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Abstract—In this paper, we propose a deep metric for unifying
the representation of mesh saliency detection and non-rigid shape
matching. While saliency detection and shape matching are two
closely related and fundamental tasks in shape analysis, previous
methods approach them separately and independently, failing to
exploit their mutually beneficial underlying relationship. In view
of the existing gap between saliency and matching, we propose
to solve them together using a unified metric representation
of surface meshes. We show that saliency and matching can
be rigorously derived from our representation as the principal
eigenvector and the smoothed Laplacian eigenvectors respectively.
Learning the representation jointly allows matching to improve
the deformation-invariance of saliency while allowing saliency to
improve the feature localization of matching. To parameterize the
representation from a mesh, we also propose a deep recurrent
neural network (RNN) for effectively integrating multi-scale
shape features and a soft-thresholding operator for adaptively
enhancing the sparsity of saliency. Results show that by jointly
learning from a pair of saliency and matching datasets, matching
improves the accuracy of detected salient regions on meshes,
which is especially obvious for small-scale saliency datasets, such
as those having one to two meshes. At the same time, saliency
improves the accuracy of shape matchings among meshes with
reduced matching errors on surfaces.

Index Terms—mesh saliency, non-rigid shape matching, metric
learning, deep learning, recurrent neural network

I. INTRODUCTION

The fundamental challenge of shape analysis is extracting

knowledge from surface meshes that is not only understand-

able to humans but also invariant to complex shape defor-

mations. Only with such invariance can a method work well

consistently on the deformed versions of shapes. In this paper,

we narrow this challenge down to two fundamental shape

analysis tasks: mesh saliency detection [1] and non-rigid shape
matching [2]. We develop their previously unknown underly-

ing relationship, and exploit it for mutual improvements of

saliency detection and shape matching using deep learning.

The first task we are interested in is saliency detection,

which aims to compute a saliency map for an input mesh

that signifies the perceptual or semantic importance of surface

regions [1], [3]. Despite highlighting semantically important
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Fig. 1. An Illustration of Our Idea. While previous research approaches
saliency detection and non-rigid shape matching separately and independently
(left), we unify them via a shared metric representation of surface meshes to
better handle intra-category shape deformations for both sides (right).

regions, saliency maps are also found to be consistent on

surfaces of the same object category [3]. However, the intra-

category consistency of saliency has been ignored by previous

saliency detection methods [1], [3]–[5], which limits their

generalization abilities under complex intra-category shape

deformations.

The other task we focus on is non-rigid shape matching,

which finds semantically meaningful surface correspondences

across meshes irrespective of the shape deformations among

them [2]. As found in [3], human annotators tend to agree on

a consistent set of semantically important regions on surfaces

of the same object category, without communicating with each

other during annotation. This shows that saliency is a strong

deformation-invariant cue of shape matching within a category.

However, existing shape matching methods mostly work on the

matching task solely [6]–[8], without exploiting the saliency

cue for more robust matching.

In computer vision and image processing, the consistency

of salient objects within image collections has long been

observed and exploited to drive effective image co-saliency

detection [9] and matching [10]. However, the connection

between saliency and matching has largely been ignored in

computer graphics and shape analysis. We propose to unify the

two tasks in the same framework so that they can help each

other generalize better under complex intra-category shape

deformations. To do this in a principled way, we need a

unified representation of surface meshes that is geometry-

aware, supports the joint modeling of saliency and matching,

and most importantly enables the knowledge transfer between

saliency and matching for mutual improvements.

Towards this goal, we propose a unified metric represen-

tation that measures the pairwise semantic distances among
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all points on a mesh. Through two principled optimization

problems, we show that the saliency map and the shape

embeddings of a mesh can be derived from the principal eigen-

vector and the smoothed Laplacian eigenvectors of the metric

respectively (Fig. 1). Our joint modeling allows matching

to transfer deformation-invariance (i.e. intra-category consis-

tency) to saliency, while allowing saliency to transfer sparsity

(i.e. semantic feature localization) to matching for more robust

correspondence solutions.

Having found a unified metric representation for saliency

detection and shape matching, we need a way to compute the

metric from the low-level geometry features of all points on

an input mesh. More importantly, we wish the computation

process to be differentiable so that it can be automatically

learned from a given pair of saliency and matching datasets.

Witnessing the success of deep neural networks for shape

analysis [8], we propose a deep metric learning architecture

that maps the low-level geometry features of all points on a

mesh to a semantics-aware metric representation for saliency

detection and shape matching. The core of our architecture is

a multi-layer RNN that can be learned to effectively integrate

small-to-large scale shape features for each point. The other

essential component of our architecture is a soft-thresholding

operator, which can be learned to produce a sparse metric

from the pooling result of the metrics computed from the

RNN features of each scale. Our architecture is able to

more effectively exploit multi-scale shape information and the

sparsity of saliency, producing higher performance on saliency

detection than alternatives.

To learn the deep metric representation from a pair of

saliency and matching datasets, we propose a unified loss

function with three terms: (1) the saliency fitting term to

penalize the difference between the predicted and the ground-

truth saliency maps of a mesh from the saliency dataset; (2) the

saliency consistency term to penalize the difference between

the predicted saliency maps of any pair of meshes from the

matching dataset; (3) the metric consistency term to penalize

the difference between the two metrics of any pair of meshes

from the matching dataset. We minimize this loss function

using our proposed eigenvector reparameterization technique

with the stochastic gradient descent (SGD) method [11].

We jointly evaluate our method on saliency detection [3]

and non-rigid shape matching [12]–[14] datasets. The results

show that it outperforms exiting rule-based and learning-based

saliency detection methods in both the small and large sample

training scenarios. It is also shown to improve both the model-

based and learning-based methods for matching non-isometric

pairs of shapes (Fig. 2). Our publicly available source code

can be downloaded from this link: https://drive.google.com/

drive/folders/10Vu3ujF-5gPm8h E35VhZR45WCjht18B

Our contributions include:

• We validate the mutual benefits between mesh saliency

detection and non-rigid shape matching. Matching im-

proves the accuracy and deformation-invariance of

saliency via the intra-category consistency of matching,

while saliency improves the robustness of matching under

non-isometric deformations via the sparsity of saliency.

• We propose a unified metric representation for joint

modeling of saliency and matching. The saliency map

of a mesh is computed as the principal eigenvector of

the metric and the shape embeddings of the mesh are

computed as the smoothed Laplacian eigenvectors of

the metric. Our formulation allows matching to enforce

the intra-category consistency for more accurate and

deformation-invariant saliency detection, while exploiting

the sparsity of saliency to induce semantically localized

embeddings for more robust matching.

• We propose a multi-layer RNN architecture for more

effectively integrating multi-scale shape information in

metric computation, and an effective soft-thresholding

operator for incorporating the sparsity of saliency in

metric representation. We also propose a unified loss

function for joint metric learning from a pair of saliency

detection and shape matching datasets.

In the following, we review existing work in Section II and

present our unified metric representation for saliency detection

and shape matching in Section III. We then describe our

deep metric learning architecture in Section IV and some

implementation details in Section V. We present results in

Section VI and draw our conclusions in Section VII.

II. RELATED WORK

Mesh saliency was introduced to computer graphics to

measure the perceptual or semantic importance of surface

regions [1]. Traditional methods computed saliency either from

local contrasts [1], [5] or global rarities [4], [15], [16]. These

hand-crafted saliency rules are neither accurate nor robust to

non-rigid shape deformations.

Recent methods directly learned a saliency prediction func-

tion from human annotations [3]. The 3D deep neural networks

of [17]–[22] can also be adapted for saliency prediction. We

follow the Schelling saliency notion of [3] in this work as

they empirically validated the intra-category consistency of

Schelling saliency maps. Still, we find no previous methods

enforcing this property for saliency detection. In contrast,

our method explicitly enforces the intra-category consistency

of saliency and produces more accurate and deformation-

invariant saliency maps.

Non-rigid shape matching finds semantically meaningful

surface correspondences across meshes irrespective of the

deformations among them [2]. Traditional methods mainly

assumed the deformation to be isometric [6] or conformal

[7] and then searched for matchings within the prescribed

deformation space. Due to the isometry-invariant property, the

surface Laplacian [23] has been widely used in the spec-

tral embedding [24], functional mapping [6], and quadratic

matching [25] formulations of shape matching. Both isometric

and conformal deformations are restricted and can bias shape

matching towards unfavorable solutions.

Recent methods learned deformation-invariant shape em-

beddings for correspondence search [26]–[30] or directly

learned point label classifiers for correspondence prediction

using random forests [31], convolutional neural networks

(CNNs) [8], [32], and multi-layer perceptrons (MLPs) [33].
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Fig. 2. The Mutual Benefits of Saliency and Matching. Our method produces more deformation-invariant saliency maps with matching (left, using red
and blue colors to visualize high and low saliency values respectively). It also produces more accurate shape matchings with saliency (right, colorizing each
target mesh vertex with its computed corresponding reference vertex’s (X,Y,Z) coordinates).

Both streams of methods learned for individual points without

considering their saliency information. Also, the first stream of

methods learned embeddings on a per-point basis and lacked

orthogonality and smoothness guaranties that hold for the

Laplacian embeddings [23]. Our method instead guarantees

that the learned embeddings are orthogonal (i.e. the inner

product between every pair of embedding vectors is zero)

and smooth. More importantly, it exploits saliency to ensure

that the resulting embeddings are localized on semantically

important surface regions. This is particularly valuable in

improving both the model-based and learning-based methods

for matching non-isometric pairs of shapes.

3D shape recognition can also be benefited by the joint

use of mesh saliency and shape matching. Traditionally, shape

recognition was generally performed by computing the similar-

ity of geometric descriptors extracted from shapes [34]–[37],

with some benchmarks specifically built to evaluate the effec-

tiveness of these descriptors [38], [39]. Recently, deep learning

methods have also been adopted for 3D shape recognition

[18]–[20], [36], [40] using considerably larger-scale shape

datasets [41], [42]. As mesh saliency is remarkably consistent

within shapes of the same object class [3], our saliency-

guided shape embeddings could also be summarized into shape

descriptors that are sufficiently deformation-invariant to allow

more robust shape recognition.

III. OUR UNIFIED METRIC REPRESENTATION

In this section, we propose a unified metric representation

of surface meshes that enables the joint modeling of saliency

detection and non-rigid shape matching. While multi-task

learning is traditionally formulated as learning shared feature

representations, it would be based on individual points on a

surface and therefore lack a global geometry characterization

of the whole surface [3], [18]–[20]. In contrast, we propose

to represent the geometry of a mesh using a metric that

characterizes the pairwise learned distances among all points

on the surface. We will show that such a global metric repre-

sentation is essential to guaranteeing some desirable properties

for saliency detection and shape matching.

A. Notations, Inputs, and Outputs

We denote a polygonal surface mesh as P = 〈{pk ∈
R

3}Nk=1, {(pi,pj) | if pi and pj are adjacent}〉 with N sur-

face vertices and the edges connecting the adjacent vertices.

One quantity we want to compute for P is a nonnegative-

valued saliency map s(P) ∈ R
N
≥0, which assigns to each point

pk the saliency value sk(P). The higher the value, the more

semantically important the point. The other quantity we want

to compute is the shape embeddings E(P) ∈ R
N×m, which

maps each 3D point pk to a m-dimensional feature vector

Ek·(P) where non-rigid shape deformations can be simplified

to rigid ones for more efficient matching [25]. We denote

the metric representation that leads to the two quantities as

a nonnegative-valued, symmetric, and zero-diagonal distance

matrix D(P) ∈ R
N×N
≥0 . It assigns a distance Dij(P) to every

pair of points pi and pj on the surface of P .

In order to learn the metric D(P) for saliency detection

and non-rigid shape matching, we require a pair of saliency

and matching datasets, {〈Pi, s̄(Pi)〉}Ns
i=1 and {〈Pi,P ′

i〉}Nc
i=1,

for training. In the former, each mesh Pi has the ground-

truth saliency map s̄(Pi). In the latter, every pair of meshes

Pi and P ′
i have a natural one-to-one semantic correspondence

between their surface points.

B. Saliency Detection from a Metric

In this subsection, we propose a differentiable saliency

definition based on the metric representation of a mesh. We

formulate the saliency map of a mesh as the global optimal

solution to a metric-based optimization problem, obtaining

the solution as the principal eigenvector of the metric. This

solution is differentiable and thus learnable, guarantees the

nonnegativity of saliency, and inherently encodes the sparsity

of saliency for saliency detection and shape matching.

To begin with, we first consider s(P) as a binary saliency

map: sk(P) = 1 if pk is a salient point and sk(P) = 0
otherwise. We then consider the problem of labeling a set

of salient points so that the sum of their pairwise distances,

sTD(P)s =
∑

i

∑
j sisjDij(P), can be maximized. Finally,

since solving this problem is difficult and only produces a
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Fig. 3. The Sparsity of Saliency. As human-annotated saliency maps only
highlight a few semantically important regions on surfaces [3], our system
automatically learns to produce sparse metrics whose principal eigenvectors
(i.e. computed saliency maps) are sparse as well. Here, a redder matrix element
represents a larger learned distance between the corresponding pair of surface
points it visualizes.

binary saliency map, we relax it as follows by replacing the

binary saliency labels with continuous saliency values:

s(P) = argmax sTD(P)s, s.t. s ∈ R
N
≥0 and ‖s‖2 = 1, (1)

where we enforce the unit Euclidean norm∗ constraint for

solution well-posedness. Without the nonnegativity constraint,

the objective of the problem is known as the Rayleigh quotient

of the metric D(P) and the solution that globally maximizes

it is the principal eigenvector of D(P). Since the metric is

symmetric and nonnegative-valued by definition, its principal

eigenvector is unique and guaranteed to be nonnegative-

valued according to the Perron-Frobenius theorem [43], [44].

Therefore, the optimal saliency map s(P) is the principal

eigenvector of the metric D(P).

Compared to existing saliency detection methods of [1], [3]–

[5], [15]–[20], our metric-based saliency detection method has

the following desirable properties:

• Nonnegative-Valued. This is trivial but is not auto-

matically satisfied by existing learning-based saliency

detection methods, without the use of some non-linear

activation functions that squash regression outcomes to

nonnegative saliency values. In contrast, our saliency map

s(P) is nonnegative-valued by definition.

• Differentiable. As the metric D(P) is symmetric, s(P)
being one of its eigenvectors is continuously differen-

tiable with respect to it [43]. This allows us to fit s(P)
to the ground-truth saliency map s̄(P) and the map of

any corresponding mesh P ′, producing more accurate and

deformation-invariant saliency maps than existing rule-

and learning-based methods.

• Encoding Sparsity. Apart from the intra-category con-

sistency, the other characteristic of the Schelling saliency

maps is that they are sparse [3]. When fitted to them, our

saliency map s(P) becomes sparse as well and drives

a large fraction of the entries of the metric D(P) to

zeros, which encode distances among non-salient points

(Fig. 3). This sparsification mechanism is key to deriving

∗‖x‖2 =
√∑

i x
2
i

Spectral
Salient

Ours

Fig. 4. Our Saliency-induced Embeddings. The columns from left to right
show individual embedding components computed by three different methods,
with the color visualizing the smoothness and localization of the embeddings
on the surface. On top of being as locally smooth as the Laplacian spectral
embeddings, our embeddings are further globally localized on semantically
important surface regions (i.e. eyes, ears, and limbs). Therefore, they are able
to enforce additional constraints for robust shape matching.

semantically localized shape embeddings for more robust

shape matching (III-C).

C. Non-rigid Shape Matching from a Metric

Having formulated the saliency map as the principal eigen-

vector of a metric in Section III-B, we now describe how

to obtain a shape embedding matrix E(P) from the same

metric for robust shape matching. Our idea is to exploit the

sparsity of saliency to learn better discrimination for salient

points and more invariance for non-salient points. To do this,

we formulate E(P) as the Laplacian embeddings with the

metric D(P) and the surface connectivity of a mesh, so that

they can be smooth, orthogonal, semantically localized, and

deformation-invariant.

The deformation between two real-world shapes is generally

non-rigid, making it highly challenging to be handled in the

original 3D Euclidean space. Following the framework of [25],

we compute a set of discriminative and deformation-invariant

embedding coordinates Ek·(P) for each surface point pk, so

that the non-rigid shape deformation between a pair of meshes

P and P ′ in the original 3D Euclidean space can be simplified

into an approximately rigid one in the higher-dimensional

embedding space. While existing methods strive on the dis-

crimination and invariance of shape embeddings [26]–[30],

they learn for each individual surface point separately and

therefore cannot guarantee that the obtained embeddings are

orthogonal or smooth. Moreover, they treat all points equally

and ignore the fact that salient points are semantically more

important and geometrically more consistent within a shape

category [3].

To address these issues, we consider the following Laplacian
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Fig. 5. The Deformation Stability of Our Embeddings. Both the Laplacian
spectral and our saliency-induced embeddings have non-zero eigengaps.
Therefore, they can be made stable under complex intra-category shape
deformations if the two metrics of any pair of meshes can be learned to
be consistent within a shape category.

embedding problem [45]:

E(P) = argmin tr[ETΔ[A(P)]E], (2a)

= argmin
1

2

m∑
k=1

N∑
i=1

N∑
j=1

Aij(P)(Eik −Ejk)
2

︸ ︷︷ ︸
affinity-weighted smoothness penalties

, (2b)

subject to E ⊥ 1 and ETE = I︸ ︷︷ ︸
orthogonality constraints

, (2c)

where tr[·] is the matrix trace†, Δ[·] is the graph Laplacian,

and A(P) = (1− θ)C(P) + θS(P) is a convex combination

of the cotangent affinity matrix C(P) [23] and the salient

affinity matrix S(P) of a mesh. We compute the salient

affinity matrix S(P) by first computing 1 − D(P) and then

setting the diagonal elements of the result to zeros. That is,

Sij(P) = 1−Dij(P) if i �= j, and 0 otherwise. While C(P)
captures the affinities of adjacent surface points and S(P)
encodes considerably large affinities among non-salient points,

A(P) is a balance of them. As Δ[A(P)] is symmetric and

nonnegative-definite, it is known that the optimal embeddings

E(P) are its eigenvectors associated with the m+ 1 smallest

eigenvalues (excluding the constant eigenvector corresponding

to the eigenvalue of 0) [45].

Compared with the shape embeddings of [26]–[30], our

saliency-induced ones have the following desirable properties:

• Orthogonal. Because Δ[A(P)] is symmetric, the em-

bedding coordinates E(P) being m of its eigenvectors

are orthogonal to each other by definition. Therefore,

our shape embeddings are mutually uncorrelated as the

Laplacian spectral embeddings [23].

• Smooth. When setting θ to 0, we recover the Laplacian

spectral embeddings of a mesh from (2a,2b,2c), which

are the smoothest orthogonal functions on the surface

[23] (Fig. 4, top). By setting θ to 0.1 to account for

the affinities of adjacent surface points, we are able to

ensure that our embeddings are smooth and orthogonal

at the same time (Fig. 4, bottom).

• Semantically Localized. When setting θ to 1, we obtain

embeddings that are localized on salient points (Fig.

4, middle), as the embedding smoothness among non-

salient points is heavily enforced due to their much larger

learned mutual affinities. Empirically, by setting θ to

†tr[X] =
∑

i Xii, Δ[X]ii =
∑

j Xij and Δ[X]ij = −Xij if i �= j

0.1, we obtain both smooth and semantically localized

embeddings (Fig. 4, bottom). Setting θ to a larger or

a smaller value would weaken the smoothness or the

localization property.

• Deformation-Invariant. According to the Davis-Kahan

theorem described in [46], we have the following bound

on the distance between the shape embeddings of two

meshes:

d(E(P),E(P ′)) ≤ ‖Δ[A(P)]−Δ[A(P ′)]‖F
λm+1 − λm

, (3)

where d(·, ·) is the Euclidean norm of the sines of the

principal angles between E(P) and E(P ′), and 0 ≤
λ1 ≤ · · · ≤ λN−1 are the non-decreasing eigenvalues

of Δ[A(P)]. To lower this bound, we need to decrease

its numerator by enforcing the deformation-invariance of

the pair of learned metrics D(P) and D(P ′). We also

set θ = 0.1 to ensure its denominator (the eigengap)

is non-negligible, preventing divergence of the bound

(Fig. 5). This ensures that our embeddings are sufficiently

deformation-invariant for shape matching.

IV. OUR DEEP METRIC LEARNING ARCHITECTURE

In Section III, we have proposed a unified metric repre-

sentation of surface meshes whose principal eigenvector and

smoothed Laplacian eigenvectors can be used for saliency

detection and non-rigid shape matching respectively. In this

section, we propose a deep neural network architecture for

computing the metric from an input mesh. The reason we need

a deep architecture is that it is learnable and sufficiently pow-

erful to extract high-level features from low-level geometry

data for shape analysis [8], [18], [19], [33]. As shown in Fig.

6, for each point on a surface mesh, we first (a) extract a set of

raw multi-scale feature vectors and then (b) feed them into our

proposed multi-layer RNN for multi-scale feature embedding.

We then (c) compute a set of multi-scale Euclidean metrics to

(d) derive a scale-free metric via max-pooling. Afterwards, we

(e) use our proposed soft-thresholding operator to adaptively

sparsify this metric and (f) compute the principal eigenvector

to (g) form three loss terms. Finally, we minimize these terms

together using our proposed eigenvector reparameterization

trick with the SGD method [11].

A. Our RNN for Multi-scale Feature Embedding

In this section, we describe our RNN method for multi-

scale feature embedding. The inputs to our method are the

raw multi-scale shape descriptors of a mesh P , {F τ,0(P) ∈
R

N×d}Nτ
τ=1, where Nτ is the number of scales from small to

large and d is the feature dimension of each surface point at

each scale τ . The outputs produced by our method are the

embedded multi-scale features {F τ (P) ∈ R
N×d}Nτ

τ=1, which

are used for subsequence metric computations. As the shape

information of each surface point naturally spans increasingly

larger contexts and these contexts are not independent of each

other [24], [47], it is difficult for some hand-crafted rules to

discover the optimal correlation among multiple contexts and

integrate them effectively [20]. This motivates us to consider
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Fig. 7. Multi-scale Feature Embedding Architectures. The image shows
three baselines and our RNN method for multi-scale feature embedding. A
single MLP can transform the concatenated features of all scales jointly (top
left) or the features of each scale individually (top right), and multiple MLPs
can work on each scale separately with no feature sharing among each other
(bottom left). In contrast, our RNN method works on a sequence of small-
to-large scale features and explicitly learns the transition between scales for
more effective scale integration (bottom right).

the multi-step RNN architecture that is usually popular for

temporal sequence modeling.

Our idea is to learn features in two directions: the vertical

direction that maps features from one layer to the next and the

horizontal direction that propagates features from one scale to

the next. More specifically, we propose to order shape features

from small to large scales and then treat each scale as one step

of a RNN in the scale sequence (Fig. 7, bottom right). This

allows us to parameterize our feature embedding architecture

as a multi-layer function f = fNl ◦ · · · ◦ f1, each layer of

which is a RNN with our specially designed scale interpolation

cell structure as follows:

Oτ,l = tanh[Υ(F τ−1,lW �,l + F τ,l−1M�,l)]︸ ︷︷ ︸
predicting candidate output features

, (4a)

P τ,l = sigmoid[Υ(F τ−1,lW ◦,l + F τ,l−1M◦,l)]︸ ︷︷ ︸
predicting scale interpolation weights

, (4b)

F τ,l = Υ[(1− P τ,l)
 F τ−1,l + P τ,l 
Υ(Oτ,l)]︸ ︷︷ ︸
interpolating features via convex combination

, (4c)

where l is the layer of each RNN, {W �,l,M�,l}Nl

l=1 are

the learnable matrix parameters of the RNN, and Υ(·) is

the feature-wise standardization operator [48]. As a common

practice [49], we initialize the features to zeros before the first

step (i.e. scale 1) for RNN computation. To our knowledge,

this is the first time that RNNs are used for multi-scale feature

learning in shape analysis.

Compared with the alternatives shown in Fig. 7, our RNN

learns scale integration explicitly to yield more powerful multi-

scale features for shape analysis. Different from the vanilla

RNN cell structure that only produces the features at each

step [49], our cell in (4a,4c,4b) explicitly interpolates the

features from the previous and the current steps (i.e. scales).

Compared with long short-term memory (LSTM) [50] and

gated recurrent unit (GRU) [51], our cell has a simpler and

more effective scale integration mechanism for multi-scale

feature embedding.

B. Our Soft-thresholding Operator for Metric Sparsification

Human-annotated saliency maps only highlight a few se-

mantically important regions on surfaces [3]. However, exist-

ing saliency detection methods of [1], [3], [4], [15], [16] do not

enforce the sparsity of saliency, producing excessive amounts

of regions that are actually not salient (Fig. 14). This motivates

us to directly incorporate the sparsity of saliency into metric

representation for more accurate saliency detection (Fig. 8).
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Fig. 8. The Effect of Our Soft-thresholding Operator. We learn a soft-
thresholding (ST) operator to adaptively truncate the small elements of a
metric to exact zeros, improving the sparsity and accuracy of computed
saliency maps significantly.

Our idea is to adaptively soft-threshold a metric using a

parametric threshold learned from ground-truth saliency maps.

We propose our soft-thresholding operator as follows:

D(P) = max{Ḋ(P)−Θt, 0}, (5)

where Ḋ(P) is the scale-free metric computed via max-

pooling described below, and Θt is a scalar parameter that can

be learned to truncate the small elements of Ḋ(P) to exact

zeros (see Section IV-C for analysis). This way, we can learn

to sparsify Ḋ(P) based on ground-truth saliency maps and

ensure that its derived saliency map s(P) is properly sparsified

as well.

We now describe how to compute Ḋ(P). From the em-

bedded features F τ (P) of each scale τ , we can compute

a squared Euclidean distance matrix D̈τ (P) among the N
points of a mesh [52]. We choose this representation because

it is simple, differentiable, and analytically computable via fast

matrix and vector operations. To address the rank-deficiency

of a single Euclidean metric [52], we compute a scale-free

metric by max-pooling the Euclidean metrics of all scales,

Ḋ(P) = max{D̈1(P), D̈2(P), . . . , D̈Nτ (P)}, where the

output is no longer low-rank as the linear independence of its

rows (or columns) is greatly strengthened by the non-linear

element-wise pooling operation.

Compared with traditional methods that enforce sparsity

via a sparsity-inducing norm [53], ours learns sparsity by

optimizing Θt adaptively, without the need of weighting a

sparsity-inducing norm by trial-and-error. This leads to much

more accurate and sparser saliency maps (Fig. 8).

C. Our Multi-objective Loss Function for Metric Learning

Here, we propose a loss function for metric learning from

a given pair of saliency and matching datasets:

L(P,P ′) = αLα(P) + βLβ(P,P ′) + γLγ(P,P ′), (6a)

Lα(P) = 1− s(P)T s̄(P), (6b)

Lβ(P,P ′) = 1− s(P)Ts(P ′), (6c)

Lγ(P,P ′) = 1− tr[D(P)D(P ′)], (6d)

where the saliency fitting term Lα(P) penalizes the difference

between the predicted and ground-truth saliency maps of

a mesh from the saliency dataset, the saliency consistency
term Lβ(P,P ′) penalizes the difference between the predicted

saliency maps of any pair of meshes from the matching

dataset, and the metric consistency term Lγ(P,P ′) penalizes

the difference between the two metrics computed from any

pair of meshes from the matching datasets. α, β, and γ are

their respective weights.

Our Eigenvector Reparameterization. As the derivatives

of s(P) with respect to D(P) require matrix pseudo-inverse

[54], Lα(P) and Lβ(P,P ′) cannot be minimized directly. We

tackle this by approximating s(P) as follows:

s(P) ≈ D(P)ν̃

ν̃TD(P)ν̃
, (7)

where ν̃ is a numerical version of s(P) computed by the

power iteration method. This approximation holds because ν̃
is associated with the largest eigenvalue of D(P) and is thus

orthogonal to the other eigenvectors. Compared with the low-

order approximation of [55], ours has a much simpler form and

is significantly more accurate. In addition, our approximation

is computationally efficient because the principal eigenvector

of the nonnegative distance matrix D(P) is associated with

the dominant principal eigenvalue [43], which guarantees

that the ratio between the second largest absolute eigenvalue

and the principal eigenvalue is strictly smaller than 1. As a

result, the power iteration method to compute the principal

eigenvector converges very quickly at a geometric rate. In

practice, convergence normally takes fewer than 20 iterations

of simple matrix and vector multiplication.

Our Saliency Fitting Term. To analyze learning dynamics,

we insert (7) into (6b) to obtain the partial derivatives of

Lα(P) with respect to D(P) and Θt:

∂Lα(P)

∂Dij(P)
= C1ν̃iν̃j − C2s̄i(P)ν̃j , (8a)

∂Lα(P)

∂Θt
=

N∑
i=1

N∑
j=1

I{Dij(P) > Θt} ∂Lα(P)

∂Dij(P)
, (8b)

where 0 < C1 ≤ C2 and I{·} is the indicator function.

If the system wrongly predicts a low saliency value for pi,

i.e. ν̃i < s̄i(P), it will increase the distances of pi to

the other points because the derivatives { ∂Lα(P)
∂Dij(P)}Nj=1 are

negative. Conversely, its distances to the other points will

decrease. Sparse ground-truth saliency maps therefore leads

to the sparsification of D(P). Because
∂Lα(P)
∂Θt

is the sum of

mostly negative partial derivatives from pairs of salient points

whose distances are large enough to exceed the threshold,
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Θt increases during the training to drive the sparsification of

D(P) further (Fig. 4 and 8).

Our Saliency Consistency Term. The form of Lβ(P,P ′)
is the same as that of Lα(P), except that we treat s(P)
and s(P ′) as each other’s learning target. This allows us to

enforce the intra-category consistency of saliency by pushing

the predicted saliency maps of any pair of meshes closer to

each other in a shape category.

Our Metric Consistency Term. To obtain deformation-

invariant embeddings, we need to control the bound in (3) by

minimizing Lγ(P,P ′). This ensures that the learned metrics

are sufficiently deformation-invariant. As the saliency consis-

tency term Lβ(P,P ′) can only regularize the principal eigen-

vector of the learned metric, we add the metric consistency

term Lγ(P,P ′) to control the remaining eigenvectors.

V. IMPLEMENTATION DETAILS

We implement our proposed system in TensorFlow

(V0.12). Our publicly available source code can be down-

loaded from this link: https://drive.google.com/drive/folders/

10Vu3ujF-5gPm8h E35VhZR45WCjht18B

Throughout our experiments, we stack three layers of RNNs

with an input and an output dimension of 256 each. We

initialize the matrix parameters of each RNN to be orthogonal,

and we initialize the soft-thresholding parameter to zero. We

set the learning rates for the RNN and the threshold parameters

to 0.1 and 1× 10−4 respectively, and decay them by a rate

of 0.1 every 5,000 steps with a momentum of 0.9 for 20,000

SGD steps. We set the batch size to 1. We find that these

hyper-parameters work well in our experiments, with the

initial learning rates of the RNN and the threshold parameters

being the most influential on the system performance. When

a larger learning rate for either set of parameters is used, the

training process does not converge well, degrading the final

performance.

At each training step, we randomly retrieve a mesh and its

ground-truth saliency map from a saliency dataset, as well as

a pair of meshes from a shape matching dataset. We resample

each mesh to 500 surface points for efficient learning and use

all surface points for testing. We have experimented with vary-

ing numbers of sample points (including 500, 1,000, 1,500,

and 2,000) and found that the performance of our system

remains consistent within this range. A number smaller than

500 does not work well because the global shape features of

surface meshes cannot be adequately captured by such sparse

points. A number larger than 2,000 also tends to decrease

the performance, since it essentially reduces the diversity of

the samples from each mesh and, as a result, the size of the

training set.

To learn a metric from a mesh, we use its spatial rather than

spectral raw features, as the former capture both intrinsic and

extrinsic geometry for shape analysis [56]. Specifically, we

use the spherical harmonic (SH) descriptors of [47], which

are derived from a raw distance field and have a theoretical

guarantee of minimal information loss. We encode the local

shape of each vertex with 16 SH amplitudes for each of 16

concentric shells of equally increasing radii, with the radius
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Fig. 9. RNN Evaluations. Our RNN method of learning and integrating
multi-scale shape features produces the lowest saliency testing error, among
the four feature embedding architectures in Fig. 7, both with (left) and without
the soft-thresholding operator (right).

of the outmost shell being one-eighth of the mesh diameter.

We pad the raw features of each scale with zeros to create

a dimension of 256. This zero-padding does not impact the

performance of our system because it is consistently applied

to all scales in our experiments without introducing new

information.

VI. RESULTS

We train and test our system on a PC with an Intel Core i7-

6700k CPU, 16GB RAM, and one Nvidia GTX 1080 graphics

card with 8GB memory. The average time cost of each

training iteration is 0.25s on GPU, and it takes 1.4 hours for

20,000 iterations to complete the whole training process. Given

a reasonably large mesh from the SCAPE dataset (12,500

vertices, 24,998 triangles) [12], it takes 26.4s to compute the

raw SH descriptors from the mesh on CPU, 0.09s to compute

the distance metric on GPU, 0.06s to compute the saliency

map on GPU, and 163.4s to compute 30 saliency-induced

embeddings from the metric on CPU. The method of [25]

takes about 235.2s for shape matching on CPU.

A. Evaluation of Our Deep Learning Architecture

In this section, we validate that our RNN method is more

effective at learning multi-scale shape features compared with

the baselines in Fig. 7, and that our soft-thresholding op-

erator further improves the performance via adaptive metric

sparsification. We train on an 80% random sample of the

20 meshes from each of the 20 categories of the Schelling

saliency dataset [3] and test on the remaining meshes at

each training step. Here, we use only the saliency fitting loss

for large-scale evaluation because none of the 20 categories

apart from the Human and Fourleg has corresponding shape

matching datasets [12]–[14]. We use the Gini index to measure

the sparsity of saliency maps and metrics [57].

Evaluation of Our RNN. First, we evaluate our RNN

method for multi-scale feature learning. To match our ar-

chitecture, we stack 3 layers of MLPs with an input and

an output dimension of 256 for each of the three baselines

in Fig. 7, and use the tanh activation function and feature

standardization for them. We find that the SGD parameters of

our architecture work well for all of them as well. As shown

in Fig. 9, neither a shared MLP nor multiple independent
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Fig. 10. Soft-thresholding Evaluations. Learning a threshold value (bottom
right) to adaptively truncate the small elements of a metric to exact zeros
considerably improves the sparsity of metric and drives the sparsity of saliency
closer to that of the ground-truth (left). The resulting saliency testing error is
also considerably lower (top right).

MLPs perform well, because the former ignores the feature

characteristics of different scales and the latter fail to integrate

features across scales. A single MLP performs much better as

it transforms the features of all scales simultaneously. Still, our

RNN achieves the lowest saliency testing error by explicitly

learning scale transition and integration, both with and without

the soft-thresholding operator.

Evaluation of Our Soft-thresholding Operator. We then

evaluate our soft-thresholding operator by training with and

without it, as shown in Fig. 10. Without the soft-thresholding

operator, although the ground-truth saliency maps gradually

sparsifies the learned metric, the predicted saliency maps

have relatively lower sparsity and considerable higher saliency

testing error. Our operator improves the sparsification of the

learned metric significantly by gradually learning a threshold

to truncate small values, producing much better saliency maps

with higher sparsity and lower testing error.

B. Mutual Benefits of Saliency and Matching

Here, we validate that jointly learning saliency and match-

ing via our unified metric loss function enables each other

to generalize better: while matching improves the accuracy

and deformation-invariance of our computed saliency maps,

saliency improves the semantic localization of our learned

shape embeddings for more robust matching. We evaluate

the saliency fitting loss, saliency consistency loss, and metric

consistency loss all together, on the Human category of the

Schelling saliency dataset [3] and the SCAPE matching dataset

[12] (80% for training and 20% for testing). We perform

another evaluation on the Fourleg category of the Schelling

saliency dataset and the TOSCA matching dataset [13].

Quantitative Evaluations. As shown in Fig. 11, training

with only the saliency fitting loss (α = 1, β = 0, γ = 0) leads

to the high saliency and metric consistency errors, indicating

that neither the predicted saliency maps nor the metrics are

sufficiently invariant to human body shape variations. Adding

the saliency consistency loss alone (α = 1, β = .02, γ = 0)

improves the deformation-invariance of the predicted saliency

maps a lot, but the metric remains sensitive to shape variations
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Fig. 11. The Quantitative Evaluations of Saliency and Matching. Learning
with the saliency fitting loss, saliency consistency loss, and metric consistency
loss together (α = 1, β = .02, γ = .02) produces the lowest errors on all
criteria, compared with when either the saliency or metric consistency losses
are individually disabled, or when both are disabled. The other consistency
error measures the difference of the metric without its principal eigenvector
between two corresponding meshes.

because only its principal eigenvector (i.e. saliency map) is

regularized to be consistent. This can be seen from the high

other consistency error, which measures the difference of the

metric without its principal eigenvector between two corre-

sponding meshes. Oppositely, adding the metric consistency

loss alone (α = 1, β = 0, γ = .02) leads to a more

deformation-invariant metric by regularizing all eigenvectors

together, but is less effective compared with the saliency

consistency loss for inducing a deformation-invariant saliency

map. In contrast, training with all three losses together (α =
1, β = .02, γ = .02) produces the most deformation-invariant

metrics and saliency maps, while achieving the lowest saliency

testing error. The low metric consistency error along with the

non-zero eigengaps (Fig. 5) ensures that our saliency-induced

embeddings are deformation-invariant for shape matching.

Qualitative Evaluations. To compare the predicted saliency

maps with and without matching, we train on a 5% (1 mesh),

10% (2 meshes), 20% (4 meshes), 40% (8 meshes), and

80% (16 meshes) sample of the respective dataset with and

without the saliency and metric consistency losses. As shown

in Fig. 12, under the extreme case of a single training mesh,

the predicted saliency maps without consistency learning are

full of unrecognizable noise. Remarkably, training with shape

matching reduces the noise to a huge extent, allowing the

identification of the salient regions of ears, hands, feet, and

facial features. With more training meshes, the predicted

saliency maps without consistency learning become less noisy,

but they appear quite different between the two testing meshes,

which suggests that they are sensitive to the non-rigid shape

deformation. In contrast, the maps with consistency learning

are much clearer and more consistent, even under the chal-

lenging settings of 2 and 4 training meshes. This confirms

that overcoming intra-category shape variations via matching

is the key to helping saliency detection generalize better, in

both small and large sample training scenarios.
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Fig. 12. The Benefits from Matching to Saliency. With matching, our com-
puted saliency maps are less noisy and more sharply highlighted, especially
in the extreme case of using one (5%) or two (10%) meshes for saliency
training. The visual quality improvement of our saliency maps with matching
is still noticeable with more meshes for saliency training.

We evaluate how saliency can help matching generalize bet-

ter. We compare our embeddings with the Laplacian spectral

embeddings because both of them are eigenvector solutions to

the Laplacian embedding problem (2a) (2b) (2c) with salient

affinity for the former and cotangent affinity for the later. As

shown in Fig. 4, our embeddings are perfectly localized on

the salient regions of ears, facial features, hands, and feet,

while the spectral embeddings are globally supported on the

mesh surface. Compared with the existing learned embeddings

[26]–[30], ours are the first to achieve semantic localization

while being guaranteed to be smooth and orthogonal as in

the spectral embeddings. The semantic localization property

would be difficult to obtain without the use of saliency that

agrees with human annotations [3]. As shown in Fig. 13,

our embeddings discriminate salient points more accurately

(left), while maximizing the feature invariance among non-

salient points since they are less reproducible under intra-

category shape deformations (right). In contrast, the spectral

embeddings provide an equally rough discrimination accuracy

for each point on the shape, irrespective of whether it is salient

or not. Our embeddings can therefore be used to prevent

erroneous matchings from salient to non-salient points and

vice versa, based on the consistency of saliency within a shape

category [3].

C. Comparison with Saliency Detection Methods

Here, we compare our method with the highly-cited saliency

detection methods, including mesh saliency (MS) [1], surface

regions of interest (SRI) [15], manifold ranking (MR) [16],

spectral irregularity (SI) [4], tree-based regression (TBR) [3],

point neural networks (PointNet and PointNet++) [18], [20],

and surface CNN (SurfCNN) [19]. Among them, MS is local

Discrimina on (salient points) Invariance (non-salient points)

Spectral
Ours 

Spectral
Ours 

Fig. 13. The Benefits from Saliency to Matching. The red circle on
each mesh highlights the reference point, and from there the distances to
other points are represented using a blue (small) to red (large) scale. Using
salient points as references (left), due to the semantic localization property,
our saliency-induced embeddings discriminate these semantically important
and thus deformation-stable points much better compared with the isometry-
invariant spectral embeddings. Using non-salient points as references (right),
we achieve maximum invariance for these points that are sensitive to non-
isometric deformations.

contrast-based, SRI, MR, and SI are global rarity-based, and

TBR is tree regression-based. Unlike PointNet that works on a

raw 3D point cloud, PointNet++ and SurfCNN learn features

using the geodesic metric and in the Laplacian spectral domain

respectively. We input our raw SH features to PointNet++ and

SurfCNN for a fair comparison. Note that our method does

not use intrinsic geodesics or Laplacian but may incorporate

them in the future.

Saliency Detection without Matching. As MS, SRI, MR,

and SI are rule-based and cannot incorporate the intra-category

consistency into saliency computation, we first train PointNet,

PointNet++, and SurfCNN on a 80% sample (for each cate-

gory) of the Schelling dataset and our method on a 5%, 10%,

20%, 40%, and 80% sample respectively. We find that our

method produces the most accurate saliency maps using 80%

training meshes.

Fig. 14 shows that MS responds strongly to local geometric

variations while SRI, MR, and SI detect more globally distinct

regions. As ground-truth saliency maps are spatially localized

on surfaces, they must be densely distributed on the frequency

dimension due to the well-known uncertainty principle. They

are therefore not accurately captured by SI as it involves high-

frequency cutoff in spectral computation. TBR produces good

saliency maps with leave-one-out training, but fails to well

reproduce the sparsity of ground-truth maps (e.g., on the face

region of the human body shape). PointNet fails to identify

most of ground-truth salient points, which are captured by

PointNet++ and SurfCNN to some extent. However, Point-

Net++ and SurfCNN still misses some important regions such

as the mouth and ears of the human body and the eyes of
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Fig. 14. Visual Comparisons for Saliency Detection without Matching. The image shows the saliency maps generated by MS, SRI, MR, SI, TBR, PointNet,
PointNet++, SurfCNN, and our method, without the use of matching for saliency detection. Note that while PointNet, PointNet++ and SurfCNN are trained
on a 80% sample for all the categories of the Schelling saliency dataset jointly, TBR is trained using leaving-one-out for each category separately in the
original work. Our method is trained on varying fractions of samples for all the categories jointly to better visualize progression of generalization.
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Fig. 15. Quantitative Comparisons for Saliency Detection without
Matching. On average, the saliency maps predicted by our method with a
80% training sample are more accurate compared with that by PointNet,
PointNet++, and SurfCNN with the same meshes for saliency training.

the cow. These regions are accurately captured by our method

trained on an 80% sample. Even with as few as 5% or 10%

training meshes, our method is shown to detect a succinct set

of the most important regions such as the facial features and

claws of the armadillo.

Fig. 15 shows that our method produces more accurate

saliency maps than PointNet, PointNet++ and SurfCNN. It

is interesting to see that our method achieves equally good

quantitative results with a 20% and a 80% sample respectively,

but adding more training meshes leads to visually smoother

and more accurate saliency maps (Fig. 14).

Saliency Detection with Matching. We compare our

method with PointNet, PointNet++, and SurfCNN by training

with and without the saliency and metric consistency losses

on the Human category of the Schelling saliency dataset [3]

and the SCAPE matching dataset [12].

Fig. 16 shows the predicted saliency maps with and without

matching for one testing mesh from the Schelling dataset on

the left and another from the TOSCA dataset on the right.

Incorporating matching into saliency detection reduces the

noises on surfaces to a large extent, especially when there

is only 1 training mesh providing no hints about the shape

variations of testing meshes. When there are more training

meshes, matching is shown to sharpen our detected salient

regions such as the facial features of the human body on the

left. PointNet fails to detect most of the salient regions, while

PointNet++ does not highlight the facial features of the human

body clearly. For the centaur shape on the right, PointNet++

and SurfCNN roughly capture the eyes, nose, and mouth of it

with the help of matching. Our method highlights these regions

more accurately when matching is used.

Fig. 17 shows that enforcing the intra-category consistency

of saliency improves the saliency prediction accuracy of all

methods except PointNet. The improvement is significant

when there are only 1 (5%) or 2 (10%) training meshes

but remains noticeable when there are more. Meanwhile, the

considerably lower saliency consistency errors indicate that

the predicted saliency maps are much more deformation-

invariant with matching. Overall, our method achieves the

lowest saliency prediction error using 80% of both saliency

and matching training meshes.
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Fig. 16. Visual Comparisons for Saliency Detection with Matching. The image shows the saliency maps generated by PointNet, PointNet++, SurfCNN,
and our method, with and without matching. PointNet, PointNet++, and SurfCNN are trained on a 80% sample of the Human category of the Schelling dataset
and a 80% sample of the SCAPE dataset, and our method is trained in the same way but with varying fractions of meshes from the Schelling dataset.
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Fig. 17. Quantitative Comparisons for Saliency Detection with Matching.
Compared with the saliency maps computed by PointNet, PointNet++, and
SurfCNN, ours are more accurate (left) and deformation-invariant (right). We
mark * to indicate the use of matching.

D. Comparison with Shape Matching Methods

Here, we compare our method with the highly-cited blended

intrinsic maps (BIM) [7], semi-definite programming (SDP)

[25], random forests (RF) [31], heat kernel CNN (HKCNN)

[8], and deep functional maps (DFM) [33] for non-rigid

shape matching. We group the methods into model-based

and learning-based due to their different data requirements

- the latter requires one-to-one vertex correspondences for

training, while the former does not. We match each of the

last 20 testing meshes to the first on the FAUST dataset for

performance benchmarking, using the protocol of [7]. We

obtain the correspondences by RF, HKCNN, and DFM for

these meshes from the original authors, and run BIM and SDP

for the same set of meshes using the released codes.

Saliency for Model-based Matching. We first incorporate

our saliency-induced point embeddings (of dimensions 30,

Fig. 4 bottom) into SDP, in addition to the originally used

Laplacian spectral embeddings (of dimensions 30, Fig. 4 top),

to better handle non-isometric shape deformations. We name

our method of SDP with saliency as SDP-SAL. Fig. 18 shows

some predicted correspondence error maps. It can be seen that

BIM is inferior to SDP for matching the limbs of human bodies

because it has no notion of length on surfaces. SDP produces

patches of wrongly matched points due to its sensitivity

to surface length-changing (non-isometric) deformations. Our

SDP-SAL method reduces the matching errors of SDP at

Target BIM   SDP-SAL
    (ours)

RF HKCNN     MLP  MLP-SAL
    (ours)

DFM     SDP

Model-based Learning-based

Fig. 18. Visual Comparisons for Shape Matching with Saliency. Visual-
ization of the predicted correspondence error, i.e. geodesic distances between
predicted and ground-truth correspondence points, from three source meshes
to a target mesh on the FAUST testing set. Hotter colors indicate larger errors.

the limbs and chests using the saliency-induced embeddings.

Fig. 19 shows that our SDP-SAL method achieves higher

correspondence accuracy compared with SDP and BIM on

the FAUST testing set. The consistent improvement from SDP

to SDP-SAL indicates that saliency reduces the non-isometric

correspondence errors that cannot be handled by the isometry-

invariant spectral embeddings.

Saliency for Learning-based Matching. We then incorpo-

rate our saliency-induced embeddings into a three-layers plain

MLP (of dimensions 256 for each layer) for correspondence

prediction using our SH features on the FAUST training set

(the first 80 meshes). We name our method of MLP with

saliency as MLP-SAL. As RF and HKCNN refine the predicted

correspondences using the functional maps of [6] and DFM

uses the geodesic smoothing method of [58], we refine our

MLP results using the method of [58] for a fair comparison.

Our MLP-SAL method exploits both geodesic (as used by

DFM) and our saliency-induced embedding distances (Fig. 13)

for correspondence refinement. Fig. 18 shows that our MLP-

SAL method reduces the matching errors produced by MLP
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Fig. 19. Quantitative Comparisons for Shape Matching with Saliency. The
comparison of the shape matching accuracy obtained by BIM, SDP (without
saliency), RF, HKCNN, DFM, MLP (without saliency), as well as by our
saliency-enhanced SDP-SAL and MLP-SAL on the FAUST testing set.

Target              SDP
(without saliency)

      SDP-SAL
(with saliency)

Fig. 20. Matching Highly Non-Isometric Shapes with Saliency. The image
shows shape matchings generated by SDP and our SDP-SAL from four source
meshes to a target mesh. These meshes are from the Fourleg category of the
Schelling dataset, which is known to exhibit intra-category shape deformations
that are far from being isometric.

at the shoulders and hands of human bodies. Fig. 19 shows

that our MLP-SAL improves on MLP and achieves higher

correspondence accuracy compared with RF and HKCNN.

More Non-Isometric Matching Results. To demonstrate

the use of our saliency-induced embeddings for handling

more complex intra-category shape variations, we compute

shape matchings for the Fourleg category of the Schelling

dataset using the isometry-invariant SDP and our saliency-

enhanced SDP-SAL respectively. We extract our embeddings

by training with an 80% sample of the Fourleg category and

an 80% sample of the animal category of TOSCA shape

matching dataset. Fig. 20 shows that these animal body shapes

have strong non-isometric shape variations, which explains

the failure of SDP to find semantically meaningful yet highly

non-isometric shape matchings. Our SDP-SAL, in contrast,

identifies correct matchings from the limbs of the horse, wolf,

and pig to that of the cow. It also considerably reduces the

matching errors of SDP at the face and back regions of the

wolf and pig. For the even more challenging giraffe-to-cow

example, only our SDP-SAL can identify correct matchings

for the head region of the giraffe.

VII. CONCLUSION AND FUTURE WORK

In this work, we tackled mesh saliency detection and non-

rigid shape matching together for mutual benefits. We pro-

posed a unified metric representation from which the saliency

map and the shape embeddings of a mesh can be jointly in-

ferred as the principal eigenvector and the smoothed Laplacian

eigenvectors respectively. We also proposed a multi-layer RNN

for effectively integrating multi-scale shape features, together

with a soft-thresholding operator that adaptively enforces

the sparsity of metric representation. We performed metric

learning on saliency detection and shape matching datasets at

the same time. Results validated that matching improves the

accuracy and intra-category consistency of derived saliency

maps, especially when the saliency training set is of small

size (i.e. with only 1 or 2 meshes). They also showed that

saliency improves the matching accuracy of both model-based

and learning-based methods, which is more noticeable when

large non-isometric deformations are involved.

Currently, our system requires dense point-to-point corre-

spondences to enforce the intra-category consistency property,

which have very limited availability and are difficult to label

[12]–[14]. This may be partly addressed with sparse segment

correspondences [6], but a more favorable bootstrap solution

would be to compute less accurate matchings for improvement

with target tasks jointly and iteratively.

The Laplacian spectral embeddings [23] and our saliency-

induced ones represent the two extreme ends of discrimination-

invariance tradeoff, with the former proven to be the smoothest

and the latter proven to be the most localized. Therefore, our

embeddings lack fine-grained discrimination for non-salient

points. This is why we incorporate our embeddings into the

model-based SDP and the learning-based MLP methods for

shape matching. In between the Laplacian spectral embeddings

and ours, there would be an optimal discrimination-invariance

tradeoff that takes both salient and non-salient points into

consideration. Finding the optimal solution depends on the

applications and is a future direction.

The model-based SDP method [25] can handle asymmetric

and bilaterally symmetric shapes (i.e. human and animal body

shapes as shown in this paper), but it cannot easily handle

more general symmetric cases because the convex solution set

of the method strictly contains the non-convex solution set of

the shape matching problem [59]. As a result, many solutions

recovered by the method for general symmetric inputs do not

correspond to a valid solution of shape matching. Fortunately,

as proved in [59], the solution set of shape matching are

actually the extreme points of the convex solution set of

the method, from which a valid solution can be returned by

maximizing random linear energies selected according to the

uniform distribution on the unit sphere [60]. Adapting this

method to handle general symmetric shapes will be our future

work.
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animation from multi-view silhouettes,” ACM Trans. on Graph., vol. 27,
no. 3, p. 97, 2008.

[14] F. Bogo, J. Romero, M. Loper, and M. J. Black, “Faust: Dataset
and evaluation for 3d mesh registration,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2014, pp.
3794–3801.

[15] G. Leifman, E. Shtrom, and A. Tal, “Surface regions of interest for view-
point selection,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2012, pp. 414–421.

[16] P. Tao, J. Cao, S. Li, X. Liu, and L. Liu, “Mesh saliency via ranking
unsalient patches in a descriptor space,” Computers and Graphics,
vol. 46, pp. 264–274, 2015.

[17] A. Sinha, J. Bai, and K. Ramani, “Deep learning 3d shape surfaces
using geometry images,” in Proceedings of the European Conference
on Computer Vision, 2016, pp. 223–240.

[18] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on
point sets for 3d classification and segmentation,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2017.

[19] L. Yi, H. Su, X. Guo, and L. Guibas, “Syncspeccnn: Synchronized
spectral cnn for 3d shape segmentation,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017.

[20] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical
feature learning on point sets in a metric space,” in Proceedings of the
International Conference on Neural Information Processing Systems,
2017, pp. 5099–5108.

[21] H. Xiao, J. Feng, Y. Wei, M. Zhang, and S. Yan, “Deep salient
object detection with dense connections and distraction diagnosis,” IEEE
Transactions on Multimedia, 2018.

[22] K. Fu, I. Y.-H. Gu, and J. Yang, “Saliency detection by fully learning a
continuous conditional random field,” IEEE Transactions on Multimedia,
vol. 19, no. 7, pp. 1531–1544, 2017.

[23] R. M. Rustamov, “Laplace-beltrami eigenfunctions for deformation
invariant shape representation,” in The fifth Eurographics Symposium
on Geometry Processing, 2007, pp. 225–233.

[24] J. Sun, M. Ovsjanikov, and L. Guibas, “A concise and provably informa-
tive multi-scale signature based on heat diffusion,” Computer Graphics
Forum, vol. 28, no. 5, pp. 1383–1392, 2009.

[25] H. Maron, N. Dym, I. Kezurer, S. Kovalsky, and Y. Lipman, “Point
registration via efficient convex relaxation,” ACM Trans. on Graph.,
vol. 35, no. 4, p. 73, 2016.
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