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Abstract. A graph is (H1, H2)-free for a pair of graphs H1, H2 if it contains no
induced subgraph isomorphic to H1 or H2. In 2001, Král’, Kratochvíl, Tuza, and
Woeginger initiated a study into the complexity of Colouring for (H1, H2)-free
graphs. Since then, others have tried to complete their study, but many cases
remain open. We focus on those (H1, H2)-free graphs where H2 is H1, the
complement of H1. As these classes are closed under complementation, the
computational complexities of Colouring and Clique Cover coincide. By
combining new and known results, we are able to classify the complexity of
Colouring and Clique Cover for (H,H)-free graphs for all cases except
when H = sP1 + P3 for s ≥ 3 or H = sP1 + P4 for s ≥ 2. We also classify the
complexity of Colouring on graph classes characterized by forbidding a finite
number of self-complementary induced subgraphs, and we initiate a study of
k-Colouring for (Pr, Pr)-free graphs.

1 Introduction

A colouring of a graph is an assignment of labels, called colours, to its vertices in such
a way that no two adjacent vertices have the same label. The corresponding decision
problem, Colouring, which is that of deciding whether a given graph can be coloured
with at most k colours for some given positive integer k, is a central problem in discrete
optimization. Its complementary problem Clique Cover is that of deciding whether
the vertices of a graph can be covered with at most k cliques. As Colouring and
Clique Cover are NP-complete even for k = 3 [28], it is natural to restrict their input
to some special graph class. A classic result in this area is due to Grötschel, Lovász,
and Schrijver [19], who showed that Colouring is polynomial-time solvable for perfect
graphs. However, for both problems, finding the exact borderline between tractable
and computationally hard graph classes is still open.

A graph class is hereditary if it can be characterized by some set of forbidden
induced subgraphs, or equivalently, if it is closed under vertex deletion (see e.g. [25]).
The aforementioned class of perfect graphs is an example of such a class, as a graph is
perfect if and only if it contains no induced odd holes and no induced odd antiholes [9].
For the case where exactly one induced subgraph is forbidden, Král’, Kratochvíl, Tuza,
and Woeginger [27] were able to prove a complete dichotomy; see also Fig. 1 (we write
G′ ⊆i G to denote that the graph G′ is an induced subgraph of the graph G and refer
to Section 2 for other notation used in this section).
? This paper received support from EPSRC (EP/K025090/1) and the Leverhulme Trust
(RPG-2016-258).



Theorem 1 ([27]). Let H be a graph. The Colouring problem on H-free graphs is
polynomial-time solvable if H ⊆i P1 + P3 or H ⊆i P4 and it is NP-complete otherwise.

P1 + P3 P4

Fig. 1. The graphs H such that Colouring can be solved in polynomial time on H-free
graphs.

We study the complexity of Colouring and Clique Cover for (H1, H2)-free graphs,
that is, when two induced subgraphs H1 and H2 are both forbidden. Both polynomial-
time and NP-completeness results are known for (H1, H2)-free graphs, as shown by
many teams of researchers (see, for example, [5,6,13,14,20,22,27,31,34,35,36,39]), but
the complexity classification is far from complete: even if we forbid two graphs H1

and H2 of up to four vertices, there are still three open cases left, namely when
(H1, H2) ∈ {(K1,3, 4P1), (K1,3, 2P1 + P2), (C4, 4P1)}; see [31] (the graph K1,3 is the
claw and C4 is the 4-vertex cycle). We refer to [18, Theorem 21] for a summary and to
the recent paper [36], in which the number of missing cases when H1 and H2 are both
connected graphs on at most five vertices was reduced from ten to eight.

To narrow the complexity gap between hard and easy cases and to increase our
understanding of it, we initiate a systematic study into (H1, H2)-free graph classes
that are closed under complementation: if a graph G belongs to the class, then so does
its complement G, which is the graph with vertex set V (G) and an edge between two
distinct vertices if and only if these two vertices are not adjacent in G. For such graph
classes the complexities of Colouring and Clique Cover coincide, so we only need
to consider the Colouring problem. A graph H is self-complementary if H = H. We
observe that a class of (H1, H2)-free graphs with H1 6⊆i H2 and H2 6⊆i H1 is closed
under complementation if and only if either H1 and H2 are both self-complementary, or
H2 = H1. For the first case we prove the following more general classification (namely
for every integer k ≥ 1) in Section 3.

Theorem 2. Let H1, . . . ,Hk be self-complementary graphs. Then Colouring is
polynomial-time solvable for (H1, . . . ,Hk)-free graphs if Hj ⊆i P4 for some j and
it is NP-complete otherwise.

Hence, we may now focus on the case when H2 = H1 and H1 is not self-
complementary. In this case few results are known. First notice that for any integer
s ≥ 1, the class of (sP1, sP1)-free graphs consists of graphs with no large independent
set and no large clique. The number of vertices in such graphs is bounded by a constant
by Ramsey’s Theorem [38]. Hence, the class of (sP1, sP1)-free graphs is finite, which
means that Colouring is constant-time solvable for this graph class. Dabrowski et
al. [14] researched the effect on the complexity of changing the forbidden subgraph sP1

by adding an extra edge, and proved that Colouring is polynomial-time solvable
on (sP1 + P2, sP1 + P2)-free graphs for every integer s ≥ 1. A result of Malyshev [34]
implies that Colouring is polynomial-time solvable for (K1,3,K1,3)-free graphs. Hoàng
and Lazzarato [22] proved the same for (P5, P5)-free graphs. By combining results of [26]
and [37], Colouring is polynomial-time solvable on graph classes of bounded clique-
width. It is known that (P1+P4, P1 + P4)-free graphs [4] and (2P1+P3, 2P1 + P3)-free
graphs [1] have bounded clique-width, so Colouring is polynomial-time solvable for
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these two graph classes. In light of these results, it is a natural research question
to find out to what extent we may add edges to sP1 so that Colouring remains
polynomial-time solvable on (H,H)-free graphs for the resulting graph H.

To narrow down the large number of open cases (H,H), we will use the known
results that Colouring is NP-complete for graphs of girth at least p for any p ≥ 3
[16,27,30] (the girth of a graph is the length of a shortest induced cycle in it) and for
(K1,3,K4, 2P1 + P2)-free graphs [27]. Even after using these results there are still many
open cases left, and to get a handle on them we need another NP-hardness result for a
very restricted graph class. In Section 4.1 we will prove such a result, namely, we show
that Colouring is NP-complete even for (P1 + 2P2, P1 + 2P2, 2P3, 2P3, P6, P6)-free
graphs (see Fig. 2). We will show that, by combining this result with those above,
only the following open cases are left: H = P2 + P3 (see Fig. 3), H = (s+ 1)P1 + P3

or H = sP1 + P4 for s ≥ 2. In Section 4.2 we give a polynomial-time algorithm for
Colouring restricted to the class of (P2 + P3, P2 + P3)-free graphs (note that this
class has unbounded clique-width, as it contains the class of split graphs, which have
unbounded clique-width [33]).

P1 + 2P2 P1 + 2P2 2P3 2P3 P6 P6

Fig. 2. The six graphs corresponding to our result that Colouring is NP-complete for
(P1 + 2P2, P1 + 2P2, 2P3, 2P3, P6, P6)-free graphs.

P1 + 2P2 P1 + 2P2 P2 + P3 P2 + P3

Fig. 3. The graphs H on five vertices for which the complexity of Colouring for (H,H)-free
graphs was unknown. We show NP-completeness if H ∈ {P1 +2P2, P1 + 2P2} and polynomial-
time solvability if H ∈ {P2 + P3, P2 + P3}.

In Section 4.3 we show how to combine our new hardness result and new polynomial-
time algorithm together with the aforementioned known results to obtain the following
result, which is the main theorem of our paper. In particular, we solved the remaining
cases where H is a graph on five vertices; see also Fig. 3.

Theorem 3. Let H be a graph with H,H /∈ {(s+ 1)P1 + P3, sP1 + P4 | s ≥ 2}. Then
Colouring is polynomial-time solvable for (H,H)-free graphs if H or H is an induced
subgraph of K1,3, P1 + P4, 2P1 + P3, P2 + P3, P5, or sP1 + P2 for some s ≥ 0 and it
is NP-complete otherwise.
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From Theorem 3 we deduce that we may only add a few edges to the graph sP1

if Colouring stays polynomial-time solvable on (H,H)-free graphs for the resulting
graph H (even in the two missing cases where H = (s+1)P1 +P3 or H = sP1 +P4 for
s ≥ 2, the graph H is only allowed to contain at most three edges). From a more general
perspective, our new hardness result has significantly narrowed the classification for
(H1, H2)-free graphs.

Our immediate goal is to complete the complexity classification of Colouring for
(H,H)-free graphs, thus to solve the cases when H = (s+ 1)P1 + P3 or H = sP1 + P4

for s ≥ 2. We note that the class of (3P1 + P2,K4)-free graphs, and thus the class of
(3P1 + P3, 3P1 + P3)-free graphs, has unbounded clique-width [14]. We emphasize that
our long-term goal is to increase our understanding of the computational complexity
of Colouring for hereditary graph classes. Another natural question is whether
k-Colouring (the variant of Colouring where the number of colours is fixed)
is polynomial-time solvable for (H,H)-free graphs when H = (s + 1)P1 + P3 or
H = sP1 + P4 for s ≥ 2. This is indeed the case, as Couturier et al. [12] extended the
result of [21] on k-Colouring for P5-free graphs by proving that for every pair of
integers k, s ≥ 1, k-Colouring is polynomial-time solvable even for (sP1 + P5)-free
graphs. However, for other classes of (H,H)-free graphs, we show that k-Colouring
turns out to be NP-hard by using a construction of Huang [23], that is, we show the
following results in Section 5 (for the second result we also use an observation of
Chudnovsky, Huang, Spirkl and Zhong [8]).

Theorem 4. 4-Colouring is NP-complete for (P7, P8)-free graphs, and thus for
(P8, P8)-free graphs.

Theorem 5. 5-Colouring is NP-complete for (P2+P5, P6, P1 + P6)-free graphs, and
thus for (P1 + P6, P1 + P6)-free graphs.

As Colouring is polynomial-time solvable for (P5, P5)-free graphs [22], it would
be interesting to solve the following two open problems (see also Table 1):

– is there an integer k such that k-Colouring for (P6, P6)-free graphs is NP-
complete?

– is there an integer k such that k-Colouring for (P7, P7)-free graphs is NP-
complete?

As 4-Colouring is polynomial-time solvable for P6-free graphs [10,11], k must be at
least 5 in an affirmative answer for the first question. As 3-Colouring is polynomial-
time solvable for P7-free graphs [2], k must be at least 4 in an affirmative answer for
the second question. We refer to the end of Section 5 for some further remarks on these
two open problems. Similar to summaries for k-Colouring for Pt-free graphs (see, for
example, [18]) and (Cs, Pt)-free graphs [20], we can survey the known results and the
missing cases of k-Colouring for (Pt, Pt)-free graphs; see Table 1.

2 Preliminaries

Throughout our paper we consider only finite, undirected graphs without multiple edges
or self-loops. The disjoint union (V (G) ∪ V (H), E(G) ∪ E(H)) of two vertex-disjoint
graphs G and H is denoted by G+H and the disjoint union of r copies of a graph G
is denoted by rG. For a subset S ⊆ V (G), we let G[S] denote the subgraph of G
induced by S, which has vertex set S and edge set {uv | u, v ∈ S, uv ∈ E(G)}. If
S = {s1, . . . , sr}, then we may write G[s1, . . . , sr] instead of G[{s1, . . . , sr}]. We may
also write G \ S instead of G[V (G) \ S]. Recall that for two graphs G and G′ we write
G′ ⊆i G to denote that G′ is an induced subgraph of G.
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t\k ≤ 2 3 4 ≥ 5

≤ 5 P P P P
6 P P P ?
7 P P ? ?

≥ 8 P ? NP-c NP-c

Table 1. The complexity of k-Colouring (Pt, Pt)-free graphs for fixed values of k and t. Here,
P means polynomial-time solvable and NP-c means NP-complete. The entries in this table
originate from Theorem 4 and the following three results: k-Colouring is polynomial-time
solvable for P5-free graphs for any k ≥ 1 [21], 3-Colouring is polynomial-time solvable for
P7-free graphs [2], and 4-Colouring is polynomial-time solvable for P6-free graphs [10,11].

For a set of graphs {H1, . . . ,Hp}, a graph G is (H1, . . . ,Hp)-free if it has no induced
subgraph isomorphic to a graph in {H1, . . . ,Hp}; if p = 1, we may write H1-free instead
of (H1)-free. (Note that we may assume that each forbidden graph Hj contains at least
one vertex, otherwise the class of (H1, . . . ,Hp)-free graphs is empty.) For a graph G,
the set N(u) = {v ∈ V | uv ∈ E} denotes the neighbourhood of u ∈ V (G).

The graphs Cr, Kr, K1,r−1 and Pr denote the cycle, complete graph, star and
path on r vertices, respectively. The graph P1 + 2P2 is also known as the 5-vertex
wheel. The graphs K3 and K1,3 are also called the triangle and claw, respectively. A
graph G is a linear forest if every component of G is a path (on at least one vertex).
The graph Sh,i,j , for 1 ≤ h ≤ i ≤ j, denotes the subdivided claw, that is, the tree that
has only one vertex x of degree 3 and exactly three leaves, which are of distance h, i
and j from x, respectively. Observe that S1,1,1 = K1,3.

The chromatic number χ(G) of a graph G is the smallest integer k such that G is
k-colourable. The clique number ω(G) is the size of a largest clique in G. A graph is
bipartite if its vertex set can be partitioned into two (possibly empty) independent sets.

3 The Proof of Theorem 2

As mentioned in Section 1, if we study the complexity of Colouring for (H1, H2)-free
classes of graphs that are closed under complementation, it is sufficient to consider the
case where H1 and H2 are not self-complementary and H2 = H1. We will give a short
proof for this claim. To do so, we will need the following lemma.

Lemma 1 ([16,27,30]). For any integer p ≥ 3, Colouring is NP-complete for
(C3, C4, . . . , Cp)-free graphs.

Theorem 2 (restated). Let H1, . . . ,Hk be self-complementary graphs. Then Colour-
ing is polynomial-time solvable for (H1, . . . ,Hk)-free graphs if Hj ⊆i P4 for some j
and it is NP-complete otherwise.

Proof. Let H be a self-complementary graph on n vertices. Then H must have 1
2

(
n
2

)
edges. If n = 1 then H = P1. Now n cannot be 2 or 3, since 1

2

(
2
2

)
and 1

2

(
3
2

)
are not

integers. If n = 4 then H = P4, by inspection. Suppose n ≥ 5. Then 1
2

(
n
2

)
= n(n−1)

4 ≥ n,
so H must contain a cycle. Thus, if H is a self-complementary graph then it is either
an induced subgraph of P4 or it contains a cycle.

Let H1, . . . ,Hk be self-complementary graphs. If Hj ⊆i P4 for some j, then Hj = P1

or Hj = P4 and the Colouring problem for (H1, . . . ,Hk)-free graphs is polynomial-
time solvable by Theorem 1. If Hj 6⊆i P4 for all j, then each Hj must contain a cycle. Let
p ≥ 3 be the number of vertices in a largest induced cycle in the graphs in {H1, . . . ,Hk}.
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Then the class of (H1, . . . ,Hk)-free graphs contains the class of (C3, . . . , Cp)-free graphs.
As Colouring is NP-complete for the latter class by Lemma 1, we find that Colouring
is NP-complete for the class of (H1, . . . ,Hk)-free graphs. ut

4 The Proof of Theorem 3

In this section we prove Theorem 3. As part of the proof we first show that Colouring
is NP-complete for (P1 +2P2, P1 + 2P2, 2P3, 2P3, P6, P6)-free graphs in Section 4.1 and
polynomial-time solvable for (P2 + P3, P2 + P3)-free graphs in Section 4.2.

4.1 The Hardness Result

In this section we prove the following result.

Theorem 6. Colouring is NP-complete for (P1 + 2P2, P1 + 2P2, 2P3, 2P3, P6, P6)-
free graphs.

VW VU A

v9

v8

v7

v6

v5

v4

v3

v2

v1

v{7,8,9}

v{6,7,8}

v{4,5,6}

v{3,4,7}

v{2,3,4}

v{1,2,3}

a3

a2

a1

Fig. 4. The graph GW,U for the instance (W,U) of Exact 3-Cover where q = 3, k = 6,
W = {1, . . . , 9} and U = {{1, 2, 3}, {2, 3, 4}, {3, 4, 7}, {4, 5, 6}, {6, 7, 8}, {7, 8, 9}}. The edges of
the clique VW are not shown.

Proof. Let k and q be positive integers with k ≥ q. Let W be a set of size 3q. Let U
be a collection of k subsets of W each of size 3. An exact 3-cover for (W,U) is a set
U ′ ⊆ U of size q such that every member of W belongs to one of the subsets in U ′. The
NP-complete problem Exact 3-Cover [17] is that of determining if such a set U ′ exists.
To prove the theorem, we describe a reduction from Exact 3-Cover to Colouring
for (P1 + 2P2, P1 + 2P2, 2P3, 2P3, P6, P6)-free graphs.

Given an instance (W,U) of Exact 3-Cover, we construct the graph GW,U as
follows (see Fig. 4 for an example):

– Introduce a set of vertices VW = {vw | w ∈W} which forms a clique in GW,U .
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– Introduce a set of vertices VU = {vu | u ∈ U} which forms an independent set
in GW,U .

– Add an edge from vw ∈ VW to vu ∈ VU if and only if w ∈ u.
– Introduce a set of vertices A = {ai | 1 ≤ i ≤ k − q} which forms an independent

set in GW,U .
– Add an edge from each vertex of A to each vertex of VU .

We now show a reduction from Exact 3-Cover to the problem of finding k pairwise
vertex-disjoint cliques that cover V (GW,U ). The latter problem is equivalent to finding
a k-colouring of GW,U but has a closer resemblance to Exact 3-Cover, which makes
it easier to work with (note that k is part of the input of Exact 3-Cover). Afterwards,
it will remain to show that GW,U is (P1 + 2P2, P1 + 2P2, 2P3, 2P3, P6, P6)-free.

Claim 1. The vertices of GW,U can be covered by at most k pairwise vertex-disjoint
cliques if and only if U contains an exact 3-cover U ′.
First suppose that U contains an exact 3-cover U ′. Let VU ′ = {vu ∈ VU | u ∈ U ′}.
For each u ∈ U ′, let Ku be the clique on four vertices containing vu and its three
neighbours in VW ; there are q such cliques. Form a perfect matching between the
vertices of VU \ VU ′ and the vertices of A, that is, a collection of k − q cliques on two
vertices. Together, these k pairwise vertex-disjoint cliques cover V (GW,U ).

Now suppose that the vertices of GW,U can be covered by at most k pairwise
vertex-disjoint cliques. As VU is independent and |VU | = k, we have exactly k cliques,
and each of them contains exactly one vertex of VU . Hence, as A is an independent set
and each vertex in A is only adjacent to the vertices of VU , each of the k − q vertices
of A must be contained in a clique of size 2 that consists of a vertex of A and a vertex
of VU . There are q other cliques, which, as we deduced, also contain exactly one vertex
of VU . Each vertex of VW must be in one of these cliques. As each vertex in VU has
exactly three neighbours in VW and there are 3q vertices in VW , this means that each
of these cliques must contain four vertices, consisting of one vertex of VU and three
vertices of VW . Hence, if we let u ∈ U belong to U ′ whenever vu is in a clique of size 4,
then U ′ forms an exact 3-cover. This completes the proof of Claim 1.

As mentioned above, it remains to show that GW,U is (P1 + 2P2, P1 + 2P2, 2P3, 2P3,
P6, P6)-free. Since a graph G is (P1 + 2P2, P1 + 2P2, 2P3, 2P3, P6, P6)-free if and only
if G is, it is sufficient to show that GW,U is (P1 + 2P2, P1 + 2P2, 2P3, 2P3, P6, P6)-free.
We do this in Claims 3-8, but first we prove a useful observation.

Claim 2. Let J be an induced subgraph of GW,U that is the complement of a linear
forest on six vertices. Then J contains at least four vertices of VW .
As a linear forest contains no triangle, J contains no independent set on three vertices.
So J cannot contain more than two vertices from either of the independent sets VU
or A. Thus it contains vertices of VW . But then it cannot contain two vertices from A
as, combined with a vertex of VW this would again induce an independent set of size 3.
Hence there are at least three vertices of VW in J . But this implies that not even one
vertex of A belongs to J (as it would have three non-neighbours and every vertex of J
is adjacent to all but at most two of the others). This completes the proof of Claim 2.

Claim 3. GW,U is (P1 + 2P2)-free.
Suppose for contradiction that there is an induced P1 + 2P2 in GW,U . Since VU and A
are independent sets, every P2 in GW,U must either have two vertices in VW or one
vertex in VU and the other in VW or A. Since VW is a clique and every vertex in A is
adjacent to every vertex in VU , one of the P2’s must have both its vertices in VW and
the other must have one vertex in VU and the other in A. But every vertex in GW,U

has a neighbour in such a 2P2, so no induced P1 + 2P2 can exist. This completes the
proof of Claim 3.
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Claim 4. GW,U is P1 + 2P2-free.
Suppose for contradiction that there is an induced P1 + 2P2 inGW,U . Note this subgraph
consists of a C4, which we denote C, plus an additional vertex, which we denote z,
that is adjacent to every vertex in C. If z ∈ A, then the vertices of C are all in VU ,
and if z ∈ VU , the vertices of the C are either all in A or all in VW . Neither is possible,
so we must have z ∈ VW . Therefore none of the vertices of C is in A. At most two
of the vertices of C are in each of VU and VW as C contains neither an independent
set nor a clique on three vertices. So C contains exactly two vertices from each of VU
and VW , but the pair from VU must be non-adjacent in C and the pair from VW must
be adjacent in C. This contradiction completes the proof of Claim 4.

Claim 5. GW,U is 2P3-free.
Suppose for contradiction that there is an induced 2P3 in GW,U . Denote this graph
by P . As VW is a clique, P contains at most two of its vertices. If it contains exactly
two, then P must also contain a vertex vu ∈ VU such that the three vertices together
induce a P3. But then vu cannot be adjacent to any other vertex of P so the remaining
three vertices must all belong to VU , a contradiction as VU is independent. So P must
contain at least five vertices of A and VU . They cannot all belong to one of these two
sets as P has no independent set of size 5, but if P contains vertices of both sets then
there must be a vertex of degree 3. This contradiction proves that P does not exist.
This completes the proof of Claim 5.

Claim 6. GW,U is 2P3-free.
Suppose for contradiction that there is an induced 2P3 in G. By Claim 2, it contains
four vertices of VW . We note that 2P3 contains exactly one induced K4 and that the
other two vertices are adjacent to exactly two vertices in the clique (so must both be
in VU ) and to each other (so cannot both be in VU ). This contradiction completes the
proof of Claim 6.

Claim 7. GW,U is P6-free.
Suppose for contradiction that there is an induced P6 in GW,U . Denote this path by P .
As VW is a clique, P contains at most two of its vertices. We see that P cannot contain
exactly four vertices of either VU or A as they would form an independent set of size 4.
P cannot contain exactly three vertices of either VU or A as then there would be
a vertex in the other of the two sets of degree 3. Finally, P cannot contain at least
two vertices from each of VU and A as then it would contain an induced C4. These
contradictions prove that P does not exist. This completes the proof of Claim 7.

Claim 8. GW,U is P6-free.
Suppose for contradiction that there is an induced P6 in G. By Claim 2, it contains
four vertices of VW . This contradiction – a clique on four vertices is not an induced
subgraph of P6 – completes the proof of Claim 8. ut

4.2 A Tractable Case

We show that Colouring is polynomial-time solvable for (P2 + P3, P2 + P3)-free
graphs. We first introduce some additional terminology. The clique-width cw(G) of a
graph G is the minimum number of labels needed to construct G by using the following
four operations:

1. creating a new graph consisting of a single vertex v with label i;
2. taking the disjoint union of two labelled graphs G1 and G2;
3. joining each vertex with label i to each vertex with label j (i 6= j);
4. renaming label i to j.
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A class of graphs G has bounded clique-width if there is a constant c such that the
clique-width of every graph in G is at most c; otherwise the clique-width is unbounded.
For an induced subgraph G′ of a graph G, the subgraph complementation operation
(acting on G with respect to G′) replaces every edge present in G′ by a non-edge,
and vice versa. Similarly, for two disjoint vertex subsets S and T in G, the bipartite
complementation operation with respect to S and T acts on G by replacing every edge
with one end-vertex in S and the other one in T by a non-edge and vice versa. Let
k ≥ 0 be a constant and let γ be some graph operation. We say that a graph class G′
is (k, γ)-obtained from a graph class G if the following two conditions hold:

1. every graph in G′ is obtained from a graph in G by performing γ at most k times,
and

2. for every G ∈ G there exists at least one graph in G′ that is obtained from G by
performing γ at most k times.

We say that γ preserves boundedness of clique-width if for any finite constant k and
any graph class G, any graph class G′ that is (k, γ)-obtained from G has bounded
clique-width if and only if G has bounded clique-width.

Fact 1. Vertex deletion preserves boundedness of clique-width [32].
Fact 2. Subgraph complementation preserves boundedness of clique-width [24].
Fact 3. Bipartite complementation preserves boundedness of clique-width [24].

Two vertices are false twins if they are non-adjacent and have the same neighbourhood.
We will use the following two lemmas, which are readily seen.

Lemma 2. The clique-width of a graph of maximum degree at most 2 is at most 4.

Lemma 3. If a vertex x in a graph G has a false twin then cw(G) = cw(G \ {x}).

Recall that the graph S1,2,3 is the tree with exactly one vertex x of degree 3 and
exactly three leaves, which are of distance 1, 2 and 3 from x, respectively. The following
lemma for (P2+P3)-free bipartite graphs follows from a result of Lozin [29], who proved
that the superclass of S1,2,3-free bipartite graphs has bounded clique-width (see [15]
for a full classification of the boundedness of clique-width of H-free bipartite graphs).

Lemma 4 ([29]). The class of (P2+P3)-free bipartite graphs has bounded clique-width.

A graph G is perfect if χ(H) = ω(H) for every induced subgraph H of G. Besides
the above lemmas we will also apply the following three well-known theorems.

Theorem 7 ([9]). A graph is perfect if and only if it is Cr-free and Cr-free for every
odd r ≥ 5.

Theorem 8 ([19]). Colouring is polynomial-time solvable on perfect graphs.

Theorem 9 ([26,37]). For any constant c, Colouring is polynomial-time solvable
on graphs of clique-width at most c.

If G is a graph, then a (possibly empty) set C ⊆ V (G) is a clique separator if C is
a clique and G \ C is disconnected. A graph G is an atom if it has no clique separator.
If C is a clique separator in G, then we can partition V (G) \ C into two sets A and B
and we say that we can decompose G into the two graphs G′ = G[A∪C] and G′′[B∪C]
that are separated by C. By recursively decomposing G′ and G′′ as far as possible, we
can decompose G into a set of atoms G1, . . . , Gr, which can fit together in a specific
way (called a binary decomposition tree) to give G. Due to the following result of
Tarjan, when considering the Colouring problem in a hereditary class, we only need
to consider atoms in the class.
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Theorem 10 ([40]). There is a polynomial-time algorithm that, given a graph G,
decomposes G into atoms G1, . . . , Gr such that χ(G) = max{χ(G1), . . . , χ(Gr)}.

Let X be a set of vertices in a graph G = (V,E). A vertex y ∈ V \X is complete (resp.
anti-complete) to X if it is adjacent (resp. non-adjacent) to every vertex of X. A set
of vertices Y ⊆ V \X is complete (resp. anti-complete) to X if every vertex in Y is
complete (resp. anti-complete) to X. If X and Y are disjoint sets of vertices in a graph,
we say that the edges between these two sets form a matching if each vertex in X has at
most one neighbour in Y and vice versa (if each vertex has exactly one such neighbour,
we say that the matching is perfect). Similarly, the edges between these sets form a
co-matching if each vertex in X has at most one non-neighbour in Y and vice versa.

In the proof of Theorem 11 we present an algorithm for Colouring restricted to
(P2 + P3, P2 + P3)-free graphs. Our algorithm first tries to reduce to perfect graphs,
in which case we can use Theorem 8. If a (P2 + P3, P2 + P3)-free graph is not perfect,
then we show that it must contain an induced C5. The clique-width of such graphs
is not bounded (we can construct a (P2 + P3, P2 + P3)-free graph of arbitrarily large
clique-width by taking a split graph of arbitrarily large clique-width [33] with clique C
and independent set I and adding five new vertices that form an induced C5 and that
are complete to C but anti-complete to I). Therefore, we do some pre-processing to
simplify the graph. This enables us to bound the clique-width so that we may then
apply Theorem 9. Our general scheme for bounding the clique-width is to partition
the remaining vertices into sets according to their neighbourhood in the C5 and then
investigate the possible edges both inside these sets and between them. This enables
us to use graph operations (see also Facts 1–3) that do not change the clique-width by
“too much” to partition the input graph into disjoint pieces known to have bounded
clique-width.

Theorem 11. Colouring is polynomial-time solvable for (P2 + P3, P2 + P3)-free
graphs.

Proof. Let G be a (P2+P3, P2 + P3)-free graph. By Theorem 10 we may assume that G
is an atom, that is, G has no clique separator (we will use this assumption in the proof
of Claim 7). We first test in O(|V (G)|5) time whether G contains an induced C5. If
not, then G is C5-free. Since C5 = C5, G is also C5-free. Since G is (P2 + P3)-free,
G is Ck-free for all k ≥ 7. Since G is (P2 + P3)-free, G is Ck-free for all k ≥ 7. By
Theorem 7, this means that G is a perfect graph. Therefore, by Theorem 8, we can
solve Colouring in polynomial time in this case.

Now assume our algorithm found an induced 5-vertex cycle C with vertices
v1, v2, v3, v4, v5, in that order. For S ⊆ {1, . . . , 5}, let VS be the set of vertices
x ∈ V (G) \ V (C) such that N(x) ∩ V (C) = {vi | i ∈ S}. A set VS is large if it
contains at least three vertices, otherwise it is small.

To ease notation, in the remainder of the proof, subscripts on vertex sets should be
interpreted modulo 5 and whenever possible we will write Vi instead of V{i} and Vi,j
instead of V{i,j} and so on.

We start with three structural claims.

Claim 1. V∅ is an independent set.
If x, y ∈ V∅ are adjacent then G[x, y, v1, v2, v3] is a P2 + P3, a contradiction. Therefore
V∅ is an independent set. This completes the proof of Claim 1.

Claim 2. |Vi ∪ Vi,i+1| ≤ 1 and |Vi+1 ∪ Vi,i+1| ≤ 1 for i ∈ {1, 2, 3, 4, 5}.
Suppose for contradiction that x, y ∈ V1 ∪ V1,2. If x and y are adjacent then
G[x, y, v3, v4, v5] is a P2+P3 and if x and y are non-adjacent then G[v3, v4, x, v1, y] is a
P2 + P3. This contradiction implies that |V1 ∪ V1,2| ≤ 1. Claim 2 follows by symmetry.
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Claim 3. Vi,i+2 is an independent set for i ∈ {1, 2, 3, 4, 5}.
Suppose for contradiction that x, y ∈ V1,3 are adjacent. Then G[v1, v3, x, v2, y] is a
P2 + P3, a contradiction. Therefore V1,3 is an independent set. Claim 3 follows by
symmetry.

Since C5 = C5, it follows that G also contains a C5, namely on the vertices v1, v3, v5, v2
and v4 in that order. Therefore G is also a (P2 + P3, P2 + P3)-free graph containing an
induced C5. As a result, we immediately obtain the following three claims as corollaries
of Claims 1–3. For instance, V1,2,3,4,5 is exactly the set of vertices that are not adjacent
to any of the vertices v1, . . . , v5 in G. As v1, . . . , v5 form an induced C5 in G, by Claim 1
we find that V1,2,3,4,5 is an independent set in G and thus a clique in G, which proves
Claim 4. Claims 5 and 6 are proven by analogous reasoning (taking into account the
cycle order v1, v3, v5, v2, v4 in G).

Claim 4. V1,2,3,4,5 is a clique.
Claim 5. |Vi,i+1,i+2,i+3 ∪ Vi,i+1,i+3| ≤ 1 and |Vi,i+1,i+2,i+3 ∪ Vi,i+2,i+3| ≤ 1 for i ∈
{1, 2, 3, 4, 5}.
Claim 6. Vi,i+1,i+2 is a clique for i ∈ {1, 2, 3, 4, 5}.

Let I be the set of vertices in V∅ that have a non-neighbour in V1,2,3,4,5.

Claim 7. G is k-colourable if and only if G \ I is k-colourable.
The “only if” direction is trivial. Suppose G \ I is k-colourable. Fix a k-colouring c of
G \ I. We will show how to extend c to all vertices of G.

We may assume V∅ and V1,2,3,4,5 are non-empty, otherwise I = ∅ and the claim
follows trivially. Note that V∅ is an independent set by Claim 1 and that V1,2,3,4,5
is a clique by Claim 4. By assumption, G is an atom and hence V1,2,3,4,5 is not a
clique separator in G. Since V∅ is an independent set, every vertex of V∅ must have
a neighbour in V (G) \ (V∅ ∪ V1,2,3,4,5 ∪ V (C)) that is adjacent to some vertex of the
cycle C. Let A be the set of vertices outside V1,2,3,4,5 that have a neighbour in V∅. Note
that A contains no vertex of V∅, as V∅ is an independent set. Hence, every vertex of A
is adjacent to least one vertex of C (but not to all vertices of C).

We claim that A is complete to V1,2,3,4,5. Indeed, suppose for contradiction that x ∈
A is non-adjacent to y ∈ V1,2,3,4,5. Let s be a vertex in V∅ that is a neighbour of x.
Without loss of generality, assume that x is adjacent to v1. Then x is adjacent to v3
or v4, otherwise G[v3, v4, s, x, v1] would be a P2 + P3, a contradiction. Without loss
of generality, assume that x is adjacent to v3. Then x is adjacent to v2, otherwise
G[v1, v3, y, x, v2] would be a P2 + P3, a contradiction. Thus x is adjacent to v4 or v5,
otherwise G[v4, v5, s, x, v2] would be a P2 + P3, a contradiction. Without loss of gen-
erality, assume that x is adjacent to v4. Now x must be adjacent to v5, otherwise
G[v1, v4, y, x, v5] would be a P2 + P3, a contradiction. Therefore x ∈ V1,2,3,4,5, a con-
tradiction. It follows that A must indeed be complete to V1,2,3,4,5.

Let x ∈ I. By definition of I, there is a vertex y ∈ V1,2,3,4,5 that is non-adjacent
to x. We claim that c(y) can also be used to colour x. Indeed, every neighbour of x
lies in A ∪ V1,2,3,4,5 \ {y}. Since V1,2,3,4,5 is a clique and A is complete to V1,2,3,4,5, no
vertex of A∪V1,2,3,4,5 \ {y} is coloured with the colour c(y). We may therefore colour x
with the colour c(y). Repeating this process, we can extend the k-colouring of G \ I to
a k-colouring of G. This completes the proof of Claim 7.

By Claim 7, our algorithm may safely remove all vertices of I from G without changing
the chromatic number. Hence we may assume that the following claim holds.

Claim 8. V∅ is complete to V1,2,3,4,5.

Our algorithm has finished the pre-processing. We are now ready to prove, through a
series of further claims, that G has bounded clique-width. Hence our algorithm can
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colour G in polynomial time by Theorem 9. For an overview of our whole algorithm
see the pseudo-code below.

Algorithm: Colouring Algorithm for (P2 + P3, P2 + P3)-free graphs
Input: a (P2 + P3, P2 + P3)-free graph G
Output: χ(G)
determine a decomposition of G into atoms G1, . . . , Gr using the algorithm of
Theorem 10
for each i ∈ {1, . . . , r} do

if Gi does not contain an induced C5 then
apply Theorem 8 on Gi to find χ(Gi)

else
determine the set I for Gi

apply Theorem 9 on Gi − I to find χ(Gi − I)
χ(Gi)← χ(Gi − I)

end
end
return max{χ(G1), . . . , χ(Gr)}

Claim 9. Suppose S, T ⊆ {1, 2, 3, 4, 5} with |S| = 2 and |T | = 3. Then at least one
of VS and VT is small.
Suppose for contradiction that there are large sets VS and VT for S, T ⊆ {1, 2, 3, 4, 5}
with |S| = 2 and |T | = 3. By Claim 2 and symmetry, we may assume that S = {1, 3}.
By Claim 5 and symmetry, we may assume that T = {i, i+1, i+2} for some i ∈ {1, 2, 3}.
We consider each of these cases in turn.

Suppose x ∈ V1,3 is non-adjacent to y ∈ V1,2,3. Then G[v1, v3, v2, x, y] is a P2 + P3,
a contradiction. Therefore V1,3 is complete to V1,2,3. Suppose x, x′ ∈ V1,3 and y ∈ V1,2,3.
Then y must be adjacent to both x and x′. By Claim 3, x is non-adjacent to x′.
Therefore G[v4, v5, x, y, x

′] is a P2 + P3, a contradiction. It follows that if V1,3 is large
then V1,2,3 is empty.

Suppose x ∈ V1,3 is adjacent to y ∈ V2,3,4. Then G[x, v2, v3, v1, y] is a P2 + P3,
a contradiction. Therefore V1,3 is anti-complete to V2,3,4. Suppose x, x′ ∈ V1,3 and
y ∈ V2,3,4. Then y is non-adjacent to both x and x′. By Claim 3, x is non-adjacent
to x′. Therefore G[v4, y, x, v1, x

′] is a P2 + P3, a contradiction. It follows that if V1,3 is
large then V2,3,4 is empty.

Suppose x ∈ V1,3 is non-adjacent to y ∈ V3,4,5. Then G[v4, y, v2, v1, x] is a P2 + P3,
a contradiction. Therefore V1,3 is complete to V3,4,5. Suppose x, x′ ∈ V1,3 and y ∈ V3,4,5.
Then y must be adjacent to both x and x′. By Claim 3, x is non-adjacent to x′.
Therefore G[x, x′, y, v1, v3] is a P2 + P3, a contradiction. It follows that if V1,3 is large
then V3,4,5 is empty. This completes the proof of Claim 9.

Claim 9 implies that we can have large sets VS with |S| = 2 or large sets VT with
|T | = 3 (or neither), but not both. Again, since C5 = C5, the graph G contains a C5

on vertices v1, v3, v5, v2, v4, in that order. A vertex in G with exactly two (resp. three)
neighbours in C will have exactly three (resp. two) neighbours in this new cycle in G.
Therefore, if there is a large set VT with |T | = 3 then VS is small whenever |S| = 2.
In this case we replace G by G and replace C by this new cycle (we may do this by
Fact 2). We may therefore assume that VT is small for all T with |T | = 3. Note that
after doing this we no longer have the symmetry between the situation for G and
that for G. Indeed, in Claim 7 we showed that because G has no clique separator, we
may assume that V∅ is complete to V1,2,3,4,5 (Claim 8). However, we cannot guarantee
that G has no clique separator. Therefore, if we do complement G above, then the
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sets V∅ and V1,2,3,4,5 will be swapped and will become anti-complete to each other,
instead of complete to each other.

Suppose VS is small for some set S ⊆ {1, 2, 3, 4, 5}. Then, by Fact 1, we may delete
the vertices of VS . We may therefore assume that for each S ⊆ {1, 2, 3, 4, 5}, VS is
either large or empty. By Claims 2 and 5 and our assumption that VT is small for
all T with |T | = 3 it follows that the only sets VS that can be large are V∅, V1,2,3,4,5
and Vi,i+2 for i ∈ {1, 2, 3, 4, 5}.

Claim 10. V1,2,3,4,5 is complete to Vi,i+2 for all i ∈ {1, 2, 3, 4, 5}.
Suppose for contradiction that x ∈ V1,3 is non-adjacent to y ∈ V1,2,3,4,5. Then
G[v1, v3, v2, x, y] is a P2 + P3, a contradiction. Claim 10 follows by symmetry.

Claim 11. We may assume that V1,2,3,4,5 is empty.
By Claim 10, V1,2,3,4,5 is complete to each set Vi,i+2. By Claim 8, V∅ is complete
to V1,2,3,4,5 or, if we complemented G then it is anti-complete to V1,2,3,4,5. By Fact 3, we
may apply a bipartite complementation between V1,2,3,4,5 and V (C)∪

⋃
i∈{1,2,3,4,5} Vi,i+2.

If V∅ is complete to V1,2,3,4,5 then we apply a bipartite complementation be-
tween V1,2,3,4,5 and V∅. These operations disconnect G[V1,2,3,4,5] from the rest of
the graph. By Claim 4, G[V1,2,3,4,5] is a complete graph, so it has clique-width at
most 2. We may therefore assume that V1,2,3,4,5 is empty. This completes the proof of
Claim 11.

Claim 12. For i ∈ {1, 2, 3, 4, 5}, the edges between Vi,i+2 and V∅ form a matching.
By symmetry, it suffices to prove the claim for i = 1. Note that V∅ and V1,3 are
independent sets by Claims 1 and 3, respectively. If the claim is false then there must
be a vertex y in one of these sets that has two neighbours x and x′ in the other set.
Then x and x′ are non-adjacent, so G[v4, v5, x, y, x′] is a P2 + P3. This contradiction
completes the proof of Claim 12.

Claim 13. For distinct i, j ∈ {1, 2, 3, 4, 5}, if x ∈ Vi,i+2 is adjacent to y ∈ V∅ and
z ∈ Vj,j+2 is non-adjacent to y then x is adjacent to z.
Suppose, for contradiction, that the claim is false. By symmetry, we may assume that
i = 1, j ∈ {2, 3}. Indeed, suppose x ∈ V1,3 is adjacent to y ∈ V∅ and z ∈ Vj,j+2 is
non-adjacent to x and y. Then G[x, y, v5, v4, z] or G[x, y, v4, v5, z] is a P2 + P3 if j = 2
or j = 3, respectively. This contradiction completes the proof of Claim 13.

Claim 14. We may assume that V∅ is empty.
Recall that Vi,i+2 is an independent set for i ∈ {1, 2, 3, 4, 5}, by Claim 3. For i ∈
{1, 2, 3, 4, 5}, let V ′i,i+2 be the set of vertices in Vi,i+2 that have a neighbour in V∅ and
let G′ = G[V∅ ∪

⋃
i∈{1,2,3,4,5} V

′
i,i+2]. By Claim 13, for distinct i, j ∈ {1, 2, 3, 4, 5}, we

find that V ′i,i+2 is complete to Vj,j+2 \ V ′j,j+2. By Fact 3 we may apply a bipartite
complementation between every such pair of sets and also between {vi, vi+2} and V ′i,i+2

for i ∈ {1, 2, 3, 4, 5}. This disconnects G′ from the rest of the graph. We now prove
that G′ has bounded clique-width.

Claim 12 implies that for i ∈ {1, 2, 3, 4, 5}, every vertex in V∅ has at most one neigh-
bour in V ′i,i+2 and every vertex in V ′i,i+2 has exactly one neighbour in V∅. Furthermore,
for distinct i, j ∈ {1, 2, 3, 4, 5}, if x ∈ V ′i,i+2 and y ∈ V ′j,j+2 have different neighbours
in V∅ then x is adjacent to y by Claim 13. Now let G′′ be the graph obtained from G′

by applying a bipartite complementation between V ′i,i+2 and V ′j,j+2 for each pair of
distinct i, j ∈ {1, 2, 3, 4, 5}. Then, for distinct i, j ∈ {1, 2, 3, 4, 5}, if x ∈ V ′i,i+2 and
y ∈ V ′j,j+2 are adjacent in G′′ then they must have the same unique neighbour in V∅ in
the graph G′′. Therefore every component of G′′ contains exactly one vertex in V∅ and
at most one vertex in each set V ′i,i+2, so each component contains at most six vertices.
It follows that G′′ has clique-width at most 6. By Fact 3, G′ has bounded clique-width.
We may therefore assume that V∅ is empty. This completes the proof of Claim 14.
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Note that in the proof of Claim 14 we may remove vertices from Vi,i+2 for some
i ∈ {1, 2, 3, 4, 5}. If this causes a set Vi,i+2 to become small, then again by Fact 1, we
may delete all remaining vertices of Vi,i+2. Therefore, we may again assume that each
set Vi,i+2 is either large or empty. We now analyse the edges between these sets.

Claim 15. For i ∈ {1, 2, 3, 4, 5}, the edges between Vi,i+2 and Vi+1,i+3 form a co-
matching.
Suppose for contradiction that the claim is false. Without loss of generality, assume
there is a vertex x ∈ V1,3 with two non-neighbours y, y′ ∈ V2,4. Then y must be
non-adjacent to y′ by Claim 3, so G[x, v1, y, v4, y′] is a P2 + P3, a contradiction. This
completes the proof of Claim 15.

Claim 16. For i ∈ {1, 2, 3, 4, 5}, suppose x ∈ Vi,i+2 is adjacent to y ∈ Vi+1,i+3. If
z ∈ Vi+3,i then z is not complete to {x, y}.
Suppose, for contradiction that x ∈ V1,3 is adjacent to y ∈ V2,4 and z ∈ V4,1 is complete
to {x, y}. Then G[v1, y, x, v2, z] is a P2 + P3, a contradiction. This completes the proof
of Claim 16.

Claim 17. For i ∈ {1, 2, 3, 4, 5}, if Vi,i+2 is large then Vi−1,i+1 is anti-complete
to Vi+1,i+3.
Suppose the claim is false. Without loss of generality, assume that V2,4 is large and
x ∈ V1,3 is adjacent to z ∈ V3,5. By Claim 15, the vertices x and z each have at most
one non-neighbour in V2,4. Since V2,4 is large, there must therefore be a vertex y ∈ V2,4
that is adjacent to both x and z. Then G[v3, y, x, v2, z] is a P2 + P3, a contradiction.
This completes the proof of Claim 17.

For distinct i, j ∈ {1, 2, 3, 4, 5}, we say that Vi,i+2 and Vj,j+2 are consecutive sets if vi
and vj are adjacent vertices of the cycle C and opposite sets if they are not. We consider
cases depending on which sets Vi,i+2 are large.

Case 1. Vi,i+2 is large for all i ∈ {1, 2, 3, 4, 5}.
By Claim 3, every set Vi,i+2 is independent. Then, by Claim 17, if Vi,i+2 and Vj,j+2

are opposite then they must be anti-complete to each other. By Claim 15, if Vi,i+2

and Vj,j+2 are consecutive, then the edges between these sets form a co-matching. By
Fact 1, we may delete the vertices of the cycle C. Applying a bipartite complementation
between each pair of consecutive sets Vi,i+2 and Vj,j+2, we therefore obtain a graph
of maximum degree 2. By Lemma 2 and Fact 3, G has bounded clique-width. This
completes Case 1.

Case 2. Vi,i+2 is large for i ∈ {1, 2, 3} and empty for i = 5. (Vi,i+2 may be large or
empty for i = 4.)
By Claim 3, every set Vi,i+2 is independent. Then, by Claim 17, V1,3 is anti-complete
to V3,5 and V2,4 is anti-complete to V4,1 (note that this also holds in the case where V4,1 =
∅). Therefore V1,3∪V3,5 and V2,4∪V4,1 are independent sets, so G[V1,3∪V3,5∪V2,4∪V4,1]
is a bipartite (P2 + P3)-free graph, and thus has bounded clique-width by Lemma 4.
By Fact 1, we may delete the vertices of the cycle C. All remaining vertices are in
V1,3 ∪ V3,5 ∪ V2,4 ∪ V1,4. Therefore G has bounded clique-width. This completes Case 2.

Case 3. Vi,i+2 is large for at most two values i ∈ {1, 2, 3, 4, 5}.
By Claim 3, every set Vi,i+2 is independent. By Fact 1, we may delete the vertices of the
cycle C. Therefore the remainder of the graph consists of the at most two sets Vi,i+2,
and is therefore a bipartite (P2 + P3)-free graph, so it has bounded clique-width by
Lemma 4. Therefore G has bounded clique-width. This completes Case 3.

By symmetry, only one case remains:
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Case 4. Vi,i+2 is large for i ∈ {1, 2, 4} and empty for i ∈ {3, 5}.
We consider two subcases:

Case 4a. No vertex of V4,1 has a neighbour in both V1,3 and V2,4.
By Claim 3, V1,3, V2,4 and V4,1 are independent. By Fact 1, we may delete the vertices
of the cycle C. All remaining vertices belong to V1,3 ∪ V2,4 ∪ V4,1. Let V ∗4,1 be the set of
vertices in V4,1 that have a neighbour in V1,3 and let V ∗∗4,1 = V4,1 \ V ∗4,1. Note that if a
vertex x ∈ V4,1 has a neighbour in V2,4 then x ∈ V ∗∗4,1. Now V2,4∪V ∗4,1 and V1,3∪V ∗∗4,1 are
independent sets, so G[V2,4 ∪ V ∗4,1 ∪ V1,3 ∪ V ∗∗4,1] is a bipartite (P2 + P3)-free graph and
thus has bounded clique-width by Lemma 4. Therefore G has bounded clique-width.
This completes Case 4a.

Case 4b. There is a vertex x ∈ V4,1 with neighbours y ∈ V1,3 and z ∈ V2,4.
By Claim 3, V1,3, V2,4 and V4,1 are independent. Then, by Claim 16, y must be
non-adjacent to z. By Claim 3, V1,3, V2,4 and V4,1 are independent. By Claim 15,
the edges between V1,3 and V2,4 form a co-matching, so y is complete to V2,4 \ {z}
and z is complete to V1,3 \ {y}. By Claim 16, it follows that x has no neighbours in
(V1,3 \ {y}) ∪ (V2,4 \ {z}). Then, since V1,3 and V2,4 are large, there must be adjacent
vertices y′ ∈ V1,3 \ {y} and z′ ∈ V2,4 \ {z}. Now G[x, y, z′, y′, z] is a C5, with vertices
in that order; we denote this cycle by C ′. By Fact 1, we may delete the vertices of the
original cycle C. Repeating the arguments of Claim 2, but applied with respect to the
cycle C ′ instead of C, we find that at most five vertices outside C ′ have exactly one
neighbour in C ′. By Fact 1, we may delete any such vertices.

Let y′′ ∈ V1,3 \ {y, y′}. By Claim 3, y′′ is non-adjacent to y and y′. Since z is
complete to V1,3 \ {y}, it follows that y′′ is adjacent to z. By Claim 16 and the fact
that z is adjacent to x and y′′, it follows that x cannot be adjacent to y′′. Since y′′
cannot have exactly one neighbour on C ′, we conclude that y′′ must be adjacent to z′.
Therefore every vertex of V1,3 \ {y, y′} is adjacent to z and z′, but no other vertices
of C ′. Similarly, every vertex of V2,4 \ {z, z′} is adjacent to y and y′, but no other
vertices of C ′.

Let x′ ∈ V4,1 \ {x}. By Claim 3, the set V4,1 is independent, so x′ is non-adjacent
to x. Therefore x′ must have at least two neighbours in {y, y′, z, z′}, but by Claim 16,
it cannot be complete to {y, z′}, {y′, z′} or {y′, z}. Therefore the neighbourhood of x′
in C ′ must be {y, y′}, {z, z′} or {y, z}. If x′ is adjacent to y then by Claim 16 and the
fact that y is complete to V2,4 \ {z}, it follows that x′ is anti-complete to V2,4 \ {z}.
Similarly, if x′ is adjacent to z, then it is anti-complete to V1,3 \ {y}. This means that
if x′ is adjacent to y and z then it has no other neighbours, so it is a false twin of x
and by Lemma 3 we may delete x′ in this case. Therefore x′ is either adjacent to y
and y′, in which case x′ is anti-complete to V2,4, or x′ is adjacent to z and z′, in which
case x′ is anti-complete to V1,3.

Let V ∗4,1 be the set of vertices in V4,1 that are adjacent to y and y′ and let V ∗∗4,1
be the remaining vertices of V4,1. Now V2,4 ∪ V ∗4,1 and V1,3 ∪ V ∗∗4,1 are independent
sets. Deleting the vertex x, we obtain the graph G[V2,4 ∪ V ∗4,1 ∪ V1,3 ∪ V ∗∗4,1], which
is a bipartite (P2 + P3)-free graph and thus has bounded clique-width by Lemma 4.
By Fact 1, it follows that G has bounded clique-width. This concludes Case 4b and
therefore Case 4.

We have proved that G has bounded clique-width. By Theorem 9, this completes the
proof of the theorem. ut

4.3 The Final Proof

We are now ready to prove Theorem 3.
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Theorem 3 (restated). Let H be a graph with H,H /∈ {(s+1)P1+P3, sP1+P4 | s ≥
2}. Then Colouring is polynomial-time solvable for (H,H)-free graphs if H or H is
an induced subgraph of K1,3, P1 + P4, 2P1 + P3, P2 + P3, P5, or sP1 + P2 for some
s ≥ 0 and it is NP-complete otherwise.

Proof. We first consider the polynomial-time cases. The Colouring problem is solvable
in polynomial time for (K1,3,K1,3)-free graphs [34], (P1 + P4, P1 + P4)-free graphs
(by Theorem 9 combined with the fact that they have bounded clique-width [3]),
(2P1 + P3, 2P1 + P3)-free graphs [1], (P2 + P3, P2 + P3)-free graphs (by Theorem 11),
(P5, P5)-free graphs [22] and (sP1 + P2, sP1 + P2)-free graphs for s ≥ 0 [14].

Let H be a graph and suppose that Colouring is not NP-complete for (H,H)-free
graphs and that neither H nor H is isomorphic to (s + 1)P1 + P3 or sP1 + P4 for
s ≥ 2. We will show that one of the polynomial-time cases above holds. For any p ≥ 3,
Colouring is NP-complete for (C3, . . . , Cp)-free graphs due to Lemma 1. Therefore,
we may assume without loss of generality that H is a forest.

First suppose that H contains a vertex of degree at least 3. Then K1,3 ⊆i H. We
may assume H contains a vertex x not in this K1,3, otherwise we are done. Since H
is a forest, x can have at most one neighbour on the K1,3. Then 2P1 + P2 ⊆i H if x
is adjacent to a leaf vertex of the K1,3 and K4 ⊆i H if it is not. This means that the
class of (H,H)-free graphs contains the class of (K1,3,K4, 2P1 + P2)-free graphs for
which Colouring is NP-complete [27]. We may therefore assume that H does not
contain a vertex of degree 3, so H must be a linear forest.

Now H must be (P1 + 2P2, 2P3, P6)-free, otherwise the problem is NP-complete on
the class of (H,H)-free graphs by Theorem 6. Let H1, . . . ,Hr be the components of H
with |V (H1)| ≥ · · · ≥ |V (Hr)| for some r ≥ 1 and note that each component Hj is
isomorphic to a path.

If r ≥ 2 then |V (H2)| ≤ 2 since H is 2P3-free. Suppose |V (H2)| = 2. Then r ≤ 2
and |V (H1)| ≤ 3, since H is (P1 + 2P2)-free. This means that H ⊆i P2 + P3, so we
are done. We may therefore assume that all components apart from H1 are trivial,
that is, H = sP1 + Pt for some s, t ≥ 0. Now t ≤ 5, since H is P6-free. If t = 5 then
s = 0 since H is (P1 + 2P2)-free, so H = P5 and we are done. If t = 4 then s ≤ 1 by
assumption, so H ⊆i P1 + P4 and we are done. If t = 3 then s ≤ 2 by assumption, so
H ⊆i 2P1 + P3 and we are done. If t ≤ 2 then H ⊆i sP1 + P2 for some s ≥ 0 and we
are done. This completes the proof. ut

5 The Proofs of Theorems 4 and 5

To prove Theorems 4 and 5, we use a construction introduced by Huang [23, Section 2].
Recall that the chromatic number and clique number of a graph G are denoted by χ(G)
and ω(G), respectively. A graph G is k-critical if and only if χ(G) = k and χ(G−v) < k
for every vertex v in G. A k-critical graph G is nice if and only if it contains an
independent set on three vertices c1, c2, c3, such that ω(G) = ω(G−{c1, c2, c3}) = k−1.

We describe the construction of Huang. Let I be an instance of 3-Sat with variables
X = {x1, . . . , xn} and clauses C = {C1, . . . , Cm}. We may assume that the variables
in each clause are pairwise distinct. Let H be a nice k-critical graph. By definition,
H contains three pairwise non-adjacent vertices c1, c2, c3 such that ω(H) = ω(H −
{c1, c2, c3}) = k − 1. We construct the graph GH,I as follows:

– For each variable xi, we create a pair of literal vertices xi and xi joined by an edge.
We call these vertices X-type.

– For each variable xi, we create a variable vertex di. We call these vertices D-type.
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– For each clause Cj , we create a subgraph Hj isomorphic to H. The three vertices
of Hj corresponding to c1, c2, c3 are denoted cj1, c

j
2, c

j
3, respectively, and are called

C-type; they are understood to each represent a distinct literal of Cj . The remaining
vertices of Hj are called U -type.

We have the following additional adjacencies:

– Every U -type vertex is adjacent to every D-type and every X-type vertex.
– Every C-type vertex is adjacent to the X-type vertex and D-type vertex that

represent the corresponding literal and variable.

The following are [23, Lemma 1] and [23, Lemma 2].

Lemma 5 ([23]). Let H be a nice k-critical graph. An instance I of 3-Sat is satisfiable
if and only if GH,I is (k + 1)-colourable.

Lemma 6 ([23]). Let H be a nice k-critical graph. If H is Pt-free for any integer
t ≥ 6, then GH,I is also Pt-free.

Theorem 4 (restated). 4-Colouring is NP-complete for (P7, P8)-free graphs, and
thus for (P8, P8)-free graphs.

Proof. It follows from Lemma 5 that we need only exhibit a nice 3-critical graph H such
that GH,I is (P7, P8)-free for any 3-Sat instance I. We claim that C7 will suffice. This
is the graph used by Huang [23, Theorem 6] to show that 4-Colouring is NP-complete
for P7-free graphs. He noted (and it is trivial to check) that C7 is a P7-free nice 3-critical
graph and so, by Lemma 6, GC7,I is also P7-free. It only remains to show that GC7,I

is P8-free. Suppose, for contradiction, that GC7,I contains a P8, whose vertex set we
denote P , as an induced subgraph.

We observe that any four vertices of P induce at least three edges and that any
three vertices induce at least one edge. So P cannot contain four vertices that are each
either X-type or D-type as they would induce at most two edges.

So P contains at least five vertices that belong to copies of C7. We recall that
vertices from distinct copies of C7 are not adjacent in GC7,I . So if three of these five
vertices belong to three distinct copies of C7, they induce no edge, a contradiction.
Hence there must be a copy of C7 that contains at least three of the vertices. As
two of them must be non-adjacent, no other vertex of the five can belong to another
copy of C7, otherwise we again have three vertices that induce no edge. Therefore the
five vertices must all belong to the same copy. Considering the subgraphs of C7 on
five vertices, we see that these five vertices induce one of P1 + P4, P2 + P3 and P5,
each of which contains an independent set on three vertices. Therefore P contains an
independent set on three vertices. This contradiction completes the proof. ut

Theorem 5 (restated). 5-Colouring is NP-complete for (P2 +P5, P6, P1 + P6)-free
graphs, and thus for (P1 + P6, P1 + P6)-free graphs.

Proof. It follows from Lemma 5 that we need only to exhibit a nice 4-critical graph H
such that GH,I is (P2 + P5, P6, P1 + P6)-free for any 3-Sat instance I. We claim that
the graph H of Fig. 5 will suffice. This graph was used by Chudnovsky, Huang, Spirkl
and Zhong [8, Theorem 1.8] and by Huang [23, Theorem 5] to show that 5-Colouring
is NP-complete for (P2 + P5)-free and P6-free graphs, respectively. Huang [23] noted,
and it is easy to verify, that H is a P6-free nice 4-critical graph and so, by Lemma 6,
GH,I is also P6-free. Chudnovsky, Huang, Spirkl and Zhong [8] showed that GH,I is
also (P2 + P5)-free. It only remains to show that GH,I is P1 + P6-free. Suppose, for
contradiction, that GH,I contains P1 + P6 as an induced subgraph. Thus GH,I contains
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a set, denoted P , of six vertices that induce a P6 and a further vertex q adjacent to
every vertex of P .

We observe that any four vertices of P induce at least three edges and that any
three vertices induce at least one edge.

c1

c2 c3

b

e f

g

Fig. 5. The graph H used in the proof of Theorem 5.

Suppose that q is either D-type or X-type. Then q has at most one neighbour that
is also D-type or X-type, and so P contains at least five vertices that belong to copies
of H. Vertices from distinct copies of H are not adjacent in GH,I . If three of these
five vertices belong to three distinct copies of H, they induce no edge, a contradiction.
Hence the five vertices belong to at most two distinct copies of H. If there are two
copies of H that each contain at least two of the five vertices, then there are four
vertices that induce at most two edges, a contradiction. Therefore at least four of the
five vertices belong to the same copy of H and so, in fact, they must all belong to the
same copy (otherwise there is a single vertex in a distinct copy that is adjacent to none
of the other four, a contradiction). Label the vertices in that copy as in Fig. 5. We
notice that P contains at most one C-type vertex as q is adjacent to only one C-type
vertex in each copy of H (recall that we assumed that the clauses of the 3-Sat instance
contain three distinct variables). So without loss of generality P contains c1, b, e, f
and g, but these vertices do not induce a subgraph of P6 (notice, for example, that
there are three vertices not adjacent to b), a contradiction.

Let us suppose instead that q is a C-type vertex. Then q has degree 5 in GH,I so it
cannot be adjacent to every vertex of P , a contradiction.

Finally we assume that q is a U -type vertex and that it belongs to a copy of H with
the labelling of Fig. 5. By the symmetry of H, without loss of generality, only two cases
remain: namely q = b or q = e. If q = b, then the possible vertices of P are c1, c2, c3
and D-type and X-type vertices. Hence P contains zero, one or two C-type vertices (it
cannot contain all three since P does not contain an independent set of size 3). Then P
contains at least four D-type and X-type vertices, but these four vertices can induce
at most two edges, a contradiction.

So we must have q = e and P contains vertices from c1, c2, f, g and the D-type and
X-type vertices. Then P cannot contain both c1 and c2 as every pair of non-adjacent
vertices in a P6 has a common neighbour (since every pair of adjacent vertices in a P6

has a common non-neighbour), but c1 and c2 have no possible common neighbour
as they represent distinct variables and so are joined to different D-type and X-type
vertices. Observe that for each vertex v of P , there is at least one other vertex of P
that is not adjacent to v. So, looking for possible non-neighbours, we have that

– if f is in P , then c2 is in P , and
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– if g is in P , then c1 is in P ,

and so P cannot contain both f and g. Thus P contains at least four D-type and X-
type vertices, but these four vertices can induce at most two edges. This contradiction
completes the proof. ut

We finish this section and our paper with two remarks on the question marks in Table 1.

Remark 1. There is no nice k-critical graph H with the property that GH,I is P6-
free for every 3-Sat instance I. This can be seen as follows. Let Hj and H` be
two copies of H in GH,I corresponding to distinct clauses Cj and C`. Let c and u
be adjacent vertices of Hj that are of C-type and U -type, respectively. Note that
these two vertices must exist, as H is connected and the three C-type vertices are
independent. Let u′ be a U -type vertex in H`. Assume without loss of generality that c
is adjacent to an X-type vertex xh, and thus also adjacent to dh, but not to xh. Then
the vertices xh, dh, xh, c, u′, u, in that order, form an induced P6 in GH,I and thus
an induced P6 in GH,I . Hence, Lemma 5 cannot be used to find an integer k ≥ 5 (if
one exists) such that k-Colouring is NP-complete for (P6, P6)-free graphs (recall
that 4-Colouring is polynomial-time solvable for P6-free graphs [10,11] and that
3-Colouring is polynomial-time solvable even for P7-free graphs [2]).

Remark 2. The P7-free graph GC7,I used in the proof of Theorem 4 is not P7-free.
In order to see this, we pick a copy Hj of H = C7 with vertices a1, . . . , a7 in that
order. Without loss of generality, we may assume a1, a3 and a5 are of C-type, and a2,
a4, a6 and a7 are of U -type. Assume without loss of generality that a1 is adjacent
to an X-type vertex xh, and thus also adjacent to dh, but not to xh. Then the
vertices xh, dh, xh, a1, a6, a2, a7, in that order, form an induced P7 in GC7,I and thus
an induced P7 in GC7,I . Here, the relevant property is that H contains an induced
path on four vertices that are of U -type, U -type, C-type and U -type, respectively; we
call this property the UUCU -property. We leave the existence of a P7-free graph GH,I

that is also P7-free (in which case H does not have the UUCU -property) as an open
question. Chudnovsky, Goedgebeur, Schaudt and Zhong [7] gave an infinite family
of 4-critical P7-free graphs (they credited the graph construction to Pokrovskiy via
private communication). Using a computer they also found all 4-critical P7-free graphs
on less than 16 vertices. It can be verified that all of these graphs H either have clique
number not equal to 3 or have the UUCU -property for every valid choice of c1, c2, c3.
As such, they do not lead to a P7-free graph GH,I that is also P7-free.
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P7-free graphs mentioned in Remark 2.
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