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Abstract

Resilience of systems to failures during functioning is of great practical im-
portance. One of the strategies that might be considered to enhance relia-
bility and resilience of a system is swapping components when a component
fails, so replacing it by another component from the system which is still
functioning. This paper studies this scenario, particularly with the use of
the survival signature to quantify system reliability, where it is assumed that
such a swap of components requires these components to be of the same type.
We examine the effect of swapping components on a reliability importance
measure for the specific components and we also consider the joint reliability
importance of two components. Such swapping of components may be an
attractive means towards more resilient systems, and could be an alternative
to adding more components to achieve redundancy of repair and replacement
activities.

Keywords: TImportance measures, joint reliability importance, resilience,
survival signature, swapping components, system reliability

1. Introduction

With the need for highly reliable systems, there are many possibilities to
make a basic system more reliable, or more resilient to possible faults. It may
be possible to add component redundancy or make individual components
more reliable. In addition, one may be able to repair failed components or
replace them with new ones. In this paper, we consider a quite straightfor-
ward way in which some systems may become resilient to component failure,
namely the possibility to replace a failed component by another component

Preprint submitted to Applied Stochastic Models in Business and Industry July 26, 2018



in the system which has not yet failed, so in effect swapping components.
This is logically restricted to components which are of the same type, hence
it is likely that only some swapping opportunities exist in a system. It seems
that increase in system reliability through such component swapping has not
received much attention in the literature, yet in some scenarios it can be
an attractive opportunity to prevent a system from failing. In practice, this
could enable preparation of substantial repair activities, or it may be deemed
to leave the system reliable enough to complete its mission. Scenarios where
swapping of components may be an option can include the following ex-
amples. Aerospace systems with multiple computers on board, where some
computers tasked with minor functions can be prepared to take over crucial
functions in case another computer fails, or lighting systems where multiple
locations must be provided with light under contract, but where partial light-
ing at any location may be sufficient to meet the contractual requirements.
One can also think about a transport system where parts of one mode of
transport can be used to keep another one running, or an organisation where
employees can be trained to take over some functioning of others in case of
unexpected absence.

It should be emphasized that swapping a component, upon failure, with
another component from the system, differs from the well-studied scenarios
of using cold or warm standby components, or adding components in parallel
for to achieve increased reliability. When we replace a failed component with
a functioning component that was already in the system, the subsystem in
which the latter component was originally placed becomes less reliable. For
example, as we will see in Example 1 in Section 2, we might replace a critical
component upon failure by another component that is part of a subsystem
consisting of three components in parallel; after such a swap that subsystem
is reduced to a subsystem consisting only of two components in parallel. One
can also compare the kind of component swapping studied in this paper to
a minimal repair [1], in that the failure time distribution of the component
does not change, but this is combined with a change in the overall structure
of the system due to the functioning component being removed elsewhere.

In this paper we consider the effect of defined component swap possibili-
ties on the total system reliability function. We also consider the importance
of individual components, which can be strongly affected by opportunities to
swap them, and the joint reliability importance of two components.

Quantification of system reliability has traditionally been based on the
structure function [2, 3, 4]. Samaniego [5] introduced the system signature
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as a tool for reliability assessment for systems consisting of components of a
single type, which means that their failure time distributions are exchange-
able [6, 7]. Samaniego’s signature can be regarded as a summary of the
structure function that is sufficient to derive the system reliability function
if the failure times of all the system’s components are exchangeable. The
main attraction of this signature is that it enables separation of aspects of
the system structure and the components failure times distribution, which
simplifies a range of reliability related problems such as stochastic compari-
son of different system structures and inference on the system reliability from
component failure data.

The major drawback of Samaniego’s signature is that it can only be ap-
plied to systems with a single type of components, which is quite rare for
real-world systems and prevents the method to be used for analysis of net-
works [8]. To overcome this limitation, Coolen and Coolen-Maturi [9] in-
troduced the survival signature as an alternative tool for system reliability
quantification. This is also a summary of the system structure function which
is sufficient for a range of reliability computations and inferences, including
derivation of the system reliability function, and crucially it can be used for
systems with multiple types of components. The only requirement is that
failure times of components of the same type are exchangeable. Compo-
nents of different types can be dependent, of course any such dependence
must be modelled, for example through the use of copulas [10] or the use
of multivariate failure time models including dependence [11, 12]. In this
paper, to present the swapping opportunities without further complications,
we throughout assume that components of different types have independent
failure times, and in addition we assume that components of the same type
are conditionally independent and identically distributed. These assump-
tions can be relaxed without difficulty, such relaxation can of course alter
the effect of enabled swaps on the overall system reliability.

The survival signature is closely linked to Samaniego’s system signature
for systems with a single type of components, and it is particularly useful
for larger systems with only a few different types of components. Recently,
the survival signature has attracted considerable interest from researchers in
reliability, who have considered both mathematical properties and aspects
of application, including statistical inference [13, 8], comparison of different
systems [14] and fast simulation methods [15]. In this paper, we will consider
scenarios where some components of the same type can be swapped, and we
use the survival signature to derive the corresponding system reliability.



In addition to considering the effect of component swapping on the system
reliability function, we also consider how such possible swaps affect compo-
nent importance as reflected through importance measures. Such measures
are frequently used as tools to evaluate and rank the impact of specific com-
ponents on the system reliability [16]. Quite many different important mea-
sures have been introduced, such as Birnbaums measure, the improvement
potential measure, the risk achievement worth, the risk reduction worth, the
criticality importance measure and Fussell-Veselys measure of importance
[17]. The objective of most of these measures is to assess and quantify which
components are more critical to system failure or more important to sys-
tem reliability improvement. The importance of a component is, of course,
largely defined through its function in a system, hence we can expect that
the ability to swap components can have a strong effect on the importance
of a component. We also consider the joint importance of two components
for the reliability of a system. Hong and Lie [18] defined the joint reliability
importance (JRI) as a measure of how two components in a system interact
in contributing to system reliability. This definition was extended in several
ways. For example, Armstrong [19] presents a joint importance measure for
dealing with the statistical dependence between components and Wu [20]
generalized JRI to multi-state systems. Recently, Eryilmaz et al [12] have
presented general results on marginal and joint reliability importance for
components with dependent failure time distributions, they also used the
concept of survival function.

In section 2 of this paper, we first provide a brief introductory overview
of the concept of the survival signature, followed by new results for system
reliability if components can be swapped upon failure of a component. In
section 3 we consider the impact of possible component swapping on a reli-
ability importance measure for an individual component, followed in section
4 by attention to joint reliability importance of two components. In each
section, we illustrate our approach via examples. We end the paper with
some concluding remarks.

2. Swapping components

Consider a system that consists of m components of K > 2 different
types, with my components of type k € {1,2,..., K}, so Zle my = m. As-
sume that the random failure times of components of the same type are ex-
changeable, while full independence is assumed for the random failure times



of components of different types. As mentioned in Section 1, this indepen-
dence assumption simplifies the presentation in this paper, but the survival
signature can also be applied without it, hence the effect of swapping of
components can be studied in a similar way without this assumption. Let
the state vector 2% = (z},25%,...,2% ) € {0,1}™* represent the state of the
system components of type k, with z¥ = 1 if the ith component of type k
functions and 2% = 0 if not. The labelling of the components is arbitrary but
must be fixed to define z*. Let z = (z',2?,...,2%) € {0,1}™ be the state
vector for the overall system. The structure function ¢ : {0,1}™ — {0, 1},
defined for all possible z, takes the value 1 for a particular state vector x
if the system functions and 0 if the system does not function for the state
vector z. The survival signature is denoted by ® (I, ls, ...[x) and represents
the probability that the system functions, given that exactly [, of type k
components function, for [y = 0,1, ...,my, for each k = 1,2,..., K [9].

There are (’?’“) state vectors z* Wlth exactly [ of the my, components

=1, so with /" ¥ = [;. We denote the set of these state vectors for
components of type k by SF. Let S;,.. 1, denote the set of all state vectors
for the whole system for which » ™" lx =i, for k = 1,2,..., K. Because
of the assumption that the failure times of my components of type k are
exchangeable, all the state vectors z* € SF are equally likely to occur. Thus
® (11, 1o, ...lc) can be calculated by

O (I, lo, i) = (ﬁ (77:)_1> < Y o)

k=1

Let CF € {0,1,...,m;} denote the number of type k components in the
system that function at time ¢ > 0. Using the assumed independence of
failure times of components of different types, the probability that the system
functions at time t > 0 is

K
P(Tg > t) = Z Z[ (I, ..l Hpck’_zk]
k=1

11=0 lg=0

Note that, if one would not assume independence of the failure times of
components of different types, then the product of the marginal probabilities
for individual events C* = [, in this formula would be replaced by the joint
probability of these events, from which point a model must be assumed for
this joint probability as mentioned in Section 1. Henceforth we assume, in



addition to exchangeability of failure times of components of the same type,
that these failure times are conditionally independent and identically dis-
tributed, with the probability distribution for the failure time of components
of type k specified by the cumulative distribution function (CDF) Fj(t). This
leads to

P(Ts > t) = i % [cp(ll, ...lK)]}j ((Z’“) [ (8)]™ [T — Fk(t)]zk>]

1=0 Ig=0

The survival signature takes into account the structure of the system,
and as is clear from the above equations this information is separated from
the failure time distributions of the system components. We now consider
the situation where some components can be swapped upon failure of a com-
ponent. Actually, throughout this paper we assume that there are fixed
swapping rules, which prescribe upon failure of a component precisely which
other component takes over its role in the system, if possible and if the other
component is still functioning. We further assume here that such a swap
of components takes neglectable time and does not affect the functioning of
the component that changes its role in the system nor its remaining time till
failure. Under these assumptions, the effect of such a component swap can
be reflected through the system structure function, and hence it can be taken
into account for computation of the system reliability through the survival
signature. We illustrate this in examples below, after we have introduced the
required notation, and we discuss it further at the end of this section.

For a regime of specified swaps that will occur if specific components fail,
let ¢¢ (x) denote the system structure function. Compared to the system’s
structure function without swapping opportunities, ¢ (z), ¢c will typically
be equal to 1 for some z for which ¢ was equal to 0, reflecting the benefit
from component swapping upon failure of a component. Let ®¢ (11, 1z, ...lx)
denote the survival signature given the defined swapping regime is in place,
SO

O (I, Iy, i) = (ﬁ (Z’“)j x Y del).

a=1

Let T denote the random system failure time with the specified swapping
regime in place. Then



P(T% > t) Z Z [@C (I, ...ZK)f[ ((Z’“) [ (6)]™ 1 ]1 — Fk(t)]lk)]

11=0 Ig=0 k=1

It is important to notice here that the swapping regime is entirely reflected
in the system survival signature. Crucially, the components have remained
the same failure time distributions and the same assumptions apply, that is
failure times of components of the same type remain conditionally indepen-
dent and identically distributed, and failure times of components of different
types remain independent. The increase in reliability caused by the swapping
regime, when compared to the system without possible swapping, is given by

P(Ts>t)—P(Ts >t) =

mz% {Dc(ly, lx) — (1, ..k }H(( ) )]mklk[l—Fk(t)]lk)]

11=0 Ig=0

Hence, as long as a swapping regime leads to increase of the survival signa-
ture, for at least one of its values, it will be of benefit for the overall system
reliability. It is also obvious that a series system can never benefit from such
swapping, simply because it only functions if all of its components function.
This is reflected by the fact that for a series system the two survival signa-
tures considered here are always equal. The above result for the difference
of the reliability of the system with and without possible swapping, ensures
that some relevant computations, for example for importance measures as
presented in Sections 3 and 4, are quite straightforward.

To illustrate the above way to reflect the effect of a component swapping
regime, we first present a simple example with only one possible component
swap. This will be followed by a more extensive example in which we compare
different possible of components swaps.

2.1. Example 1

Consider the system in Figure 1 which consists of four components of
two types, m; = my = 2. We want to examine the reliability of this sys-
tem in the case that, if component A fails but component B still functions,
component B will take over the role of component A. Of course, this swap
only has a positive effect on the system reliability if, at the time of the swap,
at least one of components C and D also still functions. So, the system’s
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Figure 1: System with four components of two types

ll lg 0] CI)C
0 0/0 0
0 1/0 0
0 2/0 0
1 00 0
1 1/1/2 1
1 211/2 1
2 0|1 1
2 11 1
2 201 1

Table 1: ® (I1,12) and ®¢ (I1,12) for the system in Figure 1

structure function with this swap applied if needed, changes from value 0 to
1 for three values of the state vector z (with entries alphabetically ordered):
(0,1,0,1),(0,1,1,0),(0,1,1,1), as in these cases the failed component A will
be replaced by component B which is functioning, and indeed at least one
more component functions. The corresponding survival signatures, ® (I, ls)
for the system without the swap, and ®¢ (I1,ls) with this specific swap ap-
plied if needed, are given in Table 1 for all Iy, ls € {0, 1,2}.

Let the CDFs of the failure times of the type 1 and 2 components be F}(t)
and Fy(t), respectively. Then the survival function for the system failure time
Ts without the swap being possible, and the system failure time 7 with the
swap applied if needed, are



1.0

i — Case 0
— Case 1

0.8

Reliability
0.6

0.4

0.2

0.0

0.0 0.5 1.0 1.5 2.0 25 3.0

Figure 2: Reliability of system in Figure 1 in case 0 and 1

P(Ts > t) = [F())[1 = FA(0][1 = [B(0)]] + [1 = Fu(t))”

and
P(Tg > t) = 2[F1(1)][1 = F(t)][1 — [Fa(t)]"] + [1 = Fi(t))?

Figure 2 presents these system survival functions if the failure times of
type 1 components have a Weibull distribution with shape parameter 2 and
scale parameter 1, Fi(t) = 1—e~*, and the failure times of type 2 components
have an exponential distribution with expected value 1, Fy(t) =1 —e~*. We
refer to the case without the swap being possible as ‘case 0’ and the case
with the swap applied if needed as ‘case 1’. This figure clearly presents the
gain in reliability of the system due to the possible component swap.

2.2. Example 2

The system in Figure 3 consists of 8 components of 3 types, m = 8 and
K = 3. The letters A to H represent the specific components, the numbers 1
to 3 represent the component types. This system consist of three subsystem
in series configuration. The first subsystem is a parallel system consisting of
components A and D, the second subsystem is a parallel system consisting
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Figure 3: System with 8 components of 3 types; C,F,H form a 2-out-of-3 subsystem

of components B, E and G, and the third subsystem is a 2-out-of-3 system
consisting of components C, F and H.

The reliability of this system might be enhancing by a variety of swapping
opportunities, we compare two swapping cases. In case 1, we assume that
we are able to swap only type 2 components, but we can swap these in any
way when needed to keep the system functioning. In case 2, we assume that
we are able to swap only type 3 components, which can also be done in both
possible ways. We refer to the case without any swapping being possible as
case 0.

With m; = 3, mg = 3 and mg = 2, ® (I3, 12,13) in case 0 and P¢ (14, 12, [3)
for case 1 and for case 2 are given in Table 2 for all [y, I, € {0,1,2,3} and
Il €{0,1,2}.

In order to see the change to the system’s reliability as a result of each
of swapping case, we assume that the failure times of type 1 components
have a Weibull distribution with shape parameter 2 and scale parameter
1, the failure times of type 2 components have an exponential distribution
with expected value 1 and the failure times of type 3 components have an
exponential distribution with expected value 2, so Fy(t) = 1 — e, Fy(t) =
1 —e*and F3(t) = 1 — e /2. The resulting survival functions of the system
failure times are given in Figure 4. Clearly, while both possible swapping
regimes of case 1 and case 2 would enhance the system reliability, case 1
provides better improvement than case 2, which is mainly due to the fact
that in case 1 three components can be involved in the swaps, including one
component in the first subsystem.

2.3. Alternative approach

In our approach in this paper, the effect of a defined swapping regime is
fully taken into account through the system structure function, and hence the
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[1 l5 I3|Case 0 Case 1 Case 2|11 Iy l3|Case 0 Case 1 Case 2
0 0 0|0 0 0 2 0 0|0 0 0
00 1|0 0 0 2 0 1|0 0 0
00 2|0 0 0 2 0 21/3 1/3 1/3
01 0|0 0 0 2 1 0|0 0 0
01 1|0 0 0 21 12/9 2/3 4/9
01 2|0 0 0 21 25/9 1 5/9
0 2 0|0 0 0 2 2 01(1/3 2/3 1/3
0 2110 0 0 2 2 1|1/2 5/6 7/9
02 2/1/3 1 1/3 2 2 217/9 1 7/9
0 3 0|0 0 0 2 3 0/2/3 2/3 2/3
03 1(1/2 1/2 1 2 3 11(5/6 5/6 1
0 3 2|1 1 1 2 3 2|1 1 1

1 0010 0 0 30 0|0 0 0
10 110 0 0 30 1|1/2 1/2 1
10 210 0 0 30 2]1 1 1
11010 0 0 3 10/1/3 1 1/3
11110 0 0 31 1/2/3 1 1
11 2/(2/9 2/3 2/9 31 2]1 1 1
12010 0 0 32 0/2/3 1 2/3
1 2 1/(2/9 2/3 4/9 32 115/6 1 1

1 2 21/5/9 1 5/9 3 2 2|1 1 1

1 30/|1/3 1/3 1/3 33 0]1 1 1
13 112/3 2/3 1 3 3 1]1 1 1

1 3 211 1 1 33 2|1 1 1

Table 2: ® (I1,12,13) and ®¢ ({1, 12,13) of system in Figure 3

survival signature. This has the important advantage that each components
remains of the same type when compared to the system without swaps being
possible. One can interpret this as the component changing location in the
system when being swapped.

There is an interesting aspect to this, which we did not encounter in the
literature, namely the difference between considering a component in the
way described above and the possibility to define a component based on the
location. For example, for the simple system in Figure 1, the latter approach
would call the location A the ‘component A’, and if a swap could take place
as considered in Example 1, then this ‘location-component A’ would have as
failure time the maximum of the failure times of the two type 1 components

11
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Figure 4: Reliability of the system in Figure 3 in case 0,1 and 2

and the ‘location-component B’ would have as failure time the minimum of
these two failure times. Hence the ‘location-components A and B’ would
not have exchangeable failure times anymore, and hence they would not be
of the same type. Already for quite straightforward swapping regimes, this
approach would lead to very complicated failure time distributions for the
‘location-components’, and particularly where possible swaps could depend
on other swaps already having been performed, it would quickly become
intractable. So, it is crucial to define a component as actually the item that
can change location and role in the system, as done in this paper, which lead
to a quite straightforward approach.

3. Component reliability importance

We examine the reliability importance of a specific component if we as-
sume that some components in the system can be swapped. We consider the
relative importance index RI;(t) as introduced by [21], which is the difference
between the probability that the system functions at time ¢ given that com-
ponent ¢ functions at time ¢, and the probability that the system functions
at time t given that component ¢ is not functioning at time ¢, so

12



A B C,D

ll lQ q)l (I)(] (I)l (I)O ll lg (I)l (I)O
0 0/0 00 0 0o 00 0

0 1|1 010 0|0 1]0 0

0 21 0 1]0 o0 |1 0f1/2 0

1 01 0 |1 0 |1 1/[1/2 1/2
1 111 0o |1 1 |2 of1 1

1 2|1 o0 |1 1 |2 1]1 1

Table 3: @, (I1,13) and ®¢ (I, l3) for components A, B, C, D

RIi(t) = P(Ts > t|T; > t) — P(Ts > t|T; < t)

The conditional survival functions P(Ts > t|T; > t) and P(Ts > t|T; < t)
can be obtained quite easily by deriving the survival signatures corresponding
to the two possible states of component i. We can compute this for the system
without swapping being possible as well as for specific swapping regimes, and
it is of interest to consider the change in importance of specific components
resulting from the swapping possibilities. We illustrate this using the same
systems and swapping regimes considered in Examples 1 and 2.

3.1. FExample 3

Consider again the system in Figure 1 and the same swapping possibility
as discussed in Example 1. To calculate the relative importance indices in
case 0, in which there is no swapping possible between components, we first
calculate the survival signature of the system conditional on the component
of interest functioning, which we denote by ®; (I1,l5), where it should be
noted that either l; or ly (corresponding to the type of the component of
interest) now only takes values in {0,...,my — 1 for k = 1 or k = 2, as
it only reflects the number of the other components of the same type that
are functioning. Similarly, we calculate the survival signature of the system
conditional on the component of interest not functioning, which we denote by
D, (I1,13). The survival signatures P, (I1,13) and P, (I1,13) are given in Table
3 for all components, note of course that these are identical for components
C and D.
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A B D
L b Po, Py | Poy Py | o | Poy Pg,
0 010 0 0 0 0O 010 0
0 111 0 1 0 0O 110 0
0 2|1 0 1 0 1 01 0
1 0|1 0 1 0 1 1|1 1
1 111 1 1 1 2 0|1 1
1 2|1 1 1 1 2 111 1

Table 4: ®¢, (I1,13) and i)co (I1,12) for components A, B, C, D

The relative importance index for component A, RI4(t), is derived by

2
RIA(t ZZ[@ (1h,12) = Bo (1, )| T P(CE = 1y)
k=1

11=012=0

leading to
RIA(t) = [Fi(t)] [1 = [R0))] + [1 - Fu(t)]
Similarly, we derive
RIp(t) = [1 - R (®)][F0))?
Rlo(t) = RIp(t) = [Fi(t)][1 — F1()][F2(t)]

We aim to determine the differences that might occur in RI4(t), RIp(t),
RIc(t) and RIp(t) in case 1, in which we assume that if the component A fails
while the component B still functions, component A will be swapped by com-
ponent B. To calculate the relative importance indices in case 1, ®¢, (11, l2)
represents the survival signature with the swap enabled, if the component of
interest functions, and (i)co (I1,13) if the component does not function. We
denote the relative importance index of component ¢ if the swap between
components A and B is possible by RI*(t). Table 4 presents ®¢, (I1,l5) and
®¢, (I, 1) for all the components in case 1.

The relative importance index for component A, RI%(t), is derived by

1 2 2

RI;(t) Z Z [‘I’Cl l,ly) — O, (I, l2)] H P(Cf = i)

11=01>=0 k=1

leading to
RIL(t) = [F(0)] [1 = [RO))] + [1 - FA0)][F0)

14
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Figure 5: The relative importance indices of components in Figure 1 in case 0.

Similarly we derive
RIG(t) = [F (0] [1 = [ROF] + [1 - Fu()][F ()

RIG(t) = RIp(t) = 2[F1(0)][1 — Fu(8)][F2(t)]

To compare the relative importance indices of the system’s components
in case 0 and 1, we use the same failure time distributions for type 1 and
type 2 components as in Example 1. Figures 5 and 6 show the relative
importance indices of the system’s components in cases 0 and 1, respectively.
These figures show that in case 0 component A is clearly most important,
yet with the swapping possible between components A and B in case 1 these
two components become equally important.

3.2. FExample J

We consider the component importance for the system in Figure 3, under
the two swapping cases that we introduced in Example 2, namely in case 1
we are able to swap type 2 components and in case 2 we are able to swap type
3 components. We refer to the original case in which there is no swap option
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Figure 6: The relative importance indices of components in Figure 1 in case 1.

as case 0. We also assume the same component failure time distributions as
in Example 2.

Figures 7, 8 and 9 show the relative importance indices of the components
in case 0, case 1 and case 2 respectively. In case 1, the components of type
2,80 D, E and F, become equally important and, in case 2, the components
of type 3, so H and G, become equally important for system reliability as a
result of the ability of swapping among them. These figures also show that
the importance of specific components is dependent on the swapping cases
that would be allowed as well as the component failure time distributions. If
we consider only the period of time from ¢ = 0 to ¢ = 0.4, for example, then
we can see that in this period, in case 0, component H is the most important
component, in case 1, component C becomes the most important component,
and in case 2, component A becomes the most important component for
system reliability.
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Figure 7: The relative importance indices of components in Figure 3 in case 0.

4. Joint reliability importance (JRI)

We consider the joint reliability importance index JRI of components
1, J, given by following equation

JRI; j(t) = P(Ts>tT; >t,T; >t)— P(Ts > t|T; > ¢, T; < t)
—P(Ts > t|T; < t,T; > t)+ P(Ts > t|T; < t,T; < t)

for t > 0 [19]. The joint reliability importance JRI is a measure of inter-
action of the two components in a system with regard to their contribution
to the system reliability. The value of JRI indicates that one component is
more or less important, or has the same importance, when the other is func-
tioning. If JRI > 0 then one component becomes more important when the
other is functioning (so they can be regarded as ‘complements’). If JRI < 0
then one component becomes less important when the other is functioning
(‘substitutes’), while if JRI = 0 then one components importance is un-
changed by the functioning of the other [19]. We consider again the influence
of possible swaps on the joint reliability importance of components. The im-
portance measure and approach considered in this section can be generalized

17
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Figure 8: The relative importance indices of components in Figure 3 in case 1.

quite straightforwardly to joint importance of more than two components,
but this tends to be of less practical relevance. Computing the conditional
survival functions given the state of two components is again quite straight-
forward, and requires the computation of the corresponding survival signa-
tures. We illustrate this using the same two systems and scenarios considered
in Examples 1 and 2, and also in Examples 3 and 4.

4.1. Example 5

We consider the JRI of each pair of components in Figure 1 for the same
swapping case introduced in Example 1. The joint reliability importance of
components A and B in case 0, in which there is no swapping possible, is
denoted by JRI4 . Note that, given the states of these two components,
the only variable left is the number of functioning components of type 2, so
components C and D, hence we can represent the survival signatures given
the states of components A and B as a function of only [, the number of
functioning components of type 2. Table 5 presents the survival signatures
D1 (1), B1g(la), Poy (I2) and Py (Iy), where the first subscript represents
the state of component A and the second the state of component B.
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ly | @10 Pip Pox Pop
011 0 0 0
111 1 0 0
211 1 0 0

Table 5: Survival signatures given states of components A and B

The JRI for components A and B can be derived by

2

JRI,p(t) =) [qm (Iy) = 10 (I2) — Poy (Is) + Po o (12)] P(C? =1,)

l2=0

leading to
JRI 4 p(t) = [F>(1))?

By the same method we derive
JRIAc(t) = JRIAp(t) = [F1(t)][Fa(t)]

JRIc(t) = JRIpp(t) = —[1 — Fy()][Fa(t)]
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JR[D,C’(t) = _[Fl(t)][l - Fl(t)]

These joint reliability indices are presented in Figure 10, where the same
component failure time distributions have been assumed as in Example 1.
These indices will be compared to the similar indices in case of component
swaps being possible later in this example.

We now consider the same possible component swap as in Example 1,
that is component B can take over the role of component A if needed. Let
JRI;;(t) denote the joint reliability importance of components i and j in
case 1, so with this swap being possible. To calculate JRI;;(t), we first
compute the four survival signatures corresponding to this swap in case 1
and conditioned on the respective states for components 7, 7. This leads to
the following results

JRI; 5(0) = [21F(6)?] ~ 1
JRIL o(t) = JRI, p(t) = JRIp o(t) = JRIp p(t) = [2F1(t) — 1][Fa(1)]
JRI} o(t) = =2[Fy(1)][1 — Fi(t)]
Again assuming the same component failure time distributions as in Example

1, the resulting system failure time survival functions are given in Figure 11
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Figures 10 and 11 illustrate the JRIs in case 0 and 1, respectively. In
case 0, the pairs of components (A, B), (A,C) and (A, D) are each com-
plementary, while (B, C), (B, D) and (D, C) are substitutes. It is clear by
comparing these figures that the interaction of each pair of components with
regard to their contribution to the system reliability is impacted by compo-
nent swapping being possible. In particular, not all pairs are complements
or substitutes for all ¢ anymore, where particularly the joint reliability im-
portance of the pair (A, B) is much affected by the swapping opportunity.

4.2. Example 6

For the system in Figure 3, discussed in Examples 2 and 4, there are 28
pairs of component. We only briefly illustrate joint reliability importance for
this system, by considering the JRI for components G and H in the three
cases considered before, namely case 0 of no swaps being possible, case 1
where components D, E, F (type 2) can be swapped, and case 2 where com-
ponents G and H (type 3) can be swapped. With the same component failure
time distributions assumed as in Example 2, Figure 12 presents these three
JRIs. In case 0 the components G and H are complementary. The possible
swapping in case 1 has the effect that components G and H become reliability
substitutes. In case 2, in which we able to swap these two components with
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each other, they become reliability complements until a specific time point
and they become reliability substitutes after that time, of course the precise
times involved depend on the failure time distributions of all components.

5. Concluding remarks

In this paper we have considered quantification of system reliability if
some components can be swapped. It is crucial that this is a different activ-
ity than popular, and well-studied approaches such as the use of additional
components to provide increased redundancy, the use of standby components,
maintenance activities or increased component reliability. It is likely to be
attractive to consider a component swap, upon failure of a critical compo-
nent, if this activity can be done at low cost and if it may e.g. be seen as a
temporary measure in order to prepare repairs.

We implemented the survival signature concept that was introduced by
9] in this study. We considered component importance, which was particu-
larly simplified by the use of the survival signature. Further research related
to this approach will address several questions. We aim to include consider-
ations of costs, both to prepare for possible swaps and to execute swaps, and
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study the contribution swaps can make to system resilience in comparison
to other activities, including more in-built redundancy, standby components,
or maintenance and replacement activities. We also wish to consider other
importance measures. A further interesting topic for future research is the
possibility to swap components when they are all still functioning. This could
be attractive if one has the opportunity to swap components of different
types, where for example a critical component may, while still functioning,
be swapped with another component at a certain time if they have different
hazard rates over time, for example a component with increasing hazard rate
may be best to use in a critical part of the system in early stages, to then
be swapped by a component with decreasing hazard rate to improve system
reliability at later stages.

The effect of the swapping of components is entirely reflected through the
change in the survival signature. It may be of interest to investigate whether
or not this change can also be reflected by a distortion of the component
reliabilities [14], which may provide a further tool for comparison of different
systems and different swapping routines. It has been shown that very efficient
simulation methods can be based on the survival signature [15], the same
simulation method can perhaps also be used to only learn about difference
in reliability for two swapping regimes. In ongoing research, the authors are
including cost considerations for enabling or actually executing swaps, and
costs corresponding to system down-time, to decide on optimal swapping
regimes.

The approach presented in this paper requires repeated calculation of
survival signatures. [22] has created a function in the statistical software
R to compute the survival signature, given a graphical presentation of the
system structure. This will be necessary for our work for systems that are not
very small, and it will be of interest to create a tool that can automatically
compute all the survival signatures required in case of a substantial system
with many component swapping opportunities.
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