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The intrinsic peak luminosity of Type Ia supernovae (SNIa) depends on the value of Newton’s gravitational

constant G, through the Chandrasekhar mass MCh ∝ G−3/2. If the luminosity distance can be independently

determined, the SNIa can be treated as a tracker to constrain the possible time variation of G in different

redshift ranges. The gravitational-wave (GW) standard sirens, caused by the coalescence of binary neutron

stars, provide a model-independent way to measure the distance of GW events, which can be used to determine

the luminosity distances of SNIa by interpolation, provided the GW and SNIa samples have similar redshift

ranges. We demonstrate that combining the GW observations of third-generation detectors with SNIa data

provides a powerful and model-independent way to measure G in a wide redshift range, which can constrain

the ratio G/G0, where G and G0 are respectively the values in the redshift ranges z > 0.1 and z < 0.1, at the

level of 1.5%.

I. INTRODUCTION

The measurement of Newton’s constant G is one of the key tasks in modern physics. In General Relativity, G is assumed to

be constant. However, in general alternative theories of gravity, it can become both time- and space-dependent. For instance,

in Brans-Dicke gravity, the value of G is inversely proportional to the mean value of the scalar field φ in the Universe, which

evolves with the expansion of the Universe [1]. While in general screened modified gravity, which is a kind of scalar-tensor

theory with screening mechanisms, the value of G depends both on the mean value of the scalar field φ in the Universe and on

the local Newtonian potential of the observed object [2]. Numerous methods have been proposed to measureG on different time

scales, including the lunar ranging experiment [3], pulsar timing observations [4], Big Bang nucleosynthesis (BBN) observations

[5] and so on [6, 7].

Type Ia supernovae (SNIa) are ‘standard candles’ in the standard cosmological model [8]. However, analytical models of

their light curves generally predict that the absolute magnitude of a SNIa depends on the value of G. Therefore, measuring the

absolute magnitude of SNIa can determine the values of G at different redshifts. To achieve this, the luminosity distance dL to

each SNIa should be independently determined, which is requisite to fix the absolute magnitude of SNIa from observations. In

previous works [9, 10], the independent determination of dL is given by assuming specific cosmological models. For instance,

in [9] the authors determined the distance dL of SNIa by assuming a flat universe without cosmological constant but with a

varying G as a function of redshift. While in [10], the authors assumed the ΛCDM model, or a polynomial form of the Hubble

parameter. These assumptions induce that the resulting constraints on G in these papers are model-dependent. We avoid this

issue by considering the potential observations of GW standard sirens in similar redshift ranges to those of the SNIa, which

provide the desired independent measurement of dL
1. Therefore, combining SNIa and GW data provides a novel way to

measure G on a cosmological scale. In this method, the constraint on G is at the time of the SNIa. Thus, once a sufficient

number of events have been observed, a constraint map, as a function of redshift, could be constructed.

II. GRAVITATIONAL DEPENDENCE OF SNIA

The empirical observation of SNIa gives the distance estimation, under the assumption that all SNIa have the same intrinsic

luminosity if they are identical in colour, shape and galactic environment [13]. This model expresses the distance modulus in an

isotropic universe, µ = 5 log10(dL/10pc), as

µ = m∗
B − (MB − α×X1 + β × C), (1)

1 In addition to the GW standard sirens, the Cepheid variables can also be used to measure the distance dL of SNIa, if we assume their empirical period-

luminosity relation [11]. However, this measurement suffers from two defects: First, only the nearby Cepheid variables are observable, so this method is

applicable only for extremely low-redshift range. Second, this method depends on the so-called cosmic distance ladder [12].

http://arxiv.org/abs/1804.03066v2


2

where m∗
B is the observed peak magnitude in the rest-frame B band, X1 is a time stretching of the light-curve, and C is

a supernova colour at maximum brightness. For any given SNIa, these quantities are obtained from a fit to the light-curve

model of SNIa. α and β are the nuisance parameters. The absolute magnitude MB depends on the host galaxy properties,

which can be approximately corrected by assuming that MB is related to the host stellar mass through MB = M1
B if the host

stellar mass is smaller than 1010 solar masses while MB = M1
B + ∆M if otherwise, where ∆M = −0.08mag. The absolute

magnitude M1
B is calibrated for X1 = C = 0 and is treated as a constant [13], relating to the calibrated intrinsic luminosity L

as M1
B =M⊙ − 2.5 log10(L/L⊙), where M⊙ and L⊙ are the Sun’s absolute magnitude and luminosity respectively.

In theories of modified gravity with variable G, the M1
B of SNIa is not a constant. Analytical models of the light curve

predict that the peak luminosity of a SNIa is proportional to the mass of nickel synthesised [15], which is approximated to be

proportional to the Chandrasekhar mass MCh [16]. MCh is the theoretical limit around which an accreting white dwarf will

undergo supernova [14]. Since MCh depends on G, the measurement of peak luminosity of SNIa can be used to determine

the variation of G with redshift. In [17], the full effect of a time variation of G on the combined UV+optical+IR SNIa light

curves was investigated by a semi-analytic analysis. This method enabled calibration of luminosities based on time-stretching.

In this treatment, the main effect is a change of the Chandrasekhar mass, MCh ∝ G−3/2. If G deviates from the its present-day

valueG0, MCh differs from 1.44 solar masses, which leads to the modification of the time-stretch calibrated intrinsic luminosity

L. The physics behind why changing MCh affects the time-stretch calibrated intrinsic luminosity is as follows. A larger MCh

will lead to a larger mass of ejecta in the aftermath of the supernova explosion, which in turn will hinder the transmission of

radiation through the ejecta. This results in a fainter, wider light curve. When this light-curve is rescaled to calibrate for the time-

stretching, the decrease in width requires a further matching decrease in luminosity. Thus there is a negative relation between

MCh and the time-stretch calibrated intrinsic luminosity L, and since MCh ∝ G−3/2, a positive relationship between G and L.

A full discussion of this effect is contained in [17]. The predicted L as a function of G using the analysis of [17] is presented in

Fig. 1, which shows a sensitive dependence of L onG. Therefore, if the value of L, or equivalently theM1
B , can be determined at

different redshifts, we could infer the local value ofG, which provides a novel method to measureG in different redshift ranges.

Note that in this work we have assumed that the time variation of G dominates, while its spatial variation is negligible, and we

have not considered possible screening effects commonly encountered in modified gravity models. For screened models, the

variation of G can be smaller in dense environments such as galaxies, and this will make the time-dependence of the luminosity

weaker [2].

III. GW STANDARD SIRENS

From Eq. (1), we observe that for any given SNIa, the value of M1
B can be derived if one can independently measure the

luminosity distance dL. GW standard sirens provide a model-independent way to achieve this. From the observations of GW

signals, caused by coalescence of binary neutron stars (BNSs), one can obtain the dL of a GW event in an absolute way, without

having to rely on a cosmic distance ladder [18]. In many cases, it is also possible to identify their electromagnetic counterparts

and determine their redshifts [19–21]. Therefore, this provides a novel way to construct the Hubble diagram over a wide redshift

range. The third-generation (3G) GW experiments can detect the high-redshift GW signals. By combining the dL and z of

standard sirens, we can directly construct the distance modulus as a function of z for a wide redshift range.

Two proposals are currently under consideration for 3G GW detectors: the Einstein Telescope (ET) in Europe [22], and

the Cosmic Explorer (CE) in the U.S. [23]. The coordinates and orientations of ET and CE are given in Table 1 of [24], and

the amplitude spectral densities are given by Fig. 1 of [24]. ET consists of three Michelson interferometers, and interarm

angle of 60◦, arranged to form an equilateral triangle, and we adopt the ET-D configuration in this paper [22]. We consider a

3G network consisting of ET and CE, and summarise the main results as follows. The response of an incoming GW signal is a

linear combination of two wave polarisations, dI(t) = F+
I h+(t)+F

×
I h×(t). The detector’s beam-pattern functionsF+

I and F×
I

depend on the source localization (θs, φs) and the polarisation angleψs. The restricted post-Newtonian approximated waveforms

h+ and h× for the non-spinning BNSs depend on the mass ratio η ≡ m1m2/(m1+m2)
2, the chirp mass Mc ≡ (m1+m2)η

3/5

(m1 and m2 are the physical masses of stars), the dL, the inclination angle ι, the merging time tc and merging phase ψc [25].

So, for a given BNS, the response of detector depends on (Mc, η, tc, ψc, θs, φs, ψs, ι, dL). Employing the nine-parameter Fisher

matrix Γij and marginalising over the other parameters, we derive the uncertainty (Γ−1)
1/2
ii for the i-th parameter in analysis,

with i = 9 for dL (see [24] for details).

In the low-z range, it is possible to identify the electromagnetic counterparts (e.g., kilonovae [26]) of GW events and fix their

redshifts. We numerically simulate the BNS samples with random binary orientations and sky directions. The redshifts are

uniformly distributed in comoving volume in the range z < 0.1. Current observation of the GW170817 burst predicts the event

rate in the range of [320, 4740]Gpc−3year−1[27]. Assuming three-year observations by a 3G network, we expect to observe

[3.0 × 102, 4.5 × 103] events at z < 0.1, and [5.4 × 105, 8.1 × 106] events at z < 2. We randomly select 1000 samples with

z < 0.1 to mimic the detections of 3G network in low-z range. In addition, a pessimistic case with 300 events, and an optimistic

case with 4500 events are also discussed below for comparison. For each sample, distance measurements include two kinds of

uncertainties: the instrumental error ∆dL calculated above, and an error ∆̃dL due to the effects of weak lensing, which can be
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FIG. 1: The calibrated intrinsic luminosity L of SNIa as a function of G, where G0 is the present-day value, and L0 is the absolute luminosity

of SNIa at G = G0.

assumed as ∆̃dL/dL = 0.05z [28]. Thus, the total uncertainty is σdL = [(∆dL)
2 + (∆̃dL)

2]1/2.

For high-z BNSs, the promising method to measure their redshifts is to observe their short-hard γ-ray burst (shGRB) coun-

terparts. However, the γ radiation is emitted in a narrow cone nearly perpendicular to the binary orbital plane, and the observed

shGRBs are nearly all beamed towards the Earth [29]. For these face-on binaries, the parameters (θs, φs, ι, ψs) can be fixed

by electromagnetic observations. We repeat the calculation for a large number of face-on GW sources assuming a uniform

distribution in comoving volume for a redshift range of 0.1 < z < 2, as stated above, but adopting a five-parameter Fisher

matrix. Although about 106 GW events are expected to be observed, only a small partial of them can be treated as standard

sirens with measured redshifts. Similar to previous works [24, 28], we conservatively estimate that only 1000 BNSs are used as

standard sirens, which are randomly chosen to mimic the observations in high-z range. Fig. 2 presents the redshift distribution

and uncertainty of dL for the samples in both low-z and high-z ranges. Note that, we also consider the case with 2000 events

for comparison. Following [30], for each BNS, we take the value of dL to be the exact value of a given model, so we expect

constraints to be centered on the fiducial parameter values rather than displaced by ∼ 1σ. These constraints can be thought of as

the average over many possible realisations of the data.

Note that in some specific modified gravity theories, for instance theories with time-dependent effective Planck mass [31] or

non-local modifications [32], the effective luminosity distance of GW could be different from that of electromagnetic waves.

Comparison of these two distances provides a novel way to test these gravitational theories [31, 32]. Unlike such previous works,

in this paper we consider a phenomenological theory of gravity, which is the same as GR but allowing the value ofG to be time-

dependent. The waveforms of GW in this theory have been explicitly studied in the literature [33]. Although the definition of

dL is the same as in GR, a time-dependentG can generally revise the GW waveform of compact binaries, which could influence

the determination of dL from GW observations [33]. However, for the GW events of BNS coalescence observed by 3G network,

the duration is typically several minutes, and the variation of G during the GW burst is negligible [33]. Therefore, for each GW

event, we can consider G to be constant. For this case, GW waveforms depend on G only through the combination of Gm1

(or Gm2) [34], i.e. the NS masses and G value are completely degenerate, and a deviation of G from G0 cannot influence the

determination of dL.
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FIG. 2: The values of ∆dL/dL (green dot), ∆̃dL/dL (red line), σdL/dL (black star) for the simulated GW samples, including 1000 BNSs at

z < 0.1, and 1000 face-on ones at 0.1 < z < 2. Note that, for the low-z events, we have not presented the results of ∆dL/dL, which are

overlapped with the corresponding results of σdL/dL.

IV. MEASURING NEWTON’S CONSTANT

In this paper, the JLA compilation [13] is adopted as an example. Covering a redshift range 0.01 < z < 1.3, the JLA

compilation assembles 740 SNIa samples. To study the evolution of model parameters with redshift, we employ a redshift

tomographic method. To be specific, the JLA samples are binned into the following subgroups according to their redshifts: (1)

z < 0.1; (2) 0.1 < z < 0.2; (3) 0.1 < z < 0.4; (4) 0.1 < z < 1.3; (5) 0.4 < z < 1.3. In each subgroup, i.e. each redshift range,

we assume the value of G, (i.e., M1
B), is a constant. Also, we assume the relation Eq. (1) holds for each sample. However, the

values of the nuisance parameters α and β could be different for different subgroups. Therefore, if the values of M1
B at different

redshift ranges are obtained, the difference of G between different redshifts can be inferred.

The theoretical values of distance modulus µ strongly depend on the cosmological parameters. To avoid model-dependence in

our measurement of the redshift evolution of G, we need an alternative method to determine the value of µ at different redshifts.

Future detectable GW events are expected to distribute in nearly the same redshift range as the SNIa data, and the dL of GW

events can be determined by the GW observations alone. For each SNIa sample with fixed redshift z, we can derive its distance

dL (or distance modulus µ) from nearby GW events by a proper interpolation. When linear interpolation is used, the resulting µ
and its error σµ at redshift z can be calculated by

µ =

[

zi+1 − z

zi+1 − zi

]

µi +

[

z − zi
zi+1 − zi

]

µi+1, (2)

σ2
µ =

[

zi+1 − z

zi+1 − zi

]2

σ2
µ,i +

[

z − zi
zi+1 − zi

]2

σ2
µ,i+1, (3)

in which µi, µi+1 are the distance moduli of the GW events, and σµ,i, σµ,i+1 their errors, at nearby redshifts zi and zi+1,

respectively.
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FIG. 3: Two-dimensional and one-dimensional constraint contours for six parameters, where we have considered the case of combining SNIa

data at z < 0.1 with those at 0.1 < z < 0.2. The two-dimensional contours denote 1σ and 2σ constraints, respectively.

We first investigate the possible difference of G in the redshift ranges z < 0.1 and 0.1 < z < 0.2. Considering the SNIa

samples of these two subgroups, for each SNIa, z is known, µ and σµ are derived from the interpolation of GW data, and the

values of m∗
B, X1 and C are given in [13]. For these data in two bins, we have six parameters (M1

B, α1, β1, G/G0, α2, β2),

where (α1, β1) and (α2, β2) are the nuisance parameters in the first and second redshift bin, respectively, M1
B is the calibrated

absolute magnitude of SNIa at z < 0.1, and G0, G are the Newton’s constant in the two redshift bins. Note that, throughout

this paper we assume G0, the value in the first z-bin, is equal to the G value today, and that the calibrated absolute magnitude of

SNIa in the second bin has been expressed by M1
B and G/G0. We apply the following χ2 calculation to obtain the constraints

on six parameters,

χ2 =
∑

i

[µ(i) − (m∗
B −MB + αX1 − βC)(i)]2

σ2
µ(i) + σ2

(m∗

B−MB+αX1−βC)(i)
+ σ2

s(i)

+
∑

j

[µ(j) − (m∗
B −MB + αX1 − βC)(j)]2

σ2
µ(j) + σ2

(m∗

B−MB+αX1−βC)(j)
+ σ2

s(j)

, (4)



6

TABLE I: The uncertainties of six parameters for SNIa in different redshift bins combined with those in z < 0.1.

0.1 < z < 0.2 0.1 < z < 0.4 0.1 < z < 1.3 0.4 < z < 1.3
G/G0 1.011 ± 0.016 1.010 ± 0.015 1.007 ± 0.015 0.997 ± 0.016
M1

B −19.13 ± 0.01 −19.13 ± 0.01 −19.13 ± 0.01 −19.12 ± 0.01
α1 0.149 ± 0.012 0.149 ± 0.012 0.149 ± 0.012 0.149 ± 0.012
β1 2.744 ± 0.170 2.749 ± 0.170 2.747 ± 0.169 2.747 ± 0.170
α2 0.124 ± 0.010 0.140 ± 0.008 0.136 ± 0.007 0.119 ± 0.016
β2 2.972 ± 0.139 3.037 ± 0.100 2.953 ± 0.083 2.738 ± 0.161

where i and j indicate the SNIa samples in first and second redshift bin respectively, and σ2
s = (5σz/z log 10)

2 + σ2
lens + σ2

coh,

which accounts for the uncertainty in cosmological redshift due to peculiar velocity, the variation of magnitudes caused by

gravitational lensing, and the intrinsic variation in SN magnitude not described by other terms [13]. We use cσz = 150km/s and

σlens = 0.055z as suggested in [13, 35]. The values of σcoh are adopted as in [13]. Note that, in this calculation, we have ignored

the weak correlation between different SNIa data, which only slightly changes the uncertainties of the constrained parameters.

Employing a modified CosmoMC package [36], we obtain the marginalised constraints on each parameter, which are listed

in Table I, and the one-dimensional likelihood functions and two-dimensional contours are presented in Fig. 3. To measure

the value of G in different redshift ranges, we replace the second redshift bin 0.1 < z < 0.2 with that in 0.1 < z < 0.4,

0.1 < z < 1.3, 0.4 < z < 1.3, respectively. The corresponding constraints are also presented in Table I. We find that for each

case, the uncertainty of G/G0 is ∼ 0.015. These results show that, by combining the SNIa data and potential 3G GW data, the

deviation of Newton’s constant from G0 at high redshifts can be expected to be constrained at 1.5% level. The uncertainty in

G/G0 is mainly caused by the error bars of µ in the first redshift bin, which in turn are determined by the errors on dL for GW

events in the same redshift range. For comparison, we keep the second redshift bin as 0.1 < z < 0.2, and change the first bin to

z < 0.03, z < 0.05 and 0.05 < z < 0.1. The corresponding uncertainties of G/G0 become 0.018, 0.017, 0.022 respectively,

which are larger than 0.015 as anticipated.

Note that the number of observable GW events, NGW, is quite uncertain. In order to test how the uncertainty of G/G0

depends on NGW, we compare the following cases: (1) 1000 low-z and 1000 high-z GW events as above; (2) 300 low-z and

1000 high-z GW events; (3) 4500 low-z and 1000 high-z GW events; (4) 1000 low-z and 2000 high-z GW events. For each

case, we consider the SNIa samples in two bins (z < 0.1 and 0.1 < z < 0.2), and derive the constraints of six parameters by a

similar analysis as above. We find that the results are nearly the same in all cases, which is understandable: the GW observations

influence our results only through Eqs. (2) and (3), and these two relations show that the values of µ and σµ for each SNIa

depend only on its nearby GW events, and increasing or decreasing NGW cannot significantly affect their values. Of course, if

the redshift distribution of GW events is too sparse, i.e. NGW is too small, the interpolation in Eqs. (2) and (3) is not applicable

any more, and the derived constraints on G/G0 become unreliable. Therefore, to keep the stability of the results, the number of

GW events should be comparable to, or even larger than, that of SNIa in the corresponding redshift ranges.

V. CONCLUSIONS

The calibrated intrinsic peak luminosity of a SNIa depends on the strength of gravity in the supernova’s local environment. If

dL can be determined by independent observations, the SNIa can be treated as a tracker to measure the variation of gravitational

constantG in a wide redshift range. We propose to use the GW standard sirens distributed in a similar redshift range to determine

dL of SNIa by interpolation. As an application, we consider the recent JLA compilation of SNIa data, for which dL values are

assumed to be determined 3G GW observations. Splitting the SNIa samples into several subgroups according to their redshifts,

we determine the value of G in different redshift ranges. We find that the ratio G/G0, where G is the gravitational constant in

the redshift z > 0.1 and G0 is that at z0 < 0.1, can be determined at the level of 1.5%.

As examples to compare our results with other constraints, we adopt z = 0.4 (z = 0.9) and assume a power-law cosmic time

dependence, G ∝ t−α, then the constraint ∆G(z)/G < 0.015 is equivalent to a constraint on the index of |α| . 0.04 (0.02),

which can be translated into |(dG/dt)/G|t=t0 . 3×10−12 year−1 (1.5×10−12 year−1). This is of the same order as constraints

from pulsars [4], lunar laser ranging [3] and BBN [5] (|(dG/dt)/G|t=t0 . 10−12 year−1). Most importantly, the new method

offers a novel and independent way to constrain Newton’s constant G over a wide redshift range 0 < z < 1.3, which could also

be extended to 0 < z < 2 by future SNIa observations [37].
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