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Abstract—We consider the optimization of the downlink
transmission for simultaneous wireless information and power
transfer (SWIPT) in multi-cell massive multiple-input multiple-
output (MIMO) systems. The system comprises a two-antenna
active energy harvester (EH) which is capable of legitimately
harvesting energy via one antenna, and illegitimately and actively
eavesdropping the signal intended for certain information user(s)
(IU(s)) via the other antenna for the purpose of information
decoding or energy harvesting. Thereby, the considered problems
are: 1) when the EH eavesdrops for the purpose of information
decoding, i.e., the EH is information-untrusted by the base
station (BS), we propose to maximize the worst-case secrecy rate
under a constraint on a worst-case average harvested energy
(AHE); 2) when the EH eavesdrops one or multiple IUs for
energy harvesting, i.e., the EH is information-trusted by the
BS, we propose to maximize the sum-rate of the IUs under a
constraint on a worst-case AHE by the EH. We derive asymptotic
expressions for a lower bound on ergodic secrecy rate (ESR) and
AHE in large system limit. Then, we use these results to optimize
the power allocation for downlink SWIPT transmissions which
include: information signals, artificial noise (AN) and energy
signal towards the IUs, legitimate and illegitimate antennas of
the EH, respectively. Simulation results show the accuracy of
our asymptotic analysis. We show that there is a performance
tradeoff between the worst-case ESR and the worst-case AHE.
In addition, the impact of the combined legitimate/illegitimate
operation of the EH on the SWIPT performance is evaluated.

Index Terms—SWIPT, massive MIMO, active eavesdropping,
legitimate and illegitimate energy harvesting, physical-layer se-
curity, secrecy rate, beamforming, artificial noise

I. INTRODUCTION

In the last few years, with the emerging standardizations of

the Internet of Things (IoT), far-field wireless power transfer

(WPT) has been of significant importance as a source of

energy for remote energy constrained wireless devices such as

those related to IoT technologies and wireless sensor networks

(WSNs). Far-field WPT in multi-user systems always intro-

duces information security problems as a result of the nature of

the broadcast channel. An example of such systems is referred

to in the literature as simultaneous wireless information and

power transfer (SWIPT) systems in which the transmitter

(base station (BS)) supports multiple energy harvesting users

(EHs) and multiple information users (IUs). Such systems are

expected to show degraded secrecy performance particularly

when the EHs actively attack the channel estimation phase for
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the purpose of information decoding. One of the active eaves-

dropping attacks is known as the pilot spoofing attack [1], in

which during the uplink channel estimation, the eavesdropper

(EV) transmits a copy of the training sequence of a certain

IU such that the BS estimates the uplink composite channel

coefficients of the IU-EV pair of users, and consequently part

of the downlink signal intended for the IU will be directed (via

downlink beamforming) toward the EV. A pilot spoofing attack

is similar to pilot contamination in multi-cell massive multiple-

input multiple-output (MIMO) systems [2] except that in the

spoofing attack the EV can intentionally control its received

leakage information power by controlling its active training

power.

Throughout the literature, to the best of the authors’ knowl-

edge, the optimized transmission for a SWIPT system with

pilot spoofing attack has not been considered. However, there

has been research that explores new signal processing methods

to enhance the information-secrecy in the presence of a pilot

spoofing attack [1], [3]–[9]. The recently developed signal

processing algorithms consider recovering network security

either by: 1) improving the processing of the signal (which

might include the information and/or artificial noise (AN))

transmission [1], [3]–[7]; 2) or by improving both the pro-

cessing of the signal and the training sequence transmission

[8], [9]. The work in [8] considered a MISO setup with an IU-

(active EV) pair. Secure transmission is achieved via a two-

way training-based scheme in which the transmitter estimates

both the IU and the EV channels, then feeds forward the IU

with its uplink channel estimate followed by the downlink

training sequence. Therefore, the IU can calculate another

estimate of its own channel, which will be fed back to the

transmitter. Based on the channel estimates available, the

transmitter can obtain a better channel estimate by using the

uplink and the feedback estimates. This was exploited to

improve the optimized downlink beamforming with a secrecy

rate objective. The same system setup was considered in [3],

however, the EV can decode the information signal and jam the

IU in full-duplex mode using two different antenna subsets. In

the same way, the transmitter tackles that by jamming the EV

using a subset of its antennas, while the remaining antennas

are used for information signal transmission. The optimal

ratio of transmit/receive antennas was derived to maximize

the achievable secrecy degrees of freedom.

WPT and SWIPT with passive EV(s) have been considered

for massive MISO/MIMO systems [10]–[17]. The work in

[12] considered SWIPT with no secrecy aspect for a massive

MIMO system. The harvested energy of the IUs will be

used next for uplink training and decoding information si-



2

multaneously via splitting the received power. The considered

problem was to jointly optimize two sets of variables, power-

splitting ratios and the power allocation per IU, to maximize

the minimum achievable rate of all the IUs. The variables

were optimized alternately. The authors in [15] studied the

effect of phase noise (at the BS and user antennas) on the

IU’s information rate and EH’s harvested energy in a massive

MIMO system and showed that the secrecy rate decreases as

phase noise variance increases, while the harvested energy by

the EH is not affected. WPT has been considered in [16]–[18].

In [18], the authors demonstrated the impact of having a large

transmit antenna array on the harvested energy by a single

antenna EH. For matched filter (MF) transmit beamforming,

it was proven that any loss in the harvested energy at the EH

due to the decrease in the downlink transmit power can be

compensated by increasing the number of transmit antennas.

We consider in this paper SWIPT for massive multi-cell

MIMO system that comprises multiple single antenna IUs

and dual antennas EH which can act as legitimate and active-

illegitimate. The EH (located at the reference cell) uses one of

its antennas (legitimate antenna) to harvest energy legitimately,

while the other antenna (eavesdropping antenna) is used to

eavesdrop the information signal of one or multiple IUs. This

requires that the EH splits its available channel estimation

training power between its own orthogonal training sequence

sent from the legitimate antenna, and a copy of the training

sequence(s) of the attacked IU(s) sent from the eavesdropping

antenna. Therefore, the estimated channel of the attacked IU(s)

will be correlated with the eavesdropping antenna channel,

consequently, this will strengthen the received information

signal power by the active-illegitimate EH.

The main contributions of our work are as follows: 1)

We provide closed form expressions (in terms of statistical

channel state information (SCSI)) for ESR and average har-

vested energy (AHE) in large system limit. Such asymptotic

analysis is challenging, particularly for a system suffering

from instantaneous dependencies between the user’s channel

vectors and the beamforming vectors in one cell and across

different cells due to pilot contamination and active eavesdrop-

ping; 2) To tackle the excessive active eavesdropping, unlike

conventional AN beamforming [4], [19], we introduce a new

design of AN signal such that its jamming effect is directly

proportional to the training power invested by the illegitimate

active EH, i.e., the larger the eavesdropping training power,

the larger the jamming received power at the eavesdropping

antenna of the EH; 3) We design an algorithm to optimize

the downlink power allocation among the information, AN

and energy transmit signal vectors toward the IUs, legitimate

and eavesdropping antenna of the EH, respectively. For the

information-untrusted EH case, the power allocation aims to

maximize the worst-case ESR under a constraint on the worst-

case AHE by the EH, while for the information-trusted EH, the

considered problem is to maximize the IUs’ ergodic sum-rate

under a constraint on a worst-case AHE; 4) More importantly,

we introduce a new concept of illegitimate energy harvesting

which is based on active eavesdropping for the purpose of

energy harvesting. The illegitimate EH can maximize its

harvested energy by optimally splitting its training power

between its own legitimate training sequence and other IUs’

training sequences; 5) We provide complexity analysis of the

proposed algorithms.

Related Work: The concept of secure SWIPT has been

studied for conventional MIMO/MISO systems in [20]–[23].

In [22], the authors proposed AN-aided SWIPT in a MISO

system comprising a single IU and multiple untrusted EHs.

The considered problem was the maximization of the worst-

case secrecy rate of the IU while maintaining a minimum

level of individual harvested energy by each EH. The design

in [22] was extended in [23] to consider sum secrecy rate

maximization for multiple IUs. Latterly, the secure SWIPT

design was extended to massive MIMO systems in [13]–[15].

In [13], the authors considered secrecy and energy efficiencies

in massive MIMO enabled heterogeneous cloud radio access

network (C-RAN). The power gain of the channels from the

remote radio heads (RRHs) to the IU and the passive EV

are known. The contribution of [14] was to optimize the

downlink transmission covariance matrix of the IU in a wire-

tap massive MIMO system. The ergodic secrecy rate of the

IU under a constraint on the harvested energy by the passive

EH was considered. In [15], the authors studied the secrecy

performance of SWIPT massive MIMO system when the

uplink training is affected by phase noise. The secure SWIPT

in the previous works assumed no active eavesdropping. To

the best of the authors’ knowledge, optimizing the downlink

transmission in an actively wire-taped massive MIMO system

has not been studied before. In particular, we assume that

the EH employs two antennas, the first antenna is used to

illegitimately eavesdrop information signal, while the second

antenna is used to legitimately harvest energy. The EH can

control splitting the transmit training power between the

legitimate and illegitimate antennas.

The remainder of this paper is organized as follows. Section

II presents the system model including the channel estimation,

downlink transmission and the derivation of the worst-case

ESR. Section III provides some random matrix theory results

and the large system analysis for the worst-case ESR and

the AHE. In Section IV, we present the power allocation

optimization for both information-untrusted and information-

trusted EH cases. In Section V, we provide the complexity

analysis of the proposed algorithms. Simulation results and

evaluations are given in Section VI. Finally, we conclude the

paper in Section VII.

Notation: Vectors are denoted by boldface lower case letters

and matrices by boldface upper case letters. IN , 1M and

0m×n denote the N×N identity matrix, M×1 vector with all

entries one and the m× n zero matrix, respectively. diag(S)
is a column vector whose entries are the diagonal entries of

matrix S. S ≻ 0 indicates that S is a positive definite matrix.

ρ(S) gives the largest eigenvalue of matrix S. The operators

(·)T , (·)H , tr(·), log2(·), | · | and ‖ · ‖ denote the transpose,

conjugate transpose, trace of a matrix, logarithm to base 2, the

absolute value of scalars and the Euclidean norm, respectively.

‖[x1, ..., xM ]‖1 =
∑M

i=1 |xi|. C
m×n denotes the set of all

complex m× n matrices. x ∼ CN (0,Σ) denotes a circularly

symmetric complex Gaussian random vector x ∈ C
N×1 with

zero mean and covariance matrix Σ. cov(x, y) and var(x)
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denote the covariance between the random variables x and

y, and the variance of x, respectively. {an} denotes a set

of all vectors indexed by n. {am,n}m denotes a set of all

scalars indexed by m. [f(N)]N→∞ = a and f(N)
N→∞→ a

are equivalent to limN→∞ f(N) = a and can be used

interchangeably. [x]+ = max (x, 0).

II. SYSTEM MODEL

We consider the downlink of a multi-cell massive MIMO

system with a cell cluster of size L. Each cell consists of

a BS equipped with a large number of antennas N of order

of hundreds, M single antenna IUs interested in information

decoding, {IUl,i}, i = 1, 2, ...,M , where l ∈ {1, ..., L} is

the cell index. We assume that an active EH, equipped with

two antennas is located in the reference cell (indexed l = 1),

where one antenna is used to harvest energy legitimately,

while the other antenna is used for one of the following

two purposes: 1) to illegitimately and actively eavesdrop and

decode the information signal intended for a certain IU, IU1,i,

i ∈ {1, 2, ...,M}, and in this case the EH is considered

as information-untrusted by the BS; 2) to illegitimately and

actively harvest energy from the information signal intended

for one or multiple IUs, and in this case the EH is considered

as information-trusted by the BS. For a massive MIMO

system, the assumption of single-antenna IU is reasonable

since the large dimensionality of transmit antennas can provide

a favorable propagation channel and the required diversity gain

at a simple, cheap, single-antenna IU’s device [24]. In addition,

the favorable propagation channels can perfectly eliminate

inter-user interference, therefore, the achievable capacity by

M single antenna IUs is equivalent to that of one M -antenna

IU [24]. The design of illegitimate spy devices (such as

our considered EH) does not have to be subject to accepted

standards and such devices can have an exceptional design

to ultimately achieve their desired goals. Such exceptional

designs for spy and malicious attack devices have been widely

adopted in the literature [3].

During the uplink training phase, the EH transmits a copy

of the training sequence(s) of the IU(s) under attack, {IU1,m},

{m} = M ⊆ {1, ...,M}, via its eavesdropping antenna

such that the BS estimates the uplink composite channel

coefficients — which are equivalent to the downlink channel

coefficients based on channel reciprocity in the time division

duplexing mode, TDD — of both {IU1,m} channel(s) and the

eavesdropping antenna channel of the EH. Consequently, part

of the downlink signal intended for the IU1,i will be directed

(beamformed) toward the EH.

Let hi,l,p = R
1

2

i,l,ph̃i,l,p denote the uplink channel vector

between the ith IU in the lth cell, IUl,i, and the pth cell’s BS

where h̃i,l,p ∼ CN (0, IN ) and Ri,l,p ≻ 0 is a Hermitian

Toeplitz matrix representing the spatial correlation between the

entries of hi,l,p. gEp
= R

1

2

1,pg̃Ep
denotes the uplink channel

vector between eavesdropping (illegitimate) antenna of the EH

and the pth cell’s BS, g̃Ep
∼ CN (0, IN ) and R1,p ≻ 0

denotes the spatial correlation between the entries of gEp
.

gp = R
1

2

1,pg̃p denotes the uplink channel vector between

the legitimate antenna of the EH and the pth cell’s BS1,

g̃p ∼ CN (0, IN ).

The variations of the entries of h̃i,l,p, g̃Ep
and g̃p give

a measure of small-fading coefficients, while path loss and

correlation between BS antenna elements are captured by

Ri,l,p and Rl,p. We assume that the variance of the channel

coefficient between the user and any of its local BS antennas

is γ1, and γ2 < γ1 to any of the neighbouring BS antennas.

Therefore, with the assumption that the EH and the IUs

experience statistically equal path loss, the scaling of the

correlation matrices satisfies

diag (Ri,l,p) , diag (Rl,p) =

{

γ11N , l = p
γ21N , l 6= p

. (1)

A. Uplink Channel Estimation Under Active Attack

The user channels exhibit block fading, i.e., the channels

remain constant over a time block and change independently

from one block to another. Over each block, the transmission

occurs across two time slots for uplink training sequence

transmission and downlink signal transmission. The relative

division between the two time slots is not considered in this

paper, however, we assume a unit time slot for downlink

transmission as in [14], [22]. During the uplink training phase,

a pilot training is sent from each IU, {IUl,i}, with an average

power PI . The EH sends a copy of training sequence(s) of

the attacked IU(s) via its eavesdropping antenna using part of

its total average power φPE , 0 < φ < 1, while the remaining

training power (1−φ)PE is used for transmitting the legitimate

energy harvesting training sequence via the second antenna.

The training sequences of the IUs and legitimate EH in a

single cell are assumed to be orthogonal, but since the channel

coherence time is limited, the training sequences are reused

across all cells.

The signal at the pth BS received across τ training trans-

missions is

Y p =
L
∑

l=1

M
∑

i=1

√

PIhi,l,pψ
T
i + (1− φ)PEgpψ

T
E+

∑

j∈M

√

φPE

|M| gEp
ψT

j +Np,

(2)

where Np ∈ C
N×τ is the additive noise matrix with entries

following the distribution CN (0, σ2
n). M is the set of IUs

eavesdropped by the EH and |M| is the cardinality of M.

ψi ∈ C
τ×1 and ψE ∈ C

τ×1 are the training sequences of

IUl,i, ∀l, and the legitimate antenna of the EH, respectively.

ψH
i ψj 6=i, ψH

i ψE = 0; and ψH
i ψi, ψH

EψE = τ . The

minimum mean square error (MMSE) estimate of hi,p,p, ĥi,p,p

is given as

1Since the separation between the legitimate and illegitimate antennas of the
EH is much smaller than the distance from the EH to the BS’s antenna array
and local scatterers, the angles of arrivals of the signals from both antennas at
the BS’s antenna array are identical. This implies that the channel vectors gp

and gE,p experience the same spatial correlation between their entries [25],
[26].
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ĥi,p,p = Cp,i yp,i, (3a)

yp,i = τ
√
PI

L
∑

l=1

hi,l,p + ατ

√

φPE

|M| gEp
+Npψ

∗

Ii
, (3b)

Cp,i =
√
PIRi,p,p

(

τPI

L
∑

l=1

Ri,l,p +
ατφPE

|M| R1,p + σ2
nIN

)

−1

,

(3c)

where yp,i ∈ C
N×1 is the projection of Y p onto ψIi

, Cp,i ∈
C

N×N is the MMSE estimation matrix, α = 1 for i ∈ M
and α = 0 for i /∈ M. The covariance matrix of ĥi,p,p is

R̂Ii,p,p = E[ĥi,p,pĥ
H

i,p,p] = τ
√
PICp,i Ri,p,p. Similarly, for

the case of information-untrusted EH in which one IU, IU1,i, is

being attacked for information eavesdropping (i.e., |M| = 1),

the MMSE estimate of gE1
, ĝE1,i

, is given as

ĝE1,i
= Ci y1,i, (4a)

Ci =
√

φPER1,1

(

τPI

L
∑

l=1

Ri,l,p + τφPER1,1 + σ2
nIN

)−1

.

(4b)

The covariance matrix of ĝE1,i
is

R̂i = E[ĝE1,i
ĝHE1,i

] = τ
√
PECi R1,1. The estimation

of gp is not required since, as we will see later, we use

retrodirective beamforming [15]. The MMSE estimation

results in (3) and (4) follows from the standard linear

estimation theory [27], [28].

Remark 1: We assume that the reference cell’s BS blames

the information-untrusted EH for the active eavesdropping

attack. The BS has the ability to calculate the eavesdropping

training power by using the following lemma.

Lemma 1: Having N → ∞, any illegitimate active training

power associated with the training sequence ψIi
, can be

detected and calculated as

yH
1,iy1,i − τ2PI

L
∑

t=1
tr (Ri,t,1) +Nτσ2

n

τ2tr (R1,1)

N→∞→
{

φPE

|M| , i ∈ M
0, i /∈ M ,

(5)

where all the scalars, vector and matrices in (5) are determin-

istic at the BS.

Proof: See Appendix A.

Alternatively, the detection of the active eavesdropper

is possible by averaging the difference covariance ma-

trix y1,iy
H
1,i − R̄i over some data blocks, where R̄i =

(

τ2PI

∑L

l=1Ri,l,1 + τσ2
nIN

)

and it is deterministic at the

BS [4]. In addition, we assume a perfect knowledge of the

SCSIs, {Ri,l,1} and R1,1, at the reference cell’s BS, which

is reasonable, particularly for the massive antenna array at the

BS [29].

B. Downlink Transmission

The pth BS employs transmit MF beamforming to direct

the information signal vector
∑M

i=1

√

Pp,i wi,p xi,p, toward

its local IUs, where Pp,i is the power allocated to IUp,i and

wi,p = ĥ
∗
i,p,p/‖ĥi,p,p‖, (6)

is a unit norm information beamforming vector for IUp,i

and xi,p is the information symbol intended for IUp,i, with

xi,p ∼ CN (0, 1). The information symbols are assumed to

be mutually independent. The reference BS directs the energy

signal vector w toward the legitimate antenna of the EH. The

energy signal is designed using retrodirective beamforming

[17] in which the reference BS retransmits an amplified

conjugated version of the received energy training sequence,

such that w =
√
Py∗/‖y‖, where

y = Y 1ψ
∗
E = τ

√

(1− φ)PE g1 +N1ψ
∗
E . (7)

For the information-untrusted EH case, the BS facilitates

secure information decoding at the attacked IU1,i and energy

harvesting at the EH simultaneously by directing the AN signal

vector
√
Pnwni

z toward the EH

wni
= ĝ∗E1,i

/‖ĝE1,i
‖, (8)

where z ∼ CN (0, 1) is the AN symbol and Pn is the

power allocated to wni
. With the new design approach for

the AN beamformer in (8), it can be noticed that the re-

ceived AN signal at the eavesdropping antenna of the EH,

Pn|gTE1
ĝ
∗
E1,i

|2/‖ĝE1,i
‖2, is directly proportional to the eaves-

dropping training power, φPE (since ĝE1,i
∝ √

φPEgE1
).

Therefore, wni
is able to tackle any excessive active eaves-

dropping, i.e., the larger the eavesdropping training power, the

larger the jamming received power by the EH.

Given that IU1,i is the IU being attacked, then the received

signals at IU1,i, yIi ; the legitimate antenna of the EH, y1i ;
and at the eavesdropping antenna of the EH, yEi

, are

yIi =

L
∑

p=1

M
∑

j=1

√

Pp,j h
T
i,1,p wj,p xj,p +

√
P hT

i,1,1 w

+
√

Pn hT
i,1,1 wni

z + nIi ,

(9)

y1i =

L
∑

p=1

M
∑

j=1

√

Pp,j g
T
p wj,p xj,p +

√
P gT1 w

+
√

Pn gT1 wni
z + n1,

(10)

yEi
=

L
∑

p=1

M
∑

j=1

√

Pp,j g
T
Ep
wj,p xj,p +

√
P gTE1

w

+
√

Pn gTE1
wni

z + nE ,

(11)

where nIi , n1 and nE are zero mean σ2
n variance complex

Gaussian noises at IU1,i, the legitimate and eavesdropping

antennas of the EH, respectively.



5

C. Achievable Lower Bound on the Information User Ergodic

Rate

In massive MIMO systems with pilot contamination and

active eavesdropping, since the precoded channel hT
i,1,1wi,1

is not known at IU1,i, we apply the method used in [2], [30]

to derive a lower bound on the ergodic rate. In particular, the

received information signal at IU1,i in (9) can be recast as

yIi =
√

P1,iE[a
(1)
i,i ] xi,1 +

√

P1,i

(

a
(1)
i,i − E[a

(1)
i,i ]
)

xi,1 + Zi,

(12)

where

Zi =

M
∑

j 6=i

√

P1,ja
(1)
i,j xj,1 +

√
Pa1i +

√

Pnaiz + âi + nIi ,

a
(p)
i,j = hT

i,1,p wj,p, ãi = a
(1)
i,i − E[a

(1)
i,i ], a1i = h

T
i,1,1 w,

ai = h
T
i,1,1 wni

and âi =

L
∑

p=2

M
∑

j=1

√

Pp,ja
(p)
i,j xj,p.

(13)
√

P1,iE[a
(1)
i,i ]xi,1 is the desired signal received over

the deterministic average precoded channel E[a
(1)
i,i ]

2.
√

P1,i ãi xi,1 =
√

P1,i(a
(1)
i,i − E[a

(1)
i,i ])xi,1 is the

beamforming uncertainty, which is the desired signal

over unknown channel to the information user.
∑M

j 6=i

√

P1,ja
(1)
i,j xj,1,

√
Pa1i ,

√
Pnaiz and âi in Zi are

the reference cell inter user interference, energy signal, AN

signal and the interference from neighbouring cells at IU1,i,

respectively. Now, using Theorem 1 in [2], we have the

following lower bound on ergodic information rate at the

attacked IU, IU1,i

Ri = log2 (1 + SINRIi) , (14)

where

SINRIi =
P1,i

∣

∣

∣
E
[

a
(1)
i,i

]∣

∣

∣

2

P1,ivar
[

a
(1)
i,i

]

+ E
[

|Zi|2
] ,

var
[

a
(1)
i,i

]

= E

[

∣

∣

∣
a
(1)
i,i − E

[

a
(1)
i,i

]∣

∣

∣

2
]

= E
[

|ãi|2
]

.

(15)

D. Upper Bound on the EH Ergodic Rate

The received information signal of IU1,i at the eavesdrop-

ping antenna of the EH in (11) is recast as

yEi
=
√

P1,ibi,1xi,1 +

M
∑

j 6=i

√

P1,jbj,1xj,1 +
√
Pb

+
√

Pn bi z + b̂i + nE ,

(16)

where

2As N → ∞, E[ai,i] always converges to a positive real deterministic
value (see Appendix A).

bj,p = gTEp
wj,p, b = gTE1

w, bi = g
T
E1
wni

,

b̂i =

L
∑

p=2

M
∑

j=1

√

Pp,jbj,pxj,p.
(17)

√

P1,ibi,1xi,1 is the desired received signal.
∑M

j 6=i

√

P1,jbj,1xj,1,
√
Pb,

√
Pn bi z and b̂i are the reference

cell inter user interference, energy signal, AN signal and the

interference from neighbouring cells at the eavesdropping

antenna of the EH, respectively. In the following, we assume

that the EH has full knowledge of the IUs’ beamforming

vectors {wj,1} and its own channels {gE1
, g1}; and is

able to cancel the intra-cell interference. This results in an

upper bound on the EH ergodic rate. We state the following

theorem.

Theorem 1: For N → ∞ and assuming that the EH has

full knowledge of the IUs’ beamforming vectors and its own

channels; and is able to cancel the intra-cell interference, an

upper bound on the ergodic rate of the EH is given by

REi

N→∞→ log2 (1 + SINREi
) , (18)

where

SINREi
=

P1,iE
[

|bi,1|2
]

PE [|b|2] + PnE [|bi|2] + E

[

∣

∣

∣
b̂i

∣

∣

∣

2
]

+ σ2
n

. (19)

Proof: See Appendix B.

E. Lower Bound on Ergodic Secrecy Rate

Based on the information rate bounds in (14) and (18), we

have the following lower bound of the ESR of the attacked

IU, IU1,i

RSi

N→∞→ [Ri −REi
]
+
. (20)

It is worth noting that RSi
represents the worst-case sce-

nario for the secrecy performance since we have a lower bound

on the IU ergodic rate and an upper bound on the EH ergodic

rate. As a result, achieving security for this worst-case scenario

implies achieving security for a more optimistic scenario [4],

[20].

F. Average Harvested Energy

Given a unit time slot for downlink transmission and an

equal energy harvesting efficiency for all users, 0 < ζ < 1,

the AHE by the EH depends on the attacked IU, IU1,i, and is

given as3

3Since the EH is information-untrusted by the BS, therefore, the energy is
considered to be harvested from the energy, AN and information signals. Also
considering AHE is reasonable since as N → ∞, the total harvested energy
is dominated by its average [10].
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Ei =ζE





∑

j

P1,j |bj,1|2 + P |b|2 + Pn |bi|2 +
∣

∣

∣
b̂i

∣

∣

∣

2





+ ζE





∑

j

P1,j

∣

∣

∣
b̃j,1

∣

∣

∣

2

+ P
∣

∣

∣
b̃
∣

∣

∣

2

+ Pn

∣

∣

∣
b̃i

∣

∣

∣

2

+
∣

∣

∣
b̈i

∣

∣

∣

2



 ,

(21)

where

b̃j,p =gTpwj,p, b̃ = gT1w, b̃i = g
T
1wni

,

b̈i =
L
∑

p=2

M
∑

j=1

√

Pp,j b̃j,p.
(22)

For the case of information-trusted EH, the secrecy issue

is not relevant and the design aims to jointly improve both

the ergodic sum-rate,
∑

i Ri and the AHE which depends on

the set of attacked IUs, M. The expression at the right-hand

side of (21) is still valid for calculating the AHE in this case.

The optimization of downlink power allocation is left to be

considered in section IV. In the next section, we consider the

large system analysis.

III. LARGE SYSTEM ANALYSIS

In this section, we analyze and derive the asymp-

totic convergence of the expected values of the received

powers of the normalized transmit signals at the IUs

and the EH, E[{a(1)i,i , |a
(p)
i,j |2, |ãi|2, |a1i |2, |ai|2, |âi|2}];

E[{|bi,p|2, |b|2, |bi|2, |b̂i|2}] and E[{|b̃j,p|2, |b̃|2, |b̃i|2,
|b̈i|2}], respectively, with the condition that the number of

transmit antennas is very large, i.e., N → ∞. The assumption

of N → ∞ is valid and commonly used in the massive MIMO

literature. It helps in simplifying the design and analysis of

massive MIMO systems. After obtaining the design parameters

using this assumption, the system’s performance can be tested

for the practical case of large but limited number of antennas

[3], [12], [17], [19].

A. Random Matrix Theory Preliminaries

Some random matrix theory results are used to calculate the

converged expected values of the received signal and interfer-

ence powers in terms of: correlation matrices {R1,p} = RE

and {Ri,l,p} = RI which include the channel path loss,

training powers PI , φPE and (1 − φ)PE ; allocated transmit

powers {Pp,j}, P and Pn; and the channel estimation matrices

{Cp,i} = CI and {Ci} = CE .

For evaluating the asymptotic values of the received signal

and interference powers we use Corollary 1 in [31] which is

quoted as:

Corollary 1: "Let A be a deterministic N × N complex

matrix with uniformity bounded spectral radius for all N . Let

q = 1√
N
[q1, ..., qN ] where the qi’s are i.i.d. complex random

variables with zero mean, unit variance, and finite eighth

moment. Let r be a similar vector independent of q. Then
[

qHAq − 1

N
tr (A)

]

→ 0 and
[

qHAr
]

→ 0

almost surely as N → ∞."

To make use of the above result, we need to investigate

the spectral boundedness of correlation matrices, channel

estimation matrices and their product. We have the following

lemmas.

Lemma 2: The spectral radii of the correlation matrices RE

and RI are upper bounded as

{ρ(R1,p)} ≤
{

γ1 , p = 1
γ2 , p 6= 1

, {ρ (Ri,l,p)} ≤
{

γ1 , l = p
γ2 , l 6= p

.

(23)

Lemma 3: The spectral radii of the channel estimation

matrices CI and CE are upper bounded as

{ρ(Ci,p)} , {ρ(Ci)} ≤ c ≤ ∞, (24)

where c is a positive real scalar.

Lemma 4: Let a finite set {Am} ⊂ {RI ,RE , CI , CE} and

∃Am ∈ {RI ,RE}, ∃Am ∈ {CI , CE}. Then, the spectral

radius of
∏

mAm is always bounded with a definite value,

ρ(
∏

mAm) < ∞.

Lemma 5: Having the column vectors x = [Θ1x1 + · · ·+
ΘNxN ] and y = [Θ̄1y1 + · · · + Θ̄NyN ], where {xj} and

{yj} are statistically independent and follow the distribution

CN (0, IN ). Then, for an arbitrary matrix A independent of

{xj} and {yj} with ρ(A), ρ(Θj), ρ(Θ̄j) < ∞, we have:

E
[

∣

∣xHAy
∣

∣

2
]

N→∞→ tr
(

A E
[

yyH
]

E
[

xxH
]

AH
)

. (25)

The proofs of Lemmas 2-5 are provided in Appendix A.

B. Asymptomatic Analysis Results

Using the random matrix theory results in Subsec-

tion III-A and given that IU1,i is the attacked IU,

the expected values of the received signal powers at

IU1,i, E[{a(1)i,i , |a
(p)
i,j |2, |ãi|2, |a1i |2, |ai|2, |âi|2}], and the

expected values of the received signal powers at the EH,

E[{|bi,p|2, |b|2, |bi|2, |b̂i|2}], asymptomatically converge to

definite values as in (27)–(28). For notational convenience,

we define

E

[{

a
(1)
i,i ,
∣

∣

∣
a
(p)
i,j

∣

∣

∣

2

, |ãi|2 , |a1i |2 , |ai|2 , |âi|2
}]

=
{

ā
(1)
i,i , ā

(p)
i,j ,

¯̃ai, ā1i , āi, ¯̂ai

}

and

E

[{

|bi,p|2 , |b|2 , |bi|2 ,
∣

∣

∣b̂i

∣

∣

∣

2
}]

=
{

b̄i,p, b̄, b̄i,
¯̂
bi

}

.

(26)

The detailed derivations of the asymptomatic analysis re-

sults in (27)–(28) are provided in Appendix C.

ā
(1)
i,i

N→∞→ τ
√

PI tr (Γi,1) tr−
1
2

(

R̂i,1,1

)

, (27a)

ā
(p 6=1)
i,i

N→∞→
[

τ2PI |tr (Γi,p)|2 + tr
(

Ri,1,pR̃
(1)

i,p,p

)]

tr−1
(

R̂i,p,p

)

, (27b)

ā
(p)
i,j 6=i

N→∞→ tr
(

Ri,1,pR̂j,p,p

)

tr−1
(

R̂j,p,p

)

, (27c)
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¯̃ai
N→∞→ tr

(

Ri,1,1 R̃
(1)

i,1,1

)

tr−1
(

R̂i,1,1

)

, (27d)

ā1i
N→∞→ tr (Ri,1,1 Ω) tr−1 (Ω) , (27e)

āi
N→∞→

[

τ2PI |tr (Ωi)|2 + tr
(

Ri,1,1R̃
(1)

i

)]

tr−1
(

R̂i

)

,

(27f)

¯̂ai
N→∞→

L
∑

p=2

M
∑

j=1

Pp,j ā
(p)
i,j . (27g)

b̄i,p
N→∞→

[

τ2φPE

∣

∣tr
(

Γ̄i,p

)∣

∣

2
+ tr

(

R1,pR̃
(2)

i,p,p

)]

tr−1
(

R̂i,p,p

)

,

(28a)

b̄j 6=i,p
N→∞→ tr

(

R1,p R̂j,p,p

)

tr−1
(

R̂j,p,p

)

, (28b)

b̄
N→∞→ tr (R1,1 Ω) tr−1 (Ω) , (28c)

b̄i
N→∞→

[

τ2φPE

∣

∣tr
(

Ω̄i

)∣

∣

2
+ tr

(

R1,1R̃
(2)

i

)]

tr−1
(

R̂i

)

,

(28d)

¯̂
bi

N→∞→
L
∑

p=2

M
∑

j=1

Pp,j b
′′
j,p, (28e)

where

Γi,p = Ri,1,pCp,i, R̃
(1)

i,p,p = R̂i,p,p − τ2PICp,iRi,1,pC
H
p,i,

Ω = τ2(1− φ)PER1,1 + τσ2
nIN ,

Ωi = Ri,1,1Ci, R̃
(1)

i = R̂i − τ2PICiRi,1,1C
H
i ,

Γ̄i,p = R1,pCp,i, R̃
(2)

i,p,p = R̂i,p,p − τ2φPECp,iR1,pC
H
p,i,

Ω̄i = R1,1Ci, R̃
(2)

i = R̂i − τ2φPECiR1,1C
H
i .

(29)

The expected values of the average received powers of the

normalized transmit signals at the legitimate antenna of the

EH when attacking IU1,i (in (22)) asymptomatically converge

to definite values as in (30). For notational convenience, we

define E[{|b̃j,p|2, |b̃|2, |b̃i|2, |b̈i|2}] = {¯̃bj,p, ¯̃
b,

¯̃
bi,

¯̈
bi}.

The detailed derivations of these asymptomatic values are in

Appendix C.

¯̃
bj,p

N→∞→ tr
(

R1,pR̂j,p,p

)

tr−1
(

R̂j,p,p

)

, (30a)

¯̃
b

N→∞→
[

τ2(1− φ)PE tr2 (R1,1) + τσ2
ntr (R1,1)

]

tr−1 (Ω) ,
(30b)

¯̃
bi

N→∞→ tr
(

R1,1 R̂i

)

tr−1
(

R̂i

)

, (30c)

¯̈
bi

N→∞→
L
∑

p=2

M
∑

j=1

Pp,j
¯̃
bj,p. (30d)

IV. DOWNLINK POWER ALLOCATION OPTIMISATION

A. Information-Untrusted EH

For the information-untrusted EH case, the power con-

trol aims to optimize the downlink information, energy and

AN signal transmit powers at the reference cell, {P1,i}, P
and Pn, to maximize the worst-case ESR, mini RSi

, while

maintaining a minimum level of the worst-case AHE, Ē,

mini Ei ({P1,j}, P, Pn) ≥ Ē and the total transmit power

is within the available budget. Therefore, the corresponding

optimisation problem can be formulated as4

maximize
{P1,j}, P, Pn

min
i

RSi

subject to Ei ({P1,j}, P, Pn) ≥ Ē, ∀i, (31a)

M
∑

j=1

P1,j + P + Pn ≤ Pt. (31b)

Within the available power budget Pt, the power allocation

among {P1,j}, P and Pn is optimized at the reference cell,

while we assume that there is no central power control

among multiple cells. For simplicity we assume uniform power

allocation at the interfering cells, i.e., Pp,i =
Pt

M
, ∀ p, ∀ i.

The power control problem (31) is feasible if there exist

power allocation sets {P1,i}, P and Pn satisfy the constraints

(31a) and (31b).

Without loss of generality, we assume that the problem in

(31) is feasible and focus on solving it. It can be seen that the

objective function in (31) is a complicated nonconvex function

since it consists of logarithm of product of fractional functions,

mini log2[(1 + SINRIi)/(1 + SINREi
)], while the constraints

(31a) and (31b) are convex since they are linear in terms

of the optimization variables. The objective function can be

convexified as follows. First, using (13), (15), (17), (19) and

certain logarithmic properties, we can replace the objective

function mini RSi
in (31) with the monotonically increasing

expression, mini R
′′
Si

= mini[(1 + SINRIi)/(1 + SINREi
)],

given in (32)5 at the top of the next page. Second, the new

objective expression mini R
′′
Si

is still nonconvex, therefore,

we use exponential variable substitution method [23], [32],

[33] to convert mini R
′′
Si

into an equivalent linear expression

as follows: Let us substitute the multiplicative terms in the

denominators and numerators in (32) by exponential slack

variables:

eui = P1,i

(

ā
(1)
i,i + ¯̃ai

)

+
∑

j 6=i

P1,j ā
(1)
i,j

+ P ā1i + Pn āi + ¯̂ai + σ2
n, ∀ i, (34a)

esi = P1,i
¯̃ai +

∑

j 6=i

P1,j ā
(1)
i,j + P ā1i + Pnāi + ¯̂ai + σ2

n, ∀ i,

(34b)

eti = P1,i b̄i,1 + P b̄+ Pnb̄i +
¯̂
bi + σ2

n, ∀ i, (34c)

evi = P b̄+ Pnb̄i +
¯̂
bi + σ2

n, ∀ i. (34d)

Using the previous substitutions and some of the logarithmic

and exponential properties, we can write the objective function

as mini (ui − si − ti + vi). To keep the maximization of our

4Considering the worst-case scenario is relevant since the EH can attack
any IU.

5Since the logarithmic and exponential functions are monotonically increas-
ing in their arguments, i.e., f(x1) > f(x2), implies that log2(f(x1)) >

log2(f(x2)) and ef(x1) > ef(x2). Therefore, argmaxx log2(f(x)) =
argmaxx f(x) and argmaxx ef(x) = argmaxx f(x).
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min
i

R′′
Si

= min
i

(

P1,i

(

ā
(1)
i,i + ¯̃ai

)

+
∑M

j 6=i P1,j ā
(1)
i,j + P ā1i + Pnāi + ¯̂ai + σ2

n

)(

P b̄+ Pnb̄i +
¯̂
bi + σ2

n

)

(

P1,i
¯̃ai +

∑M
j 6=i P1,j ā

(1)
i,j + P ā1i + Pnāi + ¯̂ai + σ2

n

)(

P1,i b̄i,1 + P b̄+ Pnb̄i +
¯̂
bi + σ2

n

) (32)

R′′
i =

∏

i

(1 + SINRIi) =
∏

i

(

P1,i

(

ā
(1)
i,i + ¯̃ai

)

+
∑M

j 6=i P1,j ā
(1)
i,j + P ā1i + Pn āi + ¯̂ai + σ2

n

)

(

P1,i
¯̃ai +

∑M
j 6=i P1,j ā

(1)
i,j + P ā1i + Pn āi + ¯̂ai + σ2

n

) (33)

objective bounded, we have to ensure that the slack variables

ui, si, ti and vi are within the values of their substituted

expressions in (34a)–(34d), respectively. Therefore, (31) is

recast as

maximize
{P1,j}, P, Pn,

{ui,si,ti,vi}

min
i

(ui − si − ti + vi)

subject to

P1,i

(

ā
(1)
i,i + ¯̃ai

)

+
∑

j 6=i

P1,j ā
(1)
i,j + P ā1i + Pn āi + ¯̂ai + σ2

n

≥ eui , ∀ i, (35a)

P1,i
¯̃ai +

∑

j 6=i

P1,j ā
(1)
i,j + P ā1i + Pn āi + ¯̂ai + σ2

n

≤ es̄i (si − s̄i + 1) , ∀ i, (35b)

P1,i b̄i,1 + P b̄+ Pnb̄i +
¯̂
bi + σ2

n ≤ et̄i (ti − t̄i + 1) , ∀ i
(35c)

P b̄+ Pnb̄i +
¯̂
bi + σ2

n ≥ evi , ∀ i, (35d)

(31a), (31b). (35e)

In constraints (35b) and (35c), esi and eti are linearized

as esi = es̄i (si − s̄i + 1) and eti = et̄i (ti − t̄i + 1) to

avoid having convex downward function being bounded below,

where s̄i and t̄i are the points around which the linearizations

are made. Now, the reformulated problem (35) is convex

and can be solved iteratively using any convex optimization

software such as CVX [34]. After each iteration, the values

of s̄i and t̄i (which are initialized for the first iteration) are

updated by the optimized values of si and ti, respectively.

The iterative optimization process continues until the errors

{|si − s̄i|} and {|ti − t̄i|} fall below a certain tolerance.

B. Information-Trusted EH

For information-trusted EH, the power control aims to

optimize the downlink information and energy signal transmit

powers at the reference cell, {P1,i} and P , to maximize

the ergodic sum-rate,
∑

i Ri, while maintaining the total

transmit power ≤ Pt and a minimum level of the AHE, Ē,

EM({P1,j}, P, Pn) ≥ Ē, where EM is the AHE by the EH

when attacking the IUs whose indices are specified by M.

The right-hand side expression in (21) is valid to calculate

EM (i ∼ M, i.e., attacking the M IUs instead of attacking

IU1,i). Therefore, the corresponding optimisation problem can

be formulated as6

maximize
{P1,j}, P

∑

i

Ri

subject to EM ≥ Ē, ∀i, (36a)

M
∑

j=1

P1,j + P ≤ Pt. (36b)

To convexify (36), we follow comparable steps to those used

to reformulate problem (31) in the previous subsection. Using

(13)–(15) and some logarithmic properties, we can replace
∑

i Ri in the objective function of (36) with the monotonically

increasing expression, R′′
i =

∏

i (1 + SINRIi), given in (33).

Then, by applying exponential variable substitution as in the

previous subsection, we can recast (36) as in (37)

maximize
{P1,j}, P1, {ui,si}

∑

i

(ui − si)

subject to

P1,i

(

ā
(1)
i,i + ¯̃ai

)

+
∑

j 6=i

P1,j ā
(1)
i,j + P ā1i +

¯̂ai + σ2
n

≥ eui , ∀i, (37a)

P1,i
¯̃ai +

∑

j 6=i

P1,j ā
(1)
i,j + P ā1i +

¯̂ai + σ2
n

≤ es̄i (si − s̄i + 1) , ∀ i, (37b)

(36a), (36b). (37c)

Problem (37) is feasible and can be solved iteratively in

the same fashion as the problem in problem (35). In the

next section, we analyze the complexity of our proposed

algorithms.

V. COMPLEXITY ANALYSIS

The computational complexity of the downlink transmission

is related to the complexities of evaluating the asymptotic

values in (27)-(30) which are dominated by the N×N matrix

multiplication which has an O
(

N3
)

asymptotic complexity

[35], and the complexity of the power allocation optimization.

The complexity of problems (35) and (37) depends on the

number of constraints, optimization variables and the size of

the input data of the optimization problems in thier standard

linear programming (LP) forms. Note that the solvers that are

6Considering the ergodic sum-rate maximization problem is relevant since
the EH can harvest energy from all IUs signals. In addition, AN jamming is
not taken (Pn = 0) since the EH is information-trusted.
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based on symmetric primal-dual interior-point algorithm (such

as those supported by CVX software like SDPT3 and SeDuMi)

do not support constraints that involve entropy family function

like the exponential function eui in (35) [34], [36], [37]. There-

fore, all the exponential functions are linearized internally by

the optimization software solver as eui = eūi(ui − ūi + 1),
evi = ev̄i(vi−v̄i+1), ∀i. ūi and v̄i are the points around which

the linearization are made. To calculate the complexity of per-

iteration problem for the formulation in (35), we need to recast

(35) in a standard LP form by rewriting the min operator in the

objective function mini (ui − si − ti + vi). This can be done

by replacing the objective function with new slack variable π
and introducing the constraint (ui − si − ti + vi) ≥ π, ∀ i.
Therefore, (35) will be

(Pst) : maximize
{P1,j}, P, Pn,

{ui,si,ti,vi}, π

π (38a)

subject to (ui − si − ti + vi) ≥ π, ∀ i, (38b)

(35a) − (35e). (38c)

With the LP formulation in (38) (which is equivalent to

(35)), we follow the procedure described in Chapter 6 in

[38] to calculate the computational complexity of finding a

solution for (35) within an accuracy ǫ in terms of the following

parameters: number of the real design variables, nv = 5M+3;

total number of per-scalar value constraints, nc = 6M + 1;

the 1-norm of the input data vector, ‖data(Pst)‖1, data(Pst) =
[nv, nc, [ū1, s̄1, t̄1, v̄1; . . . ; ūM , s̄M , t̄M , v̄M ], σ2

n, Pt, Ē];
and total number of input data, dim data(Pst) = 4M + 5.

Having these parameters, with O (1) complexity per real

operation, the complexity of getting a solution for Pst within

an accuracy ǫ, is [38]

Comp (Pst, ǫ) = (nv + nc)
3
2 n2

v

× ln

(

dim Data (Psub) + ‖Data (Psub)‖1 + ǫ2

ǫ

)

. (39)

The result in (39) has an asymptotic complexity of

O
(

M
7
2

[

ln(M) + ln( 1
ǫ
)
]

)

. The optimization complexity does

not depend on the number of transmit antenna N since the

optimization is per user signal power.

VI. SIMULATION RESULTS AND EVALUATIONS

This section provides numerical examples to demonstrate

the system asymptotic performance. In our simulations, the

system parameters are selected as follows: the number of

transmit antennas per cell is N = 512, the number of cells

is L = 3 and the number of IUs per cell is M = 3. Both

the IUs and the EH are assumed to have 30 dB path-loss to

their local BSs which corresponds to γ1 = 10−3, and 70 dB

path-loss to the neighbouring cell BSs, which corresponds to

γ2 = 10−7. The variance of the thermal noise at all users and

the BSs’ receivers is σ2
n = 10−3. The correlation matrices,

RI and RE , are generated using the Truncated Laplacian PAS

model which is suitable for the outdoor macrocell environment

1
0.8
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Fig. 1. E-RS regions versus the training power splitting

factor.

[39], with a mean AoA varying randomly for different users

across the interval [−π, π]. The total power budget at every

BS is Pt = 1W . The energy harvesting efficiency is dependent

on the incident power range at the receving antennas [40],

accordingly, it is assumed to be equal for all EHs as ζ = 0.5,

and this is reasonable for the expected incident power range

from −5 dBm to 5 dBm. The average training signal power

per user is fixed at PI = PE = 1 W .

To demonstrate the performance of the jointly optimized

worst-case ESR, mini RSi
, and worst-case AHE, mini Ei, we

use the energy-secrecy (E-RS) region plot which shows the

optimal mini RSi
against the constraint on mini Ei, Ē. For

no constraint on the worst-case AHE, Ē = 0, the BS has the

freedom to optimize the information, AN and energy signal

transmissions such that mini RSi
is at its maximum. Con-

versely, as Ē increases, more power is devoted to satisfy the

worst-case AHE constraint, mini Ei ≥ Ē, until mini RSi
= 0

at the end of the E-RS region. Therefore, the larger the area

under the E-RS region the better the performance.

Fig. 1 shows a 3-D plot representing the E-RS regions

obtained by solving (35) at different values of φ. Generally,

during the intervals of low worst-case AHE constraints, the

E-RS regions show no tradeoff between mini RSi
and mini Ei,

i.e., the received information and AN signals are sufficient to

provide the EH with the required worst-case AHE. As the

worst-case AHE constraints increase, the BS trades some of

the secrecy performance for satisfying the AHE constraints.

As expected, the optimized worst-case ESR decreases as Ē
increases.

Fig. 2 compares the asymptotic E-RS region (at

φ = 0.2) obtained by solving (35) using the asymptotic

values of {ā(1)i,i , ā
(p)
i,j ,

¯̃ai, ā1i , āi, ¯̂ai}, {b̄i,p, b̄, b̄i,
¯̂
bi}

and {¯̃bj,p, ¯̃
b,

¯̃
bi,

¯̈
bi}, with the E-RS region obtained

by solving (35) using the simulation average values

of {ā(1)i,i , ā
(p)
i,j ,

¯̃ai, ā1i , āi, ¯̂ai}, {b̄i,p, b̄, b̄i,
¯̂
bi} and

{¯̃bj,p, ¯̃
b,

¯̃
bi,

¯̈
bi}. The results give an insight into the accuracy

of our asymptotic analysis. Fig. 3 compares the asymptotic
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splitting factor, Ē = 60 mW .

and the simulation performances of worst-case ESR versus

training power splitting factor, φ. AS expected, the worst-case

ESR decreases as φ increases.

For the information-trusted EH case, similar to the E-RS

region, we use the energy-rate (E-R) region which defines

the tradeoff between the AHE (EM), and the ergodic sum-

rate,
∑

i Ri by solving (37). We assume two scenarios of

information-trusted EH case: in the first scenario, the reference

BS is able to detect the active eavesdropping attack and to

identify the attacker, the EH, therefore, EM is calculated

by (21); in the second scenario, the reference BS is able

to detect the active eavesdropping attack, however, it can

not identify the attacker, therefore, EM is calculated as

EM = ζ(
∑

j P1,j
¯̃
bj,p + P

¯̃
b+ Pn

¯̃
bi +

¯̈
bi), where i ∼ M. Fig.

4 demonstrates the E-R regions for both scenarios, the identi-

fied and the unidentified attacker, for the following parameters:

two sets of attacked IUs, M = 1 and M = {1, 2, 3}; and

φ = 0.2, 0.8. In the first sub-plot, (a), the EH attacks one IUs,

IU1,1. The tradeoff between the ergodic sum-rate and the AHE

is clear as expected, where the ergodic sum-rate decreases as

the AHE constraint increases. However, the performance gap

between the identified and unidentified attacker scenarios is

small. In the second sub-plot, (b), in which the EH attacks

multiple IUs, M = {1, 2, 3}, it can be noticed that identify-

ing the attacker by the BS can help in improving the worst-

case ergodic sum-rate, particularly at low AHE constraints

region. The third sub-plot, (c), emphasizes the performance

gap between the identified and unidentified attacker scenarios.

For example, at φ = 0.8, identifying the attacker will gain

5 b/s/Hz in the ergodic sum-rate performance for a AHE of

20 mW .

In Fig. 5, we demonstrate the energy harvesting performance

of the EH. The figure focuses on the effect of balancing

the limited training power between the legitimate energy

harvesting, (1 − φ)PE , and harvesting energy through eaves-

dropping, φPE , on the total AHE by the EH. At small

power splitting factors (as φ = 0.1), most of the training

power is invested in the legitimate channel estimation and

therefore most of the harvested energy is via the signal aligned

to the legitimate channel g1. Increasing the eavesdropping

training power (by increasing φ) results in an increase in

the AHE dominated by the average harvested energy from

the legitimate signal ζ(
∑

j P1,j
¯̃
bj,p + P

¯̃
b+ Pn

¯̃
bi +

¯̈
bi) and

the average harvested energy from the eavesdropped signal

ζ(
∑

j P1,j b̄j,p + P b̄+ Pnb̄i +
¯̂
bi) until a point φ⋆—the point

corresponding to the maximum harvested energy—beyond

which the harvested energy decreases with increasing φ. φ⋆

gives the optimal balance between the legitimate and the

eavesdropping training power for maximizing the AHE.

Fig. 6 shows the achievable worst-case ESR versus the

number of transmit antennas which varies over the range

N = [5, 20, 50, 100, 300, . . . , 1700]. As expected, as the

number of transmit antennas increases, the worst-case ESR

increases.

Fig. 7 shows the convergence speed of the power allocation

iterative LP problem in (37). Since the iterative process is

based on updating the initial values of Taylor first order

approximations {s̄i} in (37b), therefore, the convergence speed

is affected by the choice of the initial values {s̄i}. Intuitively,

the initial values can be calculated with the following formula

s̄i =

log









Pt − Pn

M + 1









¯̃ai +
M
∑

j=1
j 6=i

ā
(1)
i,j









+ P ā1i +
¯̂ai + σ2

n









, ∀i.

(40)

In (40), we assume uniform power allocation among the

information and energy signals. Good initial value approx-

imations can be found via one-dimensional search across

0 ≤ P ≤ Pt. Fig. 7 shows the convergence of the ergodic

sum-rate per iteration with the initial values generated by (39)

with P = 0.1, 0.3 W , M = 1 and at a point within the

tradeoff region corresponding to Ē = 80 mW . The results

in the figure show different convergence speeds for different
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initializations. For the initialization with P = 0.1 W , the

iterative algorithm converges to its final optimal objective after

5 iterations, while via the initialization with P = 0.3 W , the

iterative algorithm reaches its final optimal objective after 3
iterations.
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Fig. 7. Convergence speed of the iterative power allocation

optimization.

VII. CONCLUSIONS

We optimized the downlink transmission for SWIPT to

maximize the worst-case ESR of the IUs under a constraint on

worst-case AHE by the active two antennas EH in multi-cell

massive MIMO systems. The EH has the potential to harvest

energy via one antenna and to eavesdrop an information signal

via the other antenna. The considered problems were: 1) The

maximisation of the worst-case ESR under a constraint on

the worst-case AHE by the EH for the case of information-

untrusted EH; 2) The maximisation of the ergodic sum-rate

of the IUs under a constraint on the worst-case AHE by

the EH for the case of information-untrusted EH. Asymptotic

expressions for ergodic sum-rate, ESR and AHE were derived

in a large system limit. Then, we used these results to

optimize power allocation for downlink SWIPT transmissions

which include: information signals, AN and energy signal

towards the IUs, legitimate and illegitimate antennas of the

EH, respectively. Our results demonstrate the performances of

SWIPT over the E-RS and E-R tradeoff regions. Also, the

impact of the combined legitimate/illegitimate operation of

the EH on the SWIPT performance has been investigated.

Considering the same problem for multi-antenna users and

cell-free scenario is left as a further work.
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APPENDIX A

A. Proof of Lemma 1

Given that {ρ(Ri,l,1), ρ(R1,1)} ≤ c ≤ ∞ and by using

Corollary 1, we have

h̃
H

i,l,1R
1
2

i,l,1R
1
2
i,p,1h̃i,p,1

N→∞→
{

tr (Ri,p,1) , for l = p
0, for l 6= p

. (41)

Therefore, by expanding the product yH1,iy
H
1,i using (4) fol-

lowed by applying Corollary 1, we get

[

yH1,iy1,i
] N→∞→

{

τ2PI

∑L

l=1 tr (Ri,l,1) + τ2PE tr (R1,1) +Nτσ2
n, i ∈ M

τ2PI

∑L

l=1 tr (Ri,l,1) +Nτσ2
n, i /∈ M ,

(42)

and

yH1,iy1,i − τ2PI

∑

t tr (Ri,t,1) +Nτσ2
n

τ2tr (R1,1)

N→∞→
{

φ1PE , i /∈ M
0, i /∈ M .

(43)

This concludes the proof.

B. Proof of Lemma 2

The correlation matrix R1,p belongs to the family of Hermi-

tian Toeplitz matrices and is defined as R1,p = RN (rm,n) =
[rm,n = rm−n; m,n = 0, 1, ..., N − 1],

RN =





r1−1 r1−2 ... r1−N
r2−1 r2−2 ...

...
. . .

...
rN−1 ... rN−N



 , (44)

where the correlation coefficients rm,n are generated using the

truncated Laplacian model7 [39]

rm,n (d, φ0) =

∫ π

−π

γt e
j2π(m−n)d sin(φ−φ0)

λ P̄ (φ− φ0) dφ,

(45)

d is the spacing between successive antennas, j =
√
−1 (for

this equation only), λ is the signal wavelength, φ is the angle

of arrival (AoA) of the signal path, φ0 is the mean AoA over

all signal paths and it varies from one user to another, P̄ (φ−
φ0) is the power angular spectrum which follows a truncated

Laplacian distribution. By making use of Lemma 4.1 in [41],

the spectral radius of the Hermitian Toeplitz matrix RN (rm,n)

is upper bounded by the supremum of the generating function

ρ (RN (rm,n)) ≤ sup rm,n (d, φ0) . (46)

Knowing that for truncated Laplacian distribution
∫ π

−π
P̄ (φ − φ0)dφ = 1, sup rm,n(d, φ0) is found by the

extreme case of signal autocorrelation at one antenna, i.e., at

n = m. Therefore, sup rm,n(d, φ0) = rm,n=m(d, φ0) = γ1
and then

7We assume a uniformly linear antenna array with a truncated range of
AoA [−π, π].

ρ (RN (rm,n)) ≤ γ1. (47)

The spectral boundedness of Ri,l,p can be proved by fol-

lowing the same steps. This concludes the proof.

C. Proof of Lemma 3

Let us put Cp,i as
√
PIRi,p,p(Bi + σ2

nIN )−1. By making use

of the eigenvalue decomposition definition, it is easy to verify

that ρ(Bi + σ2
nIN ) ≥ σ2

n, and therefore, the matrix inverse

imposes that ρ(Bi + σ2
nIN )−1 ≤ 1

σ2
n

. Since ρ(Ri,p,p) ≤ c ≤ ∞,

where c is a positive real constant, then, by applying Lemma

3 we have

ρ (Cp,i) ≤ c ≤ ∞. (48)

The proof of ρ (Ci) ≤ c ≤ ∞ can be done in a comparable

way. This concludes the proof.

D. Proof of Lemma 4

By making use of Corollary 11 in [42] (which relates

the spectral radius of product of matrices to their individual

spectral radii), we have

ρ

(

∏

m

Am

)

≤
∏

m

ρ (Am) . (49)

Since {Am} is of a finite length and ρ(Am) < ∞, ∀ m, then

ρ(
∏

m Am) ≤∏m ρ(Am) < ∞. This concludes the proof.

E. Proof of Lemma 5

Defining I = {i} × {j}, we have

E
[

∣

∣xHAy
∣

∣

2
]

= E





∣

∣

∣

∣

∣

∑

I

xH
i Θ

H
i AΘ̄jyj

∣

∣

∣

∣

∣

2


 =

∑

I

E

[

∣

∣

∣x
H
i Θ

H
i AΘ̄jyj

∣

∣

∣

2
]

+
∑

I×I

{i,j}6={m,n}

E
[〈

xH
i Θ

H
i AΘ̄jyj , x

H
mΘ

H
mAΘ̄nyn

〉]

,

(50)

E

[

∣

∣

∣
x
H
i Θ

H
i AΘ̄jyj

∣

∣

∣

2
]

= xHi Θ
H
i AΘ̄jE

[

yjy
H
j

]

Θ̄
H
j A

H
Θixi

= xHi Θ
H
i AΘ̄jΘ̄

H
j A

H
Θixi

N→∞→ tr
(

Θ
H
i AΘ̄jΘ̄

H
j A

H
Θi

)

,

(51)

E
[〈

xH
i Θ

H
i AΘ̄jyj , x

H
mΘ

H
mAΘ̄nyn

〉]

= xH
i Θ

H
i AΘ̄jE

[

yjy
H
n

]

Θ̄
H

n A
H
Θmxm

N→∞→ 0. (52)

The expectations are moved to yjy
H
j and yjy

H
n in (51)

and (52) based on the statistical independence between yj
and xi; and between yjy

H
n and {xi, xm}, respectively. The

asymptotic convergences in (51) and (52) follow by applying
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Corollary 1. Base on (50)–(52) and some trace and Cartesian

product properties, we have

E
[

∣

∣xHAy
∣

∣

2
]

N→∞→ tr
(

Θ
H
i AΘ̄jΘ̄

H

j A
H
Θi

)

= tr

[

A

(

∑

I

Θ̄jΘ̄
H

j ΘiΘ
H
i

)

AH

]

= tr



A





∑

j

Θ̄jΘ̄
H

j





(

∑

i

ΘiΘ
H
i

)

AH





= tr
(

A E
[

yyH
]

E
[

xxH
]

AH
)

. (53)

This concludes the proof.

APPENDIX B

PROOF OF THEOREM 1

We assume that the EH has full knowledge of the IUs’

beamforming vectors {wj,1} and its own channels {gE1
, g1};

and is able to cancel the intra-cell interference. This results in

an upper bound on the EH ergodic rate. Moreover, the IUs’

signals {xj,p}, the AN signal z, the energy signal w, and the

noise at the eavesdropping antenna of the EH are independent.

As a result, given (16), we have following upper bound on the

ergodic rate of the EH

R̄Ei
= E

[

log2
(

1 + SINREi

)]

, (54)

where

SINREi
=

P1,i |bi,1|2

P |b|2 + Pn|bi|2 + E

[

∣

∣

∣b̂i

∣

∣

∣

2
]

+ σ2
n

. (55)

By concavity of log(1 + x) and using Jensen’s inequality,

we obtain

R̄Ei
≤ REi

= log2
(

1 + E[SINREi
]
)

. (56)

Using the multivariate Taylor expansion,

E[SINREi
] = E[Xi/Yi], where Xi = P1,i|bi,1|2 and

Yi = P |b|2 + Pn|bi|2 + E[|b̂i|2] + σ2
n, can be expanded

as [43]

E[SINREi
]

= E

[

Xi

Yi

]

=
E[Xi]

E[Yi]
− cov(Xi, Yi)

(E[Yi])2
+

var(Yi)E[Xi]

(E[Yi])3
+R.

(57)

where R = f(var(Yi), cov(Xi, Yi)) is the reminder of se-

ries expansion and is very small. Since bi,1, b and bi are

statistically independent, then, cov(Xi, Y i) = 0. Moreover,

according to Lemma 5 (see (50) and (52) in the proof of

Lemma 5), var({|b|2, |bi|2}) N→∞→ 0, which implies that

var(Yi), var(R)
N→∞→ 0. Therefore, E[SINREi

] asymptotically

converges as

E[SINREi
]
N→∞→ E[Xi]

E[Yi]

=
P1,iE

[

|bi,1|2
]

PE [|b|2] + PnE [|bi|2] + E

[

∣

∣

∣b̂i

∣

∣

∣

2
]

+ σ2
n

, SINREi
. (58)

Finally, by replacing E[SINREi
] by SINREi

in (56) above,

we obtain the upper bound on the EH ergodic rate in (18).

This concludes the proof.

APPENDIX C

DERIVATION OF THE ASYMPTOTIC RECEIVED SIGNAL

POWERS

We have
∥

∥

∥ĥj,p,p

∥

∥

∥ =
(

ĥ
H

j,p,pĥj,p,p

)
1
2

=
(

yH
p,jC

H
p,jCp,jyp,j

)
1
2

N→∞→ tr
1
2

(

R̂j,p,p

)

.
(59)

The second equality in (59) follows from substituting ĥj,p,p

by its value in (3), while the last asymptotic convergence

is determined by expanding the product yH
p,jC

H
p,jCp,jyp,j

followed by applying Lemmas 2-4 and Corollary 1. Given

that IU1,i is the attacked IU, using (3), (6) and (13), a
(p)
i,i can

be expanded as

a
(p)
i,i = hT

i,1,pwi,p

= hT
i,1,p

(

τ
√

PIC
∗
p,ih

∗
i,1,p + h̃

(1)

i,p,p

)∥

∥

∥ĥi,p,p

∥

∥

∥

−1

N→∞→ τ
√

PI

tr (Cp,iRi,1,p)

tr
1
2

(

R̂i,p,p

) +
hT
i,1,ph̃

(1)

i,p,p

tr
1
2

(

R̂i,p,p

) ,

(60)

where

h̃
(1)

i,p,p = ĥ
∗
i,p,p − τ

√

PIC
∗
p,ih

∗
i,1,p, (61)

provided that the matrix Cp,iRi,1,p has bounded spectral radius

according to Lemmas 2–4. The asymptotic convergence in

(60) follows from applying Corollary 1 which implies that

hT
i,1,pC

∗

p,ih
∗

i,1,p is independent from the small fading random-

ness of hi,1,p and converges to the definite value tr(Cp,iRi,1,p).

Therefore,

E
[

a
(p)
i,i

]

N→∞→ τ
√

PI

tr (Cp,iRi,1,p)

tr
1
2

(

R̂i,p,p

) +
E
[

hT
i,1,ph̃

(1)

i,p,p

]

tr
1
2

(

R̂i,p,p

)

N→∞→ τ
√

PI tr (Cp,iRi,1,p) tr−
1
2

(

R̂i,p,p

)

.

(62)

The second asymptotic convergence in (62) follows from (59)

and the fact that hT
i,1,ph̃

(1)

i,p,p is a zero mean random variable

(this is because the vectors {h̃i,l,p}, gEp
and Npψ

∗

i are of zero

mean).
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E
[

|ãi|2
]

= var
(

a
(1)
i,i

)

= E

[

∣

∣

∣a
(1)
i,i − E

[

a
(1)
i,i

]∣

∣

∣

2
]

N→∞→ E

[

∣

∣

∣h
T
i,1,1h̃

(1)

i,1,1

∣

∣

∣

2
]

tr−1
(

R̂i,1,1

)

N→∞→ tr
(

Ri,1,1R̃
(1)

i,1,1

)

tr−1
(

R̂i,1,1

)

.

(63)

The first asymptotic convergence in (63) results from substi-

tuting the values of a
(1)
i,i and E[a

(1)
i,i ] provided in (60) and (62).

The second asymptotic convergence follows from applying

Lemma 5.

For j 6= i, vector wj,p is a summation of L+2 linearly trans-

formed statistically independent vectors which are independent

of hi,1,p. In addition, according to Lemmas 2–4, matrices

E[wj,pw
H
j,p] = R̂j,p,p|ĥj,p,p|−2 and Ri,1,p and their product are

of bounded spectral radii. Therefore, Lemma 5 can be applied

to calculate E[|a(p)i,j 6=i|2] as follows

E

[

∣

∣

∣a
(p)
i,j 6=i

∣

∣

∣

2
]

N→∞
=

[

∣

∣

∣h
H
i,1,p wj,p

∣

∣

∣

2
]

N→∞
N→∞→ tr

(

Ri,1,p R̂j,p,p

)

tr−1
(

R̂j,p,p

)

.

(64)

The details of achieving the asymptotically converged

values {ā1i , āi, ¯̂ai}, {b̄i,p, b̄j 6=i,p, b̄, b̄i,
¯̂
bi} and

{¯̃bj,p, ¯̃
b,

¯̃
bi,

¯̈
bi} in (27e)–(27g), (28a)–(28e) and (30a)–

(30d), respectively, are similar to the analysis of obtaining

{E[a
(p)
i,i ], E[|ãi]|2, E[|a(p)i,j 6=i|2]} previously described. There-

fore, due to space limitation, their detailed derivations are

omitted.
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