112, which is induced in salt stressed

plants [63], responded specifically and negatively to AtIPC2 over-expression. CIRCADIAN

CLOCK ASSOCIATED 1 (CCA1) and GIGANTEA (GI), which are part of the photoperiodic

control of flowering [64, 65], are specifically negatively regulated by over-expression of

AtIPCS2 and 3, and AtIPCS2 respectively (Table 2). Notably, in support of these effects, the

AtIPCS over-expressing lines displayed an early flowering phenotype.

These data indicating the role of AtIPCS over-expression in the suppression of biotic and,

to a lesser extent, abiotic stress responses, are supported by the MapMan analyses (Fig 4). At a

phenotypic level, the transcriptomic findings correlate with a decreased tolerance for osmotic

(abiotic) stress, albeit only at high concentrations of the non-ionic osmolyte, mannitol (S5

Fig). However, the relative resistance of the AtIPCS2 and 3 over-expressor lines (At2++ and

At3++) to challenge with the necrotroph Erwinia amylovora (S4 Fig) is difficult to reconcile

with the transcriptomic data showing down-regulation of the pathogen response. However,

Genevestigator analyses (Fig 7) indicated that increased expression of AtIPCS2 (and perhaps

AtIPCS1 and 3) is part of the response to necrotropic, biotrophic and hemibiotropic patho-

gens. The mode of this in biotic stress response is unclear, however Genevestigator showed

that the AtIPCS2 transcript level positively correlated with ROS signalling, as could the indi-

cated increase in antioxidant flavonoid metabolism noted in this work (S3 Fig). Clearly this

warrants further investigation, however it notable that the response to E. amylovora, and other

pathogens, in Arabidopsis includes ROS [66].

Together these data suggest some specificity in the influence of each AtIPCS isoform and

that AtIPCS1 expression may act as a rheostat of SAR and the response to biotic and abiotic

stress. Furthermore, the observation that AtIPCS expression negatively influences both growth

hormone dependent (e.g. PR) and independent responses (PL2A) indicated its role in a wide

variety of defence networks perhaps reflecting the role of phytoceramide as an indiscriminate

pro-apoptotic signal [13].
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Conclusion

Transcriptomic analyses of A. thaliana indicated that AtIPCS1-3 over-expression positively

correlated with the expression of genes encoding storage proteins essential for normal seed

development (S7 Table). As such, the enzyme may be crucial for seed survival, maturation and

germination. Furthermore, these data also indicated that AtIPCS acts as a negative regulator of

the plant defense response to pathogens and abiotic stress (Tables 2–4), a process associated

with PCD. Importantly, these findings were also corroborated by data available from Geneves-

tigator (Fig 7) and phenotypic observations (S4 and S5 Figs).

The negative association of biotic and abiotic stress responses to AtIPCS expression indi-

cates the potential to engineer tolerance in crop plants.

Supporting information

S1 Table. GO enrichment of genes down-regulated in response to the constitutive over-

expression of AtIPCS.

(TIF)

S2 Table. GO enrichment of genes down-regulated in response to the constitutive over-

expression of AtIPCS2.

(TIF)

S3 Table. GO enrichment of genes down-regulated in response to the constitutive over-

expression of AtIPCS3.

(TIF)

S4 Table. GO enrichment of genes up-regulated in response to the constitutive over-

expression of AtIPCS1.

(TIF)

S5 Table. GO enrichment of genes up-regulated in response to the constitutive over-

expression of AtIPCS2.

(TIF)

S6 Table. GO enrichment of genes up-regulated in response to the constitutive over-

expression of AtIPCS3.

(TIF)

S7 Table. Genes showing a positive correlation with AtIPCS expression under GO term

GO: 0009791 (post-embryonic development). At1-3+ over-expressing AtIPCS1-3; At1-3++

higher level expressers of AtIPCS1-3. Log2 change�1 shown,�2 in bold.

(TIF)

S1 Fig. Relative quantitation of mRNA levels of (A) AtIPCS1 (B) AtIPCS2 (C) AtIPCS3 in

over-expressor transgenic lines compared to Col0 standardised to equate to a value of 1;

qPCR was performed to measure mRNA levels in 10-day old seedlings. Relative quantita-

tion was done after normalization using PEX4 levels; relative quantitation value is the mean of

three biological replicates with standard error.

(TIF)

S2 Fig. Metabolisim overview generated in MapMan for genes down-regulated in At2++

transgenic line. Log2 fold changes in gene expression are indicated by the colour scale, with

the distribution of genes in different pathways and expression levels shown. Abbreviations:

carbohydrates (CHO), tricarboxylic acid (TCA) cycle, oxidative pentose phosphate (OPP)
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pathway, sulphur containing glucosinates synthesis (S-misc), nitrogen containing glucosinate

synthesis (N-misc).

(TIF)

S3 Fig. Metabolisim overview generated in MapMan for genes up-regulated in At2++ trans-

genic line. Log2 fold changes in gene expression are indicated by the colour scale, with the distri-

bution of genes in different pathways and expression levels shown. Abbreviations: carbohydrates

(CHO), tricarboxylic acid (TCA) cycle, oxidative pentose phosphat pathway, sulphur containing

glucosinates synthesis (S-misc), nitrogen containing glucosinate synthesis (N-misc).

(TIF)

S4 Fig. 8 day Arabidopsis thaliana seedlings treated with the non-ionic osmolyte mannitol

for a further 6 days. Col0 and overexpressing lines At1++, At2++ and At3++. Mannitol con-

centrations in mM. At the highest concentration (500mM) chlorosis in the over-expressing

lines, but not Col0, was apparent.

(TIF)

S5 Fig. Arabidopsis thaliana leaves challenged with Erwinia amylovora 3 dpi. (A) Col0 (B)

At1++ (C) At2++ (D) At3++ (E) Plot of ratio of area infected by Erwinia amylovora to unin-

fected area for Col0 and over-expression lines. AtIPCS2 and 3 over-expressors are less suscep-

tible to the pathogen compared to Col0 and AtIPCS1 over-expressor, based on the spread of

the pathogen across the surface of the leaf. The pathogen has spread to occupy a large area of

Col0 and AtIPCS1 over-expressor leaves, compared to a less aggressive spread seen on the

leaves of AtIPCS2 and 3 over-expressors. In addition, a distinctive yellow colour is observed

at the outer boundaries of the area occupied by the pathogen, indicating a measured response

that favours plant survival. These observations may be linked to the role of AtIPCS as a nega-

tive regulator of the plant response to biotic stress.

(TIF)
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