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ABSTRACT 41 

Ocean island volcanoes erupt a wide range of magmatic compositions via a diverse range of 42 

eruptive styles. Understanding where and how these melts evolve is thus an essential 43 

component in the anticipation of future volcanic activity. Here we examine the role of crustal 44 

structure and magmatic flux in controlling the location, evolution and ultimately composition 45 

of melts at Ascension Island. Ascension Island, in the south Atlantic, is an ocean island 46 

volcano which has produced a continuum of eruptive compositions from basalt to rhyolite in 47 

its 1-million-year subaerial eruptive history. Volcanic rocks broadly follow a silica-48 

undersaturated subalkaline evolutionary trend and new data presented here show a continuous 49 

compositional trend from basalt through trachyte to rhyolite. Detailed petrographic 50 

observations are combined with in-situ geochemical analyses of crystals and glass, and new 51 

whole rock major and trace element data from mafic and felsic pyroclastic and effusive 52 

deposits that span the entire range in eruptive ages and compositions found on Ascension 53 

Island. These data show that extensive fractional crystallisation is the main driver for the 54 

production of felsic melt for Ascension Island; a volcano built on thin, young, oceanic crust. 55 

Strong spatial variations in the compositions of erupted magmas reveals the role of a 56 

heterogeneous lower crust: differing degrees of interaction with a zone of plutonic rocks are 57 

responsible for the range in mafic lava composition, and for the formation of the central and 58 

eastern felsic complexes. A central core of nested small-scale plutonic, or mush-like, bodies 59 

inhibits the ascent of mafic magmas, allowing sequential fractional crystallisation within the 60 

lower crust, and generating felsic magmas in the core of the island. There is no evidence for 61 

magma mixing preserved in any of the studied eruptions, suggesting that magma storage 62 

regions are transient, and material is not recycled between eruptions.  63 

 64 

INTRODUCTION 65 
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Ocean island volcanoes remain enigmatic in terms of their origin (Niu et al., 2011), evolution 66 

and ability to produce a range of magmatic compositions and eruptive activity. Many ocean 67 

islands such as Iceland, Socorro, and the archipelagos of Hawaii, the Galapagos and the 68 

Canaries have been studied in detail (e.g. Sparks & Sigurdsson, 1987; Geist et al., 1988; 69 

Ablay et al., 1998; Geist et al., 1995; Bohrson et al., 1996; Harpp & White, 2001; Koppers & 70 

Staudigel, 2005; Carracedo et al., 2007; Carley et al., 2011; Mancini et al., 2015), but some 71 

ocean island volcanoes remain relatively poorly understood (e.g. the Azores, St Helena), and 72 

yet still pose a significant hazard to populations often living proximal to volcanic vents. 73 

Ascension Island, in the south Atlantic, is an example of the latter. It is small (subaerial 74 

dimensions of 8 km by 12 km), has no associated hotspot trace (cf. Hawaii, the Canaries; e.g. 75 

Zhao, 2004; Montelli et al., 2004) and has erupted magmas with a wide range of 76 

compositions (Daly, 1925; Coombs, 1963; Weaver et al., 1996; Kar et al., 1998; Jicha et al., 77 

2013). This compositional diversity is matched by a diversity in eruption styles and range of 78 

volcanic deposits (Weaver et al., 1996; Kar et al., 1998; Hobson, 2001; Preece et al., 2016).  79 

 Evolved, more felsic, melts have the potential to generate significant hazards at ocean 80 

island volcanoes, and thus understanding where and how they evolve in the crust is 81 

imperative to forecasting future styles of eruption. The various means by which felsic 82 

magmas evolve have the potential to produce a range of compositions, which affects 83 

magmatic viscosity (Papale et al., 1998), and the amount of dissolved volatiles, all of which 84 

contribute to the mode of evacuation of magma from crustal storage regions (e.g. 85 

Eichelberger, 1995; Giordano et al., 2004).  At ocean islands these silicic melts are 86 

considered to be generated via: anatexis of crustal material by hotter mafic melts (e.g. 87 

Sverrisdottir, 2007; Carley et al., 2011; Kuritani et al., 2011); extensive crystal fractionation 88 

from a more primitive mafic magma (e.g.Geist et al., 1995; Mungall & Martin, 1995; Larrea 89 

et al., 2014; Jeffrey et al., 2016); from direct derivation from mantle partial melting (Ashwal 90 
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et al., 2016) or through a combination of these processes (e.g. Bohrson & Reid, 1997; 91 

Wiesmaier et al., 2013; Sliwinski et al., 2015). Understanding the relative importance of these 92 

processes in any one setting has significant implications for understanding the relationships 93 

between the timescales of magma genesis, magmatic heat flux and potential triggering 94 

mechanisms of eruptions.   95 

Ascension Island has produced more than 70 explosive eruptions of felsic magma in 96 

its ~ 1 Myr subaerial history (Preece et al., 2016), in addition to numerous eruptions that 97 

produced scoria cones, mafic lava flows, and felsic lava flows and domes. The erupted rocks 98 

have largely been used to investigate the origins of Ascension Island magmatism (e.g. Harris 99 

et al., 1982; Weaver et al., 1987, 1996; Weis et al., 1987; Kar, 1997; Kar et al., 1998; Paulick 100 

et al., 2010). As yet, little is understood about the magmatic plumbing system on Ascension 101 

Island and the control it exerts on magmatic composition and styles of eruptive activity. Thus, 102 

we focus here on the relationship between the mafic and felsic magmatism on Ascension, 103 

utilising whole rock major and trace element data, and a comprehensive suite of in situ crystal 104 

major and trace element data by EPMA (electron probe microanalyses) and LA-ICPMS (laser 105 

ablation inductively coupled plasma mass spectrometry). Samples studied here represent the 106 

products of 22 eruptions representing the full range in composition and eruptive styles 107 

presented by subaerial volcanism on Ascension Island. By combining these data with 108 

previous isotopic work and work on a compositionally-zoned fall deposit (Chamberlain et al., 109 

2016), we present a model for the magmatic plumbing system of Ascension Island where 110 

felsic magmas evolve and stall in the lower crust, and highlight the role of crustal structure in 111 

the evolution of felsic melts on ocean islands with a low magmatic flux. Other potentially low 112 

magmatic flux ocean islands include the archipelagos of the Azores and Cape Verde islands, 113 

and thus the results of this study could be tested at other ocean islands around the world. 114 

 115 
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ASCENSION ISLAND 116 

Ascension Island (7° 56’ S; 14° 22’ W) is located in the southern Atlantic Ocean, 90 km west 117 

of the Mid-Atlantic Ridge (MAR) and 50 km south of the Ascension Fracture Zone (AFZ; 118 

Fig. 1). Volcanism began on the sea bed 5 – 6 Myr ago, and subaerial volcanism has occurred 119 

from ~1 Ma to present (Kar et al., 1998; Minshull et al., 2010; Paulick et al., 2010; Jicha et 120 

al., 2013; Preece et al., 2016). The most recent eruption at Ascension Island has been dated 121 

using 40Ar-39Ar dating to 0.51 ± 0.18 ka (Preece et al., 2018) - with no evidence for pauses in 122 

eruptive activity of greater than 130 kyr throughout the 1 million years of subaerial volcanism 123 

(Jicha et al., 2013).  124 

 125 

Crustal structure of Ascension Island 126 

Ascension Island is built on 5 – 7 Myr old oceanic crust (Klingelhöfer et al., 2001; Paulick et 127 

al., 2010) on, or close to, the MAR. Due to the OIB-like trace element affinities of Ascension 128 

mafic lavas (Harris, 1983; Weaver et al., 1996), it has been suggested that magmatism at 129 

Ascension Island is the product of a shallow mantle plume, rising at the MAR then diverted 130 

along the Ascension Fracture Zone (AFZ, Fig. 1; Burke & Wilson, 1976; Montelli et al., 131 

2006). However, seismic surveys have revealed a crustal structure that cannot be reconciled 132 

with a classic intraplate ocean island (i.e. a lack of lithospheric flexure, cf. Klingelhöfer et al., 133 

2001), and instead suggest that significant growth of the Ascension Island edifice occurred on 134 

the MAR-axis. The seismic surveys show that the crust is 12 – 13 km thick under Ascension, 135 

with over-thickening of layer 3, to 7 km thick (Klingelhöfer et al., 2001). Active-source 136 

seismic tomographic studies failed to find evidence for magmatic underplating beneath the 137 

island, suggesting that the island’s origins are not related to a hot spot (Evangelidis et al., 138 

2004).  Additionally, Evangelidis et al. (2004) located areas of anomalously high velocity 139 
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within the middle crust, which were inferred to be the crystallised remains of a relict magma 140 

chamber.  141 

 142 

Geochemical insights into the source of Ascension Island 143 

OIB-like trace element patterns have been measured from magmas erupted on Ascension 144 

Island, and spurred extensive research into the origins of magmatism, in particular its 145 

relationship to an undefined mantle anomaly and the proximal MAR. Sr and Nd isotopic data 146 

show little difference between the subaerial and the (volumetrically dominant) submarine 147 

products of Ascension: 143Nd/144Nd varies between 0.51292 and 0.51310, and significant 148 

variation in 87Sr/86Sr has been measured- between 0.70276 and 0.70656 (Fig. 2a; Weaver et 149 

al., 1996; Kar et al., 1998; Paulick et al., 2010). Submarine products have distinctly different 150 

Hf isotopic characteristics to the subaerial products studied here, and this has lead previous 151 

workers to suggest that the mantle source tapped by the submarine stage is no longer present 152 

(Fig. 2c; Paulick et al., 2010). There is little variation in Sr, Nd or Pb isotopic characteristics 153 

with time in the subaerial edifice (Kar, 1997; Paulick et al., 2010; Jicha et al., 2013), nor is 154 

the significant variation in 87Sr/86Sr coupled to variations in 143Nd/144Nd (Fig. 2a). The large 155 

variation in 87Sr/86Sr has been suggested to reflect post-emplacement alteration of samples 156 

(especially evolved rocks) by seawater-derived groundwater fluids as the samples were not 157 

acid-leached prior to analysis (Kar et al., 1998; cf. Davidson et al., 1997). Due to the low Sr-158 

contents of the Ascension magmas, they are particularly susceptible to alteration either 159 

through post-emplacement alteration, or by small degrees of assimilation of seawater-altered 160 

lithologies (Kar et al., 1998). 161 

Previous studies utilised the trace element variation in basaltic magmas erupted on 162 

Ascension Island to infer source composition and to define three main magmatic groups, 163 

principally based on Zr/Nb ratios (Weaver et al., 1996; Kar, 1997). The oldest and most 164 
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voluminous magma type in submarine and subaerial Ascension is represented by the high 165 

Zr/Nb (Zr/Nb > 5.7) mafic lavas (principally exposed on the south coast, Fig. 1; Weaver et 166 

al., 1996; Kar, 1997). Low Zr/Nb (Zr/Nb < 4.3) lavas are relatively spatially restricted, 167 

outcropping only in the southwest (Fig. 1). Intermediate Zr/Nb lavas (Zr/Nb 4.3 – 5.7) are the 168 

most common lavas in the subaerial history (but have erupted coevally with high and low 169 

Zr/Nb lavas), and dominate the northern and western regions (Fig. 1; Weaver et al., 1996; 170 

Kar, 1997; Jicha et al., 2013). The origins of these mafic lavas, and the process responsible 171 

for their variation has been related to varying degrees of partial melting of a consistent 172 

source, or melting of different mantle regions with differing mineralogy (Weaver et al., 1996; 173 

Kar, 1997; Jicha et al., 2013). Isotopic and trace element data on the mafic lavas types 174 

(Weaver et al., 1996; Kar et al., 1998; Paulick et al., 2010; Jicha et al., 2013), show that 175 

fractional crystallisation alone cannot reproduce the variability in Ti, Ta and Nb (Fig. 2c), 176 

and that variations in degree of partial melting, or source composition are more likely causes 177 

of this variability (Jicha et al., 2013).  As the Zr/Nb ratios are more characteristic of 178 

variations during the initial production of magma (source lithology or degree of partial 179 

melting), and will not be used here to investigate the nature of the magmatic plumbing 180 

system.  181 

 182 

Evolution and distribution of volcanism at Ascension Island 183 

The magmatism on Ascension Island defines a transitional to mildly-alkaline, silica under-184 

saturated array from olivine basalt - hawaiite - mugearite - benmoreite - trachyte - rhyolite 185 

(Daly, 1925; Weaver et al., 1996; Fig. 3). Mafic volcanic products are erupted all across the 186 

island (Fig. 1), while felsic products are limited to central and eastern areas (Fig. 1). Previous 187 

authors have divided the silicic eruptive products into two main centres: the older (Kar et al., 188 

1998; Hobson, 2001; Jicha et al., 2013) central felsic region, which contains the oldest dated 189 
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exposed lava on the island (at 1094 ka, Jicha et al., 2013), and the younger eastern complex 190 

(youngest published Ar-Ar date of 52 ± 3 ka; Jicha et al., 2013; Fig. 1). Felsic magmas are 191 

inferred to be the product of high degrees of fractional crystallisation (Fig. 2c; Weis et al., 192 

1987; Kar et al., 1998; Webster & Rebbert, 2001; Jicha et al., 2013) originating chiefly from 193 

similar mafic melts to those erupted around the peripheries of the felsic complexes (both high 194 

and intermediate Zr/Nb basalts have been suggested as parental melts; Figs. 1, 2c; Weaver et 195 

al., 1996; Kar et al., 1998; Jicha et al., 2013). 196 

The nature of the magmatic plumbing system on Ascension Island has not been 197 

established, yet fractional crystallisation is suggested as the dominant process for the 198 

formation of felsic melts (Kar et al., 1998; Jicha et al., 2013). There is only limited 199 

geochemical evidence for interaction between evolved magma batches to date (Kar et al., 200 

1998; Chamberlain et al., 2016). Melt inclusion compositions and whole rock isotopic ratios 201 

of plutonic lithic clasts have been used to infer a genetic association between the plutonic 202 

lithics and the spectrum of volcanic rocks (Roedder & Coombs, 1967, Harris et al., 1982, 203 

Weis et al., 1987, Webster & Rebbert, 2001). These studies have suggested that the formation 204 

of the granitic plutonic bodies occurred at temperatures of 710 – 865 °C, and pressures of 200 205 

– 300 MPa (Webster & Rebbert, 2001, and references therein). Recent work on the crystal 206 

cargo and melt inclusions from a compositionally-zoned fall deposit on the island 207 

(Chamberlain et al., 2016) supports the hypothesis that felsic magma evolved through closed-208 

system evolution on Ascension (as suggested by Harris, 1986, Weaver et al., 1987), with no 209 

petrological or textural evidence for magma mixing or multiple phases of stalling. We test the 210 

relevance of this model for the generation of all felsic magmas on Ascension Island, and use 211 

these data to improve our understanding of the temporal and spatial relationships between 212 

felsic and mafic volcanism. 213 

 214 
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SAMPLING & METHODOLOGY 215 

The volcanic rocks on Ascension Island are extremely diverse and present evidence for 216 

Hawaiian, Strombolian and as well as more explosive (Subplinian to Plinian) eruptions, as 217 

well as phreatomagmatic activity. These products include lava flows and domes, pumice, 218 

scoria and ash fall deposits and pyroclastic density current deposits (Preece et al., 2016). The 219 

products of 22 representative eruptions that cover the full range in magmatic composition, 220 

eruptive style (Fig. 3) and the temporal and spatial extent of subaerial volcanism were 221 

analysed in detail to capture this range (Fig. 1; Table 1). Mafic lavas outcrop widely across 222 

the island and dominate its submarine history (see Nielson & Sibbett, 1996; Minshull et al., 223 

2010). Mafic lava samples were selected to represent the main fields of mafic lava flows 224 

found on Ascension Island: the north coast (Sisters; samples AI14-411, AI14-471); the south-225 

west region (Wideawakes; samples AI14-445, AI14-449); the south-east (Letterbox, AI14-226 

423, AI14-429); the south coast (South Coast, AI14-514, AI14-522). In this way, the spatial 227 

and temporal variability (old vs. young lavas from the same eruptive centres) of mafic lavas 228 

on Ascension Island can be examined (Fig. 1; Table 1). Felsic samples come from effusive 229 

and explosive products, including samples from the older central felsic complex (AI-94, AI-230 

103, AI15-621, AI14-459, AI14-488, AI14-493) and the younger eastern felsic complex 231 

(AI14-511, AI14-419, AI14-618, AI14-428, AI14-435, AI14-438). These samples were 232 

chosen to ensure a wide spatial and temporal sampling of the felsic volcanism (for individual 233 

sample names see Table 1). 234 

Scoria and pumice samples were sieved to > 16 mm (or 8 mm if juvenile clasts were 235 

less than 16 mm) and all lithic clasts were removed by hand.  These samples were then 236 

thoroughly cleaned by removing any adhering matrix or oxidised rind followed by soaking in 237 

(frequently changed) milli-RO water for a minimum of one week. Lava was treated by 238 

removing external, altered material then washed to remove any cutting fluid. All samples 239 
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were then dried thoroughly at 60 °C prior to crushing. An aliquot of each sample was selected 240 

to mill for X-ray fluorescence (XRF) analysis at the University of East Anglia (UEA) using a 241 

Brucker-AXS S4 Pioneer. For major elements (>0.5 wt.%) analyses of multiple international 242 

standards yielded uncertainties ≤ ± 0.5 wt.% (2σ), except for SiO2 which yielded 243 

uncertainties of ± 1.06 wt.% (2σ). Values of the standards compared with published values 244 

yielded accuracies within 2% for all major elements, except for MnO, CaO and P2O5 where 245 

values were within 9% of published values; for full details of standards used, and their 246 

precision see Electronic Appendix 1. Trace element analyses of selected standards gave 247 

uncertainties < 5% (2σ) for V, Cr, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Mo and Ba, with 248 

uncertainties <10% for As, Ce and U. For full details see Electronic Appendix 1. 249 

 The remaining material was prepared for in-situ analyses of major and trace elements 250 

in crystals and glass.  Thin sections were made of lava samples, whilst pyroclastic samples 251 

were crushed, sieved into various size fractions (< 2 mm), before crystal and glass separates 252 

(from the 0.5 – 1 mm size fraction), were hand-picked and mounted into low-activity epoxy 253 

discs, and polished.  254 

Prior to in-situ analyses, back-scattered electron (BSE) images were taken of all thin 255 

sections and epoxy blocks to identify crystal phases present, any zonation preserved in 256 

crystals and to locate suitable analytical spots. These images were obtained on a JEOL JSM 257 

5900LV scanning electron microscope (SEM) at UEA. Percentages of phases were calculated 258 

using ImageJ® software of transmitted light photomicrographs and BSE imagery, by filtering 259 

images based on colour or greyscale characteristics. 260 

In-situ major element analyses were obtained by EPMA using a JEOL JXA 8230 261 

system at Victoria University of Wellington (VUW), or using a CAMECA SX100 at 262 

Edinburgh University, both using wavelength-dispersive spectrometry. Operating conditions 263 

varied depending on the phases and elements analysed, but precision of standard analyses of 264 
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major elements (>1 wt.% concentration) were always within 2 relative % (2 s.d.); with 265 

slightly higher uncertainties for minor elements (see Electronic Appendix 1 for further details 266 

on accuracy and precision of secondary standards). Due to their hydrous nature, only glass 267 

analyses with totals of <93 wt.% were set aside; values for the remaining analyses were then 268 

normalised to 100 %.  269 

 Trace element analyses of crystal phases and matrix glass were carried out at the 270 

University of Durham using a New Wave deep UV laser (193 nm solid state) coupled to an 271 

X-series 2 ICPMS (inductively-coupled plasma mass spectrometer).  Analyses were run using 272 

a 35 μm spot (for glass) or 50 μm spot (for crystals). The LA-ICPMS data were internally 273 

normalized to 29Si or 43Ca from EPMA analyses. Abundances of single trace elements were 274 

calculated relative to a bracketing standard (NIST 612) which was analysed throughout the 275 

run under identical conditions. Precision and accuracies varied depending on the analytical 276 

conditions but generally have <10% (2 s.d.) uncertainties (see Electronic Appendix 1 for full 277 

details of precision and accuracy).  278 

 279 

RESULTS 280 

Whole rock data 281 

The whole rock data confirm that the samples typify the full range in magmatic compositions 282 

exposed on Ascension Island, from the least-evolved Green Mountain scoria sample (AI14-283 

552; 47.7 wt.% SiO2, 3.01 wt.% Total Alkalis [TA]) through to the most-evolved sample of 284 

1094 kyr-old (AI-94; Jicha et al., 2013) felsic lava (72.3 wt.% SiO2, 10.3 wt.% TA; Fig. 3a, 285 

Table 2). When selected whole rock trace element data are normalised to primitive mantle 286 

(Palme & O’Neill, 2003) felsic lava and pumice samples are clearly depleted in Sr, Ti and Ba 287 

relative to mafic lava and scoria samples (Fig. 3b). Felsic pumice and lavas are generally 288 

more enriched in incompatible trace elements than the mafic lavas and scorias (Fig. 3b). 289 
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The whole rock data show increasing total alkalis, and decreasing CaO and MgO, 290 

with increasing SiO2 (Fig. 4). Mafic lavas are typically more-enriched in MgO, CaO and 291 

TiO2 (Fig. 4a, c), and depleted in FeO, Na2O, K2O, Zr and Ba (Fig. 4b, d, f, Table 3), relative 292 

to felsic lavas. While having the textural characteristics of basaltic volcanism, samples of 293 

Letterbox ‘mafic’ lavas are in fact intermediate, with 55.8 – 57.6 wt.% SiO2, and  2.10 – 2.29 294 

wt. % MgO. Pumice and felsic lava samples have similar major and trace element 295 

concentrations (Fig. 3, 4), as do mafic lavas and scorias (Fig. 3, 4); thus there is no 296 

appreciable difference in whole rock compositions between magmas erupted effusively or 297 

explosively (Fig. 3, 4). Whilst there appear to be gaps within the MgO content (Fig. 4), these 298 

solely reflect the samples selected for study, when compared with a large published data set 299 

no gaps in composition are observed for Ascension Island volcanics (Fig.2c; Fig. 4 grey 300 

fields). 301 

 302 

Petrology of Ascension lavas 303 

Mafic and intermediate lavas studied are generally crystal poor, with less than 5% 304 

phenocrysts, apart from the samples from the South Coast (high Zr/Nb) lava with 18% and 305 

40% phenocrysts in the two samples studied here (see Table 3, Fig. 5a, b). In the mafic and 306 

intermediate lava flows, phenocrysts (> 500 µm) are predominantly plagioclase feldspar (Fig. 307 

5c, d), with minor olivine in some samples (Table 3, Fig. 5). Phenocryst phases in the crystal 308 

rich lavas (from the South Coast) are larger, up to 5mm, modal size 3mm, when compared 309 

with all other mafic and intermediate phases, where phenocrysts are generally < 1mm in 310 

diameter. The groundmass of all mafic and intermediate lavas studied here is 311 

microcrystalline, with no glass present. The groundmass consists of plagioclase feldspar, 312 

clinopyroxene, olivine and Fe-Ti oxides (Fig. 5a-d, Fig. 6) in decreasing order of abundance.  313 
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Felsic lava samples come from the (older) central felsic complex (AI14-103, AI15-314 

621, AI-94; Fig. 1) and the (younger) eastern felsic complex (AI14-511, AI14-485, AI14-315 

419, AI14-428). All felsic lavas are crystal poor, with <6% phenocrysts visible in hand 316 

sample (Table 3). Phenocrysts phases are dominantly ternary feldspars (plagioclase to alkali-317 

feldspars, Fig. 7), with minor Fe-Ti oxides and aegirine-augite present as phenocrysts phases 318 

in two samples (Table 3). Phenocrysts are always <3 mm diameter. In thin section, crystals 319 

are largely euhedral, and feldspar crystals often present as clots of 2-5 crystals (Fig. 5e-h; Fig. 320 

6d, e). The groundmass is usually microcrystalline, consisting of ternary feldspar, cristobalite, 321 

interstitial aegirine-augite and Fe-Ti oxides in decreasing order of abundance (Table 3; Fig. 322 

6d, e, f). A single felsic lava sample has a glassy matrix (AI14-419, the Letterbox felsic lava 323 

sample), which has SiO2 concentrations between 71.2 and 74.0 wt.% (Table 3; Fig. 11).  324 

 325 

Mineral compositions of the mafic and intermediate lavas 326 

Plagioclase feldspar is a dominant mineral phase in all mafic and intermediate lavas with 327 

compositions varying between An37Ab61Or2 and An82 Ab17 Or1 (Fig. 7). BSE images of 328 

feldspar crystals typically show faint oscillatory zoning (Fig. 6c) with the South Coast (high 329 

Zr/Nb) lavas having better developed zonation and resorbed cores (Fig. 6a, b). The lack of 330 

well-developed BSE image zonation patterns in the Sisters, Wideawakes and Letterbox 331 

feldspars (mafic lava fields, see Fig. 1 for name origins) is reflected in their major and trace 332 

element compositions which show limited variations (Fig. 7, 8). The South Coast lavas 333 

exhibit some compositional variation between core and rims in their feldspar population (Fig. 334 

8c, 9a), with cores typically being less-evolved than feldspar rims. Olivine compositions in 335 

the groundmass (or as phenocrysts in South Coast and Wideawakes samples) vary between 336 

Fo49 – Fo89. Where groundmass olivine can be identified separately to phenocrysts, 337 

groundmass olivines have higher CaO and lower MnO concentrations at any given value of 338 
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Fo number. Olivine crystals are faintly normally-zoned, if they are zoned at all, with no 339 

evidence for resorbed cores in any samples studied (Fig. 6a, b, 9b, 10).  340 

 No variation is seen in phenocryst compositions between the stratigraphically older 341 

and younger samples from the same geographic regions. However, some variation in mineral 342 

compositions exists between different geographic regions, with differences in major and trace 343 

elements between geographic regions (Fig. 8a, c). Letterbox samples have more restricted 344 

feldspar and olivine compositions, representing the more-evolved end of the range in mineral 345 

compositions displayed by all mafic lavas (Fo 56 – 69; An 36 – 47; Fig. 8a; Figs. 9, 10a, 346 

10c), consistent with their whole rock compositions (see Table 2). South Coast, Sisters and 347 

Wideawakes lavas generally contain more variable An-plagioclase (An 32 – 82; see Table 5, 348 

Fig. 1, 8, 9), which has lower Sr concentrations (and extends to higher anorthite contents; Fig. 349 

8a, c), and more variable olivine (that extends to less-evolved compositions) than Letterbox 350 

(Fo49 – Fo89; Table 5, Fig. 1, 9, 10), consistent with their less evolved whole rock 351 

compositions. 352 

 353 

Mineral compositions of the felsic lavas 354 

Ternary feldspar is the dominant mineral phase in all felsic lavas with compositions varying 355 

between An20Ab75Or5 and Ab70Or30 (Fig. 7). BSE images of feldspar crystals from felsic lava 356 

samples are unzoned (Fig. 6d, e). However, some lava flows show core-rim-groundmass 357 

variations in feldspar compositions (see Fig. 8c and Electronic Appendix 2), which is 358 

unresolvable in BSE images alone. In particular, sample AI14-485 (from the eastern felsic 359 

complex; Fig. 1) has systematically more-evolved rims than cores, and more-evolved 360 

groundmass than rims. Feldspar compositions of felsic lavas range from andesine 361 

(An20Ab75Or5) through to anorthoclase (Ab70Or30; Fig. 7, Table 4), with the most-evolved 362 

compositions (Ab70Or30) present in both the older and younger felsic samples (see Fig. 8b; 363 



15 
 

 

Electronic Appendix 2). Most felsic feldspars (that are ternary) define a separate trend to the 364 

mafic and intermediate lava samples (with plagioclase feldspar only), having higher 365 

concentrations of Eu and Ba at any given Sr concentration. (Fig. 8d). Aegirine-augite is 366 

present as a groundmass phase in all felsic lava samples studied here, with compositions 367 

between 0.5 – 12.1 wt.% Na2O and 0.1 – 6.2 wt.% MgO. Aegirine-augite, typically < 500 µm 368 

(Fig. 11), commonly contains Fe-Ti oxide inclusions, and has higher Mn and lower Sr 369 

concentrations than the intermediate lavas (Fig. 11c), whilst the minor olivine (< 1%), present 370 

only in the Letterbox felsic lava, is Fo12.5 (see Electronic Appendix 2). 371 

 The crystal compositions between samples of felsic lavas and samples of mafic to 372 

intermediate lavas do not overlap in their major elements. The samples from the younger 373 

eastern felsic complex (Fig. 1) have the greatest range in both feldspar (An20Ab75Or5 – 374 

Ab70Or30) and clinopyroxene compositions (0.5 – 12.2 wt.% Na2O; Fig. 8b, 11a, b, Table 5, 375 

7), while crystals within samples from the central felsic complex are typically more-evolved; 376 

containing anorthoclase feldspar (An7Ab73Or20 – Ab70Or30) and more aegirine-rich 377 

clinopyroxene (2.9 – 9.0 wt.% Na2O; Fig. 11a, b; Table 7). 378 

  379 

Petrological variation in mafic pyroclastic deposits 380 

Pyroclastic deposits are exposed all across the island and have compositions ranging from 381 

basalt to rhyolite, with no obvious Daly Gap when all published samples are considered 382 

(Daly, 1925, Fig. 3, 4). The scoriaceous deposits studied here are crystal poor, with 383 

phenocrysts of plagioclase feldspar and minor olivine, clinopyroxene and Fe-Ti oxides. The 384 

Green Mountain scoria (AI14-552) is a relatively voluminous eruption, with widespread 385 

deposits originating from within the central felsic complex. Its key identifying feature is the 386 

presence of abundant white-cream plutonic lithic clasts. In thin section, juvenile scoria 387 

typically contains plagioclase feldspar + olivine ± clinopyroxene ± Fe-Ti oxides. The 388 



16 
 

 

groundmasses of the scoria clasts from these deposits have varying proportions of microlites 389 

(feldspar + olivine).  390 

 In BSE imagery, crystal phases are not zoned, and preserve euhedral crystal habits. 391 

Feldspar compositions overlap those of both the mafic and felsic lavas, ranging between 392 

An14Ab72Or14 and An84Ab15Or1. The Green Mountain scoria has the largest variation in 393 

feldspar compositions (AI14-552; Table 5), but there are no systematic differences in core 394 

and rim compositions of individual crystals (Fig. 8c, Table 5). Olivine, the other major 395 

phenocrystic phase, overlaps compositionally with olivine in the mafic lavas, with Fo74 to 396 

Fo87 (Fig. 9b, 10b; Table 6) and also has no systematic difference in core and rim 397 

compositions from individual olivines (Fig. 10c). Matrix glass compositions are typical of 398 

mafic melts, with low SiO2 (< 50 wt.%) and high CaO (> 6 wt.%), (Fig. 12, Table 8); the bulk 399 

scoria composition is slightly less-evolved (45.8 – 49.3 wt.% SiO2) than the NE Bay scoria 400 

(AI14-438, 49.0 – 52.4 wt.% SiO2). 401 

 402 

Petrological variation in felsic pyroclastic deposits 403 

Pumice clasts are typically crystal poor, with < 5% crystals. Ternary feldspar is the dominant 404 

crystal phase (oligoclase to anorthoclase composition ± sanidine) with one ferromagnesian 405 

phase of either amphibole or fayalitic olivine, with minor magnetite ± ilmenite ± apatite, and 406 

rarely augitic clinopyroxene is present. One exception to this is the intermediate sample 407 

AI14-459 which has ~15% crystals, with large amphibole (up to 3 mm) phenocrysts. Crystal 408 

phases are not zoned in BSE, and preserve euhedral crystal habits. Groundmass is typically 409 

glassy, with varying amount of feldspar microlites. 410 

 Feldspar compositions from these pumice fall deposits intersect and straddle those 411 

from the evolved effusive eruptions (Fig. 7, Table 4): with compositions ranging between 412 

An51Ab47Or2 and An0.5Ab58.5Or41. Some eruptions have relatively restricted feldspar 413 
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compositions (e.g. AI14-488: An0.5Ab65.5Or34 – An1Ab69Or30) whereas other extend over wide 414 

ranges (e.g. AI14-435: An2Ab73Or25 – An18Ab76Or6). In trace elements, the felsic pyroclastic 415 

feldspars plot within the higher- and lower-Eu trend (Fig. 8d). No clear core-rim relationships 416 

were found in feldspar compositions: only one pumice fall deposit in Middleton’s Valley 417 

(AI14-459) has slightly less-evolved cores relative to rim compositions (cores: An51Ab47Or2 – 418 

An20Ab74Or6; rims An43Ab54Or2 – An20Ab74Or6). This comparatively crystal-rich sample (see 419 

Table 3) also bridges the divide between our felsic and mafic lava feldspar populations. 420 

Fosterite content in olivines (Fo1 – 57) from felsic pyroclastic samples mirrors the 421 

relationships between pyroclastic and effusive lava feldspars- intersecting with and extending 422 

the range in compositions of mafic lava sourced olivines (Fig. 10b, Table 6). Again, no 423 

differences between core and rim compositions are observed in olivine from all pyroclastic 424 

samples (Fig. 10c). 425 

 Glass compositions of felsic pyroclastic deposits range from ~ 66 wt.% to 75 wt.% 426 

SiO2 (Fig. 12; Table 8). All sampled pyroclastic deposits have relatively homogenous glass 427 

compositions, with the one exception being the glass from the compositionally-zoned fall 428 

deposit, previously described in Chamberlain et al. (2016; Fig. 12a). In detail, individual 429 

sample variation in trace elements shows up to a four-fold variation in elements compatible in 430 

feldspar (Ba, Sr; Fig. 12b). However, limited variations in source-related trace elements (such 431 

as Th/U ratio; Fig. 12c) are evident between samples, where variation within a single sample 432 

is of the same magnitude or greater than variations between samples. 433 

 434 

Intensive variables  435 

Where available, two co-existing oxides (magnetite and ilmenite) were analysed and Fe-Ti 436 

oxide thermometry of Ghiorso & Evans (2008) was applied (if the pairs passed the 437 

equilibrium test of Bacon & Hirschman, 1988). Iron-titanium oxide derived temperatures 438 
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range from 932 °C to 1037 °C for the mafic lavas (Table 8). Oxygen fugacity varies between 439 

–0.45 log units relative to the Nickel-Nickel Oxide (Δ NNO) buffer to +0.05 log units Δ 440 

NNO. Felsic lavas and pyroclastic samples yield Fe-Ti oxide temperatures ranging from 850 441 

°C to 960 °C, and fO2 ranging from –0.5 log units Δ NNO to –2.3 log units Δ NNO (Table 8).  442 

 Plagioclase-melt thermometry (Putirka, 2008) and alkali feldspar-melt thermometry 443 

(Putirka, 2008) was applied to all samples where equilibrium between feldspars and melt 444 

could be established (Putirka, 2008). Pressures of 330 MPa were assumed for mafic samples, 445 

as this is consistent with equilibration at the base of the crust, (Klingelhöfer et al., 2001) and 446 

pressures of 250 MPa were used for felsic samples, based on melt inclusion entrapment 447 

pressures modelled from samples of a zoned fall deposit on Ascension Island (Chamberlain et 448 

al., 2016). This modelling yielded temperatures within a similar range (but often higher) to 449 

that of the Fe-Ti oxide thermometry (Table 8) with modelled temperatures ranging between 450 

772 °C and 1034 °C for felsic samples, and between 1093°C and 1174 °C for mafic samples 451 

(Table 8). Although a specific pressure was assumed, testing demonstrated that the pressure 452 

effect is minimal, with less than 10 °C variation in estimated temperatures with > 200 MPa 453 

variation in assumed pressures.  454 

Using measured alkali feldspar-melt compositions and temperatures modelled from 455 

plagioclase-melt thermometry, the alkali feldspar-melt hygrometer of Mollo et al. (2015) was 456 

also applied (see Table 8 for summarised results, full results in Electronic Appendix 2). 457 

Calculated water concentrations are high (average concentrations for the felsic units between 458 

4.66 wt.% and 8.12 wt.%, Table 8). Modelled water contents associated with the felsic lava 459 

and dome samples have consistently lower water concentrations than the explosively erupted 460 

samples. These high concentrations of water in explosive felsic samples are similar to those 461 

measured in Ascension Island melt inclusions (Chamberlain et al., 2016) and with the high 462 
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loss on ignition from felsic pyroclastic samples measured during XRF analyses (see 463 

Electronic Appendix 2 for full XRF results).  464 

 465 

DISCUSSION 466 

Origin of compositional variations in Ascension Island magmas 467 

A range in whole rock and crystal compositions are evident in Ascension Island samples, 468 

with no clear differences observed between effusively erupted lava samples and explosively 469 

erupted pumice and scoria samples (Fig. 4, 7a). When considered alone, the variations in 470 

whole rock chemistry presented here (Fig. 4) do not give reason to disagree with previous 471 

whole rock studies of Ascension Island, which have suggested that fractional crystallisation is 472 

the dominant mechanism for producing evolved melts (e.g. Harris, 1983; Kar et al., 1998; 473 

Jicha et al., 2013; Chamberlain et al., 2016), evidenced by the continuous trend in major and 474 

trace element concentrations (Figs. 3, 4; Weaver et al., 1996; Kar et al., 1998; Jicha et al., 475 

2013), and the lack of whole rock radiogenic isotopic ratio variation with major element 476 

concentrations  (Fig. 2d; Weaver et al., 1996; Kar et al., 1998; Paulick et al., 2010).  477 

 Partial melting of mafic material is another process through which felsic melts have 478 

been proposed to be generated at ocean island volcanoes (e.g. Borhson & Reid, 1997; 479 

Sverrisdottir, 2007; Carley et al., 2011; Kuritani et al., 2011). Unlike other ocean islands, 480 

there is no evidence for divergence in Nd isotopic ratios between mafic and felsic melts (Kar 481 

et al., 1998), and major and trace elements vary co-linearly (Fig. 2b; Kar et al., 1998; Jicha et 482 

al., 2013) which previous studies suggest is not supportive of a partial melting origin for 483 

evolved melts at Ascension. Some minor assimilation and contamination has been inferred to 484 

be partly responsible for the radiogenic Sr isotopic compositions of more felsic melts (Kar et 485 

al., 1998), but this cannot be quantified based on the new data presented here, and it is noted 486 

that none of the earlier isotopic data was acid leached prior to analysis (cf. Davidson et al., 487 
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1997). At other volcanic systems where partial melting has been shown to be a significant 488 

driver for the production of evolved magmas, magmatic compositions can be bimodal, with 489 

few erupted magmas of intermediate composition (e.g. Charlier et al., 2013, Meade et al., 490 

2014), which is not observed at Ascension (Fig. 3, 4). However, small degree direct partial 491 

melting of a seawater-altered basaltic/gabbroic parent cannot be ruled out with our new data 492 

set for Ascension (cf. Kar et al., 1998), and may be responsible for some of the variation in 493 

87Sr/86Sr isotopic ratios (Fig. 2a).  494 

Magma mixing between mafic and felsic magmas to produce the intermediate rocks 495 

could be responsible for the continuum in whole rock compositions at Ascension (Fig. 3), yet 496 

non-linear variations in major and trace elements in both whole rock compositions (especially 497 

in TiO2, K2O and Zr, Fig. 4) and crystal phases (Fig. 8d, 10d) suggest that this is unlikely. 498 

Similarly, crystal compositions form coherent trends within individual samples, with no 499 

evidence for the distinct populations (cf. Geist et al., 1995; Troll & Schminke, 2002; Fig. 8 – 500 

11) that could represent growth in different magmas. Petrographic data shows no evidence of 501 

magma mixing, therefore fractional crystallisation is hypothesised to be the main mechanism 502 

for generation of felsic melts at Ascension Island, in agreement with previous authors (cf. Kar 503 

et al., 1998; Jicha et al., 2013). 504 

To test the fractional crystallisation hypothesis further, MELTS modelling of isobaric 505 

liquid lines of descent (Gualda & Ghiorso, 2015) from the least evolved sample (AI14-438, 506 

see Table 1) has been undertaken at a range of pressures, from 330 MPa (the base of the 507 

crust, Klingelhöfer et al., 2001) to 90 MPa (~ 3.5 km depth), as well as an isothermal 508 

decompression model from 90 MPa to 1MPa (Fig. 13, 14). An initial starting composition 509 

from AI14-438 was used, with an assumed water concentration of 0.5 wt.% H2O, and fO2 at 510 

the NNO-buffer based on Fe-Ti oxide thermometry (Table 8) and analyses of nearby MAR 511 

glasses (Almeev et al., 2008) which tap a mixed enriched Ascension Island-type source and a 512 
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depleted high εHf mantle (Paulick et al., 2010). It has been shown that oxygen fugacity is not 513 

solely fractionation dependent at Ascension Island (Chamberlain et al., 2016) and this one-514 

step MELTS modelling does not properly reflect the fractionating phases at the more-evolved 515 

end. Thus, at T< 950 °C the composition of AI15-621 was used, the least-evolved of the 516 

felsic lava samples, with an assumed water concentration of (5.1 wt.% H2O) from feldspar-517 

melt hygrometry, and fO2 -1.5 ΔNNO from Fe-Ti oxide thermometry (Table 8). 518 

The modelled liquid lines of descent of this two-step MELTS modelling reproduce the 519 

observed variations in whole rock composition (Fig. 13), with the models run at higher 520 

pressure (250 MPa or greater) having a better fit for MgO and CaO concentrations (Fig. 13b, 521 

c), suggesting fractionation at depths of more than 7 km. At the more evolved compositions 522 

(>68 wt.% SiO2), fractionation at 170 MPa better reproduces the more evolved compositions 523 

of Ascension Island magmas (Fig. 13a). Whilst isobaric fractionation is unlikely to occur at 524 

Ascension Island, the MELTS modelling shows that simple fractional crystallisation can 525 

replicate the observed variations in whole rock composition, when oxygen fugacity can be 526 

controlled to represent that measured in Ascension Island magmas. Similarly, modelled 527 

increases in H2O with increasing SiO2 support the modelled high melt H2O concentrations 528 

from feldspar-melt hygrometry (Table 8), especially at higher pressures of evolution (Fig. 529 

13d). 530 

 531 

Fractional crystallisation in mafic and intermediate magmas  532 

Fractional crystallisation, as modelled by MELTS, has demonstrated that the observed whole 533 

rock compositional range within the Ascension Island magmatic suite can be reproduced in 534 

this process. For the mafic and intermediate magmas, the crystal compositions measured 535 

overlap well with the modelled crystallising phases from MELTS (Fig. 14), and up to 70% 536 

total fractionation has occurred to produce the most evolved intermediate magmas (Fig. 13). 537 
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Whilst MELTS details proportions of phases fractionating, previous studies have 538 

demonstrated some limitations on the model’s ability to accurately predict crystallisation of 539 

water-bearing phases (Gualda et al., 2012), clinopyroxene (Fowler & Spera, 2010) and apatite 540 

(Rooney et al., 2012). Therefore, to yield further insights into proportions of phases 541 

crystallising least-squares modelling of the major elements has been undertaken, constrained 542 

by using only phases observed in samples of Ascension Island volcanics.  543 

Major element least-squares modelling was carried out using Petrograph (Petrelli et 544 

al., 2005, built on the least-squares modelling of Stormer & Nicholls, 1978), and to include 545 

entrainment where appropriate (cf. Kar et al., 1998, Electronic Appendix 3). A comparison of 546 

phases crystallising at each modelled stage between MELTS and Petrograph can be seen in 547 

Electonic Appendix 3. Two stages of evolution are considered initially, to attempt to 548 

reproduce the variations in mafic to intermediate whole rock compositions (Fig. 3): Stage 1) 549 

from the NE Bay Scoria (the most primitive basalt; AI14-438) to the Wideawakes (an 550 

intermediate Zr/Nb basalt marking the inflection in MgO vs TiO2, Fig 4c; AI-445); Stage 2) 551 

Wideawakes (AI14-445) to Letterbox (the intermediate lava; AI14-423). In both stages, 552 

compositions of plagioclase feldspar, olivine, clinopyroxene, ilmenite and magnetite 553 

measured in the parent sample were used. Apatite was also used as an accessory phase, given 554 

its presence as inclusions in mineral phases and the variation in P2O5 evident in whole rock 555 

data (Table 2; full details of modelling conditions see Electronic Appendix 3).  Whilst this 556 

modelling is limited by the assumption of uniform compositions of the fractionating phases, 557 

and has no pressure or temperature dependence, it provides a first order constraint on modal 558 

fractionating assemblage provided the sum of the squared residuals is < 2 (Stormer & 559 

Nicholls, 1978).  Stage 1 fractionation modelling (sum of squared residuals [SSR] 0.25) 560 

suggests that ~ 8% fractionation of an assemblage dominated by plagioclase feldspar with 561 

subordinate olivine and apatite, coupled with the minor entrainment (4%) of clinopyroxene 562 
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and two oxides could produce the compositions of AI-445. The second stage of modelling 563 

(SSR 0.05), to produce the intermediate Letterbox magmas, suggests a further 56% 564 

fractionation (0.4 melt fraction remaining) of an assemblage dominated by feldspar and 565 

clinopyroxene, with minor olivine, magnetite, ilmenite and apatite (See Electronic Appendix 566 

3 for graphic representation; and comparison with modelled MELTS fractionating phases). 567 

 These modelled fractionating assemblages have been further tested using published 568 

distribution coefficients for Rb, Sr, Y, Zr, Nb and Ba in the fractionating phases (Fig. 15, full 569 

details and references for the distribution coefficients used is given in Electronic Appendix 570 

3). Generally fractional crystallisation (excluding any accumulation) can reproduce observed 571 

variations in Rb, Nb, Ba and Zr, with a poorer agreement with Sr and Y data (Fig. 15 and 572 

Electronic Appendix 3) for the variation observed in mafic magmas.  573 

 574 

Felsic magma evolution  575 

Felsic magma evolution through closed system fractional crystallisation, modelled by 576 

MELTS, is shown to reproduce well the major elements of the whole rock data for Ascension 577 

in most elements (Fig. 13), and pressure of fractionation has a significant effect on total 578 

alkalis (Fig. 13a) reflecting the pressure-sensitivity of feldspar crystallisation (Fig. 14a). 579 

Fractionating assemblages again reproduce well the measured compositions of feldspar, 580 

olivine and clinopyroxene. In the more-evolved lavas, growth of low-pressure phases 581 

(evidenced by feldspars with ~4 – 6 wt.% K2O and Na-rich clinopyroxenes, Fig. 14a, c) 582 

reflect growth at a range of pressures (cf. isothermal decompression crystal compositions 583 

from MELTS modelling; Fig. 14) which are not observed in equivalent explosive deposits.  584 

Again, to supplement the MELTS modelling, major element least-squares modelling 585 

was carried out using Petrograph (Petrelli et al., 2005; from Stormer & Nicholls, 1978). Two 586 

further stages of evolution are considered, to attempt to reproduce the trends observed in 587 
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whole rock concentrations (Fig. 3): Stage 3) Letterbox (AI14-423) to Devils Riding School 588 

(representative of the trachytic lavas on Ascension, Fig 3; AI15-621) and Stage 4) Devils 589 

Riding School (AI15-621) to Middleton’s Ridge (most-evolved rhyolite, AI-94). In both 590 

stages, compositions of feldspars (plagioclase and ternary feldspar), olivine, clinopyroxene, 591 

ilmenite and magnetite measured in the parent sample were used. Apatite was also used as an 592 

accessory phase, given its presence as inclusions in mineral phases and the variation in P2O5 593 

evident in whole rock data (Table 2; full details of modelling conditions see Electronic 594 

Appendix 3).  595 

 Stage 3 (SSR 1.23) requires a further 60% fractionation (0.16 melt fraction remaining 596 

from initial mafic starting sample) of an assemblage again dominated by plagioclase feldspar, 597 

with subordinate clinopyroxene, apatite, ilmenite, and minor entrainment of magnetite (1%). 598 

Contrastingly, MELTS modelling suggests both biotite and orthopyroxene should begin to 599 

fractionate (neither of which have been observed on Ascension Island, Electronic Appendix 600 

3). Stage 4 (SSR 0.08) shows a clear change in fractionating assemblage with ternary feldspar 601 

dominating the fractionating assemblage with clinopyroxene and magnetite, and requiring a 602 

further 57% fractionation (0.07 melt fraction remaining, in agreement with MELTS 603 

modelling of liquid lines of descent: 0.06 melt fraction remaining, Fig. 13). Minor 604 

accumulation (4%) of fayalite, ilmenite and apatite contributes to the evolution of the felsic 605 

magmas (see Electronic Appendix 3). These inferred fractionating phases are in good 606 

agreement with the observed crystal phases present in Ascension samples with feldspar being 607 

the dominant crystal phase present, with minor fayalitic olivine or clinopyroxene present, 608 

unlike MELTS modelling which again fails to accurately reproduce the observed mineral 609 

phases, with the suggested presence of leucite and orthopyroxene (Table 3, Electronic 610 

Appendix 3). 611 
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 Trace element modelling of the proposed fractionating assemblages was undertaken 612 

for stages 3 and 4, again excluding any accumulation of phases. The results of this modelling 613 

show that Ba is successfully modelled by this fractionating assemblage, with moderate but 614 

less consistent results for modelled vs. measured Sr and Nb (Fig. 15, Electronic Appendix 3). 615 

There is poor agreement between modelled and measured Zr, Rb and Y (Fig. 15, Electronic 616 

Appendix 3). Zircon is observed in the most evolved samples, but fractionation of this phase 617 

has not been modelled as the proportions are challenging to quantify using major element 618 

modelling, although it could be the cause of the variations between observed and modelled 619 

concentrations of Zr and Y in the felsic magmas of Ascension. We note that accumulation or 620 

fractionation of minor phases, whilst not significant in terms of the major element evolution 621 

of the felsic melts, can significantly affect the trace element compositions of melts. With a Kd 622 

of ~ 40 in rhyolitic apatites (Pearce & Norry, 1979), Y concentrations will be significantly 623 

affected by even minor amounts of fractionation of this phase. 624 

  625 

The role of ascent rate and oxygen fugacity 626 

 Use of MELTS modelling to yield crystal compositions has highlighted the role of crystal 627 

growth in the upper crust during ascent in the presence or absence of phases in the felsic 628 

magmas. Moderate 4 – 6 wt.% K2O feldspar and aegirine-augite are only found in felsic 629 

lavas; in felsic pyroclastic samples no feldspar has 4 – 6 wt.% K2O and fayalite is the 630 

common ‘mafic’ phase (Fig. 10b)- rare clinopyroxene is augitic in composition, and reflects 631 

fractionation at pressures ≥ 90 MPa (Fig. 14c). Pyroclastic samples have high modelled water 632 

concentrations (Table 8) perhaps reflective of higher pressure storage (Fig. 13d, cf. Di Matteo 633 

et al., 2004; Brenna et al., 2014). Combining the lack of chemical zonation (Figs 9c, 10c), the 634 

euhedral nature of the phenocryst phases (Fig, 6), and no low-P phases forming (cf. Fig. 14c), 635 
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ascent rates for pyroclastic magmas, fractionating at high pressures (≥ 250 MPa, c.f. Fig. 13) 636 

is likely to be rapid and warrants further comparison with their effusive counterparts. 637 

   In other alkaline systems it has been shown that variations in fO2 at constant 638 

temperatures can result in variable phase assemblages (White et al., 2009; Markl et al., 2010). 639 

Given the large variation in calculated fO2 within Ascension Island magmas (Table 8), some 640 

of the small variation around liquid lines of descent, and mismatch between the MELTS-641 

modelled vs. observed phases, may stem from variable phase crystallisation at differing fO2 642 

conditions, as well as variations in ascent rate and depth to storage regions within the lower 643 

crust.  644 

 645 

Spatial and temporal variations in magmatism at Ascension Island 646 

Temporal and spatial variation of mafic magmas 647 

Whole rock major and trace element data and crystal compositions show little variation 648 

between samples of older and younger lavas (Table 2, Fig. 4) from the same eruptive centres, 649 

suggesting that the mode of mafic magma generation and ascent has been relatively constant 650 

for the subaerial (and exposed) history of Ascension Island. This is in agreement with 651 

previous whole rock isotopic data, which shows no clear variation in the subaerial edifice of 652 

Sr, Nd or Pb isotopic ratios over time, indicative of source characteristics (Weaver et al., 653 

1996; Kar, 1997; Paulick et al 2010; Jicha et al., 2013).  While there is no temporal variation 654 

in the composition of mafic subaerial magmas erupted on Ascension, there are significant 655 

spatial differences in the phenocryst percentages, whole rock compositions, and crystal 656 

compositions, depending on the location of the eruptive centre (detailed in Table 1; Table 3, 657 

Figs. 4, 8, 10). South Coast lavas have the highest crystal contents (>17 %) and the least-658 

evolved crystal compositions (down to An82, and Fo87; Fig 8, 10), whereas the Letterbox 659 



27 
 

 

samples from the SE of the island are intermediate in composition, contain clinopyroxene as 660 

a minor component (instead of olivine; Table 3), and more restricted feldspar compositions. 661 

 662 

Origin of the crystal cargo 663 

Given the marked differences in crystallinity between the South Coast lavas (AI14-522 and 664 

AI14-514; Table 1) and the other mafic to intermediate lavas (Table 3), modelling of 665 

plagioclase and olivine equilibrium compositions, based on the whole rock compositions at 666 

an assumed temperature and pressure, following the method of Price et al. (2012), was 667 

undertaken (Fig. 9). The range in olivine Mg# from different eruptive centres (Fig. 9) shows 668 

that not all of the olivine crystal cargo is modelled to be in equilibrium with the melt in which 669 

it is erupted (Fig. 9b). Rim analyses are just as likely to be in disequilibrium with the whole 670 

rock compositions as core analyses. This range in olivine Mg# shows that some crystals are 671 

not phenocrystic, despite the lack of significant overgrowths and the crystals mostly having a 672 

euhedral to subhedral habit (Fig. 6). 673 

Similarly, plagioclase feldspar compositions are not in equilibrium with their whole 674 

rock compositions (Fig. 9a) and yet only feldspars from the South Coast lavas display 675 

reaction rims and anhedral cores (Fig. 6b). Whilst the calculation of equilibrium plagioclase 676 

compositions (following the method of Panjasawatwong et al., 1995) is only calibrated for 677 

plagioclase feldspar compositions (and not in alkaline systems such as Ascension), and thus 678 

could be a  potential reason for why feldspars are in apparent disequilibrium, single samples 679 

preserve a wide variation in An content in the feldspars, showing that irrespective of the 680 

modelled equilibrium conditions, significant amounts of feldspar crystals will not be in 681 

equilibrium with their host rock composition.   682 

Mafic lavas, excluding those from the South Coast group, are clearly in chemical 683 

disequilibrium with their feldspars, with less variation from the calculated equilibrium 684 
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composition for olivines (Fig. 9). Densities of the mafic magmas were calculated following 685 

the method of Bottinga & Weill (1970), at pressure of 330 MPa (the base of the crust 686 

(Klingelhöfer et al., 2001) using measured whole rock compositions and a water 687 

concentration of 0.5 wt.%. Densities of mafic magmas are on the order of 2.7 g/cm3, 688 

remarkably similar to that of plagioclase feldspar (2.6 – 2.7 g/cm3, Scoates, 2000; Ghiorso & 689 

Gualda, 2015), yet less dense than olivine and clinopyroxene, (~3.6 g/cm3 and ~3.2 g/cm3 690 

respectively, Scoates, 2000; Ghiorso & Gualda, 2015). Thus, fractionating feldspar in a zone 691 

of magma storage will not sink, and instead may form lateral mushy cumulates as the magma 692 

evolves, whereas olivine and clinopyroxene have bigger density differences with the mafic 693 

magmas, and thus can sink more effectively. As the mafic magma reaches eruptible 694 

conditions, either due to concentration of volatiles within the magma (e.g. Stock et al., 2016), 695 

tectonic destabilisation of the system (e.g. Allan et al., 2012) or through gas injection (e.g. 696 

Caricchi et al., 2018), the mafic magma rapidly incorporates these lateral mushy feldspar 697 

antecrysts, producing the wide range in feldspar compositions found within single eruptions, 698 

that are in disequilibrium with their whole rock composition, yet native to the magmatic 699 

system (Fig. 9a, 14a).  The timescale of incorporation of these antecrystic crystals prior to 700 

eruption must be short, as no zonation is observed (see Figs. 8 – 10), and feldspars generally 701 

retain their euhedral appearance (Figs. 5, 6). Similarly, the mushy storage regions in which 702 

the feldspars and mafic phases are forming are transient; no evidence is preserved for long-703 

lived melt-dominant magma storage regions for mafic to intermediate magmas, with no 704 

evidence for incorporated crystals seeing more than one ‘triggering’ event (cf. Kahl et al., 705 

2013). 706 

Role of crystal entrainment in mafic to intermediate magma genesis: Excluding the 707 

South Coast group lavas, all other mafic and intermediate lavas have crystallinities less than 708 

5% (Table 3), with limited evidence for chemical zonation (Fig. 10c) and euhedral crystal 709 
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habits (Fig. 4, 6), thus incorporation of mushy antecrysts (which are subsequently resorbed) 710 

appears unlikely to constitute more than 5% (total rock crystallinity) of the rock volume. The 711 

similarities in antecrystic and phenocrystic crystal cargo in Ascension Island lavas make 712 

assessing the proportions of assimilated material challenging, as incorporation of these 713 

antecrysts may merely shift the whole rock compositions along the modelled liquid line of 714 

descent. This has implications for modelling the total amount of fractional crystallisation 715 

responsible for individual mafic and intermediate magmas, thus these estimates of degree of 716 

fractional crystallisation from both MELTS and the least-squares modelling must be treated 717 

with caution. 718 

Lavas in the South Coast group have relatively high crystallinity compared with other 719 

mafic and intermediate lavas (Table 3), with crystals that show the most zoning in BSE 720 

imagery and major and trace element analyses (Fig. 6, 8), and feldspars that lie furthest from 721 

the modelled equilibrium compositions (Fig. 9). These South Coast lavas are also observed to 722 

contain significant proportions of plutonic lithic clasts (ranging from gabbros to syenites, 723 

Roedder & Coombs, 1967; Harris et al., 1982; Harris, 1983; Webster & Rebbert, 2001). 724 

These observations suggest that the range in compositions of feldspar and olivines found in 725 

South Coast lavas is the result of incorporation of large amounts crystals from other sources, 726 

as antecrysts or xenocrysts (Charlier et al., 2005). Potential sources of contaminant crystals 727 

are oceanic crust (thus crystals are xenocrystic), plutonic bodies related to Ascension Island 728 

magmatism (thus antecrysts), or from a mushy, not yet solid fractionated crystal residue (also 729 

antecrysts, as in the other mafic to intermediate lavas, above). Few analyses of crystals from 730 

the abundant lithic clasts exist, however feldspar compositions from gabbros overlap those 731 

found in the mafic lavas (Harris, 1983) and isotopic data suggests a cogenetic origin for 732 

gabbros and mafic lavas (Weis et al., 1987). Contrastingly, ocean crust feldspars define a 733 

lower K2O trend than alkaline-magmatism-sourced feldspars when plotted against An content 734 
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(Davis et al., 2007). No difference is seen in the feldspar and olivine compositions of the 735 

South Coast lavas (Fig. 7 – 10), suggesting that incorporated crystals are antecrystic (and not 736 

xenocrystic, see representative compositions of Mid-Atlantic Ridge feldspar crystals on Fig. 737 

8b) in origin. No evidence is seen in crystal compositions or textures for mixing with a 738 

chemically distinct magma, thus mechanical incorporation of antecrystic plutonic material 739 

(e.g. Humphreys et al., 2009) is our favoured method by which these materials are included 740 

within the South Coast lavas, on top of the ‘background’ accumulation of mushy antecrystic 741 

material similar to the other mafic and intermediate lavas.  742 

South coast lavas are the only samples studied here which show overgrowths on 743 

feldspars (Fig. 6b), glomerocrystic textures (Fig. 5b) and increased crystallinity, suggestive of 744 

higher degrees of antecryst incorporation. The relative importance of antecrysts in south coast 745 

lavas could be due to these south coast magmas having a greater ability to erode these deep 746 

mafic plutonic bodies upon ascent, or that that these deep mafic plutonic bodies are only 747 

present in the source and ascent region of the crust through which the south coast lavas travel 748 

prior to eruption.  A magma’s ability to mechanically disaggregate any lithic fragment is 749 

dependent upon its enthalpy and composition (Glazner, 2007). The variations in whole rock 750 

compositions between south coast lavas and other mafic lavas is not significant (Fig. 4), thus 751 

only variations in temperature could change the magmas ability to erode and disaggregate the 752 

plutonic lithic fragment. Modelled feldspar-melt temperatures are similar across the suite of 753 

mafic lavas (Table 8) and so it seems unlikely that increased antecryst incorporation is due to 754 

an increased ability of south coast magmas to erode plutonic lithic fragments. Instead, the 755 

increased proportion of antecrysts in south coast lavas is suggested to reflect an increased 756 

presence of mafic plutonic rocks at depth in this region. These plutonic rocks are anteliths, 757 

related to Ascension Island generation and not oceanic crust plutonic rocks (Fig. 8b), and 758 
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highlight the lateral variability in plutonic or mushy regions within the Ascension Island 759 

crust.  760 

 761 

Crustal control on the location of felsic eruptive centres 762 

Eruptions of felsic magma occurred from two main centres: the older central felsic complex, 763 

and the younger eastern felsic complex with mafic magmas erupted around the peripheries of 764 

these centres (Fig. 1; Jicha et al., 2013). In these regions, felsic magmas - erupted as lavas 765 

and pyroclasts - are the dominant magma type. Spatial separation of mafic and felsic lavas 766 

has been seen at other ocean islands (both active and extinct), and has been suggested to be a 767 

result of crustal structure inhibiting the ascent of more dense mafic magmas in the felsic 768 

complexes (e.g. Mahood & Hildreth, 1983; Druitt et al., 1995; Carracedo et al., 2007; Brenna 769 

et al., 2015). 770 

 Active-source tomography reveals an area of elevated seismic velocities in the core of 771 

the island, at 6.5 km depth beneath the felsic complexes (Evangelidis et al., 2004). This was 772 

interpreted to represent a single crystallised magma body, supported by the presence of 773 

plutonic lithic clasts in the erupted products (e.g. Roedder & Coombs, 1967; Harris, 1986; 774 

Weis et al., 1987; Hobson, 2001; Webster & Rebbert, 2001). This central core of nested 775 

plutonic rocks (of gabbroic through to granitic compositions – Roedder & Coombs, 1967) 776 

under the felsic complexes could inhibit the ascent of almost all mafic magmas in these 777 

regions.  778 

The presence of plutonic rocks in ocean island crust has long been known to affect the 779 

evolution of magmas prior to eruption—the volcanic islands of Terceira (Mungall & Martin, 780 

1995) and Oki-Dōzen (Brenna et al., 2015), among others, have evidence for central felsic 781 

complexes (both as plutonic rocks, and as storage regions for felsic volcanic eruptions) which 782 

inhibit the eruption of mafic magmas. Ascension Island has a modelled growth rate of 0.4 783 
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km/Myr (Minshull et al., 2010), which is significantly lower even than post-shield Hawaii 784 

(0.9 km/Myr, Minshull et al., 2010 and references therein) and dramatically lower than shield 785 

stage Mauna Kea (8.6km/Myr, Minshull et al., 2010 and references therein). Therefore we 786 

suggest that this ‘filtering’ of mafic magmas and spatial segregation of mafic and felsic 787 

eruptive centres could be a result of low rates of magmatic flux. If magmatic flux is higher, 788 

this could destabilise the central felsic systems, and mafic and felsic magmas would no 789 

longer show such clear spatial separation, and mixing textures would be much more 790 

dominant, such as those observed in Tenerife (Sliwinski et al., 2015) or Iceland (Carley et al., 791 

2011), where mafic and felsic magmas are still produced, but with less clear spatial 792 

separation and increased role of partial melting of crustal material than that inferred at 793 

Ascension. 794 

We suggest that multiple plutonic bodies representative of multiple ephemeral magma 795 

reservoirs, rather than a single magma body, are necessary to generate the range in 796 

compositions seen on Ascension Island as there is no evidence from crystal compositions for 797 

repeated use of a single magma storage region which is repeatedly rejuvenated (cf. Kahl et 798 

al., 2013). This observation suggests the ‘plutonic body’ identified seismically (Evangelidis 799 

et al., 2004) beneath Ascension is a series of smaller-volume, nested plutonic bodies which 800 

cannot be resolved seismically from a single large body in the same dimensions (Bauer et al., 801 

2003).  802 

The presence of plutonic lithic clasts in pyroclastic fall deposits on Ascension Island 803 

(including some of the oldest fall units on the island, Hobson, 2001), combined with the 804 

rhyolitic nature of the oldest-dated subaerial lava (Jicha et al., 2013), implies that the plutonic 805 

complex was established well before the beginning of the subaerial phase of Ascension 806 

Island’s volcanic history. While the felsic plutonic and volcanic rocks share an apparently 807 

common origin (with similar isotopic characteristics, Weis et al., 1987 and following the 808 
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same liquid line of descent, Harris et al., 1982) the timing of plutonic formation must pre-date 809 

the earliest subaerial eruptions on the island (1094 ka; Jicha et al., 2013), and could relate to 810 

the more voluminous submarine volcanism that began ~5 – 6 Myr ago (Minshull et al., 2010; 811 

Paulick et al., 2010). 812 

 813 

The magmatic plumbing system 814 

Here we combine our new results with all previously published data to present a model for 815 

the magmatic plumbing system underlying Ascension Island (Fig. 16) during the subaerial 816 

phase of activity from ~1 Ma to present. The key features of the model are as follows: 817 

1) A zone of melt extraction from which all Ascension Island volcanism is sourced, at 818 

varying degrees of partial melt (Fig. 16; Paulick et al., 2010; Jicha et al., 2013). This 819 

melt extraction zone is geochemically distinct from the mantle melting responsible for 820 

the significantly larger volume submarine volcanism of Ascension which was active 821 

from ~5-6 Ma to ~3 Ma (Minshull et al., 2010; Paulick et al., 2010).  822 

2) Heterogeneity in the lower crust affects the ascent and incorporation of antecrysts in 823 

basaltic melts. The variably over-thickened layer 3 (lower crust) presently underlying 824 

Ascension Island (Klingelhöfer et al., 2001) likely formed during the large volume, 825 

on-axis volcanism which built the submarine edifice (Minshull et al., 2010). We 826 

suggest that the over-thickening of layer 3 (represented mainly by mafic plutonic 827 

lithic clasts, not the nested felsic plutonic lithic clasts) is most significant underneath 828 

the vents for the South Coast lavas (AI14-514, AI14-522). South Coast lavas contain 829 

many crystals that are not in equilibrium with their whole rock compositions (Fig. 9), 830 

suggesting that these magmas have mechanically incorporated large numbers of 831 

antecrystic feldspar and olivine, shortly prior to eruption. This spatial heterogeneity in 832 
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deep mafic plutonic rocks is reflected in the proportions of antecrysts incorporated 833 

during ascent of mafic magmas. 834 

3) A central nested region of small discrete plutonic bodies of varying composition (of a 835 

higher proportion of felsic bodies), which forces the majority of ascending mafic 836 

magmas to stall and fractionate until they reach a level where their buoyancy has 837 

increased enough to allow them to ascend further. This is supported by the felsic 838 

plutonic lithic clasts within the Green Mountain scoria, erupted in the central felsic 839 

complex, and by mechanically incorporated plutonic lithic fragments in many felsic 840 

pyroclastic deposits (Fig. 16).  841 

4) Felsic magma evolution occurs only in the lower crust at pressures greater than 170 842 

MPa (Fig. 13). No evidence is seen for magmatic stalling (and subsequent eruption) 843 

of felsic melts stored at pressures less than 170 MPa. The only modelled entrapment 844 

pressures from melt inclusions from a zoned fall deposit on Ascension Island showed 845 

that crystals grew in a storage region at 250 MPa (Chamberlain et al., 2016), with 846 

melt inclusions having up to 4 wt.% H2O. This is in agreement with modelled 847 

entrapment pressures from felsic plutonic bodies being between 200 and 300 MPa (or 848 

6.8 – 10.2 km, assuming a crustal density of 3000 kgm-3; Webster & Rebbert, 2001). 849 

The modelled high water concentrations of melts from which feldspars have grown 850 

(Table 8) could support this storage and evolution within the lower crust (or Layer 3 851 

of Klingelhöfer et al., 2001; Fig. 13, 16). Lower crustal storage means that any unrest 852 

signals will be harder to resolve, and has implications for the methods implemented to 853 

monitor future volcanic unrest on Ascension Island. 854 

5) Magmas are erupted as discrete batches, with no evidence for long-lived storage, or 855 

for crystal recycling between eruptions in a mushy or melt-dominant magma storage 856 

region (cf. Kahl et al., 2013). Magma mixing is therefore not an eruptive trigger. 857 
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Instead, triggers could be internal (due to volatile over-pressure), or from external 858 

tectonic changes, which again presents challenges for monitoring potential future 859 

volcanic unrest at Ascension Island. 860 

6) The magmas that fed explosive and effusive felsic eruptions exhibit differences in the 861 

presence or absence of low pressure phases (Fig. 14) perhaps suggestive of variation 862 

in the location of their storage regions and ascent rates, and warrants further 863 

investigation. However, fractional crystallisation (with minor crystal entrainment) of 864 

predominantly feldspars induced by stalling (at varying depths) in the nested (more 865 

felsic) plutonic region, remains the dominant evolutionary process for all felsic 866 

magmas, irrespective of the eruptive style.  867 

 868 

Implications for the generation of felsic magmas on ocean islands 869 

The petrogenetic processes responsible for the generation of felsic magmas in ocean island 870 

volcanoes built on thin oceanic crust have long been debated. Many authors suggested that 871 

felsic magma production at ocean island volcanoes could be a proxy for the initiation of 872 

continental crust formation in the Archean (e.g., Gazel et al., 2014; Mancini et al., 2015). 873 

While the low growth rates of Ascension Island (Minshull et al., 2010) negate its use in 874 

understanding Archean felsic magma genesis, the dominance of fractional crystallisation in 875 

the generation of felsic magmas, with little evidence for magma mixing, is unusual when 876 

compared with other ocean island volcanoes (e.g., the Canary Islands and Iceland: e.g. 877 

Borhson & Reid 1997; Caroff et al., 1999; Sverrisdottir, 2007; Carley et al., 2011; Longpré et 878 

al., 2014). 879 

 880 

Open vs. closed system evolution 881 
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The new data presented here suggests evolution of Ascension Island magmas is dominated by 882 

simple crystal fractionation in a relatively closed system of short-lived discrete storage 883 

regions, and supports conclusions of previous workers (Harris et al., 1982; Kar et al., 1998; 884 

Webster & Rebbert, 2001; Jicha et al., 2013; Chamberlain et al., 2016). This is contrary to 885 

many other ocean island volcanoes where open system processes such as magma mixing and 886 

significant partial melting of oceanic crust contribute to the formation of evolved magmas, 887 

and where there is less evidence for closed system fractional crystallisation (Bohrson & Reid 888 

1995, 1997; Caroff et al., 1999; Carley et al., 2011; Weismaier et al., 2013; Longpré et al., 889 

2014; Sliwinski et al., 2015). The main factor controlling whether open or closed system 890 

behaviour dominates could be the magmatic flux: it has been shown that increased magma 891 

fluxes correspond to increased degrees of crustal assimilation and crystal entrainment at mid 892 

ocean ridges (Michael & Cornell, 1998). Ascension Island has an order of magnitude slower 893 

growth rate when compared with Hawaii (Sharp & Renne, 2005; Minshull et al., 2010), and 894 

thus we infer a significantly lower magmatic flux, which led to the development of small-895 

scale, short-lived magma storage regions, and closed system evolution of felsic magmas. 896 

Multiple volcanic centres also display evidence for relatively closed system evolution of 897 

mafic magmas by extensive fractional crystallisation to produce alkaline felsic magmas (e.g. 898 

Volcán Alcedo in the Galápagos [Geist et al., 1995], Terceira, São Miguel and Graciosa in 899 

the Azores [Mungall & Martin, 1995; Larrea et al., 2014; Jeffrey et al., 2016], and the extinct 900 

Oki-Dōzen volcano, Japan [Brenna et al., 2015]). These islands are all likely the result of low 901 

magmatic production rates, and are likely not related to a deep-seated mantle hotspots 902 

(Hildenbrand et al., 2014; Métrich et al., 2014). Fractional crystallisation always requires the 903 

formation of a large volume of plutonic rocks as a by-product of extensive fractional 904 

crystallisation. Erupted lithic fragments or surface exposures provide evidence for these 905 
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plutonic rocks (Mungall & Martin, 1995; Larrea et al., 2014; Brenna et al., 2015; Jeffrey et 906 

al., 2016).  907 

 908 

Fractional crystallisation: the space problem 909 

Extensive fractional crystallisation of > 80% mafic melt to produce the felsic magmas seen 910 

on small ocean islands such as Ascension Island and the Azores implies that significant 911 

volumes of plutonic material remain in the crust. While eruptive volumes are unconstrained 912 

at Ascension Island due to high erosion rates and dispersal over the ocean, the high degrees 913 

of fractionation responsible for a single body of felsic magma evolution suggest that 914 

significant volumes of plutonic rocks remain in the crust. Taking the evolution from NE Bay 915 

scoria to Middleton’s Ridge rhyolite as an example, in total the rhyolite represents only ~9% 916 

of the original mass of basalt. If we assume a modest eruptive volume of 0.2 km3 (compared 917 

with the AD 1630 eruption from São Miguel which evacuated ~0.85 km3 of magma [DRE, 918 

Cole et al., 1995]), then ~2 km3 of fractionated crystals, preserved as plutonic rocks, remain 919 

in the crust. Erupted volumes and degree of fractionation vary between eruptions, yet as over 920 

70 eruptions of felsic magma have occurred over the last 1 million years on Ascension 921 

(Preece et al., 2016), then a minimum of ~140 km3 of plutonic rocks may remain in the crust, 922 

with no evidence for their rejuvenation preserved in any volcanic products on Ascension 923 

Island. This could be viewed as a minimum volume, given the lack of constraints on eruptive 924 

volumes, and the unknown number of magmatic (not necessarily eruptive) events. Evidence 925 

for a central nested plutonic core (Evangelidis et al., 2004) and over-thickening of layer 3 926 

(where magmatic evolution is interpreted to occur at Ascension Island, see above) has been 927 

observed in seismic reflection surveys (Klingelhöfer et al., 2001). Evangelidis et al. (2004) 928 

suggest that the central high velocity region, inferred to consist of plutonic rocks (of 929 

unknown compositions), could have a volume approaching 7000 km3. This appears large 930 
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compared to our minimum estimates (above), however small discrete bodies of plutonics of 931 

varying composition would not be resolvable from the seismic reflection surveys, and 932 

therefore this volume represents an area affected by plutonism, not necessarily the volumes of 933 

individual plutonic bodies. Aside from over-thickening of layer 3 (Klingelhöfer et al., 2001), 934 

it remains unclear how such large potential volumes of plutonic rocks are accommodated in 935 

thin oceanic crust, yet their presence seems vital for the formation of evolved melts in low 936 

magma flux ocean island volcanoes.  937 

 938 

CONCLUSIONS 939 

• There are no differences in whole rock or crystal compositions from the lavas erupted 940 

in the same spatial regions of the island, suggesting that in the last 1 Myr the 941 

processes controlling mafic melt production and eruption have remained constant, 942 

even if source region composition and degree of partial melting have changed (cf. 943 

Jicha et al., 2013).  944 

• Spatial variation in crystallinity and in the composition and origin of crystals between 945 

mafic eruptive centres highlights heterogeneity in the lower crust under Ascension 946 

Island.  The mafic magmas which erupted along the South Coast region, as well as the 947 

Green Mountain scoria sample in the felsic complexes incorporated higher volumes of 948 

antecrysts during ascent, consistent with the observation of increased numbers of 949 

coherent plutonic lithic fragments in these lava flows. 950 

• Felsic melt evolution at Ascension Island is dominantly controlled by crystal 951 

fractionation of ternary feldspar with minor fayalite or sodic clinopyroxene, 952 

dependent upon ascent rate and oxidation state of the magma, with isotopic evidence 953 

of minor crustal assimilation of seawater-altered crustal material (Kar et al., 1998). 954 

There is no evidence for magma mixing in any of the eruptive deposits studied here, 955 
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indicating that while a wide range of magma compositions are erupted across a ~12 956 

km diameter island, they do not encounter other melts during their transport through 957 

the crust. Magmatic evolution occurs in small, short-lived, isolated magma storage 958 

regions in the lower crust. Antecrysts do not show reaction rims, and therefore their 959 

incorporation is purely mechanical and occurred late (during ascent). 960 

• Alkali feldspar-melt hygrometry reveals high water concentrations of up to 8 wt.% 961 

H2O in the more-evolved magmas. These high H2O concentrations, combined with 962 

the lack of evidence for an external trigger in the crystal chemistry suggests that 963 

internal over-pressure from high degrees of fractional crystallisation concentrating 964 

H2O in the liquid phase is a likely eruptive trigger for explosive eruptions on 965 

Ascension Island.  966 

• Felsic magmas are almost entirely erupted in the central and eastern areas of 967 

Ascension Island implying a spatial control on the evolution of felsic melts. We infer 968 

that the presence of significant volumes of plutonic bodies at depth inhibits magma 969 

ascent in these regions, and allow magmas to evolve and incorporate antecrysts. 970 

While the origin and nature of these plutonic bodies is not yet known, they must pre-971 

date the subaerial stage of Ascension Island volcanism. The presence of plutonic 972 

rocks as abundant lithic clasts in the central and eastern regions highlights the 973 

importance of heterogeneous crustal structure in the evolution of magmas in thin 974 

young oceanic crust at Ascension Island.  975 
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FIGURE CAPTIONS 1317 

Figure 1: Geological map of Ascension Island, located 90 km from the Mid Atlantic Ridge 1318 

and between the Ascension Fracture Zone (AFZ) and Boca Verde Fracture Zone 1319 

(BVFZ; inset), adapted from Weaver et al. (1995), Paulick et al. (2010) & Chamberlain 1320 

et al. (2016).  Sample locations indicated by triangles, diamonds and pentagons; 1321 

eruptive centres identified in grey font. Surface expressions of known faults outlined in 1322 

red. Major lava flow boundaries are indicated with black lines in the mafic lava flows. 1323 

Figure 2: (a) Radiogenic isotope variations in Ascension Island lavas (subaerial unless 1324 

otherwise stated); (b) Trace HFSE variation with major element variations; (c) Adapted 1325 

from Jicha et al., 2013, trace element variation in Ascension lavas, showing the 1326 

variation due to source heterogeneity, differentiation, and Fe-Ti oxide controlled 1327 

fractionation paths; (d) variation in 143Nd/144 Nd with degree of evolution (MgO). All 1328 

data presented is a combination of Weaver et al. (1995, grey diamonds), Kar et al. 1329 

(1998, orange diamonds), Paulick et al. (2010, blue squares) and Jicha et al. (2013, 1330 

crosses).  1331 

Figure 3: (a) Whole rock compositions of selected samples compared with all known 1332 

Ascension Island whole rock data in grey field- (data from Weaver et al., 1996, Kar et 1333 

al., 1998, Jicha et al., 2013). Diagram adapted from LeMaitre et al. (1989). (b) 1334 

Primitive mantle (Palme & O’Neill, 2003) normalised trace element ranges for mafic-1335 

intermediate lavas (purple), scoria samples (orange), pumice samples (yellow) and 1336 

felsic lava samples (blue). 1337 

Figure 4: Whole rock variation in major and trace elements for all studied samples of 1338 

Ascension Island mafic-intermediate lavas (purple triangles), felsic lavas (blue 1339 

pentagons) and pyroclastics both pumiceous (yellow diamonds) and scoriaceous 1340 
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(orange diamonds). Grey fields represent the full range of compositions found at 1341 

Ascension from Weaver et al. (1995). For full data set, see Electronic Appendix 2. 1342 

Figure 5: Photomicrographs of Ascension lava samples. (a, b): Young South Coast lava 1343 

sample showing a glomerocryst of feldspar and olivine; (c, d): Young Sisters lava 1344 

sample showing euhedral plagioclase feldspar in a microcrystalline matrix; (e, f): 1345 

Cricket Valley lava with sodic feldspars and minor aegirine-augite in a microcrystalline 1346 

groundmass; (g): Letterbox felsic lava with large ternary feldspar phenocrysts in a 1347 

microcrystalline groundmass; (h): Ariane lava flow with ternary feldspars and aegirine-1348 

augite in a microcrystalline groundmass. Images (a, c, e, g) in plane-polarised light; 1349 

images (b, d, f, h) in cross-polarised light. Sample numbers relate to those listed in 1350 

Table 1 and numbers in square brackets show whole rock SiO2 concentrations. 1351 

Figure 6: Back Scattered Electron (BSE) images of Ascension Island lavas. Sample numbers 1352 

relate to those listed in Table 1 and numbers in square brackets show whole rock SiO2 1353 

concentrations. Features labelled in red refer to A: Reverse-zoned feldspar; B: 1354 

Normally-zoned olivine; C: Faint oscillatory-zoned plagioclase. D: Mafic lava 1355 

groundmass, typically consisting of feldspar + olivine + magnetite ± clinopyroxene ± 1356 

ilmenite; E: Unzoned feldspar typical of felsic products; F: Unzoned fayalitic olivine; 1357 

G: Groundmass of felsic lavas flows consists dominantly of feldspar with minor 1358 

interstitial aegirine and fayalite; H: Dark in BSE cristobalite with characteristic fish-1359 

scale textures replacing groundmass and some feldspar crystals. 1360 

Figure 7: Ternary feldspar diagrams showing all feldspars differentiated by composition and 1361 

eruptive style. For full data set see Electronic Appendix 2.  1362 

Figure 8: Compositions of feldspars from (a) mafic to intermediate lavas; (b) felsic lavas and 1363 

(c, d) all Ascension Island samples. Sample areas relate to those used in Table 1. For 1364 

full data set see Electronic Appendix 2. The purple field on panel (b) shows the 1365 
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compositions of feldspars from mafic to intermediate lava samples. The pink field on 1366 

panel (b) shows the Mid Atlantic Ridge ocean crust feldspars from the Kane Fracture 1367 

Zone (Coogan et al., 2000). Core-rim differences within individual samples shown by 1368 

filled (core) and open (rim) symbols in (c); sample colours and shapes refer to those 1369 

listed in the key on (c). 1370 

Figure 9: Variation in plagioclase (a) and olivine (b) compositions with whole rock SiO2 (a) 1371 

or Mg# (b), and the calculated equilibrium compositions of the respective crystal 1372 

phases based on whole rock XRF data (Table 1, and Electronic Appendix 2). In (a) 1373 

equilibrium compositions of feldspar are calculated at 1150 °C and 330 MPa (black) 1374 

and 1050 °C and 330 MPa (grey) respectively, based on feldspar-melt and Fe-Ti oxide 1375 

thermometry (see Table 8), and the pressure at the base of the crust at Ascension Island 1376 

(Klingelhöfer, 2001). 1377 

Figure 10: Compositions of olivines from (a) mafic to intermediate lavas; (b) all pyroclastic 1378 

samples. Variations between core and rim compositions shown in panel (c), where open 1379 

symbols refer to rim analyses, and filled symbols core analyses. Sample areas relate to 1380 

those used in Table 1. For full data set see Electronic Appendix 2. The purple field on 1381 

(b) shows the compositions of olivines from mafic to intermediate lava samples. 1382 

Figure 11: Compositions of pyroxenes from all Ascension Island samples. Triangles refer to 1383 

samples of mafic to intermediate lava samples; squares and circles are felsic lava 1384 

samples. Sample areas relate to those used in Table 1. For full data set see Electronic 1385 

Appendix 2.  1386 

Figure 12: Matrix glass compositions from all Ascension Island samples. Sample areas relate 1387 

to those used in Table 1. For full data set see Electronic Appendix 2.  1388 

Figure 13: Combined liquid lines of descent modelled from AI14-438 (to 950 °C, end marked 1389 

by dashed line) and AI-621 (< 950 °C, start from dashed line) using rhyolite-MELTS 1390 
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(Gualda & Ghiorso, 2015) at 330 MPa, 250 MPa, 170 MPa and 90 MPa. Purple ticks 1391 

mark 20% increments of melt fraction remaining; grey ticks mark 10% melt fraction 1392 

remaining, black ticks show liquid composition at 5% melt fraction remaining. Initial 1393 

water concentrations for AI-438 were 0.5 wt.% H2O, from MAR glasses showing a 1394 

component of the fertile mantle end member suggested to be the source of magmatism 1395 

at Ascension Island (Almeev et al., 2008; Paulick et al., 2010). *XRF data used is a 1396 

combination of data presented here and Weaver et al. (1996) and Kar (1997). 1397 

Figure 14: Modelled fractionating crystal compositions from MELTS (purple symbols 1398 

representing different pressures of crystallisation, Gualda & Ghiorso, 2015) compared 1399 

with those measured in this study (grey symbols). The decompression trend (black 1400 

crosses) represents isothermal decompression at 800 °C from 90 to 1 MPa. 1401 

Figure 15: Trace element fractional crystallisation modelling following the stages modelling 1402 

using Petrograph (Petrelli et al., 2005). XRF data used for the modelling shown in 1403 

diamonds, the resultant modelled liquid as diamonds. Each stage (1 – 4, connected by 1404 

dashed lines) represents 0.92, 0.40, 0.16, 0.07 total melt fraction remaining. *Total 1405 

XRF data field in grey is a combination of data presented here, and Weaver et al., 1996 1406 

and Kar, 1997. 1, 2: For stages and full modelled compositions and references for 1407 

partition coefficients used, see Electronic Appendix 3. The dashed field in (a) 1408 

represents a subset of samples which plot towards syenitic samples of Ascension (not 1409 

sampled in this study) and thus not modelled here. 1410 

Figure 16: Magmatic plumbing system model for Ascension Island- magma storage regions 1411 

are not to scale. Note the geographic variation in the distribution of plutonic bodies 1412 

(mafic plutonics in blue, zone of nested felsic plutonics hashed, with examples in 1413 

purple) within the crust. Ascent paths shown in red (mafic) and purple-blue (felsics). 1414 

Crustal structure derived from Klingelhöfer et al. (2001). 1415 



































 
Sensitivity: Internal 

Table 1: Samples investigated for this study 
Sample Region  TAS   Sample   Grid Reference   Approximate 
number   classification    type  (E, N)  age of sample 
AI14-411 Youngest Sisters  Trachy-basalt mafic lava 0568706, 9123576  zero age * 
AI14-471 Older Sisters  Trachy-basalt mafic lava 0567966, 9125332  > AI14-411¥ 
AI14-423 Youngest Letterbox Trachy-andesite mafic lava 0577052, 9121328   - - 
AI14-429 Older Letterbox  Trachy-andesite mafic lava 0576443, 9121020  > AI14-423¥ 
AI14-445 Youngest Wideawakes Basallt  mafic lava 0566907, 9117906  298 ka * 
AI14-449 Older Wideawakes Trachy-basalt mafic lava 0568052, 9118271  > 298 ka ¥ 
AI14-522 Youngest South Coast Basalt  mafic lava 0575056, 9119068  120 ka “” 
AI14-514 Older South Coast Basalt  mafic lava 0574092, 9119604  > 120 ka ¥ 
 
AI14-485 Ariane flow  Trachyte  felsic lava 0573518, 9124726  169 ka * 
AI14-511 Cricket Valley  Trachyte  felsic dome 0574341, 0122098  52 ka * 
AI14-428 White Horse  Trachyte  felsic dome 0575736, 9121232  zero age * 
AI-94 Middleton’s Ridge Rhyolite  felsic lava 05693, 91214   1094 ka * 
AI-103 Mountain Red Hill Trachyte  felsic lava 05706, 91202  602 ka * 
AI14-419 Letterbox felsic lava Trachyte  felsic dome 0576780, 9120822   - - 
AI15-621 Devil’s Riding School Trachyte  felsic dome 0568897, 9120365  652 ka* 
  
AI15-618 Youngest pumice fall Trachyte  pumice fall 0573646, 9123128   - - 
AI14-435A Echo Canyon   Trachyte  pumice flow 0573840, 9124754   - - 
AI14-438 NE scoria  Basalt  scoria fall 0573786, 9124790   - - 
AI14-493A NASA unit E  Trachyte  pumice fall 0569420, 9120262  > AI14-488A ¥ 
AI14-488A NASA unit A  Trachyte  pumice fall 0569475, 9120264  - - 
AI14-459A Middleton’s Valley fall Trachy-andesite pumice fall 0569849, 9120661  - - 
AI14-552 Green Mountain scoria Basalt  scoria fall 0571584, 9121198  - - 
 
AI14-439A+ Compositionally-zoned top Trachy-andesite zoned fall 0573786, 9124790   - - 
AI14-439D+ Compositionally-zoned mid Trachy-andesite zoned fall 0573786, 9124790   
AI14-439G+ Compositionally-zoned base Trachyte  zoned fall 0573786, 9124790 
 + Data presented in Chamberlain et al., 2016. 
*  Ar-Ar age data from Jicha et al., 2014 
“” K-Ar age data from Harris et al., 1992 
¥ Stratigraphic relationship observed in the field 
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Table 2: Whole rock XRF data for Ascension samples, major elements in wt.%, trace elements in ppm. 
 
Sample AI114-411 AI14-471 AI14-423 AI14-429 AI14-445 AI14-449 AI14-522 AI14-514 AI14-485 AI14-511  AI14-428 AI-94 AI-103 
number    
Location  Young Sisters Old Sisters Young  Old Younger  Older Younger  Older Ariane Cricket Valley White Middleton’s Mountain 
   Letterbox Letterbox Wideawakes Wideawakes South Coast South Coast   Horse Ridge Red Hill 
SiO2 49.5 49.6 57.6 55.8 47.3  49.2 48.9  47.0 65.9 67.3  66.8 72.5 66.6 
TiO2 3.12 2.97 1.42 1.58 3.44  3.26 2.25  2.79 0.42 0.37  0.41 0.23 0.45 
Al2O3 15.5 15.5 16.9 16.7 15.3  15.2 16.1  15.5 16.1 15.3  15.5 12.7 15.5 
Fe2O3 12.5 12.2 8.23 8.63 13.8  12.8 10.8  13.0 4.97 4.62  4.68 3.70 5.85 
MnO 0.22 0.22 0.24 0.23 0.20  0.23 0.16  0.18 0.22 0.16  0.18 0.12 0.12 
MgO 4.33 4.16 2.10 2.29 5.11  4.24 5.46  5.87 0.28 0.11  0.28 0.06 0.04 
CaO 7.55 7.42 4.23 4.62 8.80  7.70 9.8  9.13 1.6 0.88  1.04 0.33 0.38 
Na2O 4.03 4.18 5.68 5.40 3.45  4.09 2.85  2.76 6.62 6.07  6.73 5.60 6.04 
K2O 1.41 1.50 2.53 2.37 1.08  1.44 0.80  0.77 3.71 5.11  4.30 4.72 4.94 
P2O5 0.89 1.03 0.60 1.04 0.81  1.18 0.53  0.4 0.09 0.06  0.09 0.03 0.06 
LOI -0.10 -0.02 -0.45 -0.51 -0.21  -0.34 0.24  -0.14 0.12 0.00  0.15 0.37 0.95 
Total 99.0 98.8 99.0 98.1 99.1  98.9 97.8  97.3 100.1 100.0  100.2 100.4 101.0 
 
Ba 254 263 553 503 183  266 194  120 780 554  919 69 644 
Rb 32 34 53 50 24  29 17  16 76 117  94 126 81 
Sr 455 461 381 410 423  458 501  391 135 7  24 1 4 
Pb 18 20 20 21 17  19 bdl  bdl 5 8  6 10 5 
Th 10 10 13 13 11  10 bdl  bdl 9 16  11 17 10 
U bdl bdl 1 1 1  1 bdl  bdl bdl 3.7  1.6 bdl 2.0 
Zr 279 291 483 450 214  292 158  182 818 940  823 1266 756 
Nb 52 55 80 77 42  54 28  29 135 151  139 177 121 
Y 41 44 54 52 27  49 24  30 85 62  45 113 57 
La 34 35 64 56 28  41 bdl  bdl 71 53  50 78 45 
Ce 96 105 144 140 74  115 61  49 156 119  112 177 100 
Sc 21 19 12 12 24  18 26  28 9 9  8 3 12 
V 227 203 42 55 317  208 252  314 3 4  7 4 3 
Ni 8 5 3 5 24  3 56  65 5 3  4 6 5 
Zn 122 128 128 132 115  130 83  105 150 126  136 197 151 
 
 
Sample AI114-419 AI15-621 AI15-618 AI14-435A AI14-438 AI14-493A AI14-488A AI14-459A  AI14-552  
number    
Location  Letterbox Devils Youngest Echo Canyon NE scoria NASA unit E NASA unit A Middleton’s Green Mountain 
 Felsic lava Riding School Pumice fall       Valley fall  scoria 
SiO2 65.5 66.9 65.0 65.6 48.2  68.1 64.3  58.5  47.7 
TiO2 0.32 0.33 0.33 0.31 2.49  0.18 0.33  1.06  2.85 
Al2O3 15.9 15.4 13.7 15.7 16.1  13.1 14.5  17.6  16.0 
Fe2O3 4.58 4.41 4.05 4.34 11.5  3.74 5.18  5.59  13.4 
MnO 0.17 0.17 0.16 0.20 0.19  0.11 0.19  0.16  0.18 
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MgO 0.15 0.22 0.16 0.23 6.06  0.14 0.46  1.53  5.88 
CaO 0.87 1.03 0.80 1.08 8.93  0.21 0.49  2.65  8.90 
Na2O 6.48 6.76 5.23 6.35 2.95  3.78 3.47  3.84  2.41 
K2O 4.06 4.68 4.84 4.00 1.15  5.66 4.88  2.72  0.60 
P2O5 0.57 0.04 0.07 0.04 0.94  0.02 0.03  0.37  0.31 
LOI 0.27 0.93 4.57 2.70 -0.56  5.73 6.90  4.68  0.15 
Total 98.9 100.9 98.9 100.5 97.9  100.8 100.7  98.7  98.3 
 
Ba 898 1011 49 740 207  bdl 68  446  111 
Rb 75 88 121 77 26  139 105  61  19 
Sr 83 15 50 79 446  bdl 11  338  381 
Pb 26 5 bdl 24 18  27 24  22  19 
Th 17 10 20 16 10  27 20  14  10 
U 2 3.4 bdl bdl 1  bdl bdl  1  1 
Zr 818 1062 948 770 216  1301 1276  589  171 
Nb 114 116 147 114 45  152 140  83  29 
Y 76 73 89 72 35  96 88  52  28 
La 95 57 109 91 34  135 127  64  17 
Ce 157 117 173 162 94  188 186  124  47 
Sc 6 10 bdl bdl 23  bdl bdl  6  28 
V 2 4 bdl bdl 209  bdl bdl  34  307 
Ni 3 7 bdl bdl 65  bdl bdl  6  45 
Zn 138 145 141 142 111  171 179  103  105 
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Table 3: Petrography of Ascension lavas 
Sample Region  TAS   Percentage  Vesicularity Fspar Ol Cpx Cbt Aeg Glass Ox+Accessory 
number   classification   Phenocrysts* (%)   
AI14-411 Youngest Sisters  Trachy-basalt <1 (f)  5 67 5 20    8 
AI14-471 Older Sisters  Trachy-basalt <1 (f)  7 68 10 17    5 
AI14-445 Youngest Wideawakes Basallt  3 (f, ol)  3 68 14 12    6 
AI14-449 Older Wideawakes Trachy-basalt  <1 (f, ol)  6 55 9 32    4 
AI14-423 Youngest Letterbox Trachy-andesite <1 (f)  5 80 6 10    4 
AI14-429 Older Letterbox  Trachy-andesite 2 (f)  43 77 8 9    6 
AI14-522 Youngest South Coast Basalt  40 (f, ol)  3 62 31 <1    7  
AI14-514 Older South Coast Basalt  18 (f, ol)  23 56 23     21  
 
AI14-428 White Horse  Trachyte  2 (f)  24 64   29 4  3 
AI14-511 Cricket Valley  Trachyte   6 (f, aeg) 1 78   12 9  1 
AI14-485 Ariane flow  Trachyte  4 (f)  15 77   19   4 
AI14-419 Letterbox felsic lava Trachyte  <1 (f)  25 60  1 1  37 1  
AI-103 Mountain Red Hill Trachyte  2 (f, ox)  4 70   24 5  1 
AI15-621 Devil’s Riding School Trachyte   3 (f)  13 68   27 4  1 
AI-94 Middleton’s Ridge Rhyolite   <1 (f)  18 57   35 6  2 
 
 
Arranged by relative age (see Table 1 and references therein) 
Crystal percentages represent groundmass (<500 µm) crystals as well as those represented as phenocryst phases; Fspar = feldspar (plagioclase and 
ternary); Ol = olivine; Cpx = clinopyroxene; Cbt = cristobalite; Aeg = aegirine; Ox+Acc = bright in Back Scattered Electron imagery oxides and 
accessory phases including zircon and apatite. 
*Phenocrysts used to represent phases > 500 µm in thin sectioned area. Phases which constitute phenocryst phases indicated in brackets: f= feldspar, 
ol = olivine; cpx = clinopyroxene; aeg = aegirine; ox = oxides;  
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Table 4: Representative feldspar data for Ascension samples 
 
Sample AI114-411    AI14-423  AI14-445  AI14-522  AI14-485    
Location  Young Sisters    Young Letterbox  Young Wideawakes  Young South Coast Ariane  
Rock type Trachy-basalt    Trachy-andesite  Basalt   Basalt  Trachyte 
Spot location F3-C F3-R F5-C F5-R F1-C  F1-R F5-C  F5-R F1-C F1-R K3-C K3-R K10-C 
SiO2 53.50 53.29 47.46 52.69 56.56  56.19 52.57  51.22 48.05 51.89 63.33 61.71 62.46 
TiO2 0.16 0.17 0.05 0.13 0.04  0.06 0.13  0.16 0.05 0.10 0.00 0.01 0.01 
Al2O3 28.26 28.18 32.79 29.25 26.89  26.57 28.59  29.16 32.44 29.44 22.67 23.21 23.19 
FeO* 0.91 0.92 0.45 0.77 0.37  0.49 0.77  0.87 0.46 0.66 0.20 0.24 0.25 
MgO 0.10 0.09 0.13 0.11 0.04  0.05 0.12  0.13 0.15 0.15 0.00 0.01 0.01 
CaO 11.45 11.61 16.66 12.19 8.93  8.88 12.20  12.80 15.92 13.46 3.48 4.44 4.28 
Na2O 5.04 5.10 2.30 4.74 6.55  6.63 4.48  4.29 2.67 4.17 9.17 8.56 8.87 
K2O 0.32 0.33 0.07 0.26 0.36  0.36 0.24  0.23 0.10 0.18 1.26 1.17 0.83 
Total 99.76 99.70 99.91 100.15 99.75  99.23 99.10  98.87 99.86 100.05 100.11 99.34 99.90 
 
An 54.6 54.7 79.7 57.8 42.1  41.7 59.3  61.4 76.3 63.4 16.1 20.8 20.0 
Ab 43.5 43.5 19.9 40.7 55.9  56.3 39.3  37.2 23.1 35.6 76.9 72.7 75.3 
Or 1.8 1.9 0.4 1.5 2.0  2.0 1.4  1.4 0.6 1.0 7.0 6.5 4.7 
 
Sc 4.55 4.90 4.64 4.60 4.6  3.11 6.38  12.0 8.48 7.22 6.60 5.20 8.00 
Ti 421 612 696 664 254  344 797  4970 508 526 136 137 147 
V 0.53 1.60 1.73 1.58 0.42  0.51 3.49  83 3.12 2.41 0.16 bdl 0.48 
Mn 32.8 32.6 36.5 38.8 37.7  36.9 37.9  323 37.8 28.3 27.0 25.0 27.0 
Ga 21.2 20.0 24.9 23.0 24.8  26.0 24.7  22.9 23.1 23.1 28.2 27.1 26.8 
Rb 0.31 0.45 0.28 0.14 0.86  0.56 0.93  2.90 0.24 0.32 1.56 1.64 1.29 
Sr 1130 1096 1104 1168 1289  1317 922  811 793 718 834 883 836 
Y 0.19 0.18 0.20 0.40 0.64  0.40 0.57  9.00 0.11 0.08 0.02 0.13 0.13 
Zr 0.41 0.22 0.00 0.11 2.80  1.54 1.26  31.5 0.50 0.17 bdl 1.86 0.25 
Ba 134 137 121 175 295  324 109  131 70.7 86.2 1248 1353 1087 
La 3.16 2.76 2.46 2.71 5.88  6.40 2.13  9.23 1.08 1.10 8.29 7.78 7.35 
Ce 5.21 3.73 3.61 4.33 8.62  6.47 4.00  20.0 1.93 1.55 9.14 9.42 8.43 
Pr 0.54 0.41 0.24 0.42 0.90  0.81 0.37  2.33 0.17 0.18 0.74 0.57 0.60 
Nd 2.24 0.99 1.00 1.55 2.10  2.36 1.72  11.4 0.59 0.70 1.71 1.80 1.51 
Sm 0.23 0.09 0.34 0.41 0.57  0.19 0.31  2.37 0.04 bdl 0.13 0.00 0.17 
Eu 1.07 0.68 0.78 0.98 3.04  2.50 0.68  1.21 0.38 0.39 8.97 9.59 9.15 
Gd 0.17 0.27 0 0.25 0.35  0.20 0.25  2.44 bdl 0.06 bdl 0.21 0.17 
Yb bdl bdl bdl bdl 0.13  bdl 0.01  0.61 0.02 bdl 0.00 0.00 0.00 
Pb 0.40 0.22 0.26 0.22 0.84  0.65 0.23  0.63 0.22 0.10 1.04 1.01 0.84 
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Sample AI114-485 AI14-511  AI14-419  AI14-435A AI14-493A AI14-488A  AI14-459A     
Location  Ariane Cricket Valley  Letterbox felsic lava Echo Canyon NASA Unit E NASA Unit A Middletons Valley 
Rock type Trachyte Trachyte  Trachyte  Trachyte Trachyte Trachyte  Trachy-andesite 
Spot location F10-R F2-C F2-R F3-C F3-R F4-C F4-R F26-C F26-R K13-C K13-R K18-C K18-R K20-C 
SiO2 65.60 65.20 65.89 65.20 64.76 65.21 65.91 67.98 68.53 68.51 67.88 62.04 61.39 58.09 
TiO2 0.03 0.02 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.02 0.07 0.04 
Al2O3 19.42 19.33 19.00 20.71 20.90 21.22 20.57 19.24 19.53 19.36 19.31 22.50 23.09 24.64 
FeO* 0.53 0.32 0.31 0.17 0.20 0.22 0.18 0.29 0.24 0.28 0.32 0.34 0.49 0.35 
MgO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.03 0.03 0.04 
CaO 0.75 0.23 0.07 1.44 1.67 3.21 2.59 0.07 0.12 0.13 0.12 5.10 5.86 7.59 
Na2O 8.56 7.79 7.74 9.19 9.13 8.96 9.28 7.50 7.73 7.53 8.03 8.28 7.96 7.29 
K2O 4.37 6.30 6.54 2.40 2.46 1.12 1.40 6.64 6.36 6.08 5.92 0.94 0.74 0.48 
Total 99.28 99.22 99.57 99.10 99.14 99.95 99.93 101.71 102.52 101.89 101.58 99.25 99.62 98.52 
    
An 3.5 1.1 0.3 6.9 7.9 15.5 12.3 0.3 0.6 0.6 0.6 24.1 27.7 35.5 
Ab 72.2 64.6 64.1 79.4 78.2 78.1 79.8 63.0 64.5 64.9 67.0 70.6 68.1 61.8 
Or 24.3 34.4 35.6 13.7 13.9 6.4 7.9 36.7 34.9 34.5 32.4 5.3 4.2 2.7 
 
Sc 6.90 6.77 7.44 0.33 6.97 3.90 5.20 6.30 3.20 5.20 6.90 5.20 4.20 3.60 
Ti 156 104 76.5 6.89 124 105 104 62.0 84.0 69.8 67.7 229 264 352 
V 0.31 0.45 0.17 0.02 bdl 0.11 bdl bdl 1.70 0.09 0.01 bdl 1.40 1.70 
Mn 20.1 1.20 0.60 2.55 7.00 22.1 11.8 1.10 bdl 2.10 bdl 19.9 28.0 34.8 
Ga 27.8 25.6 24.5 0.95 28.7 28.0 25.9 32.2 34.7 30.7 35.3 29.5 23.5 33.9 
Rb 2.40 39.0 47.3 0.33 10.2 2.06 1.91 51.2 45.7 32.8 33.0 1.56 2.16 1.18 
Sr 828 1.31 0.81 13.0 222 644 571 0.79 2.28 2.35 1.46 1169 1230 1930 
Y 0.31 0.17 0.03 0.19 0.79 0.04 0.00 0.00 0.00 0.00 0.00 0.10 0.27 0.36 
Zr 2.70 3.22 0.45 2.17 bdl 0.00 0.00 bdl 2.90 0.30 0.47 bdl 5.50 1.80 
Ba 1261 120 80.6 96.7 3770 1680 1552 66.0 129 194 97.4 533 753 448 
La 8.60 0.67 0.42 0.48 6.96 7.35 6.03 0.65 0.66 0.43 0.56 11.6 12.4 11.7 
Ce 9.90 0.68 0.23 0.73 8.47 8.37 7.14 0.13 0.30 0.37 0.17 15.2 14.2 15.9 
Pr 0.74 0.02 bdl 0.07 0.72 0.48 0.52 0.00 0.00 0.00 0.00 1.01 1.14 0.85 
Nd 2.40 0.27 0.04 0.28 2.20 1.47 1.24 0.00 0.00 0.00 0.00 3.10 3.60 3.10 
Sm 0.26 0.03 bdl 0.05 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.27 
Eu 9.82 0.98 0.99 0.28 7.07 8.85 8.50 0.73 1.00 1.25 1.00 2.27 3.65 3.53 
Gd 0.18 0.01 bdl 0.04 0.35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 
Yb 0.00 bdl bdl 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Pb 1.21 1.12 0.93 0.07 1.94 1.29 1.34 0.53 0.88 0.89 0.69 1.91 1.85 1.02 
 

Major element data given as wt.%; Anorthite, albite and orthoclase (An, Ab, Or) contents as mol. %; trace elements in ppm. For full data set, see 
Electronic Appendix 2. Where elements are below the detection limits of the method, bdl is written. Spot location refers to the analysis being 
core [C] or rim [R]. 



 

Sensitivity: Internal 

Table 5: Representative olivine major and trace element data for selected Ascension samples 
 
Sample AI14-411  AI14-423  AI14-445 AI14-522  AI14-435A  AI14-493A 
Location Young Sisters  Young Letterbox Young  Young South Coast  Echo Canyon NASA unit E 
     Wideawakes 
Rock type Trachy-basalt  Trachy-andesite Basalt  Basalt  Trachyte  Trachyte 
Spot tag 16_C 16_R 2_C 2_R 6_C 6_R 6_C 6_R 3_C 3_R 10_C 10_R 
SiO2 39.59 38.43 35.49 35.07 38.96 37.31 37.93 37.17 29.42 29.23 28.74 29.11 
Al2O3 0.06 0.00 0.02 0.02 0.03 0.03 0.03 0.04 0.00 0.00 0.00 0.00 
FeO* 14.67 24.67 32.21 32.30 19.05 28.37 22.89 29.63 59.56 59.01 62.61 61.38 
MnO 0.22 0.76 1.10 1.13 0.25 0.48 0.33 0.56 4.96 4.94 5.53 5.48 
MgO 43.65 34.97 30.98 30.87 41.46 34.30 38.63 32.92 3.77 3.73 0.83 0.98 
CaO 0.22 0.26 0.18 0.18 0.25 0.26 0.34 0.32 0.31 0.32 0.31 0.52 
Cr2O3 0.03 bdl 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
NiO 0.19 0.00 0.01 0.00 0.15 0.04 0.07 0.05 0.02 0.00 0.00 0.00 
P2O5 -- -- 0.10 0.04 0.01 0.04 0.01 0.03 -- -- -- -- 
Total 98.63 99.16 100.15 99.65 100.19 100.83 100.25 100.73 98.04 97.24 98.02 97.48 
             
Fo (%) 84.1 71.7 63.2 63.0 79.5 68.3 75.1 66.5 10.1 10.1 2.3 2.8 
Fa (%) 15.9 28.3 36.8 37.0 20.5 31.7 24.9 33.5 89.9 89.9 97.7 97.2 
 

Major element data given as wt.%; Fosterite, fayalite contents as mol. %. For full data set, see Electronic Appendix 2. Spot location refers to the 
analysis being core [C] or rim [R]. 
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Table 6: Representative clinopyroxene major element data for selected Ascension samples 
  
Sample AI14-423  AI14-429  AI14-449  AI14-522  AI14-485 AI14-511  AI14-428  AI14-419  AI15-621  AI15-618  
Location Young Letterbox Old Letterbox Old Wideawakes Young South Coast Ariane Weatherpost White Horse Letterbox bedrock Devils Riding School Young pumice fall 
Rock type Trachy-andesite Trachy-andesite Trachy-basalt Basalt  Trachyte Trachyte  Trachyte  Trachyte  Trachyte  Trachyte 
Spot tag 2_C 2_R GM GM 1_C 1_R 1_C 1_R GM GM GM GM GM 1_C 1_R GM GM 10_C 10_R 
SiO2 48.35 50.51 49.37 36.12 50.22 48.46 50.63 47.34 47.79 47.74 47.90 50.81 50.86 48.50 48.20 47.94 49.82 51.82 51.58 
TiO2 1.27 0.75 0.97 0.02 0.96 2.25 1.09 1.94 2.05 0.29 0.42 1.95 1.88 0.39 0.53 0.32 0.47 0.63 0.56 
Al2O3 3.62 1.98 3.03 0.02 2.15 5.37 2.82 5.19 2.59 0.29 0.33 2.35 3.50 0.70 0.89 0.21 1.99 1.59 1.69 
FeO* 9.50 9.65 12.42 31.46 11.76 9.61 8.44 8.11 25.67 26.08 26.72 27.00 24.79 22.35 22.84 27.99 26.35 11.30 10.81 
MnO 0.47 0.61 0.72 1.09 0.67 0.25 0.19 0.15 2.38 1.54 1.64 1.25 1.25 1.52 1.47 1.37 0.91 0.72 0.67 
MgO 13.93 14.33 12.66 30.88 15.56 13.23 16.29 13.92 3.21 2.71 2.97 0.84 1.12 5.04 5.26 1.17 0.86 15.26 13.92 
CaO 20.54 20.55 19.84 0.14 17.24 20.05 19.86 21.74 13.17 19.05 18.26 2.19 2.41 20.41 20.30 15.64 10.73 18.70 20.34 
Na2O 0.49 0.50 0.55 0.01 0.46 0.56 0.29 0.39 2.09 1.04 1.01 11.76 11.88 0.51 0.53 4.78 6.50 0.43 0.50 
K2O 0.00 0.03 0.00 0.00 0.01 0.00 0.00 0.01 0.09 0.00 0.00 0.70 1.24 0.01 0.01 1.39 2.06 0.00 0.01 
Cr2O3 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.23 0.00 0.00 0.00 bdl bdl 0.00 bdl bdl 0.00 0.00 0.00 
Total 98.16 98.91 99.58 99.74 99.03 99.78 99.76 99.02 99.05 98.74 99.25 98.85 98.94 99.44 100.02 100.81 99.69 100.45 100.09 
 

Major element data given as wt.%. For full data set, see Electronic Appendix 2. Spot location refers to the analysis being core [C], rim [R] or 
groundmass [GM]. 
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Table 7: Representative glass analyses from Ascension Island 
7a: Major element analyses normalised to 100 wt.% 
  
Sample AI14-419  AI15-618  AI14-552  AI14-438  AI14-435A   AI14-493A  AI14-488A  AI14-459A 
Location  Letterbox felsic lava Young pumice Green Mountain sc.  NE scoria  Echo Canyon  NASA unit E NASA unit A Middelton’s Valley fall 
Spot Tag 419-1 419-2 15-5 15-6 1-1 1-4 14-1 14-2 10-2 10-3 10-4 8-1 8-4 15-1 15-2 4-1 4-3 
SiO2   71.21 72.69 70.64 70.74 48.91 49.14 50.79 50.99 67.86 69.22 67.98 71.17 71.30 71.07 70.11 67.23 67.60 
TiO2   0.27 0.31 0.19 0.19 3.68 3.72 3.61 3.52 0.10 0.29 0.22 0.21 0.22 0.17 0.18 0.48 0.49 
Al2O3  12.04 10.48 13.26 12.91 13.51 13.87 13.54 12.90 17.98 13.88 16.01 12.33 11.78 13.67 13.60 16.80 16.64 
FeO*    5.64 5.77 4.50 4.89 13.53 13.27 12.02 11.97 1.38 4.47 3.43 4.77 4.87 3.28 3.96 2.78 2.94 
MnO    0.27 0.28 0.27 0.25 0.15 0.23 0.19 0.20 0.08 0.19 0.16 0.18 0.16 0.12 0.20 0.07 0.06 
MgO    0.06 0.07 0.03 0.02 5.32 5.41 3.78 4.52 0.02 0.08 0.09 0.02 0.02 0.00 0.00 0.54 0.50 
CaO    0.77 0.51 0.48 0.46 9.70 9.43 7.91 8.56 0.65 0.64 0.90 0.29 0.28 0.46 0.45 1.32 1.23 
Na2O   5.15 4.44 6.14 6.11 3.34 3.16 3.48 3.22 7.32 5.43 6.09 5.52 4.42 4.42 4.95 5.88 5.73 
K2O    4.56 5.41 4.46 4.40 1.20 1.10 2.19 2.21 4.36 5.03 4.47 4.75 5.94 6.14 5.74 4.41 4.43 
BaO    0.00 0.00 0.00 0.00 0.05 0.07 0.08 0.06 0.11 0.06 0.09 0.04 0.00 0.00 0.00 0.09 0.04 
P2O5   0.03 0.04 0.03 0.01 0.57 0.56 1.97 1.74 0.04 0.01 0.00 0.03 0.01 0.04 0.01 0.11 0.10 
Cl     0.00 0.00 0.00 0.00 0.04 0.05 0.11 0.12 0.11 0.43 0.34 0.54 0.60 0.56 0.54 0.25 0.24 
F      0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.00 0.00 0.27 0.22 0.14 0.40 0.07 0.26 0.03 0.00 
Total   100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

Major element data given as wt.%. For full data set, see Electronic Appendix 2.  

Table 7b: Selected trace element data from glass in felsic samples (all elements in ppm); where elements are below the detection limits of the 
method, bdl is written. Analyses in italics previously published in Chamberlain et al., 2016. 
Sample AI14-419  AI14-435A  AI14-493A  AI14-459A   AI14-439D  AI14-439G  
Location Letterbox felsic lava Echo Canyon NASA unit E Middleton’s Valley fall Compositionally-zoned mid (D) and upper (G) 
Tag G1 G2 G1 G2 G1 G2 G1 G2 G3 G1 G2 G1 G2 G3 
Li 10.0 15.0 10.0 17.0 15.5 29.0 24.0 bdl 13.0 13.6 18.0 29.0 20.0 18.0 
Sc 13.6 15.9 13.8 12.8 9.70 9.40 5.00 11.1 13.0 11.2 21.0 27.0 10.1 27.0 
Ti 994 1020 1705 1300 1448 1437 5400 4960 5400 2360 5690 4200 4530 2900 
V 1.60 1.20 0.71 bdl 4.37 6.80 10.1 10.0 21.0 bdl 5.30 1.10 33.8 11.0 
Mn 863 820 1544 1290 1259 1270 1720 1060 1190 1160 2720 2130 1290 1550 
Zn 84 90 154 215 268 239 178 113 94 97 164 134 107 155 
Ga 34 32 30 32 39 42 57 38 33 16 37 35 27 17 
Rb 101 58 90 90 169 182 166 134 161 44 73 97 56 64 
Sr 90 106 50 44 10 8 246 175 220 175 390 184 117 159 
Y 76 49 77 80 124 129 52 44 38 34 74 70 41 79 
Zr 930 584 791 868 1507 1661 1180 1000 1310 286 620 760 490 830 
Nb 133 89 147 161 234 247 160 135 141 64 138 141 83 98 
Ba 746 1240 790 720 55 61 950 651 1020 470 900 1290 840 1300 
La 76 51 83 83 138 145 93 65 71 41 73 81 54 79 
Ce 160 113 169 178 274 283 197 124 145 75 160 153 102 153 
Pr 18 12 19 20 30 30 17 12 9 7 19 15 12 19 
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Nd 67 50 73 77 112 115 57 43 45 33 85 60 43 75 
Sm 16.9 9.3 15.3 14.8 24.2 23.9 13.6 8.2 7.8 8 12.9 14.8 8.5 10.2 
Eu 2.67 3.92 3.24 2.52 2.61 2.40 2.57 2.40 2.60 1.72 4.60 4.40 3.06 3.60 
Gd 11.6 8.8 13.8 14.9 21.9 22.4 10.6 6.1 10.0 7.0 12.0 11.6 10.2 8.9 
Dy 13.3 11.0 14.4 14.1 23.6 24.2 9.4 7.3 10.0 7.7 11.2 11.8 7.8 14.6 
Er  8.10 5.66 8.45 7.91 12.93 13.39 5.30 5.20 4.70 3.70 8.10 7.40 4.40 4.90 
Yb 8.70 6.70 7.97 7.48 11.91 13.00 4.60 5.20 6.20 3.60 7.80 6.70 2.50 5.50 
Lu 1.18 1.00 1.15 1.15 1.61 1.76 1.18 0.81 0.60 0.27 0.99 0.59 0.37 0.51 
Hf 18.6 12.7 17.1 19.2 30.3 33.8 26.8 21.0 23.5 6.9 12.8 14.5 9.2 13.2 
Ta 7.2 5.0 8.5 9.0 13.3 13.4 11.1 9.5 6.9 3.2 6.8 6.1 4.5 6.9 
W 2.50 0.79 1.88 1.95 3.58 4.00 5.50 2.77 1.90 0.54 2.00 1.03 1.00 1.14 
Pb 5.91 4.65 6.75 6.79 14.37 13.06 13.50 10.20 4.30 2.90 4.10 6.30 3.50 6.20 
Th 10.9 7.8 10.8 10.7 21.1 21.8 20.5 16.0 16.0 4.2 8.7 7.9 5.7 9.1 
U 3.15 2.02 3.33 3.40 6.42 6.32 7.00 5.80 5.70 1.13 2.71 2.20 1.82 2.77 
 



 

Sensitivity: Internal 

Table 8: Intensive variables modelled for Ascension Island samples 
 
Sample Region  FeTi-Oxide Thermometry1 Feldspar-melt Thermometry 2,3  
number   T (°C) fO2 (ΔNNO)  T (°C)  wt.% H2O4 
AI14-411 Youngest Sisters  935 -0.4 1150   
AI14-471 Older Sisters  -- -- 1152 
AI14-423 Youngest Letterbox 990 -0.05 1093 
AI14-429 Older Letterbox  1025 +0.08 1110 
AI14-445 Youngest Wideawakes 985 -0.34 1167 
 
AI14-511 Cricket Valley  884 -1.6 886  5.2 
AI14-428 White Horse  -- -- 837  5.5 
AI-94 Middleton’s Ridge -- -- 772  4.7 
AI-103 Mountain Red Hill  967 -1.9 801  7.2 
AI14-419 Letterbox felsic lava -- -- 837 
AI15-621 Devil’s Riding School -- -- 871  5.1 
  
AI15-618 Youngest pumice fall -- -- 847  6.4 
AI14-435A Echo Canyon   -- -- 993   
AI14-438 NE scoria  -- -- 1164 
AI14-493A NASA unit E  -- -- 811  7.1 
AI14-488A NASA unit A  -- -- 813  8.1 
AI14-459A Middleton’s Valley fall 950 -0.2 1034   
AI14-552 Green Mountain scoria -- -- 1174 
 
AI14-439A+ Compositionally-zoned scoria 845 -2.28 
AI14-439G+ Compositionally-zoned pumice 866 -1.94 
 
 
1Using the calibration of Ghiorso & Evans, 2008, on oxides which have passed the 
equilibrium test of Bacon & Hirschmann (1988). 
2 Plagioclase-melt thermometry from Putirka (2008), only analyses where KD(Ab-An) was 
0.1 ± 0.11 for T < 1050 °C, or 0.27 ± 0.05 at T > 1050 °C were used (Putirka, 2008). 
3Alkali-feldspar-melt thermometry (Putirka, 2008). Only analyses within the equilibrium 
bounds outlined in Mollo et al. (2015) were used. 
4 Alkali-feldspar-melt hygrometry (Mollo et al., 2015). Only analyses within the equilibrium 
bounds outlined in Mollo et al. (2015) were used. Uncertainties of ±0.7 wt.% consistent with 
that published in Mollo et al. (2015) are assumed. 
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