
J
H
E
P
1
0
(
2
0
1
8
)
1
4
2

Published for SISSA by Springer

Received: September 21, 2018

Revised: October 3, 2018

Accepted: October 14, 2018

Published: October 23, 2018

The twistor Wilson loop and the amplituhedron

Paul Heslop and Alastair Stewart

Mathematics Department, Durham University, Science Laboratories,

South Rd, Durham DH1 3LE, U.K.

E-mail: paul.heslop@durham.ac.uk, alastair.j.stewart@durham.ac.uk

Abstract: The amplituhedron provides a beautiful description of perturbative superam-

plitude integrands in N = 4 SYM in terms of purely geometric objects, generalisations of

polytopes. On the other hand the Wilson loop in supertwistor space also gives an explicit

description of these superamplitudes as a sum of planar Feynman diagrams. Each Feynman

diagram can be naturally associated with a geometrical object in the same space as the

amplituhedron (although not uniquely). This suggests that these geometric images of the

Feynman diagrams give a tessellation of the amplituhedron. This turns out to be the case

for NMHV amplitudes. We argue however that beyond NMHV this is not true. Specif-

ically, each Feynman diagram leads to an image with a physical boundary and spurious

boundaries. The spurious ones should be “internal”, matching with neighbouring diagrams.

We however show that there is no choice of geometric image of the Wilson loop Feynman

diagrams which yields a geometric object without leaving unmatched spurious boundaries.

Keywords: Extended Supersymmetry, Scattering Amplitudes, Supersymmetric Gauge

Theory, Conformal Field Theory

ArXiv ePrint: 1807.05921

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP10(2018)142

mailto:paul.heslop@durham.ac.uk
mailto:alastair.j.stewart@durham.ac.uk
https://arxiv.org/abs/1807.05921
https://doi.org/10.1007/JHEP10(2018)142


J
H
E
P
1
0
(
2
0
1
8
)
1
4
2

Contents

1 Introduction 1

2 WLDs and volume forms 4

2.1 WLDs 4

2.2 Amplituhedron volume forms from WLDs 5

3 NMHV amplituhedron from WLDs 6

4 N2MHV 9

4.1 Cancellation of spurious poles in N2MHV WLDs 9

4.2 Spurious boundary matching 12

4.2.1 Case 1: α > 0, β < 0 and γ < 0 13

4.2.2 Case 2: α, β, γ > 0 14

5 Conclusion 15

1 Introduction

Scattering amplitudes in planar N = 4 SYM have long been a fruitful source of new

concepts and techniques in quantum field theory. One of the most exciting recent discoveries

relates their perturbative integrands directly to geometric objects. This was first noticed by

Hodges [1], and was further developed in [2, 3]. Arkani-Hamed and Trnka then interpreted

the integrands as being equivalent to generalised polyhedra in positive Grassmannians

called ‘amplituhedra’ [4]. This has lead to a great deal of interest from both physicists and

mathematicians as well as a number of generalisations [5–30].

Although early polytope interpretations [1, 2] involved considering amplitudes via

twistor Wilson loop diagrams (WLDs) the amplituhedron itself instead arose from con-

sidering the BCFW method of obtaining amplitudes. However the WLDs apparently lend

themselves very naturally and directly to a geometrical interpretation and in this paper

we wish to look again at the relationship between WLDs and the amplituhedron. Pre-

vious work also examining this connection includes [10, 19, 27]. In particular in [27] it

was shown that the WLDs give a very natural description of the physical boundary of the

amplituhedron. Specifically here we wish to examine whether it is possible to use WLDs

to define a tessellation of the amplituhedron or more generally a tessellation of any “good”

geometrical shape, whereby “good” means it only has a physical boundary (corresponding

to poles of the amplitude) without any spurious boundaries. We prove that beyond NMHV

this is not the case. The WLDs do not give a tessellation of the amplituhedron or any other

geometrical object without remaining unmatched spurious boundaries.
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Let us emphasise that we make no assumptions about positivity, or convexity or any

particular specific form for this geometrical shape. Our only assumptions are that each

WLD is associated with a region of amplituhedron space in such a way that the canonical

form [31] of that region gives back the WLD. Since each WLD contains spurious poles

which have a geometrical interpretation as spurious boundaries we then ask if it is possible

to choose these regions in such a way that all spurious boundaries locally glue together

correctly pairwise with those of other diagrams so that the union of regions leaves no

remaining unmatched spurious boundaries. This turns out to be impossible.

Many of the salient points can be illustrated in the toy model for the amplituhedron

introduced in [4] consisting simply of polygons in P 2 with n vertices Zi ∈ P 2. The map

from this polygon X to the algebraic “amplitude” Ω(X) is made by associating a “canonical

form” with the geometry. This canonical form is a differential volume form with logarithmic

divergences on the boundary of the polygon and no divergences inside it. Such differential

forms are not easy to obtain directly [31], but have the helpful feature that the volume

form of the union of (non-overlapping) polygons gives the sum of the volume forms for each

i.e. Ω(X1 ∪X2) = Ω(X1) + Ω(X2). This gives a simple means of obtaining the canonical

form for a polygon by triangulating it and summing the canonical forms for each triangle.

A simple way to obtain the canonical form for a triangle with vertices Z1, Z2, Z3 is

to choose coordinates a, b such that the inside of the triangle coincides with the region

a, b > 0 i.e. Y = aZ1 + bZ2 + Z3. Then the canonical form is simply da db/(ab) which can

then be rewritten in a co-ordinate independent way as 〈Y d2Y 〉〈123〉2/(〈Y 12〉〈Y 23〉〈Y 31〉).
Two adjacent triangles with vertices Z1, Z2, Z3 and Z1, Z3, Z4 triangulate a quadrilateral

with vertices Z1, Z2, Z3, Z4. Each individual triangle has a boundary [Z1Z3] which is not a

boundary of the quadrilateral. Such a boundary is referred to as “spurious”. Similarly each

canonical form has a corresponding log divergence when Y approaches this boundary, Y →
αZ1 + βZ3. However in the sum of the two canonical forms, 〈123〉2/(〈Y 12〉〈Y 23〉〈Y 31〉) +

〈134〉2/(〈Y 13〉〈Y 34〉〈Y 41〉) the residues of the two poles cancel there and the resulting

canonical form indeed only has log divergences on the boundary of the quadrilateral itself.

Although there is a unique canonical form associated to a polygon, the reverse is

not true. For example, given the canonical form for the triangle with vertices Z1, Z2, Z3,

〈Y d2Y 〉〈123〉2/(〈Y 12〉〈Y 23〉〈Y 31〉), there are four inequivalent triangles in P 2 with this

canonical form. These are given by the set {Y : Y = aZ1 + bZ2 + Z3} for the four choices

(a, b > 0), (a > 0, b < 0), (a < 0, b > 0) or (a < 0, b < 0). These are simply the four

inequivalent triangles in P 2 with vertices Z1, Z2, Z3 (see figure 1a).

So the geometry associated with a given canonical form is not unique but only defined

up to sign choices. If on the other hand we are given a canonical form, written as a sum

of terms each containing spurious poles that cancel in the sum (which as we will see is

precisely what WLDs give us), then the assigning of a geometrical region to each term

(i.e. the choice of signs) can not be done independently for each term: the cancelling of

spurious poles should correspond geometrically to a matching of the corresponding spurious

boundaries (in figure 1b we see a simple example of a region with the same canonical form

as the quadrilateral [Z1Z2Z3Z4] but with left over spurious boundaries).
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Z1

I
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Z1

Z2Z3

Z4

(a) (b)

Figure 1. Figures illustrating polygons in P 2 represented as a disc where opposite points of the

disc are identified. In figure (a) we illustrate the fact that there are four triangles I, II, III, IV

all of which have the same three vertices Z1, Z2, Z3 and all having the same canonical form

〈123〉2/(〈Y 12〉〈Y 23〉〈Y 31〉). In figure (b) we see a region (shaded area) which has the same canoni-

cal form as the quadrilateral [Z1Z2Z3Z4], 〈123〉2/(〈Y 12〉〈Y 23〉〈Y 31〉) + 〈134〉2/(〈Y 13〉〈Y 34〉〈Y 41〉)
but which does not represent a good geometrical region as it has spurious boundaries.

Z1 Z2

Z3

Z4Z5

Z6

Z1 Z2

Z3

Z4Z5

Z6
Z∗

(a) (b)

Figure 2. Two possibilities for triangulating a polygon. BCFW give a generalisation of the first

whereas WLDs give a generalisation of the second (for NMHV).

There are two natural ways to triangulate a polygon illustrated in figure 2. BCFW

recursion for tree-level NMHV diagrams gives the natural (higher dimensional) analogue

of the first way, triangulating to one of the vertices.

Remarkably WLDs for the planar NkMHV amplitude/ Wilson loop split the amplitude

into well-defined pieces, each of which naturally yields a volume form on the space on which

the amplituhedron lies, the Grassmannian Gr(k, 4+k). Each volume form has physical poles

and spurious poles the latter of which all cancel in the sum over diagrams. The physical

poles of the WLDs correspond to the physical boundary of the amplituhedron [27]. This

therefore strongly suggests that the WLDs should correspond to be a tessellation of the

amplituhedron. The canonical forms of each tile corresponding to WLDs. Note that if this

were the case the WLDs would then give a very explicit tessellation of the amplituhedron.

In the NMHV tree-level case this intuition indeed turns out to be correct: each WLD

can be straightforwardly associated with a tile in the tessellation of the amplituhedron.

Indeed NMHV Twistor Wilson loop Feynman diagrams (WLDs) naturally give a higher

– 3 –
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Z1 Z2

Z3

Z4

Z5Z6

Z7

Z8

Figure 3. Example of a Wilson loop diagram which contributes to the 8-point N4MHV amplitude.

dimensional analogue of the second way of tessellating polygons, introducing an additional

vertex Z∗ and triangulating to that, figure 2b.

In this paper we however prove that, for higher NMHV degree this is not the case. More

concretely we prove that there do not exist a set of tiles whose canonical forms correspond

to WLDs and which glue together to form a geometry without spurious boundaries. The

WLDs can therefore not be associated with a tessellation of the amplituhedron or indeed

any geometry whose boundary corresponds to only the physical poles of the amplitude.

Note added. The paper [32] by Susama Agarwala and Cameron Marcott dealing with

the same problem as this paper was posted on the same day.

2 WLDs and volume forms

2.1 WLDs

Here, we provide a brief description of planar Wilson loops in N = 4 Super Yang Mills in

super twistor space and define the WLDs that arise. We do not derive these here, for their

derivation see [33–35].

The WLDs we are discussing here are simply the Feynman diagrams describing a polyg-

onal holomorphic Wilson-loop in super twistor space with vertices being the super twistors

Z1 . . .Zn ∈ C4|4. In the planar theory this is equivalent, via the Wilson loop/amplitude

duality [36–38], to n-point superamplitudes. At tree level the Feynman diagrams consist

simply of propagators whose two ends lie on the Wilson loop contour. In the planar the-

ory diagrams are only valid if we can draw all the propagators inside the Wilson loop

without crossing. The NkMHV Wilson loop is the sum over all such diagrams involving k

propagators (see figure 3 for an example of a diagram contributing to 8-point N4MHV).

To each propagator from edge [ZiZi+1] to [ZjZj+1] we assign the (4|4) delta function:

Zi+1

Zi

b

a

c

d

Zj

Zj+1

= δ4|4(aZi+bZi+1+cZj+dZj+1+Z∗) (2.1)
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Z3

Z4Z5

Z6

Z1 Z2

Z3

Z4Z5

Z6

∫
da db dc dd

abcd δ4|4 (aZ1+bZ2+cZ4+dZ5+Z∗)

∫ da1 db1 dc1 dd1 df1 dg1 dh1
a1b1g1h1e1(c1f1−d1e1)d1 ×

×δ(4|4) (a1Z1+b1Z2+c1Z3+d1Z4+Z∗)
×δ(4|4) (e1Z3+f1Z4+g1Z5+h1Z6+Z∗)

(a) (b)

Figure 4. Examples of Feynman diagrams in twistor space that contribute to the 6-point

NMHV/N2MHV amplitude with their corresponding expressions following the rules given.

We then integrate over the complex integration variables associated with each end of the

propagator with a measure determined by all the propagators ending on the same edge

a1 b1 a2 b2 am−1 bm−1am bm

. . .
=

∫
da1 db1 . . . dam dbm

b1(a1b2−b1a2) . . . (am−1bm−bm−1am)am
(2.2)

In figure 4 we illustrate these rules with two examples firstly an example diagram con-

tributing to the NMHV six-point amplitude and secondly one contributing to the N2MHV

six-point amplitude.

2.2 Amplituhedron volume forms from WLDs

The WLDs are originally defined in supertwistor space, C4|4, but have a very direct in-

terpretation as volume forms in the Grassmannian of k-planes in C4+k, Gr(k, 4+k) or

“amplituhedron space”.

Essentially the integration variables and delta functions of the WLDs define coordinates

in amplituhedron space, and the measure gives the volume form written in terms of these

coordinates. All NkMHV WLDs have the general form, following from the description in

the previous subsection ∫
Ω4k(ai)δ

k×(4|4)(C(ai).Z) [WLD] (2.3)

where ai are the 4k coordinates (4 for each of the k propagators), Ω4k(ai) is the integration

measure (a 4k-form obtained as a product of terms of the form (2.2)) and δ4k|4k(C(ai).Z)

are the k delta functions, one for each propagator as in (2.1), written as a k×(n+1) matrix

C(ai) acting on the external supertwistors Z, themselves viewed as an (n+1)×(4|4) matrix.

– 5 –
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The corresponding volume form in Gr(k, k+4) is then simply the measure Ω4k(ai) where

the coordinates are now reinterpreted as co-ordinates in Gr(k, k+4) via the map

Ω(Y ) = Ω4k(ai) Y = C(ai).Z ∈ Gr(k, k + 4) (2.4)

and Z is here an (n+1) × (4 + k) matrix, the external Zs converted to 4 + k dimensional

bosonised supertwistors in the standard way described in [4].

We illustrate this using the two examples of figure 4. For the NMHV example diagram

of figure 4a we read off the volume form:∫
da db dc dd

abcd δ4|4 (aZ1+bZ2+cZ4+dZ5+Z∗) [WLD]

↓
Ω = da db dc dd

abcd Y = aZ1+bZ2+cZ4+dZ5+Z∗ ∈ C5 [Amplituhedron Volume form]

(2.5)

This volume form can be covariantised to be written in a coordinate independent way as

〈Y d4Y 〉〈Z1Z2Z4Z5Z∗〉4
〈Y Z1Z2Z4Z5〉〈Y Z2Z4Z5Z∗〉〈Y Z4Z5Z∗Z1〉〈Y Z5Z∗Z1Z2〉〈Y Z∗Z1Z2Z4〉

, (2.6)

where the angle brackets denote 5 × 5 determinants.

For the second N2MHV example diagram of figure 4b we get∫ da1 db1 dc1 dd1 df1 dg1 dh1
a1b1g1h1e1(c1f1−d1e1)d1 δ

(8|8) (C1 · Z) [WLD]

↓
Ω = da1 db1 dc1 dd1 df1 dg1 dh1

a1b1g1h1e1(c1f1−d1e1)d1 Y = C1.Z ∈ Gr(2, 6) [Amplituhedron Volume form]

(2.7)

where Z = (Z1,Z2, . . .Z6,Z∗)T are the external supertwistors (together with Z∗) viewed

as a 7× (4|4) matrix,

C1 =

(
a1 b1 c1 d1 0 0 1

0 0 e1 f1 g1 h1 1

)
∈ Gr(2, 7) (2.8)

and similarly Z = (Z1, . . . Z6, Z∗)
T are the external bosonised supertwistors (with Z∗)

viewed as a 7× 6 matrix.

3 NMHV amplituhedron from WLDs

Let us first consider the NMHV case. Here the WLDs do give a good tessellation of the

amplituhedron. Indeed WLDs were involved in the original polytope interpretation of

amplitudes [1, 2].

The twistor Wilson loop description of the n-point NMHV amplitude is simply a sum

over all diagrams consisting of a single propagator attached to any two edges of the polygon.

Written as a volume form in Gr(1, 5) (amplituhedron space) the WLD corresponding to a

propagator from edge [ZiZi+1] to edge [ZjZj+1] is (see (2.5))

Ω =
da db dc dd

abcd
Y = aZi+bZi+1+cZj+dZj+1+Z∗ ∈ C5 (3.1)

– 6 –



J
H
E
P
1
0
(
2
0
1
8
)
1
4
2

Zj Zj+1

Zk

Zi

Zi+1

Zj Zj+1

Zk

Zi

Zi+1

Figure 5. Spurious poles occur when the propagator end reaches the vertex. It is cancelled by

the adjacent diagram. Imposing that this cancellation has a corresponding geometric meaning as a

matching of spurious boundaries imposes a correlation between the sign choices for the geometric

image of the two diagrams.

which written in a coordinate independent form is (2.6)

〈Y d4Y 〉〈ZiZi+1ZjZj+1Z∗〉4
〈Y ZiZi+1ZjZj+1〉〈Y Zi+1ZjZj+1Z∗〉〈Y ZjZj+1Z∗Zi〉〈Y Zj+1Z∗ZiZi+1〉〈Y Z∗ZiZi+1Zj〉

.

(3.2)

So the full NMHV amplitude is thus

Ω = 〈Y d4Y 〉 (3.3)

×
∑
i,j

〈ZiZi+1ZjZj+1Z∗〉4

〈Y ZiZi+1ZjZj+1〉〈Y Zi+1ZjZj+1Z∗〉〈Y ZjZj+1Z∗Zi〉〈Y Zj+1Z∗ZiZi+1〉〈Y Z∗ZiZi+1Zj〉
.

It is clear from (3.1) that the spurious poles for each WLD arise when any one of

a, b, c, d→ 0.1 In terms of the WLD we view this as one end of the propagator approaching

a vertex. Then this spurious pole cancels with the spurious pole of a neighbouring diagram

where the end of the propagator approaches the same vertex from the other side see figure 5.

There is then a natural geometrical interpretation of (3.3) as a union of tiles, each

giving one of the above terms as its canonical form. This is⋃
i,j

{Y = aZi+bZi+1+cZj+dZj+1+Z∗ ; a, b, c, d ≥ 0} ⊂ Gr(1, 5) . (3.4)

Note here that we are using the same variables (a, b, c, d) as given to us by the WLDs to

describe the geometric region in question. However, whereas for the WLDs the integration

is over complex space, here the variables are restricted to a subspace of the real line.

If the Zi are convex (〈ZiZjZkZlZm〉 > 0 for all cyclically ordered Zi, Zj , Zk, Zl, Zm)

this provides a tessellation of the amplituhedron as defined in [4]. Indeed this is analogous

to the tessellation of the polygon in the toy model depicted in figure 2b. But note that

1A fifth pole occurs when all a, b, c, d→∞ simultaneously. This is a physical pole which does not cancel

in the sum over diagrams.
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this defines a good geometrical region (i.e. one without spurious boundaries) even for non

convex choices of external Zi.

At this point it is interesting to ask how unique this region is. Are there any other

ways of defining tiles whose canonical forms give the WLDs, and which would glue together

to yield a geometry without spurious boundaries?

As illustrated for the toy model in figure 1, any choice of signs for the variables a, b, c, d

in each tile would give a canonical form of the corresponding WLD. However if we choose

arbitrary sign choices for each diagram differently, the spurious boundaries will not glue

together properly, even though the spurious poles of the corresponding canonical forms

would cancel (recall figure 1b for an illustration of this sort of phenomenon for the toy

model). Let us then consider a particular tile corresponding to the WLD with a propagator

from edge [ZiZi+1] to edge [ZjZj+1]. The most general geometry giving this canonical

form (3.1), (3.2) is

{Y = asiZi+bsi+1Zi+1+csjZj+dsj+1Zj+1+Z∗ : a, b, c, d ≥ 0} (3.5)

where si, si+1, sj , sj+1 = ±1 are four arbitrary sign choices. The spurious poles are here

seen as spurious boundaries arising when any one of the four coordinates a, b, c, d → 0

(whereas a fifth, physical boundary occurs when they all simultaneously a, b, c, d → ∞).

Let us focus on the spurious boundary when a→ 0. This must match the boundary when

b → 0 of the adjacent diagram with propagator from edge [Zi+1Zi+2] to edge [ZjZj+1]

(which we also define with arbitrary signs s′i+1, s
′
i+2, s

′
j , s
′
j+1 = ±1):

{Y = asiZi+bsi+1Zi+1+csjZj+dsj+1Zj+1+Z∗ : a = 0, b, c, d ≥ 0}
=

{Y = as′i+1Zi+1+bs
′
i+2Zi+2+cs

′
jZj+ds

′
j+1Zj+1+Z∗ : b = 0, a, c, d ≥ 0}

(3.6)

This mimics the corresponding discussion of cancellation of spurious poles in figure 5 and

associated discussion. Except now the geometrical matching imposes consistency conditions

on the sign choices of the two tiles. For these spurious boundaries to match we clearly

require

si+1 = s′i+1, sj = s′j , sj+1 = s′j+1. (3.7)

Thus the signs associated with each vertex for different diagrams must be the same. Clearly

a similar mechanism applies for matching boundaries when c or d→ 0.

From this discussion one can see then that the most general geometry without spurious

boundaries is obtained by assigning a fixed sign, si = ±1, to each vertex Zi. So the region⋃
i,j

{Y = asiZi+bsi+1Zi+1+csjZj+dsj+1Zj+1+Z∗ ; a, b, c, d ≥ 0} ⊂ Gr(1, 5) (3.8)

is the most general geometry matching the WLDs and without spurious boundaries.2 This

is true for any choice of signs si. This is equivalent to simply considering the original

2One might think a more general possibility could be to have two sets of fixed signs, one for each end

of the propagator. However on starting from a diagram it is possible to eventually reach the same diagram

with the ends of the propagator reversed, by matching spurious boundaries with consecutive diagrams as

you go. This reversed propagator has to correspond to the same geometrical region as the original and so

the two sets of signs must in fact be equal to each other.

– 8 –
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amplituhedron with all positive signs but flipping the sign of the external Z’s. At most

one choice of signs for the Zs can correspond to a convex shape.

For completeness we should also consider a special case of the spurious poles/boundaries

cancellation which occurs when the propagator lies between next-to-adjacent edges, i.e. be-

tween edge [ZiZi+1] and edge [Zi+2Zi+3]. The spurious boundary when a = 0 of this

diagram at first sight looks like it is not present (propagators between adjacent edges are

not allowed; they give vanishing results). Instead it matches with d = 0 of the diagram

with propagator between edge [Zi+1Zi+2] and edge [Zi+3Zi+4]

{Y = asiZi+bsi+1Zi+1+csi+2Zi+2+dsi+3Zi+3+Z∗ ; a = 0, b, c, d ≥ 0}
=

{Y = asi+1Zi+1+bsi+2Zi+2+csi+3Zi+3+dsi+4Zi+4+Z∗ ; d = 0, a, b, c ≥ 0} .
(3.9)

We see that the spurious boundaries indeed match for this special case too even for the

general choice of signs.

4 N2MHV

Having considered NMHV WLDs and shown how to obtain a “good” geometry from them

(in many inequivalent ways) we now consider the same problem for higher MHV degree.

We will prove that beyond NMHV the WLDs cannot in fact be glued together to form a

geometry without spurious boundaries. To prove this, it is enough to show that there is

no set of sign choices for the coordinates that is consistent with the matching of spurious

boundaries. In order to illustrate the argument we focus on the case of n = 6 below,

however the argument applies to all n.

4.1 Cancellation of spurious poles in N2MHV WLDs

Before considering the geometric image as spurious boundaries we consider the algebraic

cancellation of spurious poles for N2MHV diagrams. The discussion of spurious poles con-

sidered in the previous section, arising when the ends of propagators approach vertices (see

figure 5) goes through in the same way for any MHV degree. However beyond NMHV a new

type of spurious pole occurs in the integrals of WLDs. Since now we have two or more prop-

agators, there exists the possibility that the ends of two different propagators can meet each

other on an edge. This produces a pole in the WLD. There is an interesting three-way can-

cellation of this type of spurious pole between three related diagrams (see [35, 39] for previ-

ous work also describing this mechanism). An example set of diagrams is shown in figure 6.

Using the rules from section 2.1, the integrals associated with the diagrams under

consideration are

I(D1) =

∫
da1 db1 dc1 dd1 de1 df1 dg1 dh1
a1b1g1h1e1(c1f1 − d1e1)d1

δ(8|8) (C1 · Z) (4.1)

I(D2) =

∫
da2 db2 dc2 dd2 de2 df2 dg2 dh2
c2d2g2h2b2(a2f2 − b2e2)e2

δ(8|8) (C2 · Z) (4.2)

and

I(D3) =

∫
da3 db3 dc3 dd3 de3 df3 dg3 dh3
a3b3e3f3c3(d3g3 − h3c3)h3

δ(8|8) (C3 · Z) . (4.3)

– 9 –



J
H
E
P
1
0
(
2
0
1
8
)
1
4
2

D2

Z1 Z2

Z3

Z4Z5
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Z4Z5

Z6

D1

Z1 Z2

Z3

Z4Z5

Z6

Figure 6. Three diagrams each having a new type of spurious pole occurring when the propagator

ends touch. In the sum of the three diagrams however this pole cancels. Note that although this

is drawn at six points for definiteness the cancellation only depends on the three sides taking part

and can be directly repeated at n points.

The C matrices in the above integrals are given by

C1 =

(
a1 b1 c1 d1 0 0 1

0 0 e1 f1 g1 h1 1

)
, (4.4)

C2 =

(
a2 b2 0 0 c2 d2 1

e2 f2 g2 h2 0 0 1

)
, (4.5)

C3 =

(
a3 b3 0 0 c3 d3 1

0 0 e3 f3 g3 h3 1

)
. (4.6)

Each expression clearly has a pole at the point corresponding to the propagator ends

coinciding (e.g. c1f1 = d1e1 for the first case for example).

The claim is that in the sum of the diagrams, the residues at these poles precisely cancel

Res
c1f1=d1e1

I(D1) + Res
a2f2=b2e2

I(D2) + Res
d3g3=h3c3

I(D3) = 0. (4.7)

To see this it is useful to change variables. Using I(D1) as an example, make the

following change of variables from (e1, f1) to (α, ε1): e1 = αc1 and f1 = αd1 + ε1 so that

the spurious pole is at ε1 = 0. Substituting these in we have

Res
ε1=0
I(D1) = Res

ε1=0

∫
da1 db1 dc1 dd1 dg1 dh1 dα dε1

a1b1c1d1g1h1αε1
δ(8|8) (C1 · Z)

=

∫
da1 db1 dc1 dd1 dg1 dh1 dα

a1b1c1d1g1h1α
δ(8|8) (C1|ε1=0 · Z) (4.8)

with

C1 =

(
a1 b1 c1 d1 0 0 1

0 0 αc1 αd1 + ε1 g1 h1 1

)
. (4.9)

The residues of the other two integrals are dealt with in a similar manner. Changing

coordinates from (e2, f2) to β, ε2 and from (g3, h3) to γ, ε3 with e2 = βa2, f2 = βb2 + ε2

– 10 –
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and g3 = γc3 + ε3, h3 = γd3 the measure then has a simple dlog form in all variables (just

as in (4.8). Taking the residue at εi → 0 then yields

C2|ε2=0 =

(
a2 b2 0 0 c2 d2 1

βa2 βb2 g2 h2 0 0 1

)
, (4.10)

C3|ε3=0 =

(
a3 b3 0 0 c3 d3 1

0 0 e3 f3 γc3 γd3 1

)
, (4.11)

and the remaining measure being simply the dlog of all variables as in (4.8).

In order to compare the three Ci ∈ Gr(2, 7), a change of basis must be introduced for

C2 and C3. Utilising the GL(2) invariance, we define

C ′2 =

(
0 1
−β
1−β

1
1−β

)
C2 (4.12)

and

C ′3 =

(
−γ
1−γ

1
1−γ

0 1

)
C3. (4.13)

The matrices C ′2 and C ′3 are now of the same form as C1, meaning all three matrices have

zeros and ones in the same entries and variables in all of the others:

C ′2 =

(
βa2 βb2 g2 h2 0 0 1

0 0 g2
1−β

h2
1−β

−βc2
1−β

−βd2
1−β 1

)
, (4.14)

C ′3 =

(
−γa3
1−γ

−γb3
1−γ

e3
1−γ

f3
1−γ 0 0 1

0 0 e3 f3 γc3 γd3 1

)
. (4.15)

Each entry of these two matrices can now be compared directly to the equivalent entry in

C1. We then change variables again from a2, . . . , h2 and a3, . . . , f3 to a1, . . . , h1 as dictated

by matching the entries of C ′2, C
′
3 to those of C1. In particular we replace β = −(1−α)

α and

γ = 1 − α. Substituting these into the residues of I(D2) and I(D3), and taking the sum

of all three integrals gives∫
da1 db1 dc1 dd1dg1 dh1 dα

a1b1c1d1g1h1

(
1

α
+

1

1− α −
1

α(1− α)

)
δ(8|8) (C1 · Z) = 0, (4.16)

therefore (4.7) is indeed satisfied.

We now wish to interpret this calculation geometrically. This cancellation does indeed

have a geometric interpretation, as a three-way locally pairwise matching of the correspond-

ing spurious boundaries. However as we will show there is no way to assign geometries to

be consistent with the three way cancellation described above, as well as the other spurious

pole cancellations.

– 11 –
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4.2 Spurious boundary matching

We wish to associate a geometrical subspace of Gr(2, 6) for each N2MHV WLD such that

in the union of all diagrams there are no remaining spurious boundaries. For this to be the

case we require that for every Y lying inside a spurious boundary of one diagram there must

be one other diagram for which Y is also inside a spurious boundary. If this happens we say

that locally the spurious boundaries match pairwise.3 Note that the pairwise matching of

spurious boundaries need only occur locally: indeed we will shortly consider three diagrams

meeting at a single boundary, nevertheless at any specific point of the boundary there can

be only two matching diagrams meeting there. It is straightforward to read off a geometrical

region whose canonical form gives the WLD volume form. In the coordinates we used in

the previous section we have a dlog form for the measure (see for example (4.8)). We expect

therefore that the corresponding geometry corresponds to simply taking these coordinates,

making them real and assigning signs to them. So for example, the diagram in figure 6a,

using the coordinates chosen in (4.8), corresponds to a dlog volume form (see the first line

of (4.8)) and hence we expect it to be the canonical form of the region

{Y = C1.Z : a1>0, b1>0, d1>0, e1>0, g1>0, h1>0, α > 0, ε1 > 0}
=

{Y = C1.Z : a1>0, b1>0, c1 > 0, d1>0, e1>0, g1>0, h1>0, f1c1 > e1d1}
(4.17)

with C1 given in (4.9). But this is not unique, other sign choices for the variables can be

chosen to give another region with the same canonical form.4 So the challenge is to choose

consistent signs so that all spurious boundaries locally match pairwise.

We begin by looking at the geometric interpretation of the three way cancellation

described in the previous section to give some insight. In order to do this, compare the

rotated matrices in the appropriate limit corresponding to the spurious boundary where

two propagator ends meet (described in the previous subsection)

C1 =

(
a1 b1 c1 d1 0 0 1

0 0 αc1 αd1 g1 h1 1

)
(4.18)

C ′2 =

(
βa2 βb2 g2 h2 0 0 1

0 0 g2
1−β

h2
1−β

−βc2
1−β

−βd2
1−β 1

)
(4.19)

C ′3 =

(
−γa3
1−γ

−γb3
1−γ

e3
1−γ

f3
1−γ 0 0 1

0 0 e3 f3 γc3 γd3 1

)
. (4.20)

3Although local pairwise matching may not be a sufficient condition to ensure a good geometry with-

out spurious boundaries (one also needs to think about the orientation of the spurious boundaries) it is

nevertheless a necessary condition.
4There are eight allowed possibilities for the parameters c1, d1, e1, f1 associated with the propagator ends

which are on the same edge. These correspond to choosing signs s1, s2 for d1 and e1 (four different cases).

We then require s1s2(c1f1−e1d1 > 0) which splits into two disconnected regions which can be distinguished

by the signs of c1 or f1. This gives two possibilities for each of the four cases, or eight cases in total. Very

nicely, these cases can also be read off from the parametrisation of the WLD if we think of the parameters

as real instead of complex. In order for the ends not to cross we require either 0 < d1/c1 < f1/e1 or

0 < e1/f1 < c1/d1. Then choosing signs for d1, e1 gives the same eight cases as above.

– 12 –
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α(β)

α(γ)

0

1∞

α

0

1∞

α α(β)

α(γ)

(a) (b)

Figure 7. The two possibilities for three way boundary matching. We plot the range of α on a

circle from [−∞,∞] passing through 0 and 1. Black is the range of α in diagram D1, in red that of

α(β) in D2 and in blue the range of α(γ) in D3. We see there is always a local pairwise matching

of the three diagrams in both cases. In Case 1 D2 and D3 each only overlap with D1 and not with

each other. For Case 2 all diagrams overlap the other two.

At points where the regions touch we thus have α = 1
1−β and α = 1− γ. We now need to

choose signs (positive or negative) for the variables α, β and γ such that α, β(α) and γ(α)

locally share boundaries pairwise. Two different cases arise from this consideration:

1. One of the variables is positive and the other two negative. Without loss of generality

we consider α > 0, β, γ < 0.

2. α, β and γ are all positive.

The two cases are illustrated in figure 7.

4.2.1 Case 1: α > 0, β < 0 and γ < 0

Looking at figure 7a, C1 and C ′2 should overlap when 0 < α < 1 whereas C1 and C ′3 should

overlap when 1 < α <∞.

Now at the points where the regions overlap we also need all other variables to match.

In particular this fixes the signs of the variables for the second two diagrams in terms of

the first. Defining

sgn(a1) = s1, sgn(b1) = s2, sgn(c1) = s3,

sgn(d1) = s4, sgn(g1) = s5, sgn(h1) = s6 (4.21)

Then by comparing (4.19), (4.20) to (4.18) and undoing the GL(2) transformation we must

have the following signs in each entry

sgn(C1) =

(
s1 s2 s3 s4 0 0 1

0 0 s3 s4 s5 s6 1

)
(4.22)

sgn(C2) =

(
−s1 −s2 0 0 s5 s6 1

s1 s2 s3 s4 0 0 1

)
(4.23)

sgn(C3) =

(
s1 s2 0 0 −s5 −s6 1

0 0 s3 s4 s5 s6 1

)
. (4.24)
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Given a set of signs for C1, the three way cancellation fixes the signs of C2 and C3. Although

these signs are derived by looking at their values at the spurious boundary, crucially the

signs remain unchanged inside the region even on moving away from the boundary.5

But now the sign choices for diagrams D1, D2, D3 (forced on us by the three way

cancellation Case 1) can be seen to be inconsistent with the consecutive matching of the

other type of spurious boundary where propagator ends approach vertices. The problem

comes down to the difference in signs in the top row of (4.23) with those of (4.24).

Now, consider starting with diagram D2 and moving the propagator defined by the sec-

ond line in C2 around clockwise until the diagram D3 is reached. At each vertex we match

spurious boundaries, meaning the signs of the top row (corresponding to the propagator

left fixed) must remain the same. Under this sequence of moves

sgn(C2)→
(
−s1 −s2 0 0 s5 s6 1

0 0 s′3 s
′
4 s
′
5 s
′
6 1

)
, (4.25)

where the prime variables represent new signs not fixed in this process.6

Now comparing this new matrix to C3 (4.24) one can see immediately that the signs on

the top row are different, regardless of what the bottom row becomes. Therefore, the signs

that are found from the matching of the three-way spurious boundary are not consistent

with the matching of boundaries obtained by following the propagators round the Wilson

Loop polygon. The WLDs cannot be glued together to form a geometry without spurious

boundaries with this choice of α, β and γ.

Note this argument has been illustrated for at points but clearly doesn’t depend in

any key way on the number of points.

4.2.2 Case 2: α, β, γ > 0

We then consider the second possibility for having local pairwise matching boundaries

where α, β, γ > 0.

Looking at figure 7b, C1 and C ′2 should overlap when 1 < α < ∞ and 0 < β < 1 and

C1 and C ′3 should overlap when 0 < α < 1 and 0 < γ < 1. Now there is an additional

overlap between C ′2 and C ′3 when 1 < β <∞ and 1 < γ <∞.

At these overlaps the entries of the rotated matrices (4.18)–(4.20) must be equal.

Defining the signs of the C1 variables as previously (4.21) this means the signs of the

entries of C ′2 and C ′3, must be the same as those of C1 in the region where they overlap

with C1 (i.e. 0 < β < 1, 0 < γ < 1). However when β, γ > 1 some of the entries changes

sign due their dependence on β or γ. Thus the signs of the entries of the rotated C matrices

5The only possible exception to this would be those entries depending on εi. For example the entry

αd1 + ε1 in (4.9) if ε1 were to have a different sign to αd1. This corresponds to one of the disallowed

possibilities (see footnote 4). In any case all entries of any C matrix do need to have definite signs to match

spurious boundaries of nearby diagrams where the propagators end on different edges.
6In fact we require s′3 = s3 and s′4 = s4 by the same argument as for the NMHV case: consecutive

spurious boundaries implies fixed signs per vertex for a propagator end, see discussion around (3.8).
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are as follows:

sgn(C1) :

(
s1 s2 s3 s4 0 0 1

0 0 s3 s4 s5 s6 1

)
0<α<∞

(4.26)

sgn(C ′2) :

(
s1 s2 s3 s4 0 0 1

0 0 s3 s4 s5 s6 1

)
0<β<1

,

(
s1 s2 s3 s4 0 0 1

0 0 −s3 −s4 −s5 −s6 1

)
1<β<∞

(4.27)

sgn(C ′3) :

(
s1 s2 s3 s4 0 0 1

0 0 s3 s4 s5 s6 1

)
0<γ<1

,

(
−s1 −s2 −s3 −s4 0 0 1

0 0 s3 s4 s5 s6 1

)
1<γ<∞

. (4.28)

But now there is a clear problem. Looking at the matrices for 1 < β <∞ and 1 < γ <∞,

it can be seen they do not match as they should. Matching diagram D2 with D1 correctly

and D3 with D1 correctly fixes the signs of D2, D3 in a way incompatible with D2 and

D3 matching.

Thus there is in fact no valid three way boundary matching for this case.

5 Conclusion

We have shown that surprisingly it is not possible to consistently assign a subspace of

Gr(k, k + 4) (amplituhedron space) to each WLD consistent with its canonical form and

local pairwise matching of all spurious boundaries. In other words WLDs can not be used to

tessellate the amplituhedron or any other shape without spurious boundaries. This despite

their promising properties: WLDs do have natural (but non-unique) interpretations as

subspaces in Gr(k, k+4) and they do sum up to give the amplitude. The situation is similar

to the example in figure 1b where we see an attempted tessellation of the quadrilateral:

although the canonical forms of the two triangles sum to the corresponding canonical forms

of the quadrilateral, this is clearly not a tessellation of the quadrilateral and there are left

over unmatched spurious boundaries. Of course for the quadrilateral we could choose a

more sensible tessellation with matched spurious boundaries, for WLDs we have shown

there is no such sensible tessellation possible.

Note that we have shown this for the N2MHV case and illustrated for six points only.

We have already mentioned that the proof does not depend on the number of points. It

is also clear that the proof goes through in the same way for higher MHV degree: just

add another propagator somewhere away from the three way cancellation and recycle the

same argument given here. We have also here focussed on tree level but it would be very

surprising if moving to loop level improves the situation.

One might hope that although the WLDs do not tessellate the amplituhedron they

may instead give a nice tessellation of the squared amplituhedron [19, 20] which has a

more direct definition and for which there are 2k copies of most diagrams, which could

conceivably provide a way out of the problems found here. However this also seems not to

be the case (although the proof is more involved and we omit it here).

We should emphasise that despite the fact that the WLDs can not provide a geometric

tessellation of the amplituhedron, they do still give a very concrete and suggestive “tessella-

tion” at the level of its canonical form. It seems likely that this property generalises for more

general positive Grassmannians and may prove useful in their further mathematical study.
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