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mesonic excitations. As expected for a charged superfluid we find non-relativistic, mass-

less Goldstone modes. We also find extra ungapped modes that are not associated to

the breaking of any global symmetries but to the supersymmetric nature of the ground

state. If the quark mass is much smaller than the scale of spontaneous symmetry breaking

a pseudo-Goldstone boson is also present. We highlight some new features that appear

only for Nf > 2. We show that, in the generic case of unequal R-symmetry charges, the

dissolved strings and D3-branes blow up into a D5-brane supertube stretched between the

D7-branes.
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1 Introduction

The holographic duality [1] makes the systematic study of a class of strongly coupled Quan-

tum Field theories (QFT) possible (see e.g. [2–4] for some reviews). This framework, also

referred to as AdS/CFT or gauge/gravity correspondence, arose in string theory by con-

sidering two complementary descriptions of the same system: a quantum gauge theory and

a theory of supergravity. The gravitational description of the system provides a geometric
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interpretation of the gauge theory dynamics by means of the so-called holographic dictio-

nary, a prescription to translate between the QFT and gravity realisations [5, 6]. The limit

in which the gravitational side of the duality reduces to its classical limit — which we will

consider in this work— takes the rank of the gauge group and the ’t Hooft coupling to be

very large, Nc →∞ and λ→∞.

In this paper we study a model at finite isospin density and vanishing temperature and

baryon number, whose ground state simultaneously exhibits two of the properties that are

believed to be present in some phases of QCD (see [7] for a review): spontaneous breaking

of global symmetries and a Higgsing of the gauge symmetry, usually referred to as color su-

perconductivity. Unlike our setup, in Nature systems that carry a large isospin density also

carry a large (in fact, larger) baryon density, for example neutron stars. Another difference

with realistic scenarios is that our ground state is N = 1 supersymmetric. Nevertheless,

we expect that our work can provide an interesting laboratory to understand the physics

of cold quark matter.

For example, we can develop a first-principle understanding of strongly coupled mat-

ter in a regime where results from lattice field theory can be obtained and compared to.

Lattice field theory encounters a serious limitation when considering configurations at fi-

nite baryon density, due to the infamous fermion sign problem [8], but this difficulty is not

present if instead of baryon density one considers a finite isospin density [9]. Independently,

supersymmetry can facilitate a precise comparison between the strong-coupling limit de-

scribed by holography and the weak-coupling regime accessible to perturbative field theory

methods.

Incidentally, to the best of our knowledge our system is the first example of a super-

symmetric color superconductor at finite density. Previous work on color superconductors

in the non-supersymmetric holographic context includes [10–13], and non-supersymmetric

color superconducting ground states in supersymmetric theories have been considered in

e.g. [14–16].

The model we consider is very simple yet extremely rich: N = 4 SYM theory with

SU(Nc) gauge symmetry probed by Nf � Nc N = 2 hypermultiplets transforming in the

fundamental representation of the gauge group. Although this theory differs from Quantum

Chromodynamics in many aspects, many insights about the behavior of strongly coupled

quark matter were obtained by studying the holographic dual of the N = 2 theory in

deconfined phases, be it static properties or far-from-equilibrium dynamics (see e.g. [17]

and references therein). For this reason, we use QCD nomenclature and refer to the adjoint

degrees of freedom in N = 4 as gluons, or colors, and to the degrees of freedom in the

fundamental representations as quarks, or flavors, despite the fact that these degrees of

freedom come in supermultiplets. We emphasise that at this point we do not aim at

providing a model for real-world QCD but a theoretical laboratory in which first-principle

calculations may lead to interesting insights [18].

The dual gravitational description consists of a set of Nf probe D7-branes (or flavor

branes) in the AdS5×S5 geometry sourced by a stack of Nc coincident D3-branes (or color

branes) [19]. The Higgsing of the gauge group is described by an instantonic configuration

of the gauge field living on the worldvolume of the flavor branes [20–22].
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At zero density and Nf > 1 this setup has a free parameter, the size of the instanton

Λ, corresponding holographically to the scale of the spontaneous symmetry breaking. The

presence of the instanton corresponds to D3-brane charge dissolved in the worldvolume

of the D7-branes, which breaks the SU(Nc) gauge group. The freedom to choose Λ gives

rise to a moduli of equivalent ground states, a Higgs branch parameterised by the vacuum

expectation value of a scalar operator bilinear in the flavor hypermultiplets. For Nf = 1

there is no Higgs branch since the instanton collapses to zero size. This can be alleviated in

the presence of a U(1) baryonic density [23], described by a radially-directed electric field

on the worldvolume of the D7-brane [24]: in the probe approximation the fields living on

the flavor-brane feel an effective metric that hides the singularities of the solution behind

a horizon, effectively regularising the solution.

We work with Nf ≥ 2 and introduce a non-Abelian (isospin) finite density. This

was first considered, in a non-supersymmetric context, in [25–27] for the D3/D7 setup and

in [28, 29] for the Sakai-Sugimoto model. For the solution to be supersymmetric the quarks

are necessarily massive, with mass Mq. We restrict our study to the critical case in which

the isospin chemical potential has the same magnitude as the quark mass, µI = Mq. It is

possible to define an Abelian U(1) symmetry under which the instanton is charged, such

that one would expect the solution to collapse to zero size. The stabilization mechanism

that allows the supersymmetric ground state to exist is a finite angular momentum in the

compact directions of the D7-branes. The balance between the force due to the angular

momentum and the tendency of the charged instanton to collapse determine uniquely the

value of its size Λ. This size is therefore not a modulus in our case.

The ground state of our system breaks spontaneously various global symmetries, such

that Goldstone modes are present in the spectrum. On top of this, the presence of a finite

chemical potential breaks explicitly the Lorentz group, so we expect the dispersion relations

of the Goldstone modes to be non-relativistic. Indeed, we find that at low values of the

momentum there are modes with a dispersion relation

ω = ± 1

2µI

k2 . (1.1)

When the relation Mq � Λ is satisfied there is a light excitation, a pseudo-Goldstone mode,

with mass gap given by

ωgap = 2Mq . (1.2)

This pseudo-Goldstone mode appears in the presence of the explicit symmetry-breaking

scale Mq. The approximate symmetry that is being broken is the scale invariance of the

AdS5×S5 background. This becomes an exact symmetry when Mq = 0, which is then

broken spontaneously by Λ. In that case the theory is Lorentz-invariant and one finds the

relativistic dispersion relation ω = ±k for the associated Goldstone boson.

In addition to the above we find an additional set of ungapped modes that are not

Goldstone modes. Their presence is due to the supersymmetric nature of the ground state,

which implies the existence of exact moduli that are not associated to any broken global

symmetries.
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The remaining excitations of our system have a finite life-time. These are characterised

by quasifrequencies with a finite imaginary part lying in the lower complex-frequency plane

(as necessary for stability). The complex quasifrequencies approach the real frequency axis

when Λ � Mq, and the imaginary parts vanish exactly when Λ = 0. In that case there

is no spontaneous symmetry breaking, and one recovers the mesonic spectrum of N = 2

SYM coupled to fundamental matter at finite isospin density [30, 31].

This paper is organised as follows. In section 2 we introduce a simple model capturing

the string theory dynamics in supersymmetric configurations. The solution to this model

with flavor group SU(2) was given in [32] and is thoroughly reviewed here, with an emphasis

on the description of the spontaneous breaking of the local and global symmetries. In

section 3 we proceed to study fluctuations around the supersymmetric solution. We pay

special attention to the description of the low-energy excitations of the system. In most

of the paper we focus on the case Nf = 2. In section 4 we discuss the generalisation to

Nf > 2. In section 5 we show that, under generic circumstances, the strings and the D3-

branes dissolved inside the D7-branes are “blown up” by the angular momentum to a D5-

brane supertube . All other configurations can thus be viewed as collapsed supertubes. In

section 6 we present a summary of the physical implications of our results. We complement

the main text with several appendices to which we defer technical material.

2 Setup

2.1 Model

The holographic dual of N = 4 SU(Nc) SYM theory in four dimensions is type IIB super-

gravity on the near-horizon geometry of a stack of Nc coincident D3-branes, which source

an AdS5×S5 geometry with metric

ds2 = H−1/2 ηµν dxµdxν +H1/2
(
δij dyidyj + δαβ dzαdzβ

)
, (2.1)

where xµ (with µ = 0, · · · , 3) are the four gauge theory directions, and yi (with i = 1, · · · , 4)

and zα (with α = 1, 2) are Cartesian coordinates transverse to the D3-branes. Anticipating

the setup we split the six transverse coordinates as R6 → R4 × R2 . The function H is a

harmonic function in the six-dimensional space transverse to the D3-branes

H =
L4

(δij yiyj + δαβ zαzβ)
2 , (2.2)

with L the radius of AdS5 and S5, related to the string length `s and the ’t Hooft coupling

λ through

L4 = (2π`2s)
2 λ

2π2
. (2.3)

In IIB supergravity the geometry (2.1) is supported by a Ramond-Ramond (RR) four-form

potential and a constant dilaton

C4 = H−1dx1,3 , eΦ = 1 , (2.4)
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R1,3 R4 z1 z2 SO(6)R

D3 × · · · SO(4) SO(2)

D7 × × + ·
D7 × × − ·

SU(2)L× SU(2)R U(1)I×U(1)b

Table 1. Diagram of the intersections and the explicit pattern of symmetry breaking. In our

solution the two D7-branes bend in opposite directions in the z1 direction, breaking SO(2).

with dx1,3 the volume form of the Minkowski spacetime. The RR four-form potential

determines the type IIB self-dual five-form as

F5 = (1 + ?)dC4 , (2.5)

where ? is the Hodge-star operator in ten dimensions. The flux of the RR five-form through

the S5 gives the number of D3-branes

1

(2π`s)4

∫
S5

F5 = Nc . (2.6)

The N = 4 SYM theory does not contain any degrees of freedom in the fundamental

representation of the gauge group, but these can be included by adding Nf D7-branes on

the gravity side, oriented along the xµ- and yi-directions, as indicated in table 1. On the

gauge theory side the new degrees of freedom are Nf hypermultiplets in the fundamental

representation, to which we will loosely refer as flavor or quarks despite the fact that they

include both fermions and scalars. Coupling these fields to the original N = 4 SYM theory

explicitly breaks supersymmetry down to N = 2. We will therefore refer to the resulting

theory simply as “the N = 2 theory”.

The inclusion of the quarks in the model also breaks the R-symmetry group explicitly

as SO(6)
R
→ SO(4)×SO(2) . On the gravity side the breaking is due to the splitting of R6

induced by the orientation of the D7-branes. The remaining SO(4) and SO(2) factors act as

rotations in the yi- and zα-directions, respectively. For our purposes it will be convenient

to view the rotation group acting on the yi-directions as SO(4) = SU(2)
L
× SU(2)

R
, where

SU(2)R is the R-charge symmetry group of the N = 2 theory and SU(2)L is a global

symmetry that does not act on the N = 2 supercharges. On the gravity side this is made

explicit by writing the metric in the yi-space in spherical coordinates as

δij dyidyj = dr2 + r2 δab ω
aωb , (2.7)

with ωa (a = 1, 2, 3) the left-invariant one-forms on S3 satisfying

dωa + εabcωb ∧ ωc = 0 . (2.8)

As indicated by their name, the ωa are invariant under SU(2)L, and they transform as a

triplet under SU(2)R.

In the regime Nf � Nc the flavor degrees of freedom can be treated as probes of the

color-dominated dynamics. On the supergravity side this means that the backreaction of
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the D7-branes on the geometry (2.1) can be ignored [19]. The embedding of the D7-branes

will be specified by their positions in the zα-plane. If the branes are all coincident and

located at the origin of the plane then the SO(2) symmetry is preserved. In addition, the

flavor symmetry of the gauge theory, which is realised as the non-Abelian gauge symmetry

on the worldvolume of the D7-branes, is

U(Nf)=SU(Nf)×U(1)b . (2.9)

The Abelian factor on the right-hand side can be thought of as the symmetry associated

to baryon charge, which will always be unbroken in this paper. Except in section 4, in the

rest of the paper we will set the number of flavors to

Nf = 2 . (2.10)

In generic cases, including those of interest here, the branes will have non-trivial profiles in

the zα-plane. Under these circumstances SO(2) is broken to at most a discrete subgroup,

and the flavor symmetry is broken to an Abelian subgroup:

SU(2)
f
→ U(1)

I
. (2.11)

We will refer to the charge under U(1)I as isospin charge. Recall that on the D7-branes

the symmetries in (2.11) are gauge symmetries. In the case under consideration of two

D7-branes that bend in a generic way in the zα-plane, each D7-brane carries a U(1) gauge

symmetry on its worldvolume. The surviving U(1)b and U(1)I symmetries are then simply

the diagonal and the off-diagonal combinations of the two U(1)’s on the branes, respectively.

2.2 Action

The action describing the dynamics of Nf = 2 D7-branes embedded in AdS5× S5 is given

by two pieces,

SD7s = SDBI + SWZ , (2.12)

where the non-Abelian Dirac-Born-Infeld (DBI) and Wess-Zumino actions (WZ) adapted

to our system read [33, 34]

SDBI = −T7

∫
d4x d4y e−Φ Str

[√
− det

(
gMN + P[H]

1
2 δαβ D(MZαDN)Zβ + FMN

)
V (Z)

]
,

SWZ =
T7

2

∫
Str (C4 ∧ F ∧ F ) .

(2.13)

T7 is the tension of a D7-brane and, unless otherwise indicated, in this paper we set

2π`2s = 1, so all quantities are effectively dimensionless. The indices M,N = 0, · · · , 7 are

worldvolume indices on the D7-branes and collectively denote the xµ and yi directions.

The non-Abelian gauge field A takes values in the Lie algebra of SU(2)f. Thus, suppressing

spacetime indices, we can write A = Aâ σ
â , with σâ (â = 1, 2, 3) the Pauli matrices. Note

that in this paper the component of the gauge field along the generator of the baryonic

– 6 –
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U(1)b symmetry is assumed to vanish. In other words, we will work at non-zero isospin

density but zero baryon density. A enters the action through the field strength

F = dA+ i A ∧A (2.14)

and the covariant derivatives

DZα = dZα + i [A,Zα] (2.15)

for the scalars Zα. These are also SU(2)f-valued, Zα = Zαâ σ
â , and describe the (in general

non-commuting) positions of the branes in the zα-directions. The non-Abelian nature of

the action leads to the presence of the potential term [34]

V (Z) =

√
1− P [H] [Z1, Z2]2 . (2.16)

The symmetrised-trace over the flavor group, Str, allows one to treat the non-Abelian

structures as effectively commuting in the action [33, 34]. The metric gMN in the action is

given by

ds2 = P[H]−1/2 ηµν dxµdxν + P[H]1/2 δij dyidyj , (2.17)

with

P[H] =
L4

(δij yiyj + δαβ ZαZβ)
2 (2.18)

the pull-back of the harmonic function (2.2) to the worldvolume.

As emphasised by the authors of [33, 34] themselves, the action (2.13) is known to be

incomplete beyond O(`4s). However, it seems to capture the exact physics for supersym-

metric configurations [35, 36]. Moreover, for such configurations the equations of motion

obtained from (2.13) reduce to those obtained from its lowest-order approximation, namely

from the super-Yang-Mills-Higgs-like (SYMH) action

S = −T7

2

∫
Str
(
F ∧ ∗F − P [H]−1dx1,3 ∧ F ∧ F

)
− T7

2

∫
Str
(
P[H]1/2δαβ DZ

α ∧ ∗DZβ − P [H]
[
Z1, Z2

]2 ∗ 1
)
,

(2.19)

where ∗ is the eight-dimensional Hodge-star dual with respect to the metric (2.17) and

the potential for the Zα scalars comes from expanding (2.16). In appendix A we prove

that, indeed, the equations of motion that follow from (2.13) and (2.19) coincide with one

another when evaluated on the type of supersymmetric configurations that we will consider.

We will therefore work with (2.19) instead of (2.13).

2.3 Ansatz

We will seek solutions that are stationary and homogeneous along the gauge theory spatial

directions, thus effectively reducing the dynamics to 4+1 dimensions in the {t, yi} direc-

tions. Moreover, we will be interested in configurations that are a direct import of the

– 7 –
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five-dimensional dyonic instanton of SYMH theory in flat space [37]. As such, only one of

the two scalar fields will be excited

Z1 ≡ Z(y) , Z2 = 0 . (2.20)

This explicitly breaks the SO(2) symmetry of the action (2.19) associated to rotating the

Zα into one another. For configurations obeying (2.20) the potential for the Zα scalars

in (2.19) vanishes identically. Furthermore, as in [37], we will take

At(y) = Z(y) , Fij(y) =
1

2
εijklF

kl(y) . (2.21)

The first condition in (2.21) ensures that the non-Abelian electric field equals the covariant

derivative of the scalar

Ei = DiZ . (2.22)

The second equation is the usual self-duality condition of the magnetic part of the field

strength, which gives rise to instantonic configurations. The first condition together with

Gauss’ law, DE = 0, implies that the scalar field obeys a covariant Laplace equation in

the background of an instanton in R4:

δijDiDjZ(y) = 0 . (2.23)

Solutions of these equations preserve N = 1 supersymmetry. This is the key property

behind the exact nature of these configurations. In the particular case Z = 0, refs. [20]

and [38] showed that corrections at leading order and to all orders in `s, respectively, vanish

identically. Ref. [39] showed that configurations with possibly non-zero Z are solutions of

the action (2.13) in flat space. In appendix A we show that these remain solutions of

both (2.13) and (2.19) even in the case in which the background is AdS5×S5.

In most of this paper we will focus on solutions that preserve the SU(2)L global sym-

metry. In this case all the angular dependence is captured by the left-invariant one-forms

ωa introduced in (2.7). Under these circumstances the set of solutions that we will be

interested in may be described with the following ansatz for the different fields:

Z = φ(r)σ3 , A = at(r) dt⊗ σ3 + a(r) δa âw
a ⊗ σâ . (2.24)

Note that, in expressions like the one above, we will distinguish between indices a = 1, 2, 3

that are acted upon by SU(2)R and indices â = 1, 2, 3 that are acted upon by SU(2)f.

Splitting the field strength into purely electric and purely magnetic components,

F = dt ∧ E + Fmag , (2.25)

this ansatz leads to the following result:

E = −φ′ dr ⊗ σ3 + 2φa δa â ε
ab3 ωb ⊗ σâ ,

Fmag = a′δa â dr ∧ ωa ⊗ σâ − a (1 + a) δa â ε
abc ωb ∧ ωc ⊗ σâ ,

(2.26)

where ′ denotes differentiation with respect to r.
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We have aligned the scalar field, and by virtue of (2.21) also the time component of

the gauge field, with the third generator of SU(2)f. As anticipated above, solutions with

non-zero φ(r) will break this symmetry explicitly as described in (2.11). The authors of [37]

used the preserved U(1)I to define the electric charge of the instanton as

Q ≡ lim
r→∞

1

Mq

∫
S3

r3 tr (ZEr) ∝ Λ2Mq , (2.27)

where the integral is taken over the three-sphere of radius r in eq. (2.7) and Λ and Mq are

constants of integration to be introduced shortly.

The second term in A, proportional to a(r), gives rise to the purely magnetic part of

the field strength. In fact, a non-trivial a(r) has two important consequences. First, it

implies that the D7-branes carry an instanton number given by

k =
1

8π2

∫
trFmag ∧ Fmag = −

[
3a2 + 2a3

]r=∞
r=0

. (2.28)

In turn, this results in the partial breaking of the color symmetry in the gauge theory.

Second, a non-trivial a(r) locks the triplet of SU(2)R one-forms ωa to the triplet of SU(2)f
generators σâ, thus also breaking some global symmetries. Both of these breakings will be

explained in detail in section 2.6.

Note that the expressions (2.27) and (2.28) are appropriate when we view the above

construction as a dyonic instanton in flat R1,4. However, we will see below that these

same expressions arise in the context of the eight-dimensional theory on the D7-branes in

a curved AdS5×S5 background.

2.4 Solution

The BPS equations (2.21) for our ansatz (2.24) become

at = φ , φ′′ +
3

r
φ′ − 8 a2

r2
φ = 0 , a′ +

2

r
a(1 + a) = 0 , (2.29)

whose solution of interest to us is

at(r) = φ(r) = Mq

r2

r2 + Λ2
, (2.30a)

a(r) = − Λ2

r2 + Λ2
, (2.30b)

with Mq and Λ constants of integration. This solution has instanton number k = 1.

The physical interpretation of the solution is as follows. The fact that Z(r) is propor-

tional to σ3, which is diagonal with entries ±1, means that the branes bend in opposite

directions along the z1-axis with otherwise identical profiles, as shown in figure 1. The

gauge theory operator dual to the scalar field has ∆ = 3 and takes the schematic form [19]

Z = φσ3 ↔ O ∼ Ψσ3Ψ ∼ uu− dd , (2.31)

where Ψ = (u, d)T and u, d are the fermionic fields corresponding to the two quark flavors.

In this expression we omitted squark contributions that can be found in [24]. Notice that
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±φ/Mq

Figure 1. Embedding profile of the D7-branes in the z1-direction for Λ = Mq (dashed, red curve)

and Λ = Mq/10 (continuous, blue curve). We have extended the range of the radial coordinate to

negative values to represent a section of the solid of revolution in the yi directions.

the σ3 appearing in (2.31) and (2.35) corresponds to the SU(2)f symmetry, not SU(2)R.

An analogous expression holds with σ3 replaced by the identity matrix. In view of this,

the asymptotic behavior at large r

φ(r) 'Mq −
MqΛ

2

r2
+ · · · (2.32)

has two immediate consequences. First, the constantMq corresponds to the quark mass [19].

To be precise, the quark mass is a complex number and we see that the masses of the u

and d quarks are equal in magnitude but have opposite phases. Second, the corresponding

quark condensates take the form

〈Ψσ3Ψ〉 = 〈uu− dd〉 ∝ −MqΛ
2 , (2.33a)

〈ΨΨ〉 = 〈uu+ dd〉 = 0 , (2.33b)

or, equivalently:

〈uu〉 = −〈dd〉 ∝ −MqΛ
2 . (2.34)

The operator dual to the time component of the gauge field has ∆ = 3 and reads schemat-

ically [24]

at = φσ3 ↔ Jt ∼ Ψ†σ3Ψ ∼ nu − nd . (2.35)

We have again omitted squark contributions that can be found in [24], and an analogous

formula holds with σ3 replaced by the identity matrix. Therefore the asymptotic behavior

at large r

at(r) 'Mq −
MqΛ

2

r2
+ · · · (2.36)
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implies that the isospin chemical potential and the isospin, the u and the d charge densities

are given by [24, 40]

µI = Mq , (2.37a)

nI = nu = −nd ∝ −MqΛ
2 . (2.37b)

Finally, the operators dual to the magnetic components of the gauge field along the S3

have ∆ = 2 and are given by [30]

Aa = a(r) δa âσ
â ↔ Oa = ψ†σaψ , (2.38)

where ψ is the scalar superpartner of Ψ and contains the squark components. Note that,

unlike in (2.31) and (2.35), in (2.38) the Pauli matrix on the right-hand side acts on the

SU(2)R quantum numbers, not on the SU(2)f ones. It follows that the generic asymptotic

behavior of the a(r) field takes the form

a ' − v

r2
+

s

r2
log[r] + · · · , (2.39)

where s and v are the non-normalisable and the normalisable modes, dual to the source

and the vacuum expectation of Oa, respectively. In our case we see from (2.30) that the

source vanishes and the VEV is given by the size of the instanton:

v ∼ Λ2 . (2.40)

We will show below that this is consistent with the fact that the non-trivial a(r) in our

solutions breaks the color symmetry of the gauge theory spontaneously but not explicitly.

If Mq = µI = 0 this is familiar from the fact that in this case the N = 2 theory possesses

a Higgs branch of vacua and Λ is an exact modulus. In contrast, we will now see that in

our case Λ is fixed by other charges.

We begin by noting that the presence of crossed electric and magnetic fields in the solu-

tion generates an angular momentum density. Inspection of the Poynting vector produced

by these fields shows that the angular momentum density is aligned with the Cartan U(1)L

subgroup of the SU(2)L preserved by our ansatz [41]. In particular, this means that the an-

gular momentum skew-symmetric two-form is self-dual with two identical skew-eigenvalues

J ≡ J1 = J2 . (2.41)

In our description the angular momentum arises as the conserved charge associated to the

isometries of the S3 ⊂ R4 and n1 and n2 are the corresponding angular momenta in two

orthogonal planes of R4. From the viewpoint of the dual gauge theory, this corresponds

to equal R-charge densities n1 and n2 along two of the three U(1) factors in the Cartan

subalgebra of the SO(6) R-symmetry of N = 4 SYM [42–44]

nR ≡ n1 = n2 , (2.42)

with

nR ∝ J . (2.43)
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In order to compute these charges, let ξ be the Killing vector associated to the U(1)L
encoded in the left-invariant form ω3. Then the current JN = ξMTMN is covariantly

conserved, with TMN the energy-momentum tensor generated by the fields on the flavor

branes. Integrating over the spatial volume gives the conserved angular momentum

J =

∫
Σ
nNJN dΣ , (2.44)

with nN = H1/4δNt the unit normal to the constant-time slices Σ, whose volume element

we denote dΣ. A calculation then shows that the only non-vanishing component is

J =

∫
Σ
nt Tt3 ξ

3 dΣ ∝
∫
H1/4 trFt

MFM3 dΣ ∝
∫ ∞

0
r3

[
a′φ′ +

8

r2
a2φ (1 + a)

]
dr ∝MqΛ

2 .

(2.45)

The third term in this expression makes it clear that the angular momentum is an integral

of crossed electric and magnetic fields, as expected from the Poynting vector. We have

omitted factors of the D7-brane tension for simplicity, as well as an overall (infinite) three-

volume factor along the gauge theory directions. In other words, the result (2.45) yields the

angular momentum density per unit three-volume along the spatial ~x-directions in (2.1).

The crucial point is that in (2.45) all the factors of H, the harmonic function (2.2), cancel

out exactly, so the result essentially reduces to its flat space counterpart. This property is

a typical manifestation of the underlying supersymmetry preserved by the ground state of

the system.

The analysis above shows that, up to normalisation, all charge densities in the system

are comparable since they all scale as

nI ∼ nR ∼ J ∼ Q ∼MqΛ
2 ∼ µIΛ

2 . (2.46)

Moreover, we see that the size of the instanton is not a free parameter but is actually

given by

Λ2 ∝ nR

µI

. (2.47)

This can be understood in simple mechanical terms [41]: the non-vanishing angular mo-

mentum J ∼ nR prevents the instanton from collapsing to zero size despite the fact that

the non-Abelian gauge symmetry on the D7-branes is broken to an abelian subgroup as

described in (2.11). Alternatively, the stability of the solution can be understood [37] from

the dyonic nature of the instanton, namely from the fact that it is precisely the breaking

of the gauge symmetry to an Abelian subgroup that allows for the definition of the electric

charge of the instanton via the projection (2.27).

To close this circle of ideas it is interesting to compute the total energy of the D7-

branes, since this will bring about a covariant expression for the electric charge (2.27).

In this case we contract the stress tensor with the timelike killing vector in the geometry

ξ = ∂t to obtain

E =

∫
Σ
nt Ttt ξ

tdΣ ∝
∫

d4y tr

(
1

4
δijδklFikFjl + δijEiEj

)
, (2.48)
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where again we have omitted an overall three-volume factor and, crucially, all factors of

H have cancelled out. Using self-duality of the solution, the first term is proportional to

the instanton charge (2.28). The second term is the energy stored in the electric field.

Using (2.22) and integrating by parts this evaluates to∫
d4y tr δijEiEj ∝ lim

r→∞

∫
S3

r3 tr (ZEr) ∝M2
q Λ2 = MqQ . (2.49)

Thus the energy can be written exclusively in terms of conserved charges as

E ∼ k +MqQ , (2.50)

showing that it saturates a BPS bound [37].

2.5 Infrared limit

In this limit r → 0 the fields approach the values

at = φ→ 0 , a→ −1 . (2.51)

Under these circumstances the metric on the D7-branes approaches AdS5×S5 with the same

radius as in the UV and the non-Abelian field strength tends to zero. This configuration

describes a fixed point and is actually a solution by itself, i.e. it can be detached from

the RG flow that ends on it. The fact that the IR radius is the same as in the UV

would seem to suggest that the physics near the IR fixed point is the same near its UV

counterpart. However, this is not the case because the IR value a = −1 is physically

inequivalent to the UV value a = 0, since the two configurations differ by a large gauge

transformation [31]. This can be seen by considering fluctuations of the different fields

around the a = −1 solution. At quadratic order, the masses of these fluctuations reveal

that the time-component of the gauge field, at, and the scalar, Z, are dual to ∆ = 5

operators [38], whereas the field a is dual to a ∆ = 6 operator. These dimensions imply

that the generic behavior of fluctuations around the IR fixed point is

δat = δφ(r) ' v5 r
−4 + s5 r

2 , δa(r) ' v6 r
−6 + s6 r

2 , (2.52)

where s∆ and v∆ stand for the source and VEV of the operator with dimension ∆. The

fall-off in the IR of the fields in our solution takes the form

at(r) = φ(r) ' 0 +
Mq

Λ2
r2 , a(r) = −1 +

1

Λ2
r2 . (2.53)

Comparing with (2.52) we see that the VEVs vanish along our RG flow, which therefore

describes a deformation of the IR fixed point by irrelevant operators.

2.6 Spontaneous symmetry breaking

In section 2.1 we discussed the explicit breaking of symmetries, first by coupling the original

N = 4 SYM theory to dynamical quarks, and then by the non-zero mass of these quarks

in the resulting N = 2 theory. In this section we will discuss the spontaneous breaking of

some of the remaining symmetries by the presence of the instanton field.
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r/Mq

Figure 2. Effective number of D3-branes on the D7-branes within a sphere of radius r — see (2.56)

— for Λ/Mq = {1/10, 1, 10} (solid blue, dashed red and dotted green curves, respectively).

Let us first consider the color symmetry of the gauge theory. This is broken sponta-

neously as

SU(Nc + 1)→ SU(Nc)×U(1) (2.54)

due to the dissolution of a unit of D3-brane charge inside the D7-branes. Intuitively, one

can understand this from the fact that the dissolved D3-brane has been separated from

the rest, hence breaking or Higgsing the color gauge group. This breaking is spontaneous

because the instanton field is normalisable. In other words, the dissolution of the D3-branes

on the D7-branes is not forced by an external force for the instanton field but is induced

by the other charges in the system. This is apparent from (2.47), which shows that the

instanton size is not an independent quantity but is fixed by the other charges. The fact

that the instanton field carries D3-charge follows simply from the coupling∫
C4 ∧ tr (F ∧ F ) (2.55)

on the worldvolume of the D7-branes, which shows that the instanton density couples to

C4 in the same way that D3-branes do. As a consequence of the extended nature of this

density, the effective number of D3-branes in our solution contained within a sphere of

radius r on the D7-branes is given by — cf. eq. (2.28):

Nc(r) = Nc −
[
3a2 + 2a3

]r
0

= Nc + 1− 3 a(r)2 − 2 a(r)3 . (2.56)

The quantity Nc(r)−Nc is plotted in figure 2.

The instanton field also breaks spontaneously part of the global symmetries as

SU(2)
R
×U(1)

I
→ U(1)

D
, (2.57)

where the group on the right-hand side is the diagonal U(1) in the Cartan subalgebra of the

left-hand side. This breaking can be seen geometrically in two steps. First, in the presence
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of the isospin electric field, the magnetic components that are turned on by the instanton

generate a self-dual angular momentum in R4 given by (2.45). Generically, a self-dual two-

form in R4 is invariant only under the SU(2)
L
×U(1)

R
subgroup of SO(4). In other words,

it breaks SU(2)
R
→ U(1)

R
. In our case this manifests itself in the fact that the Poynting

vector distinguishes between the ω3 and the ω1,2 forms that enter the ansatz (2.24), thus

breaking SU(2)
R

to the U(1)
R

subgroup that rotates ω1,2 into one another. Second, the

further breaking

U(1)
R
×U(1)

I
→ U(1)

D
(2.58)

implied by (2.57) is due to the fact that only simultaneous rotations of ωa and σâ leave the

last term in (2.24) invariant. This is similar to the breaking SU(2)
R
×SU(2)

f
→ SU(2)

D
that

takes place on the Higgs branch in the absence of the isospin electric field (see e.g. [31]).

Intuitively, it is simply due to the fact that an instanton configuration in R4 is only invariant

under simultaneous SU(2)
R

rotations in space and SU(2)
f
large gauge transformations that

act on the orientation modes of the instanton. This is a well known property that is crucial

for the correct counting of the number of instanton zero modes.

3 Spectrum

In this section we will investigate the spectrum of mesonic excitations around the ground

state that we have described above. To do so we will consider linear fluctuations around

the solution. For simplicity, we will assume that their dynamics is governed by the SYMH

action (2.19) instead of the action (2.13). Although this may affect some quantitative

details of the spectrum, we expect that the qualitative properties will be the same, in

particular those related to Goldstone modes.

In principle, fluctuations can depend on all the coordinates of the D7-branes,

{t, ~x, r, θ, φ, ψ}, with {θ, φ, ψ} the angles of the S3. However, instead of working with

generic dependence on these angles, we will restrict the analysis to the angular depen-

dence encoded in the left-invariant one-forms ωa that we used in the ansatz for the back-

ground (2.24). This amounts to a restriction to the SU(2)
L
-invariant sector of the spectrum.

In particular, this means that the fluctuations that we will consider will keep the centre

of the instanton at the origin of AdS5, only allowing for fluctuations of its size Λ. In

section 3.4 we will comment on how to relax this restriction.

Including the fluctuations, we consider the following form for the scalar fields

Z1 = φ(r)σ3 + ζâ(t, ~x, r)σ
â , Z2 = βâ(t, ~x, r)σ

â , (3.1)

and for the gauge field

A = at(r)dt⊗ σ3 + a(r)δaâw
a ⊗ σâ

+
[
αµâ(t, ~x, r) dxµ + αrâ(t, ~x, r) dr + αaâ(t, ~x, r)w

a
]
⊗ σâ .

(3.2)

Note that we have focused on fluctuations inside SU(2)f and have omitted those along the

U(1)b subgroup of U(2)f, which would be proportional to σ0. From now on we fix the
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αµ1 ± iαµ2 α± α̂± α31 ± iα32 α13 ± iα23 β1 ± iβ2 ζ1 ± iζ2 αµ3

U(1)I ± ± ± ± 0 ± ± 0

U(1)R 0 ∓ ± 0 ± 0 0 0

gauge λ1,2 λ3 λ1,2 λ1,2 λ1,2 λ3

Table 2. Charges (divided by two) of the fluctuations under the relevant Abelian global symmetries.

holographic gauge

αrâ = 0 . (3.3)

We also work in momentum space and use the SO(3) rotations along the gauge theory

spatial directions to align the momentum k with one of these coordinates, which we de-

note simply as x. The fluctuations split into seven different channels according to their

behavior with respect to large gauge transformations and to the global symmetry group

SO(2)×U(1)D, where SO(2) is the little group with respect to the momentum. The charges

of the different fluctuations (divided by 2 to simplify the notation) under the U(1)I and

U(1)R groups are given in table 2, where we have defined

α± = α11 + α22 ± i(α12 − α21) , α̂± = α11 − α22 ± i(α12 + α21) . (3.4)

Residual gauge transformations that preserve the condition (3.3) take the form

A→ A+ dλ+ [A, λ] , Zα → Zα + [Zα, λ] (3.5)

with

λ = λâ(t, ~x)σâ . (3.6)

Note that these are large gauge transformations because the gauge parameter λ does not

approach the identity at the boundary, since it is r-independent. Explicitly, the action of

these transformations on the background fields reads

dλâ = (−i ω dt+ i k dx) e−iωt+ikxλâ ,

[Ab.g., λ]â = 2
(
−at(r)δaâ δbb̂ ε

ab3 dt+ a(r)δcĉ δâd̂ ε
d̂ĉb̂ ωc

)
e−iωt+ikxλb̂ ,

[Z1
b.g., λ]â = −2φ(r)δaâ δbb̂ ε

ab3 e−iωt+ikxλb̂ .

(3.7)

These expressions show that some combinations of fluctuations can be generated by acting

on the background solution with a large gauge transformation. This is summarised in the

last row of table 2. For example, the entries with a λ3 mean that if λ3 6= 0 then acting

on the background (2.24) with the gauge transformation (3.5) generates a new background

with non-zero terms of the form parameterised by α± and αµ3 in (3.2).

The SO(2) scalars α33, β3 and ζ3 are not included in the table because they are

neutral under both U(1)I and U(1)R and they cannot be generated from the background

by a residual gauge transformation.

A general and detailed discussion of all the different channels, including the asymptotic

behavior of the fields and our numerical procedure to solve their equations of motion, is
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given in appendix C. In contrast, in the next sections we will focus on some particularly

interesting sectors.

3.1 Goldstone modes

The spontaneous breaking of the global symmetries (2.57) suggests that the spectrum

should contain ungapped, Goldstone modes. The channels where we expect them to arise

can be identified by considering the action of the broken generators on the ground state

that breaks them. For infinitesimal transformations this action should generate a family

of inequivalent ground states with the same energy that differ from the original one by a

small perturbation. At zero energy and zero momentum, this perturbation is normalisable

and corresponds precisely to the ungapped mode.

In our case, the group SU(2)R×U(1)I acts asω1

ω2

ω3

→ R1(ϑ) ·R2(ϕ) ·R3(ψ) ·

ω1

ω2

ω3

 ,

σ1

σ2

σ3

→ R3(δ) ·

σ1

σ2

σ3

 . (3.8)

In this expression the angles ϑ, ϕ, ψ and δ can depend on the spacetime coordinates t, x, r

and Ri is a 3×3 rotation matrix around the i-th axis. For example, R3(ψ) rotates ω1 and ω2

into one another. The solution (2.24) is invariant under the subset of these transformations

that obeys

ϕ = ϑ = 0 , δ − ψ = 0 , (3.9)

which corresponds precisely to the preserved U(1)D symmetry. Consider thus a trans-

formation of the form (3.8) that does not obey this condition. In the zero-momentum

limit, the action of this transformation on the solution (2.24) generates a new, inequivalent

ground state. A calculation shows that the new solution is of the form (3.1)-(3.2) where

the only non-zero extra components are the following skew-symmetric components in the

αaâ matrix:

α12 − α21 = 2(δ − ψ) a(r) , (3.10a)

α13 − α31 = −2ϕa(r) , α23 − α32 = −2ϑa(r) . (3.10b)

Comparing (3.10a) with (C.7) and (3.10b) with (C.13) we see that this transformation gen-

erates an αaâ matrix equivalent to that generated by large gauge transformations provided

we identify

δ − ψ = 2λ3 , ϕ = 2λ2 , ϑ = −2λ1 . (3.11)

This is no surprise because the last term in (2.24) (but not the others) is actually invariant

under the full SU(2)D subgroup of SU(2)R×SU(2)f, which means that an SU(2)R rotation

is equivalent to an SU(2)f large gauge transformation.

The modes of the form (3.10a) and (3.10b) appear in the channels number 4 and 6

in appendix C, respectively. This suggests that the ungapped modes associated to the

breaking (2.11) should appear in these channels. Our numerical analysis, explained in

detail in appendix C, confirms this. In each channel we find a gapless, non-dissipative
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quasi-normal mode. In other words, a mode with strictly real frequency that vanishes at

zero-momentum. The dispersion relation at low momentum is given by

ω = ± 1

2µI

k2 , (3.12)

showing that these modes are also non-relativistic. It is interesting that the low-momentum

behavior is independent of the ’t Hooft coupling and of the dimensionless ratio Λ/Mq. At

larger momenta the dispersion relation is modified and approaches the form

ω = ω0

(
λ,

Λ

Mq

)
+ k , (3.13)

as illustrated in figure 3. We emphasise that these dispersion relations are the same for

the Goldstone modes in both channels. Our numerical analysis has not allowed us to

establish whether the Goldstone mode in channel 6 is a single mode or actually corresponds

to two exactly degenerate modes. However, eq. (3.10) shows that the transformations

parametrised by ϕ and ϑ generate different solutions. This strongly suggests that the mode

we find in channel 6 is indeed doubly degenerate, in which case the number of Goldstone

modes with a non-relativistic dispersion relation, also known as type II Goldstone modes,

would be nII = 3.

Let us now place our results on the general context of theorems about the existence

of ungapped modes, following a similar discussion in [45]. We first recall that Goldstone’s

theorem only implies that the number of ungapped modes is equal to the number of broken

generators, NBG, in the presence of Poincaré symmetry. In this case the ungapped modes

are called type I modes because they must have a relativistic dispersion relation at low

momentum, ω ∼ k, and we have that

nI = NBG . (3.14)

If Lorentz invariance is broken, for example because of a non-zero charge density, then some

modes may have a type II dispersion relation, meaning that ω ∼ k2 at low momentum.

In this case the number of modes and the number of broken generators obeys the Chadha

and Nielsen inequality [46]

nI + 2nII ≥ NBG . (3.15)

The number of type I and type II Goldstone bosons can be further constrained. If the

broken symmetry generators obey

〈[Qa, Qb]〉 = Bab , (3.16)

then the number of Goldstone bosons should satisfy [47–49]

nI + nII = NBG −
1

2
rank(B) . (3.17)

In our case the number of broken generators needs some discussion. If we were to view

all the generators in (2.57) on an equal footing then the broken generators would be τ1, τ2
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Figure 3. Dispersion relation of the Goldstone bosons for Λ/Mq = 1/10 (solid, blue curve),

Λ/Mq = 1 (dashed, red curve), and Λ/Mq = 10 (dotted, green curve) at small (top) and large

(bottom) momenta. The thin black line corresponds to the low-momentum behavior (3.12) and we

have set L = 1 in this integration.

and τ3 − σ3, with τn the generators of SU(2)
R
. Therefore we would have NBG = 3 and the

antisymmetric matrix B would have rank 2 with entries

B12 ∼ J , B13 = B23 = 0 . (3.18)

It would then follow that (3.15) would be satisfied whereas (3.17) would not. However,

in our case the symmetries SU(2)R do not have an associated conserved current in the

dual gauge theory, which is an assumption in the theorems quoted above. The reason is

that, on the gravity side, the gauge fields associated to the SU(2)R symmetries are off-

diagonal components of the metric along time and one of the S3 angular directions. In our

probe approximation these fields are non-dynamical since we ignore the backreaction of the

branes on the spacetime metric. In the dual gauge theory this statement translates into

the fact that there is no conserved current that implements the SU(2)R symmetry, which

is therefore better regarded as an “outer automorphism” of the operator algebra of the

gauge theory. From this viewpoint there are no broken generators, the matrix B trivially

vanishes and (3.15) is satisfied but (3.17) is not.
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3.2 Pseudo-Goldtstone modes at Mq � Λ

The physics in our system is controlled by the ratio of the two dimensionful scales and by

the ’t Hooft coupling

Λ ≡ Λ

Mq

=
Λ

µI

, λ =
L4

2π2
. (3.19)

In the limit Mq = µI → 0 with fixed Λ the size of the instanton becomes an exact modu-

lus, so we expect the presence of an ungapped excitation in the system associated to the

possibility of shifting

Λ→ Λ + δΛ (3.20)

with no associated energy cost. Indeed, if we set Mq = µI = 0 then there is a simple

solution to the fluctuation equations of motion of section C.2 given by

α33 =
1

2
α± = δΛ ∂Λa(r) , ζ3 = αt3 = αx3 = 0 , ω2 = k2 , (3.21)

where δΛ is an arbitrary integration constant and ∂Λa(r) is the derivative of the solu-

tion (2.30b) with respect to the parameter Λ, which automatically produces a normalisable

mode. Furthermore, the equations of motion force the dispersion relation

ω2 = k2 , (3.22)

corresponding to a relativistic Goldstone mode associated to the spontaneous breaking

of scale invariance by a non-zero Λ. Turning on a non-zero quark mass and chemical

potential such that Mq = µI � Λ introduces a small amount of explicit breaking of scale

invariance, so in this case we expect the Goldstone mode above to become a pseudo-

Golsdstone mode with a small mass proportional to Mq = µI. To verify this we perform a

numerical integration of the equations of motion at zero spatial momentum and scan the

real frequency axis as a function of Mq/Λ. From the numerical results we conclude that

there exists a mode whose frequency in the limit Mq � Λ is given by

ωpseudo ' 2Mq . (3.23)

This behavior can be seen in figure 4 for low values of Mq. The figure also shows that

the gap ceases to be linear in Mq as the quark mass is increased and thus the scales of

explicit and spontaneous symmetry breaking become comparable to one another. Within

our numerical precision the frequency remains purely real for all values of Mq/Λ, meaning

that this mode is absolutely stable.

It is interesting to note that, under certain circumstances, non-relativistic Goldstone

modes may be accompanied by massive modes whose mass is proportional to the scale of

Lorentz-symmetry breaking [50, 51]. In our case the relationship would be

ω = q µI , (3.24)

with q the charge of the fluctuations under the isospin group. Since Mq = µI and in our

conventions q = 2, this value coincides with (3.23). It is therefore tempting to interpret
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Figure 4. Mass of the pseudo-Goldstone mode. The thin, black line corresponds to the relation

ωpseudo = 2Mq.

the pseudo-Goldstone mode (3.23) as the partner of the Goldstone modes of the previous

section. However, there seems to be no possible match in terms of the number of modes.

Although it is difficult to establish numerically whether or not the pseudo-Goldstone mode

is degenerate, the Mq = µI = 0 result (3.21) suggests that there is only one of these modes,

in contrast to the three Goldstone modes of the previous section.

3.3 Massive quasiparticles at Λ�Mq

As illustrated in figure 1, in the limit Λ� 1 the embedding of the branes approaches that

of two parallel branes connected only at the origin by a very thin throat. Therefore one may

expect that the spectrum should approach that of ref. [30], at least for the U(1)I-neutral

fields β3, ζ3, α33, αµ 3, and α13 ± i α23 (see table 2). The spectrum of [30] is

ω2 − k2 =
4M2

q

L4
(n+ 1)(n+ 2) = 8π2M

2
q

λ
(n+ 1)(n+ 2) , (3.25)

where n is the radial quantum number. Note that these frequencies are purely real since

in the limit Λ = 0 there is no possible absorption of these modes by the horizon at leading

order in the large-Nc, large-λ expansion. If instead Λ is very small but non-zero we expect

that each of these modes will develop a small, negative imaginary part since now the branes

reach the Poincaré horizon along a thin throat. In other words, for small but finite Λ the

normal modes of [30] become quasi-normal modes located in the complex lower half-plane

near the real axis. This manifests itself in high and narrow peaks in the spectral function of

the corresponding dual operator. This is illustrated in figure 5 for the case of the operator

dual to the β3 scalar. As one increases Λ the peaks cease to exist. The numerical procedure

used to produce figure 5 is explained in section C.1.

Fluctuations charged under U(1)I have a different spectrum because they couple to the

isospin chemical potential. Comparing for example eq. (C.6) to eq. (C.4) it is easy to see

that, in the limit Λ = 0, these fluctuations have normalisable modes at frequencies given by

(ω ± 2µI)
2 − k2 = 4M2

q + 8π2 M
2
q

λ
(n+ 1)(n+ 2) , (3.26)
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Figure 5. Spectral function (with arbitrary normalisation) of the gauge theory operator dual to

the β3 scalar for Λ = 1 (dashed, red curve) and Λ = 1/10 (solid, blue curve).

i.e. the frequencies are shifted due to the presence of the finite isospin chemical potential,

with the factor of 2 given by the isospin charge of the fluctuations. Note that in the limit

Λ = 0 one can turn on an isospin chemical potential while keeping the isospin charge to

zero (and this configuration will be dominant for µI < Mq). Under these circumstances

the chemical potential does not affect the embedding profile of the branes but it breaks

the mass degeneracy of isospin multiplets [25, 26, 29]. In the case of triplets one mode is

unaffected, as in (3.25), one mode increases in mass, as in (3.26) with the minus sign, and

one mode decreases in mass, as in (3.26) with the plus sign. Note that the latter mode

would be massless if we ignored the last term on the right-hand side in (3.26). This would

be the result for the energy of a macroscopic string stretched between the branes, along the

lines of [52]. As in [53], the correction to this result given by the last term in (3.26) comes

from the second-quantized dynamics associated to the endpoints of the string inherent in

the D7-brane worldvolume action, in which these endpoints are described by fields instead

of point-particles.

3.4 Additional ungapped modes

The massless modes associated to the broken SU(2)R symmetries can be thought of as

the well known orientation zero modes of the instanton. An instanton in flat space has

additional zero modes associated to the choice of the instanton centre. We will now show

that these give rise to ungapped modes in our system. This may be surprising at first

sight given the fact that the background geometry (2.2) is not invariant under translations

along the yi-directions due to the preferred origin chosen by the harmonic function (2.2).

Nevertheless, the exact cancellations due to supersymmetry guarantee that an instanton

centred at any point in the yi-directions is a solution. In other words, supersymmetry

implies the existence of additional ungapped modes despite the fact that these are not

Goldstone modes.

The general instanton solution with an arbitrary centre breaks SU(2)L symmetry, so

it is convenient to abandon the use of left-invariant forms in favor of the anti self-dual ’t
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Hooft symbols, ηâij . These matrices connect the symmetries of R4 with those of SU(2)f.

We give here the form of the matrices of interest and list their properties in appendix B:

η±ij =
1√
2

(
η1
ij ± i η2

ij

)
=

1√
2


0 0 ∓i −1

0 0 1 ∓i
±i −1 0 0

1 ±i 0 0

 , ηHij = η3
ij =


0 1 0 0

−1 0 0 0

0 0 0 −1

0 0 1 0

 . (3.27)

The ansatz (2.24) for the internal part of the gauge potential reads in this language

Amag =

(
1√
2
η+
ij ⊗ E−α +

1√
2
η−ij ⊗ E+α +

1

2
ηHij ⊗Hα

)
dyi ∂j log

1

1 + a(y)
. (3.28)

In this expression we have written the SU(2)f generators in terms of ladder operators, E±α,

and Hα (the Cartan subalgebra):

E±α =
1

2

(
σ1 ± iσ2

)
, Hα = σ3 , (3.29)

The subindex α is redundant for an SU(2) algebra but it will be important when analysing

higher-rank algebras later. The self-duality condition in eq. (2.21) implies[
1 + a(y)

]
δij ∂i∂j

1

1 + a(y)
= 0 . (3.30)

On the other hand, we can perform an SU(2)f rotation to align the embedding along the

direction of the Cartan. It is then a direct calculation to proof that, once a solution to (3.30)

is found, the embedding and electric field are given by

At = Z = Mq

(
1 + a(y)

)
Hα . (3.31)

Eq. (2.30b) is a solution to (3.30) with spherical symmetry. A more general solution is

given by

1

1 + a(y)
= 1 +

k∑
A=1

Λ2
A

δij(y − yA)i(y − yA)j
, (3.32)

corresponding to a sum of k instantons with sizes ΛA and centred at ~y = ~yA. The total

instanton charge is k and the different conserved charges such as nR, nI, J , Q, E , etc. take

the same form as in previous sections with the identification

Λ2 =
k∑

A=1

Λ2
A . (3.33)

The solution with a single instanton takes the form

1

1 + a(y)
= 1 +

Λ2

(~y − ~y0)2
, (3.34)

and setting ~y0 = 0 we recover (2.30b). As in (3.21), expanding to linear order in ~y0 around

~y0 = 0 produces a normalisable change in the different fields that may be viewed as a
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fluctuation around the solution (2.30b). These fluctuations break SU(2)L and are therefore

not captured by (3.1)-(3.2). Nevertheless, they give rise to massless modes, since the energy

density is independent of the value of ~y0. From the physical viewpoint, the freedom to place

the instanton centres at arbitrary points reflects the no-force condition between the D3-

branes in the D3-D7 system when supersymmetry is preserved. On the gauge theory side

the positions of the centres correspond to expectation values of higher-dimension operators

that parameterise the Higgs branch and are bilinear in the fundamental fields, in analogy

with the case of the Coulomb branch of N = 4 SYM discussed in [54].

Note that only the combination (3.33) is fixed by the conserved charges of the solution.

Therefore, for multi-instanton solutions, combinations of the instanton sizes ΛA giving rise

to the same total Λ2 in (3.33) also generate additional massless modes.

4 Higher-rank flavor groups (Nf > 2)

In this section we will generalise our previous construction to the case in which the number

of flavors is Nf > 2. The strategy is to write the generators of a semisimple Lie algebra in

canonical form in terms of Cartans and ladder operators in order to sequentially solve for

the self-dual part of the field strength and, once this solution is obtained, for the embedding

profile. The SU(2)f instanton presented in previous sections can be used as a building block

to find solutions for higher-rank gauge groups, in particular for SU(Nf). In this subsection

we restrict the discussion to SU(3)f since this case already illustrates all the new aspects

while remaining concrete enough. We will nevertheless use a notation appropriate to make

contact with the generic case, which is discussed in appendix B. One of these new features

is the existence of new embeddings of the flavor branes.

The starting point are the Gell-Mann matrices, which can be combined in three groups

of ladder operators

E±α =
1

2
(λ1 ± iλ2) , E±β =

1

2
(λ6 ± iλ7) , E±γ =

1

2
(λ4 ± iλ5) , (4.1)

together with the Cartan generators

H1 =
1√
2
λ3 , H2 =

1√
2
λ8 , (4.2)

which, by definition, form an Abelian subalgebra. Here α̂ = (α, β, γ) refers to the three

roots of SU(3)

α =
(√

2, 0
)
, β =

(
− 1√

2
,

√
3

2

)
, γ = α+ β =

(
1√
2
,

√
3

2

)
. (4.3)

Note that each root is a two-vector. We will collectively denote the components of these

three vectors as α̂ı̂ with ı̂ = 1, 2. Similarly, we will collectively denote the Cartans (4.2) as

Hı̂. The ladder operators are eigenvectors of [Hı̂, ·] with

[Hı̂, E±α̂] = ±α̂ı̂E±α̂ . (4.4)
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It is convenient to define the following linear combinations of the Cartan generators

Hα̂ ≡ [E+α̂, E−α̂] = α̂ı̂Hı̂ (4.5)

because then each triplet {E±α̂, Hα̂} associated to each root vector spans an SU(2) subal-

gebra (in which Hα̂ is not necessarily canonically normalised). Each of these subalgebras

can then be used to construct an SU(2)f instanton embedded inside SU(3)f.

With this material in place we focus on solutions that can be obtained via the ’t Hooft

ansatz. Without loss of generality we choose to align the magnetic part of the gauge

potential along the first root, α. This can always be achieved with an SU(3)f rotation. We

therefore write the magnetic part of the gauge potential as in (3.28), so the self-duality

condition of the SU(2)f instanton leads again to eq. (3.30) for the function a(y). Since we

have fixed the orientation of the instanton we are no longer free to choose the orientation of

the scalar field Z. Therefore, in the general solution Z should be a linear combination of all

the real generators of SU(3)f which cannot be rotated away while keeping the orientation

of the instanton fixed. These are

Hα , Hβ , E+β + E−β , E+γ + E−γ . (4.6)

We have not included Hγ = Hα + Hβ because this is not linearly independent (see ap-

pendix B), and we have not included E+α + E−α because this can be rotated away while

keeping the instanton orientation invariant. A direct embedding in SU(3)f of the SU(2)f
solution of previous sections would yield

At = Z = Mα

[
1 + a(y)

]
Hα , (4.7)

where we have relabelled Mq as Mα. Now, inside SU(3)f, we have two qualitatively dis-

tinct possibilities to augment this solution. We can either add terms proportional to the

second Cartan generator, or we can add terms proportional to the real combinations of

the ladder operators. The result of adding a linear combination of these possibilities is the

linear combination of the results for each individual possibility, so we will consider them

separately.

For the first option, the boundary conditions at the boundary and the regularity re-

quirement at the origin lead to the solution (see appendix B)

At = Z =

(
Mα

[
1 + a(y)

]
+
Mβ

2

)
Hα +MβHβ , (4.8)

where Mβ is now a second possible mass term. Since the scalar field is still diagonal, the

geometric interpretation follows straightforwardly from the three entries of the Z matrix:

Z± =
Mβ

2
±Mα

[
1 + a(y)

]
, Z3 = −Mβ . (4.9)

These determine the embedding profiles of the three D7-branes in the z1-direction. For a

single instanton centred at the origin of AdS5 the radial dependence is given by eq. (2.30)

and the profiles are shown in figure 6. If the embedding is purely along Hα, that is, if
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Figure 6. Brane embeddings of the form (4.8) for different values of Mβ . In all the plots we have

fixed Mα = 1.

Mβ = 0 as in the direct import of the SU(2)f solution (4.7), then two of the branes have the

same embedding as in previous sections and the third one describes exactly massless quarks.

A non-zero value of Mβ produces a relative displacement of the branes while keeping their

centre of mass at z1 = 0, since the SU(3)f matrices are traceless. In particular, for non-zero

Mβ the branes no longer reach the origin of AdS at r = 0, as seen in the figure. Moreover,

for intermediate values of Mβ the brane profiles can cross at non-zero r, meaning that the

hierarchy of running quark masses in the IR may be inverted with respect to that in the

UV. For sufficiently large values of Mβ this inversion disappears. The non-compact part of

the induced metric on the D7-branes is always AdS5 in the UV. If Mβ = 0 then Z± ∝ r2

near r = 0, as in previous sections. In this case the IR geometry is again AdS5 with the

same radius as in the UV, as in section 2.5. If instead Mβ 6= 0 then the IR metric is flat

space, as for the usual massive embedding in the absence of instanton and electric field.

For the second possibility it suffices to consider adding a single combination of the

form E+β + E−β . In this case the regular solution is

At = Z = Mα

[
1 + a(y)

]
Hα +Mβ

√
1 + a(y)

(
E+β + E−β

)
. (4.10)

These embeddings are not diagonal in this basis, but this is simply due to the fact that we

fixed the instanton orientation. Having found the solution (4.10) we could simply apply an

SU(3)f rotation to bring Z to a diagonal form at the cost, of course, of having an instanton

no longer contained in the SU(2) algebra generated by {E±α̂, Hα̂}. From the viewpoint

of the D7-branes this rotation is simply a gauge transformation. The result would be a
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Figure 7. Brane embeddings of the form (4.10) for different values of Mα. In all the plots we have

fixed Mβ = 1.

diagonal Z with entries equal to its eigenvalues

Z± =

√
1 + a

2

[
Mα

√
1 + a±

√
M2
α(1 + a) + 4M2

β

]
, Z3 = Mα(1 + a) . (4.11)

These are plotted in figure 7 for the instanton in eq. (2.30) and, as above, they can be

interpreted as the positions of the branes. Note that there is no ambiguity in this inter-

pretation because we are only allowing one transverse scalar Z1 to be excited. Generically,

in the presence of two scalars Z1, Z2 it would not be possible to diagonalise both of them

simultaneously. As in the previous case, there is a running mass hierarchy inversion in

some range of Mβ/Mα, but the branes always reach the origin in the deep IR. Note that,

if Mβ is not zero, then the leading behavior of Z± near the origin is

Z± ∼Mβ

√
1 + a ∼ r , (4.12)

and exactly the same for the corresponding components of At = Z. As in previous cases,

the electric field contribution to the energy density, tr δijEiEj , vanishes at r = 0 and its

total contribution is given by (2.49). The behavior (4.12) is the same as in [55] except for

the fact that the supersymmetric limit At = Z can not be achieved in the context of [55]

due to the absence of the instanton. As before, the induced metric is AdS5 × S3 both in

the UV and IR, but the softening in the vanishing of Z, as dictated by (4.12), produces a

renormalization in the radius of the sphere along the RG flow

L2
UV

L2
IR

= 1 +
M2
β

Λ2
. (4.13)
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5 Supertubes

In the presence of angular momentum, a collection of D0-branes and fundamental strings

is known to “blow up” into a configuration known as a D2-brane supertube [56], namely a

tubular D2-brane with the same charges as the original system. The supergravity descrip-

tion of two-charge supertubes was found in [57] and the generalisation to three charges was

presented in [58–62]. The cross-section of the tube is completely arbitrary and contractible,

hence there is no net D2-brane charge. Such a tubular D2-brane can be suspended between

D4-branes. The entire configuration preserves supersymmetry and appears on the U(2)

non-Abelian theory on the worldvolume of the D4-branes as a dyonic instanton configura-

tion [63]. T-dualising four times we conclude that, in the presence of angular momentum,

our system of D3-branes and fundamental strings should blow up into a D5-brane super-

tube suspended between the D7-branes. The defining feature of this configuration should

be that the D7-branes meet each other at a curve in R4. Moreover, for these configurations

the angular momentum is not necessarily self-dual. The reason that we have not encoun-

tered these features in the configurations of previous sections is that we did not consider

the most general dyonic instanton solution. Here we will import the results of [63] for the

k = 2 case to illustrate the fact that, in the general solution, the D7-branes indeed meet

at a curve. The solutions of previous sections can then be obtained as a limit in which

the cross-section of the supertube collapses to a set of isolated points. Our goal is not to

review the details of [63], to which we refer the interested reader, but merely to illustrate

the main points.

The starting point in [63] is the most general solution to (3.30), the so-called Jackiw-

Nohl-Rebbi instanton [64]:

1

1 + a
=

k∑
A=0

Λ2
A

δij(y − yA)i(y − yA)j
. (5.1)

The difference between this solution and (3.32) is that there is no “1” on the right-hand

side and that there are k + 1 “centres” despite the fact that the instanton number is k.

Thus compared to (3.32), naively this solution depends on one new scale and on four new

centre coordinates. However, for k = 1, 2 there are additional gauge equivalences that

reduce the number of these new parameters to 2 and 4, respectively [64]. Solutions of the

’t Hooft type can be recovered in two different ways:

• for generic k one can obtain (3.32) by taking the limit Λ0 →∞ with |y0|2/Λ2
0 = 1,

• for k = 1 both solutions (3.32) and (5.1) are related by a gauge transformation in

such a way that the parameters in both solutions are related through

yc =
Λ2

1y0 + Λ2
0y1

Λ2
0 + Λ2

1

, Λ2
c = Λ2

0Λ2
1

|y1 − y0|2

(Λ2
0 + Λ2

1)2
, (5.2)

where the parameters in (3.32) are on the left-hand side and are denoted with a

subindex “c”.
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The absence of a “1” on the right-hand side of (5.1) changes the asymptotics of the

gauge potential and makes finding a regular solution for the scalar field a difficult task.

The procedure to follow is described in detail in [63, 65] and we refer the reader to those

references for details on the construction. The final result is that such solutions exist, but

the field Z = Zâ σ
â is not necessarily aligned in SU(2)f with its asymptotic value Mqσ

3.

Moreover, if k ≥ 2 then generically the zeros of Z lie on a curve instead of on a set of

isolated points. An example is given in section 4.2 of [63] for k = 2, whose main result we

now review.

For simplicity consider the three centres to lie within the 34-plane of R4:

y0 = (0, 0, 0,−Λ0) , y1 =

(
0, 0,Λ

Λ1

Λ2
, 0

)
, y2 =

(
0, 0,−Λ

Λ2

Λ1
, 0

)
. (5.3)

For Λ0 = 0 we effectively recover the k = 1 case, which describes an instanton centred at

yc = 0 with size Λc = Λ, as has been considered throughout this paper. In the opposite

limit, Λ0 → ∞, one recovers the two instanton solution of (3.32) with centres at y1 and

y2. Thus, in these two limits the zeros of the scalar field correspond to isolated points. For

any other value of Λ0 it can be shown that the zeros lie on the curve in R4 determined by

the solution to the equation [63]

2∑
A=0

[
Λ4
A|y − yA+1|2|y − yA+2|2 + 2Λ2

A+1Λ2
A+2|y − yA|2(y − yA+1) · (y − yA+2)

+ P ′ |y − yA|2 (y − yA+1) η3(y − yA+2)
]

= 0 .

(5.4)

In this expression the index is understood to be cyclic, i.e. y3 = y0 and y4 = y1 and similarly

for the ΛA’s, η3 is the anti-self-dual ’t Hooft matrix (3.27), the constant P ′ is given by

P ′ = 4
y0 η

3y1 + y1 η
3y2 + y2 η

3y0

Λ−2
0 Λ−2

1 |y0 − y1|2 + Λ−2
1 Λ−2

2 |y1 − y2|2 + Λ−2
2 Λ−2

0 |y2 − y0|2
, (5.5)

and η3 is the self-dual ’t Hooft matrix that can be obtained from η3 by flipping the signs of

the last row and of the last column. By symmetry the zeroes lie in the y1 = y2 = 0 plane

inside R4, so (5.4) is one equation for the two non-zero components of y in the 34-plane.

The solution is generically a curve in this plane. In figure 8 we show several examples

where we set Λ = Λ1 = Λ2 = 1 for simplicity and we vary Λ0. As can be seen in the figure,

the single-instanton solution considered in this paper corresponds to a collapsed supertube.

6 Conclusions

We have considered a configuration of two D7-branes in the background created by a stack

of Nc coincident D3-branes, holographically dual to probing d = 4, N = 4, SU(Nc) super

Yang-Mills with a fundamental SU(2)
f
-doublet, N = 2 hypermultiplet at finite isospin and

R-charge densities. On a technical note, our model requires dealing with the non-Abelian

version of the Dirac-Born-Infeld action, which is known to be an incomplete account of

the dynamics of flavor with a global U(Nf) symmetry group [33, 34]. However, as we
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Figure 8. Cross-section of the supertube at y1 = y2 = 0 for different values of Λ0. For Λ0 = 0 the

supertube collapses to the k = 1 instanton configuration centred at the origin (denoted by a black

square) that we have studied in detail in this paper. For 0 < Λ0 ≈ 2.285 the zeros of the scalar

field lie on a simply connected, non-self-intersecting curve (a deformed ellipse). This is illustrated

by the values Λ0 = 1/10 (thin, red, continuous curve), Λ0 = 1/2 (orange, dotted curve) and Λ0 = 1

(yellow, dashed curve). At Λ0 ≈ 2.285 (thick, green, continuous curve) this curve pinches off. For

2.285 . Λ0 < ∞ the zeros of the scalar field lie on two disconnected curves, as illustrated by the

values Λ0 = 3 (blue, dashed curve), Λ0 = 8 (purple, dotted curve), and Λ0 = 20 (thin, magenta,

continuous curve). For Λ0 →∞ these two curves collapse to two points denoted by the black circles

on the y3 axis.

have argued, the physics of supersymmetric configurations can be captured exactly by a

Yang-Mills-Higgs action [35, 36].

The ground state preserves N = 1 supersymmetry and can be used to construct

generalisations to Nf � Nc D7-branes. This solution corresponds holographically to a

state on the field theory presenting spontaneous breaking of the (non-Abelian) global and

local symmetries. The broken global symmetries are linked to superfluidity in the system.

The breaking of the local symmetries is encoded in the dissolution of D3-brane charge

on the D7-branes’ worldvolume, with the associated energy scale Λ, determined by the

asymptotic charges of the system.

The solution we have presented is regular everywhere. In the IR the induced metric

on the D7-branes is AdS5 × S3, with active irrelevant deformations due to the non-trivial

configuration of the instanton there. Although not obvious from the AdS5 factor in the

metric, Lorentz symmetry is broken by the presence of non-trivial sources of Lorentz-

breaking operators. This can be seen also from the presence of non-relativistic massless

excitations in the spectrum. Backreaction of the D7-branes could be incorporated along

the lines of [66]. In that reference we considered a configuration with an instanton but

no isospin density, and studied the backreaction on the metric. In [66] Lorentz invariance

is maintained but the presence of the D7-brane sources changes the metric at all energy

scales. Furthermore, the breaking of the SU(Nc) group is seen explicitly in the running of

the F5 flux, as explained in section 2.6.

We have found a set of massive quasiparticle excitations in the Mq � Λ regime of

parameters, whose lifetimes decrease when Mq ∼ Λ. On top of these there is a set of

massless excitations with non-relativistic dispersion relations, the Goldstone modes asso-
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ciated to the breaking of the global symmetries, as well as light particles with a mass gap

proportional to the explicit scale Mq whenever Mq � Λ. Interestingly, there is also a set

of ungapped modes that are not associated to the breaking of any global symmetries but

to exact moduli implied by supersymmetry.

In the presence of angular momentum, it is well known that Dp-branes and fundamental

strings get “blown up” into a D(p+2)-supertube [56]. Importing the results from [63] we

have shown that this is realised in our setup. As in [63] we have focused on the case of

instanton number k = 2 but more general results are possible. In the k = 2 case we have

shown that if the R-charges (2.42) are not equal, n1 6= n2, then the fundamental strings and

the D3-branes dissolved inside the D7-branes get blown into a D5-brane supertube with

non-self dual angular momentum suspended between the D7-branes. From the viewpoint

of the D7-branes this manifests itself in the fact that they meet each other at a curve

instead of at isolated points. If the charges are fine-tuned to be equal, so that the angular

momentum becomes self-dual, then the cross-section of the supertube collapses to a set of

isolated points.

In the future we expect to combine the results and ideas presented in [32] and in

the present paper with our previous constructions of backreacted solutions of the charged

D3/D7 system [67, 68] in order to find the holographic description of a color superconductor

at non-zero baryon density. It could also be of interest to combine the present configurations

with the finite temperature setups of [69, 70] to study the phase transition between the

superconducting and the normal phases.
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A Proof of the BPS equations for the dyonic instanton

In this appendix we demonstrate that the dyonic instanton of [37] solves the equations of

motion coming from the non-Abelian Dirac-Born-Infeld (DBI) action of [33, 34], not only

in flat space [39], but also in the background of a stack of Nc Dp-branes (in the main text

we set p = 3). Consider the action of a set of Nf D(p+ 4)-branes, whose pull-back metric

induced by the color Dp-branes’ geometry is

ds2 = H−
1
2 ηµνdxµdxν +H

1
2

(
δij dyidyj + δαβ dzαdzβ

)
, (A.1)

where µ = 0, · · · , p, i = 1, · · · , 4 and α = 1, · · · , 5 − p. The warp factor is an harmonic

function in R9−p

H = L
7−p
2

(
δij y

iyj + δαβ z
αzβ
) p−7

2
. (A.2)
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This is supported by a non-trivial (p+ 1)-form together with a dilaton:

Cp+1 = q H−
p+1
4 dx1,p , eΦ = H

3−p
4 , (A.3)

with q2 = 1 a sign distinguishing branes from anti-branes. The stack of flavor branes is

extended in the x-directions as well as the y ones describing R4. The 5 − p remaining

flat directions, parameterised by z, are transverse to both kinds of branes. There is also a

U(Nf) gauge field A, with field strength F , living in this set of branes.

The non-Abelian DBI action in [33, 34] is rather complicated, so we present it already

adapted to our system. First, by SO(5-p) symmetry we align the transverse scalars in the

Zα 6=1 = 0 direction and denote the remaining one Z1 = Z. In this case the scalar potential

in (2.13) is trivial and, in the background of the color branes, the kinetic action reduces to

SDBI = −Tp+4

∫
dp+1xd4y e−Φ Str

√
− det

(
gMN + P[H]

1
2D(MZDN)Z + FMN

)
, (A.4)

where M and N are curved indices in the (p + 5) directions of the flavor branes. In the

following we name the matrix inside the determinant ΓMN . Additionally, the coupling to

the background form is dictated by the Wess-Zumino (WZ) action

SWZ = −s Tp+4

2

∫
Str (Cp+1 ∧ F ∧ F ) . (A.5)

Here, s2 = 1 is another sign to differentiate the coupling of branes and anti-branes. The

induced metric on the branes, gMN , and the dilaton, Φ, depend on the scalar Z describing

the embedding through the warp factor

P[H] = L
7−p
2
(
δij y

iyj + Z · Z
) p−7

2 , (A.6)

and from now on we denote this pullback simply as H. The symbol D represents a gauge-

covariant derivative so that both DZ and F are U(Nf) valued. Crucially, the symmetrised

trace allows to treat them, as well as Z appearing in the functional dependence of the

background, as commuting under it [34].1 Notice that some of the matrix identities used

in the following are verified only for commuting coefficients, i.e., are valid only under the

symmetrised trace.

To get the equations of motion we have to vary the total action with respect to the

gauge fields and scalar. The variation of the DBI part is

δSDBI = −Tp+4

∫
dp+1xd4y Str

[√
− det Γ

(
δ
(
e−Φ

)
+

1

2
e−Φ

(
Γ−1

)MN
δΓNM

)]
. (A.7)

In order to compute this we need to invert the matrix Γ. Notice that once we have

performed the variation we are allowed to use the BPS equations to prove that it van-

ishes, which facilitates the inversion of the matrix. The configuration we want to study is

characterised by

Fµν = 0 , Fµi = Ei (y) δtµ , Fij = Fij (y) , Z = Z (y) , (A.8)

1On the contrary, Z and A themselves, as well as their fluctuations, are considered non-commuting.
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so that none of the fields depends on the coordinates {t, ~x}, and from the gauge components

along those directions we are exciting just the temporal one At(y). Moreover, for the

solution to preserve supersymmetry we impose

Fij =
σ

2
εijklF

kl , σ2 = 1 , (A.9)

which is (anti)self-duality in the four-dimensional space along the flavor branes but trans-

verse to the color ones. Notice that this equation is conformally invariant, so it is equivalent

to impose (anti)self-duality in the flat space with flat metric δijdy
idyj . This condition has

to be supplemented with

At = τZ , τ2 = 1 ⇒ DµZ = 0 , DiZ = τFit = −τEi . (A.10)

With this ansatz the inversion of Γ gives the non-vanishing components(
Γ−1

)xmxn
= gx

mxn , (m,n = 1, · · · , p)(
Γ−1

)tt
= gtt −HEiEj

(
[g + F ]−1

)ij
,

(
Γ−1

)ij
=
(

[g + F ]−1
)ij

,(
Γ−1

)it
= H

1
2

(
[g + F ]−1

)ij
Ej ,

(
Γ−1

)tj
= −H

1
2Ei

(
[g + F ]−1

)ij
,

(A.11)

To invert the 4×4 matrix (gij + Fij), we use that for any antisymmetric matrix it is verified

F ik1εjk1k2k3F
k2k3 =

1

4
δijεk1k2k3k4F

k2k2F k3k4 . (A.12)

In conjunction with this, (anti)self-duality implies

F ikFkj =
1

4
δijFklF

lk , (A.13)

that is, up to a normalisation F is its own inverse. Thus, the matrix we are looking

for reads:

(g + F )−1 =
1(

1− 1
4F

ijFji
) (g − F ) . (A.14)

Finally, the determinant of the matrix Γ greatly simplifies

− det Γ = − det gµν det
(
gij +H

1
2D(iZD j)Z + Fij − FiµgµνFνj

)
= H−

p+1
2 det (gij + Fij) = H

3−p
2

(
1− 1

4
F ijFji

)2

,
(A.15)

where the first step is just the determinant in blocks, the second step is a cancelation

between the terms containing DiZ and those with Fit due to the configuration (A.10), and

the last one follows from (A.14) noticing that det(g + F ) = det(g − F ).

The WZ piece gives simply

δSWZ = Tp+4
q s

8
δ

[∫
dp+1xd4y Str

(
εijklF

ijF kl
)]

= Tp+4
q s σ

2

∫
dp+1xd4y Str

(
H

1
2F ijδ

(
H−

1
2Fij

))
= Tp+4

q s σ

4

∫
dp+1xd4y tr

(
H−1FijF

jiδH + 2F ijδFij
)
,

(A.16)
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with the first equality obtained by substituting the value of the background form, eq. (A.3),

while in the second we have used (anti)self-duality of the field strength.

Variation with respect to the scalar. The scalar Z appears in two kinds of terms,

those with DZ and those with Z · Z, coming from the warp factor. The variation with

respect to the warp factor has several contributions. First, from the variation of the dilaton

(first term in eq. (A.7)), which using the value for the determinant obtained in (A.15) is

− Tp+4

∫
dp+1xd4y δ

(
e−Φ

)
Str
[√
− det Γ

]
= −Tp+4

p− 3

4

∫
dp+1xd4y H−1tr

(
1− 1

4
F ijFji

)
δH .

(A.17)

Second, from the variation of the metric contained in δΓMN (second term in eq. (A.7))

which within our ansatz turns out to be

− Tp+4

∫
dp+1xd4y e−Φ Str

[√
− det Γ

1

2

(
Γ−1

)MN
δgNM

]
= Tp+4

∫
dp+1xd4y H−1tr

(
p+ 1

4

(
1− 1

4
F ijFji

)
+

1

4
H

1
2EiE

i − 1

)
δH .

(A.18)

If we combine these two with the term coming from the variation of the WZ, eq. (A.16),

we see that fixing the arbitrary signs as

q s σ = 1 (A.19)

makes the variation with respect to the warp factor vanish, apart from the term propor-

tional to EiE
i. This is however canceled by a term coming from the variation of the kinetic

term of the scalar

− Tp+4

∫
dp+1xd4y Str

[√
− det Γ

1

2

(
Γ−1

)(MN)
(
δ
(
H

1
2

)
DMZDNZ + 2H

1
2DMZDNδZ

)]
= −Tp+4

∫
dp+1xd4y Str

[
1

4
H−

1
2DiZDiZδH + δijDiZDjδZ − τHF ijDiZDjZ (DtδZ)

]
.

(A.20)

The first term cancels with the EiE
i term in eq. (A.18) upon using the BPS condi-

tion (A.10), as promised. The last term vanishes because of symmetry, since as we men-

tioned F and DZ commute under the symmetrised trace. Thus, after integration by parts

we are left with the equation for the scalar:

δijDiDjZ = 0 , (A.21)

which is the Laplace equation on the flat space δijdy
idyj but containing the gauge

connection.

Variation with respect to the gauge field. The kinetic term of the scalar also contains

a variation of the gauge field, that in our ansatz reduces to

− Tp+4

∫
dp+1xd4y H

1
2 Str

(√
− det Γ

(
Γ−1

)(MN)
DMZ [δAN , Z]

)
= −Tp+4

∫
dp+1xd4y H

1
2 Str

(
δAi

[
Z,DiZ

])
,

(A.22)
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where we have discarded an additional piece for the same symmetry reasons as before.

Finally, we have the contributions coming from the variation of the kinetic term of the

gauge field, that read

Tp+4

∫
dp+1xd4y Str

[√
− det Γ

(
Γ−1

)MN
D[MδAN ]

]
= Tp+4

∫
dp+1xd4y Str

(
δAjDiF

ij − τδAtδijDiDjZ + τH
1
2 δAiDtD

iZ
)
,

(A.23)

where we have integrated by parts in the last step. Variation with respect to the temporal

component gives again the equation of motion of the scalar (A.21), while the magnetic

components must solve

DiF
ij + τH

1
2DtD

jZ −H
1
2
[
Z,DjZ

]
= DiF

ij = 0 , (A.24)

where we have used that for an adjoint field Dt = ∂t + [At, ·] = ∂t + τ [Z, ·]. This equation

is trivially verified for (anti)self-dual configurations due to the Bianchi identity. For the

same reason, the last term in the variation of the WZ action, eq. (A.16), also vanishes.

In summary, the variation of the non-Abelian action of [34] vanishes for configurations

of the form (A.8) if the self-duality equation (A.9), together with (A.21) for the scalar and

the identification (A.10), are verified. Notice that we do not need to specify any direction

in gauge space for Z nor At as long as they are collinear. The proof is valid both for self

and anti self-dual configurations and arbitrary rank Nf.

B The SU(2) instanton as a lego for higher-rank gauge groups

In this section, we give the solution to (A.9) and (A.21) corresponding to the dyonic

instanton of [37]. The equations can be solved sequentially, since (anti)self-duality only

involves the magnetic components of the gauge field, while DZ requires knowledge of the

gauge potential. We give the solution for arbitrary gauge group and this requires rewriting

the associated algebra in canonical form.

Consider g, a semi-simple Lie algebra of finite dimension.2 A Cartan subalgebra h ⊂ g

is a maximal Abelian subalgebra such that all its elements are diagonalisable in the adjoint

representation. Its dimension is the rank r of g, with r = n− 1 for su (n).

Let us choose a basis Hı̂, ı̂ = 1, . . . , r of h, and let these generators be Hermitian for

convenience. Since by definition they form an Abelian subalgebra we have

[Hı̂, Ĥ] = 0 . (B.1)

This can be completed to a basis for the algebra by finding the eigenvectors of adHı̂ = [Hı̂, ·]
that are linearly independent from the Hı̂, that is, a set of elements Eα of g verifying

[Hı̂, Eα] = αı̂Eα . (B.2)

2One could extend the results to simple algebras, but we do not need it for our purposes since the

Abelian ideal, corresponding to the baryonic chemical potential, vanishes in our solutions.
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Notice that not all αı̂ can vanish simultaneously, since we assume Eα /∈ h. The real

eigenvalues α = (α1, . . . , αr) are called roots, have no multiplicity and there are d − r of

them in a given d-dimensional Lie algebra. Moreover, if α is a root then −α is also a root

with generator E−α = E†α, so roots always come in pairs. Indeed, it can be shown that

[Eα, E−α] = αı̂Hı̂ ≡ Hα , (B.3)

where we have normalised so that the non-vanishing components of the Killing form are

tr (Hı̂Ĥ) = δı̂̂ , tr (EαE−α) = 1 . (B.4)

Finally, the commutator between generators associated to different roots is

[Eα, Eβ ] = Nα,βEα+β (B.5)

where Nα,β is a constant that vanishes if α + β is not a root. We will give the explicit

expression and properties of these constants when needed.

In the simplest case of su (2), whose rank is r = 1, the only roots are α =
√

2 together

with its opposite. The generators E±α are the usual raising and lowering operators, familiar

from the treatment of spin. These, together with the unique Cartan, are constructed from

the Pauli matrices as

E±α =
1

2

(
σ1 ± i σ2

)
, H =

1√
2
σ3 . (B.6)

For larger algebras, there is an su (2) subalgebra {E±α, Hα} associated to each non-zero

pair of root vectors ±α. Thus, we can use any of these subalgebras to construct the basic

SU(2) instanton.

In the following we consider only the solutions obtained from ’t Hooft’s ansatz, adapted

to this language. Let us define the antisymmetric tensors

η±ij =
1√
2

(
η1
ij ± i η2

ij

)
, ηHij = η3

ij , (B.7)

constructed from the usual anti self-dual ’t Hooft tensors ηa, a = 1, 2, 3. Inherited from

their properties, we have that

ηHikη
H
jk = δij , η±ikη

±
jk = 0 ,

η±ikη
H
jk = ±i η±ij , η±ikη

∓
jk = δij ∓ i ηHij ,

η±ijη
H
kl − ηHij η±kl = ±i

(
δikη

±
jl + δjlη

±
ik − δilη

±
jk − δjkη

±
il

)
,

η+
ijη
−
kl − η

−
ijη

+
kl = −i

(
δikη

H
jl + δjlη

H
ik − δilηHjk − δjkηHil

)
,

εijk
sη±,Hsl = δilη

±,H
jk − δjlη±,Hik + δklη

±,H
ij .

(B.8)

Using these tensors, we take the following ansatz for the gauge potential

Ai =

(
1

|α|
η+
ij ⊗ E−α +

1

|α|
η−ij ⊗ E+α +

1

|α|2
ηHij ⊗Hα

)
∂j logϕ , (B.9)
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with |α|2 = α ·α = αı̂αı̂. Then, using the properties for the η listed in (B.8), it can be seen

that the field strength inherited from this gauge potential is self-dual whenever ϕ solves

δij∂i∂jϕ

ϕ
= 0 . (B.10)

A similar set of self-dual tensors provides an anti self-dual field strength given the same

condition on ϕ.

Once we have an (anti)self-dual field strength, we need to solve (A.21) in its background

for the embedding. Remember that Z can be pointing in any direction in gauge space.

There are two distinct possibilities (and linear combinations thereof): we can place the

embedding in the su(2) subalgebra of the instanton or in a different one, corresponding to

a different root. In the first case we can use su(2) rotations to align the embedding in the

direction of the Cartan, so we take the ansatz

Z = f (ϕ) Hα . (B.11)

Again, exploiting the properties of the η tensors it can be shown that the equation for the

scalar is solved if

ϕ2f ′′ = 2f ⇒ f (ϕ) =
M1

ϕ
+M2 ϕ

2 . (B.12)

with ′ denoting derivative with respect to ϕ and M1 and M2 a pair of (real) integration

constants. On the other hand, we could take the embedding along the raising and lowering

operators corresponding to a different root, that is,

Z = f+ (ϕ) E+β + f− (ϕ)E−β . (B.13)

In our conventions the embedding has to be hermitean, forcing f∗+ = f−. Similar manipu-

lations imply that the equation for the E+β component is solved as long as

ϕ2f ′′+ =
f+

|α|2

(
Nα,βN−α,α+β +N−α,βNα,−α+β +

(α · β)2

|α|2

)
. (B.14)

Crucially, this equation can be solved for any Lie algebra, given any pair of roots α and β.

It can be easily proven that the real coefficients Nα,β verify the following relations

Nαβ = −Nβ,α = −N−α,−β , (B.15)

and, from the Jacobi identity applied to the generators associated to three roots satisfying

α+ β + γ = 0, that

Nα,β = Nβ,−α−β = N−α−β,α . (B.16)

As a consequence of these

N−α,α+β = Nα,β . (B.17)

On the other hand, the Jacobi identity applied to E+α, E−α and E+β forces the relation

α · β = N−α,βNα,β−α +Nβ,αN−α,α+β = N2
−α,β −N2

α,β . (B.18)
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Now, let p ≤ 0 be the smallest integer such that α + pβ is a root and let q ≥ 0 be the

largest integer such that α+ qβ is a root. One of the most basic properties of Lie algebras

is that these integers verify

2
α · β
|α|2

= − (p+ q) . (B.19)

Moreover, the coefficients in the commutator (B.5) are given in terms of them as

N2
α,β =

1

2
(1− p) q|α|2 , (B.20)

which vanishes only if q = 0, that is, if α+ β is not a root. Using all these results, (B.14)

is solved by

f+ = M1 ϕ
p−q
2 +M2 ϕ

q−p+2
2 . (B.21)

Notice that this is invariant under q → −p and p → −q simultaneously, which corre-

sponds to changing β into −β. This means that f− has a solution of the same form, while

hermiticity selects the integration constants so that

f− = M∗1 ϕ
p−q
2 +M∗2 ϕ

q−p+2
2 . (B.22)

Finally we can align the embedding with the Cartan associated to a different root β.

However it is easy to see that this produces a vanishing solution unless α · β = 0. More

generally, we can combine this embedding with (B.11), that is, we can take

Z = fα (ϕ) Hα + fβ (ϕ)Hβ . (B.23)

Then, the functions have to satisfy

f ′′β = 0 ⇒ fβ = M1 +M2 ϕ ,

ϕ2f ′′α = 2
(
fα + α·β

|α|2 fβ

)
⇒ fα = M3

ϕ +M4 ϕ
2 + p+q

2 fβ ,
(B.24)

where we see that fα = 0 is not consistent with non-trivial fβ unless α ·β = 0, as mentioned

above.

We have thus reduced the problem to compute the possible values for p and q for a

given Lie algebra. Coming back to the system of branes, we know that the gauge symmetry

associated to the flavor branes is U(Nf). Since we are not exciting the U(1)B ⊂ U(Nf), we

can apply the results above to the algebra su (Nf), whose roots system is well known.

Indeed, for any rank, all the roots have the same length, |α|2 = 2, and the only possible

non-trivial values for the integers are

p = 0 , q = 1 or p = −1 , q = 0 . (B.25)

These give the same embedding, since they are related by the symmetry discussed above.

The single instanton solution corresponds to the function

ϕ =
r2 + Λ2

r2
, r2 =

4∑
i=1

y2
i , (B.26)

so the possible regular embeddings are

Zα = Mq

r2

r2 + Λ2
Hα , Zβ =

r√
r2 + Λ2

(
MqE+β +M∗q E−β

)
. (B.27)
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C Fluctuation channels

In this appendix we provide the equations of motion for the fluctuations present in our

model, classified according to their transformation under the global symmetry group

SO(2)×U(1)D and local symmetry properties. Later we will give more details about the

behavior of the fields and the numerical procedure we implemented for the two channels

we have focused on in the main text.

1. SO(2) vectors, charged and uncharged under U(1)I. These are two channels

consisting of two exact copies of the same fluctuation given by the fields αyâ and αzâ.

Focusing on the former we can write the following combinations charged under U(1)I

αy± = αy1 ± iαy2 , (C.1)

with equations of motion

α′′y± +
3

r
α′y± −

8 a2

r2
+
L4
(
k2 − (ω ± 2at)

2 + 4φ2
)

(r2 + φ2)2

αy± = 0 . (C.2)

The fluctuation αy3 is neutral under the U(1) factors and its equation of motion reads

α′′y3 +
3

r
α′y3 −

(
8 a2

r2
+
L4
(
k2 − ω2

)
(r2 + φ2)2

)
αy3 = 0 . (C.3)

2. Neutral SO(2) scalar. This channel comprises only the β3 fluctuation, which is a

scalar under SO(2) and a singlet under both U(1) groups. The equation of motion is

β′′3 +
3

r
β′3 −

(
8 a2

r2
+
L4
(
k2 − ω2

)
(r2 + φ2)2

)
β3 = 0 . (C.4)

3. SO(2) scalars charged under U(1)I and independent of gauge transforma-

tions. In this channel we encounter the fluctuations β1 and β2, which are rotated

onto each other by action of the group U(1)I. The fluctuations are better expressed

with the combinations

β± = β1 ± i β2 (C.5)

in terms of which

β′′± +
3

r
β′± −

8 a2

r2
+
L4
(
k2 − (ω ± 2at)

2 + 4φ2
)

(r2 + φ2)2

β± = 0 (C.6)

4. SO(2) scalars neutral under the diagonal of U(1)R×U(1)I and even. This

channel contains the fluctuations that do not change under action of the diagonal of

U(1)R×U(1)I and carry none or one index of each one. The gauge transformation

given by λ3 in (3.7) acts in this channel as

αt3 = −iωλ3 , αx3 = ikλ3 , α12 − α21 = 4 a(r)λ3 . (C.7)
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Obvious perturbations belonging to this channel are then αt3, αx3, and α12 − α21.

The latter combination is not neutral under U(1)R or U(1)I individually, but only

to the simultaneous acting of both. A second combination of αaâ fluctuations that

is also invariant under the diagonal of U(1)R×U(1)I is α11 + α22, and in fact it is

convenient to define

α± = α11 + α22 ± i (α12 − α21) . (C.8)

It is not hard to convince oneself that, since α11 + α22 and αt3 are fluctuations of

fields present in the background, this channel also captures the fluctuations α33 and

ζ3, which are neutral under U(1)R and U(1)I separately and, therefore, also under its

diagonal combination. Finally, the radial component αr3 also belongs to this channel,

and keeping it to zero provides a first-order constraint.

α′′t3 +
3

r
α′t3 − L4k(kαt3 + ωαx3)

(r2 + φ2)2
− 8a2

r2
αt3 −

a

r2
(4at(α+ + α−) + ω(α+ − α−)) = 0 ,

α′′x3 +
3

r
α′x3 + L4ω(kαt3 + ωαx3)

(r2 + φ2)2
− 8a2

r2
αx3 +

a

r2
k(α+ − α−) = 0 ,

ζ ′′3 +
3

r
ζ ′3 − L4 (k2 − ω2)

(r2 + φ2)2
ζ3 −

8a2

r2
ζ3 −

4aφ

r2
(α+ + α−) = 0 ,

α′′33 + log′
[
r(r2 + φ2)2)

]
α′33 −

(
L4 (k2 − ω2)

(r2 + φ2)2
+

8a2

r2
− 4

r2

r2 − φ2 + 2rφφ′

r2 + φ2

)
α33

− 2a

r2

2a(r2 + φ2)− 2rφφ′ + r2 + 3φ2

r2 + φ2
(α+ + α−) = 0 ,

α′′± + log′
[
r(r2 + φ2)2)

]
α′± − L4k

2 − (ω ± 2at)
2 + 4φ2

(r2 + φ2)2
α± −

12a2

r2
α± −

4a2

r2
α∓

+
4

r2

r2 − φ2 + 2r(1 + a)φφ′

r2 + φ2
α± +

4L4(a2
t − φ2)

(r2 + φ2)2
∓ 16L4aφ

(r2 + φ2)2
ζ3

+
4L4a

(r2 + φ2)2
(kαx3 + (ω ± 4at)αt3)− 8a

r2

2a(r2+φ2)− 2rφφ′+r2+3φ2

r2 + φ2
α33 = 0 ,

(C.9)

and the constraint

L4r3(ωα′t3+kα′x3)+2a(1+a)(r2+φ2)2(α+−α−)+a r(r2+φ2)2(α′+−α′−) = 0 . (C.10)

5. SO(2) scalars charged under the diagonal of U(1)R×U(1)I and even. These

two fluctuations carry two indices, one for each U(1) group, and under the diagonal

product they are charged. As usual, they are better expressed as the combinations

α̂± = α11 − α22 ± i (α12 + α21) , (C.11)

in terms of which the equations of motion read

α̂′′± + ∂r log
[
r(r2 + φ2)2)

]
α̂′± − L4k

2 − (ω ± 2at)
2 + 4φ2

(r2 + φ2)2
α̂± +

4

r2

r2 − φ2 + 2rφφ′

r2 + φ2
α̂±

− 4a

r2

2rφφ′ − r2 − 3φ2

r2 + φ2
α̂± = 0 ,

(C.12)
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6. SO(2) scalars neutral under the diagonal of U(1)R×U(1)I and odd. The

fluctuations encountered in this channel are αt1, αt2, αx1, αx2, α13, α23, α31, α32, ζ1

and ζ2. The radial components αr1 and αr2 also belong here, and keeping them to

zero provide two first-order constraints. Notice that gauge transformation given by

λ1 and λ2 in (3.7) act in this channel as

αt1 = −iωλ1 + 2 at(r)λ2 , αx1 = ikλ1 , α23 − α32 = 4 a(r)λ1 , ζ2 = −2φ(r)λ1 ,

αt2 = −iωλ2 − 2 at(r)λ1 , αx2 = ikλ2 , α13 − α31 = −4 a(r)λ2 , ζ1 = 2φ(r)λ2 .

(C.13)

The set of second-order equations of motion reads

α′′tI +
3

ρ
α′tI −

4L4φ2

(r2 + φ2)2
αtI − L4k(kαtI + ωαxI)

(r2 + φ2)2
− 8a2

r2
αtI −

2L4ikat
(r2 + φ2)2

εI
JαxJ

+
4L4φat

(r2 + φ2)2
ζI +

2iωat
(r2 + φ2)2

εI
JζJ +

4L4ata

r2
(αI3 + α3I)

− 2iωa

r2
εI
J(αJ3 − α3J) = 0 ,

α′′xI +
3

r
α′xI + L4ω(kαtI + ωαxI)

(r2 + φ2)2
− 8a2

r2
αxI +

4L4iωat
(r2 + φ2)2

εI
JαxJ

+
4L4

(
a2
t − φ2

)
(r2 + φ2)2

αtI +
2L4ikat

(r2 + φ2)2
εI
JαtJ −

2L4ikat
(r2 + φ2)2

εI
JζJ

+
2ika

r2
εI
J(αJ3 − α3J) = 0 ,

ζ ′′I +
3

ρ
ζI −

8a2

r2
ζI − L4k

2 − ω2 − 4a2
t

(r2 + φ2)
ζI +

4L4iωat
(r2 + φ2)2

εI
JζJ +

4aφ

r2
(αI3 + α3I)

− 4L4φat
(r2 + φ2)2

αtI −
2L4iφ

(r2 + φ2)2
εI
J (ωαtJ + kαxJ) = 0 ,

α′′I3 + log′
[
r(r2 + φ2)2)

]
α′I3 −

(
L4 (k2 − ω2)

(r2 + φ2)2
+

4a2

r2
− 4

r2

r2 − φ2 + 2rφφ′

r2 + φ2

)
αI3

+
4a

r2

a(r2 + φ2)− 2rφφ′ + r2 + 3φ2

r2 + φ2
α3I +

4L4a

(r2 + φ2)2
(φζI − atαtI)

+
2iL4a

(r2 + φ2)2
εI
J (ωαtJ + kαxJ) = 0 ,

α′′3I + log′
[
r(r2 + φ2)2)

]
α′3I −

(
L4 (k2 − ω2)

(r2 + φ2)2
+

4a2

r2
− 4

r2

r2 − φ2 + 2rφφ′

r2 + φ2

)
α3I

+
4(a2

t − φ2)

(r2 + φ2)2
α3I +

4a

r2

a(r2 + φ2)− 2rφφ′ + r2 + 3φ2

r2 + φ2
αI3 +

4L4iωat
(r2 + φ2)2

εI
Jα3J

+
4L4a

(r2 + φ2)2
(φζI − atαtI)−

2L4ia

(r2 + φ2)2
εI
J (ωαtJ + kαxJ) = 0

(C.14)

where I, J = 1, 2 and the antisymmetric matrix has entries ε1
2 = 1 and ε2

1 = −1.
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The constraints are

L4

(
r3at(α

′
tI − ζ ′I)− r3(a′tαtI − φ′ζI) + i

r3

2
εI
J
(
ωα′tJ + kα′xJ

))
+ 2a(1 + a)(r2 + φ2)2(αI3 − α3I) + a r(r2 + φ2)2(α′I3 − α′rI) = 0 .

(C.15)

C.1 Neutral SO(2) scalar

This channel is given by a single, decoupling fluctuation β3, with equation of motion given

in eq. (C.4). In the instantonless limit, a = 0 and φ = Mq, the equation reduces to the one

in [30], which implies a discrete spectrum of regular, normalisable solutions

ω2 − k2 =
M2

q

L4
4(n+ 1)(n+ 2) (with n ≥ 0) . (C.16)

For simplicity we write the remaining expressions in this subsection in terms of the

dimensionless variables

(ω, k) =
Mq

L2
(ω, k) , r = Mqr , Λ = Mq Λ . (C.17)

From the equation of motion we obtain the UV and IR asymptotics

β3 = s+
v

r2 +
1

2
(ω2 − k2

)s
log[r]

r2 − 3

64
(ω2 − k2

)2 s

r4 −
(ω2 − k2

)2

16
s

log[r]

r4 +O(r−6 log[r])

β3 = e−
√

k
2−ω2

r
β

(0)
3

r1/2

1 + i
35Λ

4
+ 8(ω2 − k2

)

8 Λ
4
√
ω2 − k2

r +O(r2)

 , (C.18)

respectively, and where β3 = Mqβ3. We have already imposed an ingoing wave at the

Poincaré horizon (see for example [71]).

The spectral function is built by shooting from the IR with an arbitrary normalisation

β
(0)
3 , and reading the UV parameters v = v(Λ, ω2−k2

) and s = s(Λ, ω2−k2
). The spectral

function is given, up to a constant, by

χ ∝ Im
v(Λ, ω2 − k2

)

s(Λ, ω2 − k2
)
. (C.19)

C.2 SO(2) scalars neutral under the diagonal of U(1)R×U(1)I and even

This section describes how to calculate the quasi-normal modes in the channel coupling the

following fluctuations: αt3, αx3, α+, α−, α33 and ζ3, subjected to a first-order constraint.

There are 6 fluctuations coupled in this channel, and each of these has an associated

second order differential equation and there is one first-order constraint arising from the

holographic gauge, so in total one expects 11 independent solutions. Of these, five are

ingoing waves at the Poincaré horizon and five to be outgoing waves. The eleventh solution

is a pure gauge solution to the equations of motion given by (C.7). This arises since we

are not working with gauge invariant combinations, which introduces a redundancy that

we have to deal with as indicated below.
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The UV asymptotics of the fields are

ζ3 = s3 +
v3

r2
+ · · · ,

αI = sI +
vI
r2

+ · · · (with I = {t3, x3}) ,

αJ =
sI
r2

log[r] +
vJ
r2

+ · · · (with J = {+,−, 33}) ,

(C.20)

where

vx3 = −ω
k
vt3 +

Λ2

2kL4
(s+ − s−) . (C.21)

Near the Poincaré horizon the ingoing-wave boundary conditions implies

ζ3 = e−L
2
√

k2−ω2

r r−1/2
(
ζ

(0)
3 + · · ·

)
,

αt3 = e−L
2
√

k2−ω2

r r−1/2
(
α

(0)
t3 + · · ·

)
,

αx3 = e−L
2
√

k2−ω2

r r−1/2
(
−ω
k
α

(0)
t3 + · · ·

)
,

αJ = e−L
2
√

k2−ω2

r r−3/2
(
α

(0)
J + · · ·

)
(with J = {+,−, 33}) ,

(C.22)

where the five (0)-superscripted symbols are the free coefficients that parameterise any

IR-regular solution.

To find the quasi-normal modes we follow [72, 73]: we fix Λ and k to some values

(we are using the rescaled variables of eq. (C.17)) and we study the dependence on the

complex frequency ω. We build five independent ingoing wave solutions by shooting from

the IR with

{α(0)
t3 , α

(0)
+ , α

(0)
− , α

(0)
33 , ζ

(0)
3 } =



{1, 1, 1, 1, 1}
{1, −1, 1, 1, 1}
{1, 1, −1, 1, 1}
{1, 1, 1, −1, 1}
{1, 1, 1, 1, −1}

. (C.23)

Once the numeric solutions are obtained we can read the six source terms, sX , in (C.20).

The coefficients s3, st3 and sx3 are easy to get from the constant value the numeric solution

tends to. To obtain the sJ , given the presence of the logarithm, it is better to focus

instead on

r2
(
r α′J + 2αJ

)
' sJ + · · · . (C.24)

This allows to construct five 6-tuples, denoted here as S1,··· ,5, of asymptotic values for the

sources. To determine the quasi-normal modes we want to find the values of the complex

frequency such that a linear combinations of the S1,··· ,5 6-tuples produces source-less ingoing

solutions. Actually, since we are working with the gauge-dependent variables, we want that

a linear combination of the S1,··· ,5 be proportional to the corresponding 6-tuple for the pure
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gauge solution (C.7). This means

det



S1

S2

S3

S4

S5

Sgauge


= 0 . (C.25)

Notice that these are two conditions (real and imaginary part of the determinant) for two

variables (real and imaginary part of the frequency). Once we find a quasi-normal mode

we can track how its position changes when k or Λ are varied.

C.3 SO(2) scalars neutral under the diagonal of U(1)R×U(1)I and odd

This section describes how to calculate the quasi-normal modes in the channel coupling the

following fluctuations: αt1, αt2, αx1, αx2, α13, α23, α31, α32, ζ1 and ζ2, subjected to two

first-order constraints. Actually, it is a straightforward generalisation of the previous case,

but in this case there are eight ingoing-wave solutions, eight outcoming-wave ones and two

pure gauge solutions given by (C.13)

The UV asymptotics of the fields are

ζH = sH +
vH
r2

+ · · · (with H = {1, 2}) ,

αI = sI +
vI
r2

+ · · · (with I = {t1, x1, t2, x2}) ,

αJ =
sI
r2

log[r] +
vJ
r2

+ · · · (with J = {13, 23, 31, 32}) ,

(C.26)

where

vx1 = −ω
k
vt1 +

i

k

[
2Mq (v2 − vt2) + 2MqΛ

2 (s2 − st2)− Λ2

L4
(s23 − s32)

]
,

vx2 = −ω
k
vt2 −

i

k

[
2Mq (v1 − vt1) + 2MqΛ

2 (s1 − st1)− Λ2

L4
(s13 − s31)

]
.

(C.27)

Near the Poincaré horizon the ingoing-wave boundary condition implies

ζH = e−L
2
√

k2−ω2

r r−1/2
(
ζ

(0)
H + · · ·

)
(with H = {1, 2}) ,

αtH = e−L
2
√

k2−ω2

r r−1/2
(
α

(0)
tH + · · ·

)
(with H = {1, 2}) ,

αxH = e−L
2
√

k2−ω2

r r−1/2
(
−ω
k
α

(0)
tH + · · ·

)
(with H = {1, 2}) ,

αJ = e−L
2
√

k2−ω2

r r−3/2
(
α

(0)
J + · · ·

)
(with J = {13, 23, 31, 32}) ,

(C.28)

where the eight (0)-superscripted symbols are the free coefficients that parameterise any

IR-regular solution. Quasi-normal modes are obtained exactly as before.
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